ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
ERF_MRI.H
Go to the documentation of this file.
1 #ifndef ERF_MRI_H
2 #define ERF_MRI_H
3 
4 #include <AMReX_REAL.H>
5 #include <AMReX_Vector.H>
6 #include <AMReX_ParmParse.H>
7 #include <AMReX_IntegratorBase.H>
8 
9 #include <ERF_TI_slow_headers.H>
10 #include <ERF_TI_fast_headers.H>
11 
12 #include <functional>
13 
14 template<class T>
16 {
17 private:
18  /**
19  * \brief rhs is the right-hand-side function the integrator will use.
20  */
21  std::function<void(T&, const T&, const amrex::Real, const amrex::Real )> rhs;
22  std::function<void(T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_pre;
23  std::function<void(T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_inc;
24  std::function<void(T&, T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int )> slow_rhs_post;
25  std::function<void(int, int, int, T&, const T&, T&, T&, T&, const amrex::Real, const amrex::Real,
26  const amrex::Real, const amrex::Real)> fast_rhs;
27 
28  /**
29  * \brief Integrator timestep size (Real)
30  */
31  amrex::Real timestep;
32 
33  /**
34  * \brief The ratio of slow timestep size / fast timestep size (int)
35  */
37 
38  /**
39  * \brief Should we not do acoustic substepping
40  */
42 
43  /**
44  * \brief Should we use the anelastic integrator
45  */
46  int anelastic;
47 
48  /**
49  * \brief How many components in the cell-centered MultiFab
50  */
52 
53  /**
54  * \brief Do we follow the recommendation to only perform a single substep in the first RK stage
55  */
57 
58  /**
59  * \brief The no_substep function is called when we have no acoustic substepping
60  */
61  std::function<void (T&, T&, T&, amrex::Real, amrex::Real, int)> no_substep;
62 
63 
64  amrex::Vector<std::unique_ptr<T> > T_store;
65  T* S_sum;
68 
69  void initialize_data (const T& S_data)
70  {
71  // TODO: We can optimize memory by making the cell-centered part of S_sum, S_scratch
72  // have only 2 components, not ncomp_cons components
73  const bool include_ghost = true;
74  amrex::IntegratorOps<T>::CreateLike(T_store, S_data, include_ghost);
75  S_sum = T_store[0].get();
76  amrex::IntegratorOps<T>::CreateLike(T_store, S_data, include_ghost);
77  S_scratch = T_store[1].get();
78  amrex::IntegratorOps<T>::CreateLike(T_store, S_data, include_ghost);
79  F_slow = T_store[2].get();
80  }
81 
82 public:
83  MRISplitIntegrator () = default;
84 
85  MRISplitIntegrator (const T& S_data)
86  {
87  initialize_data(S_data);
88  }
89 
90  void initialize (const T& S_data)
91  {
92  initialize_data(S_data);
93  }
94 
95  ~MRISplitIntegrator () = default;
96 
97  // Declare a default move constructor so we ensure the destructor is
98  // not called when we return an object of this class by value
99  MRISplitIntegrator(MRISplitIntegrator&&) noexcept = default;
100 
101  // Declare a default move assignment operator
102  MRISplitIntegrator& operator=(MRISplitIntegrator&& other) noexcept = default;
103 
104  // Delete the copy constructor and copy assignment operators because
105  // the integrator allocates internal memory that is best initialized
106  // from scratch when needed instead of making a copy.
