ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
ERF_MRI.H
Go to the documentation of this file.
1 #ifndef ERF_MRI_H
2 #define ERF_MRI_H
3 
4 #include <AMReX_REAL.H>
5 #include <AMReX_Vector.H>
6 #include <AMReX_ParmParse.H>
7 #include <AMReX_IntegratorBase.H>
8 
9 #include <ERF_TI_slow_headers.H>
10 #include <ERF_TI_fast_headers.H>
11 
12 #include <functional>
13 
14 template<class T>
16 {
17 private:
18  /**
19  * \brief rhs is the right-hand-side function the integrator will use.
20  */
21  std::function<void(T&, const T&, const amrex::Real, const amrex::Real )> rhs;
22  std::function<void(T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_pre;
23  std::function<void(T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int )> slow_rhs_post;
24  std::function<void(int, int, int, T&, const T&, T&, T&, const amrex::Real, const amrex::Real,
25  const amrex::Real, const amrex::Real,
27 
28  /**
29  * \brief Integrator timestep size (Real)
30  */
32 
33  /**
34  * \brief The ratio of slow timestep size / fast timestep size (int)
35  */
37 
38  /**
39  * \brief Should we not do acoustic substepping
40  */
42 
43  /**
44  * \brief Should we use the anelastic integrator
45  */
46  int anelastic;
47 
48  /**
49  * \brief How many components in the cell-centered MultiFab
50  */
52 
53  /**
54  * \brief Do we follow the recommendation to only perform a single substep in the first RK stage
55  */
57 
58  /**
59  * \brief The no_substep function is called when we have no acoustic substepping
60  */
61  std::function<void (T&, T&, T&, amrex::Real, amrex::Real, int)> no_substep;
62 
63 
64  amrex::Vector<std::unique_ptr<T> > T_store;
65  T* S_sum;
67 
68  void initialize_data (const T& S_data)
69  {
70  // TODO: We can optimize memory by making the cell-centered part of S_sum
71  // have only 2 components, not ncomp_cons components
72  const bool include_ghost = true;
73  amrex::IntegratorOps<T>::CreateLike(T_store, S_data, include_ghost);
74  S_sum = T_store[0].get();
75  amrex::IntegratorOps<T>::CreateLike(T_store, S_data, include_ghost);
76  F_slow = T_store[1].get();
77  }
78 
79 public:
80  MRISplitIntegrator () = default;
81 
82  MRISplitIntegrator (const T& S_data)
83  {
84  initialize_data(S_data);
85  }
86 
87  void initialize (const T& S_data)
88  {
89  initialize_data(S_data);
90  }
91 
92  ~MRISplitIntegrator () = default;
93 
94  // Declare a default move constructor so we ensure the destructor is
95  // not called when we return an object of this class by value
96  MRISplitIntegrator(MRISplitIntegrator&&) noexcept = default;
97 
98  // Declare a default move assignment operator
99  MRISplitIntegrator& operator=(MRISplitIntegrator&& other) noexcept = default;
100 
101  // Delete the copy constructor and copy assignment operators because
102  // the integrator allocates internal memory that is best initialized
103  // from scratch when needed instead of making a copy.