107 
108  // Delete the copy constructor
109  MRISplitIntegrator(const MRISplitIntegrator& other) = delete;
110  //
111  // Delete the copy assignment operator
112  MRISplitIntegrator& operator=(const MRISplitIntegrator& other) = delete;
113 
114  void setNcompCons(int _ncomp_cons)
115  {
116  ncomp_cons = _ncomp_cons;
117  }
118 
119  void setAnelastic(int _anelastic)
120  {
121  anelastic = _anelastic;
122  }
123 
124  void setNoSubstepping(int _no_substepping)
125  {
126  no_substepping = _no_substepping;
127  }
128 
129  void setForceFirstStageSingleSubstep(int _force_stage1_single_substep)
130  {
131  force_stage1_single_substep = _force_stage1_single_substep;
132  }
133 
134  void set_slow_rhs_pre (std::function<void(T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
135  {
136  slow_rhs_pre = F;
137  }
138  void set_slow_rhs_inc (std::function<void(T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
139  {
140  slow_rhs_inc = F;
141  }
142  void set_slow_rhs_post (std::function<void(T&, T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
143  {
144  slow_rhs_post = F;
145  }
146 
147  void set_fast_rhs (std::function<void(int, int, int, T&, const T&, T&, T&, T&,
148  const amrex::Real, const amrex::Real,
149  const amrex::Real, const amrex::Real)> F)
150  {
151  fast_rhs = F;
152  }
153 
154  void set_slow_fast_timestep_ratio (const int timestep_ratio = 1)
155  {
156  slow_fast_timestep_ratio = timestep_ratio;
157  }
158 
160  {
162  }
163 
164  void set_no_substep (std::function<void (T&, T&, T&, amrex::Real, amrex::Real, int)> F)
165  {
166  no_substep = F;
167  }
168 
169  std::function<void(T&, const T&, const amrex::Real, int)> get_rhs ()
170  {
171  return rhs;
172  }
173 
174  amrex::Real advance (T& S_old, T& S_new, amrex::Real time, const amrex::Real time_step)
175  {
176  BL_PROFILE_REGION("MRI_advance");
177  using namespace amrex;
178 
179  // *******************************************************************************
180  // !no_substepping: we only update the fast variables every fast timestep, then update
181  // the slow variables after the acoustic sub-stepping. This has
182  // two calls to slow_rhs so that we can update the slow variables
183  // with the velocity field after the acoustic substepping using
184  // the time-averaged velocity from the substepping
185  // no_substepping: we don't do any acoustic subcyling so we only make one call per RK
186  // stage to slow_rhs
187  // *******************************************************************************
188  timestep = time_step;
189 
190  const int substep_ratio = get_slow_fast_timestep_ratio();
191 
192  if (!no_substepping) {
193  AMREX_ALWAYS_ASSERT(substep_ratio > 1 && substep_ratio % 2 == 0);
194  }
195 
196  // Assume before advance() that S_old is valid data at the current time ("time" argument)
197  // And that if data is a MultiFab, both S_old and S_new contain ghost cells for evaluating a stencil based RHS
198  // We need this from S_old. This is convenient for S_new to have so we can use it
199  // as scratch space for stage values without creating a new scratch MultiFab with ghost cells.
200 
201  // NOTE: In the following, we use S_new to hold S*, S**, and finally, S^(n+1) at the new time
202  // DEFINITIONS:
203  // S_old = S^n
204  // S_sum = S(t)
205  // F_slow = F(S_stage)
206 
207  int n_data = IntVars::NumTypes;
208 
209  /**********************************************/
210  /* RK3 Integration with Acoustic Sub-stepping */
211  /**********************************************/
212  Vector<int> num_vars = {ncomp_cons, 1, 1, 1};
213  for (int i(0); i<n_data; ++i)
214  {
215  // Copy old -> new
216  MultiFab::Copy(S_new[i],S_old[i],0,0,num_vars[i],S_old[i].nGrowVect());
217  }
218 
219  // Timestep taken by the fast integrator
220  amrex::Real dtau;
221 
222  // How many timesteps taken by the fast integrator
223  int nsubsteps;
224 
225  // This is the final time of the full timestep (also the 3rd RK stage)
226  // Real new_time = time + timestep;
227 
228  amrex::Real time_stage = time;
229  amrex::Real old_time_stage;
230 
231  const amrex::Real sub_timestep = timestep / substep_ratio;
232 
233  if (!anelastic) {
234  // RK3 for compressible integrator
235  for (int nrk = 0; nrk < 3; nrk++)
236  {
237  // Capture the time we got to in the previous RK step
238  old_time_stage = time_stage;
239 
240  if (nrk == 0) {
242  nsubsteps = 1; dtau = timestep / 3.0;
243  } else {
244  nsubsteps = substep_ratio/3; dtau = sub_timestep ;
245  }
246  time_stage = time + timestep / 3.0;
247  }
248  if (nrk == 1) {
249  if (no_substepping) {
250  nsubsteps = 1; dtau = 0.5 * timestep;
251  } else {
252  nsubsteps = substep_ratio/2; dtau = sub_timestep;
253  }
254  time_stage = time + timestep / 2.0;
255  }
256  if (nrk == 2) {
257  if (no_substepping) {
258  nsubsteps = 1; dtau = timestep;
259  } else {
260  nsubsteps = substep_ratio; dtau = sub_timestep;
261 
262  // STRT HACK -- this hack can be used to approximate the no-substepping algorithm
263  // nsubsteps = 1; dtau = timestep;
264  // END HACK
265  }
266  time_stage = time + timestep;
267  }
268 
269  // step 1 starts with S_stage = S^n and we always start substepping at the old time
270  // step 2 starts with S_stage = S^* and we always start substepping at the old time
271  // step 3 starts with S_stage = S^** and we always start substepping at the old time
272 
273  // S_scratch also holds the average momenta over the fast iterations --
274  // to be used to update the slow variables -- we will initialize with
275  // the momenta used in the first call to the slow_rhs, then update
276  // inside fast_rhs, then use these values in the later call to slow_rhs
277 
278  slow_rhs_pre(*F_slow, S_old, S_new, *S_scratch, time, old_time_stage, time_stage, nrk);
279 
280  amrex::Real inv_fac = 1.0 / static_cast<amrex::Real>(nsubsteps);
281 
282  // ****************************************************
283  // Acoustic substepping
284  // ****************************************************
285  if (!no_substepping)
286  {
287  // *******************************************************************************
288  // Update the fast variables
289  // *******************************************************************************
290  for (int ks = 0; ks < nsubsteps; ++ks)
291  {
292  fast_rhs(ks, nsubsteps, nrk, *F_slow, S_old, S_new, *S_sum, *S_scratch, dtau, inv_fac,
293  time + ks*dtau, time + (ks+1) * dtau);
294 
295  } // ks
296 
297  } else {
298  no_substep(*S_sum, S_old, *F_slow, time + nsubsteps*dtau, nsubsteps*dtau, nrk);
299  }
300 
301  // ****************************************************
302  // Evaluate F_slow(S_stage) only for the slow variables
303  // Note that we are using the current stage versions (in S_new) of the slow variables
304  // (because we didn't update the slow variables in the substepping)
305  // but we are using the "new" versions (in S_sum) of the velocities
306  // (because we did update the fast variables in the substepping)
307  // ****************************************************
308  slow_rhs_post(*F_slow, S_old, S_new, *S_sum, *S_scratch, time, old_time_stage, time_stage, nrk);
309  } // nrk
310 
311  } else {
312  // RK2 for anelastic integrator
313  for (int nrk = 0; nrk < 2; nrk++)
314  {
315  // Capture the time we got to in the previous RK step
316  old_time_stage = time_stage;
317 
318  if (nrk == 0) { nsubsteps = 1; dtau = timestep; time_stage = time + timestep; }
319  if (nrk == 1) { nsubsteps = 1; dtau = timestep; time_stage = time + timestep; }
320 
321  // S_scratch also holds the average momenta over the fast iterations --
322  // to be used to update the slow variables -- we will initialize with
323  // the momenta used in the first call to the slow_rhs, then update
324  // inside fast_rhs, then use these values in the later call to slow_rhs
325 
326  slow_rhs_inc(*F_slow, S_old, S_new, *S_scratch, time, old_time_stage, time_stage, nrk);
327 
328  no_substep(*S_sum, S_old, *F_slow, time + nsubsteps*dtau, nsubsteps*dtau, nrk);
329 
330  // ****************************************************
331  // Evaluate F_slow(S_stage) only for the slow variables
332  // Note that we are using the current stage versions (in S_new) of the slow variables
333  // (because we didn't update the slow variables in the substepping)
334  // but we are using the "new" versions (in S_sum) of the velocities
335  // (because we did update the fast variables in the substepping)
336  // ****************************************************
337  slow_rhs_post(*F_slow, S_old, S_new, *S_sum, *S_scratch, time, old_time_stage, time_stage, nrk);
338  } // nrk
339  }
340 
341  // Return timestep
342  return timestep;
343  }
344 
345  void map_data (std::function<void(T&)> Map)
346  {
347  for (auto& F : T_store) {
348  Map(*F);
349  }
350  }
351 };
352 
353 #endif
Definition: ERF_MRI.H:16
T * F_slow
Definition: ERF_MRI.H:67
amrex::Vector< std::unique_ptr< T > > T_store
Definition: ERF_MRI.H:64
void set_slow_rhs_pre(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:134
void map_data(std::function< void(T &)> Map)
Definition: ERF_MRI.H:345
std::function< void(T &, T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_post
Definition: ERF_MRI.H:24
void set_no_substep(std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> F)
Definition: ERF_MRI.H:164
void set_slow_rhs_inc(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:138
int anelastic
Should we use the anelastic integrator.
Definition: ERF_MRI.H:46
void setNcompCons(int _ncomp_cons)
Definition: ERF_MRI.H:114
amrex::Real timestep
Integrator timestep size (Real)
Definition: ERF_MRI.H:31
MRISplitIntegrator()=default
std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_pre
Definition: ERF_MRI.H:22
void setForceFirstStageSingleSubstep(int _force_stage1_single_substep)
Definition: ERF_MRI.H:129
int force_stage1_single_substep
Do we follow the recommendation to only perform a single substep in the first RK stage.
Definition: ERF_MRI.H:56
int ncomp_cons
How many components in the cell-centered MultiFab.
Definition: ERF_MRI.H:51
T * S_scratch
Definition: ERF_MRI.H:66
void setNoSubstepping(int _no_substepping)
Definition: ERF_MRI.H:124
void initialize(const T &S_data)
Definition: ERF_MRI.H:90
MRISplitIntegrator(MRISplitIntegrator &&) noexcept=default
std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_inc
Definition: ERF_MRI.H:23
std::function< void(int, int, int, T &, const T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> fast_rhs
Definition: ERF_MRI.H:26
void initialize_data(const T &S_data)
Definition: ERF_MRI.H:69
MRISplitIntegrator(const T &S_data)
Definition: ERF_MRI.H:85
std::function< void(T &, const T &, const amrex::Real, int)> get_rhs()
Definition: ERF_MRI.H:169
void set_fast_rhs(std::function< void(int, int, int, T &, const T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> F)
Definition: ERF_MRI.H:147
std::function< void(T &, const T &, const amrex::Real, const amrex::Real)> rhs
rhs is the right-hand-side function the integrator will use.
Definition: ERF_MRI.H:21
void setAnelastic(int _anelastic)
Definition: ERF_MRI.H:119
int get_slow_fast_timestep_ratio()
Definition: ERF_MRI.H:159
std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> no_substep
The no_substep function is called when we have no acoustic substepping.
Definition: ERF_MRI.H:61
int slow_fast_timestep_ratio
The ratio of slow timestep size / fast timestep size (int)
Definition: ERF_MRI.H:36
~MRISplitIntegrator()=default
void set_slow_fast_timestep_ratio(const int timestep_ratio=1)
Definition: ERF_MRI.H:154
T * S_sum
Definition: ERF_MRI.H:65
amrex::Real advance(T &S_old, T &S_new, amrex::Real time, const amrex::Real time_step)
Definition: ERF_MRI.H:174
void set_slow_rhs_post(std::function< void(T &, T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:142
int no_substepping
Should we not do acoustic substepping.
Definition: ERF_MRI.H:41
@ NumTypes
Definition: ERF_IndexDefines.H:143
@ T
Definition: ERF_IndexDefines.H:99
Definition: ERF_ConsoleIO.cpp:12