104 
105  // Delete the copy constructor
106  MRISplitIntegrator(const MRISplitIntegrator& other) = delete;
107  //
108  // Delete the copy assignment operator
109  MRISplitIntegrator& operator=(const MRISplitIntegrator& other) = delete;
110 
111  void setNcompCons(int _ncomp_cons)
112  {
113  ncomp_cons = _ncomp_cons;
114  }
115 
116  void setAnelastic(int _anelastic)
117  {
118  anelastic = _anelastic;
119  }
120 
121  void setNoSubstepping(int _no_substepping)
122  {
123  no_substepping = _no_substepping;
124  }
125 
126  void setForceFirstStageSingleSubstep(int _force_stage1_single_substep)
127  {
128  force_stage1_single_substep = _force_stage1_single_substep;
129  }
130 
131  void set_slow_rhs_pre (std::function<void(T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
132  {
133  slow_rhs_pre = F;
134  }
135  void set_slow_rhs_post (std::function<void(T&, T&, T&, T&, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
136  {
137  slow_rhs_post = F;
138  }
139 
140  void set_acoustic_substepping (std::function<void(int, int, int, T&, const T&, T&, T&,
141  const amrex::Real, const amrex::Real,
142  const amrex::Real, const amrex::Real,
143  const amrex::Real)> F)
144  {
146  }
147 
148  void set_slow_fast_timestep_ratio (const int timestep_ratio = 1)
149  {
150  slow_fast_timestep_ratio = timestep_ratio;
151  }
152 
154  {
156  }
157 
158  void set_no_substep (std::function<void (T&, T&, T&, amrex::Real, amrex::Real, int)> F)
159  {
160  no_substep = F;
161  }
162 
163  std::function<void(T&, const T&, const amrex::Real, int)> get_rhs ()
164  {
165  return rhs;
166  }
167 
168  amrex::Real advance (T& S_old, T& S_new, amrex::Real time, const amrex::Real time_step)
169  {
170  BL_PROFILE_REGION("MRI_advance");
171  using namespace amrex;
172 
173  // *******************************************************************************
174  // !no_substepping: we only update the fast variables every fast timestep, then update
175  // the slow variables after the acoustic sub-stepping. This has
176  // two calls to slow_rhs so that we can update the slow variables
177  // with the velocity field after the acoustic substepping using
178  // the time-averaged velocity from the substepping
179  // no_substepping: we don't do any acoustic subcyling so we only make one call per RK
180  // stage to slow_rhs
181  // *******************************************************************************
182  timestep = time_step;
183 
184  const int substep_ratio = get_slow_fast_timestep_ratio();
185 
186  if (!no_substepping) {
187  AMREX_ALWAYS_ASSERT(substep_ratio > 1 && substep_ratio % 2 == 0);
188  }
189 
190  // Assume before advance() that S_old is valid data at the current time ("time" argument)
191  // And that if data is a MultiFab, both S_old and S_new contain ghost cells for evaluating a stencil based RHS
192  // We need this from S_old. This is convenient for S_new to have so we can use it
193  // as scratch space for stage values without creating a new scratch MultiFab with ghost cells.
194 
195  // NOTE: In the following, we use S_new to hold S*, S**, and finally, S^(n+1) at the new time
196  // DEFINITIONS:
197  // S_old = S^n
198  // S_sum = S(t)
199  // F_slow = F(S_stage)
200 
201  int n_data = IntVars::NumTypes;
202 
203  /**********************************************/
204  /* RK3 Integration with Acoustic Sub-stepping */
205  /**********************************************/
206  Vector<int> num_vars = {ncomp_cons, 1, 1, 1};
207  for (int i(0); i<n_data; ++i)
208  {
209  // Copy old -> new
210  MultiFab::Copy(S_new[i],S_old[i],0,0,num_vars[i],S_old[i].nGrowVect());
211  }
212 
213  // Timestep taken by the fast integrator
214  amrex::Real dtau;
215 
216  // How many timesteps taken by the fast integrator
217  int nsubsteps;
218 
219  // This is the final time of the full timestep (also the 3rd RK stage)
220  // Real new_time = time + timestep;
221 
222  amrex::Real time_stage = time;
223  amrex::Real old_time_stage;
224 
225  const amrex::Real sub_timestep = timestep / substep_ratio;
226 
227  if (!anelastic) {
228  // RK3 for compressible integrator
229  for (int nrk = 0; nrk < 3; nrk++)
230  {
231  // Capture the time we got to in the previous RK step
232  old_time_stage = time_stage;
233 
234  if (nrk == 0) {
236  nsubsteps = 1; dtau = timestep / 3.0;
237  } else {
238  nsubsteps = substep_ratio/3; dtau = sub_timestep ;
239  }
240  time_stage = time + timestep / 3.0;
241  }
242  if (nrk == 1) {
243  if (no_substepping) {
244  nsubsteps = 1; dtau = 0.5 * timestep;
245  } else {
246  nsubsteps = substep_ratio/2; dtau = sub_timestep;
247  }
248  time_stage = time + timestep / 2.0;
249  }
250  if (nrk == 2) {
251  if (no_substepping) {
252  nsubsteps = 1; dtau = timestep;
253  } else {
254  nsubsteps = substep_ratio; dtau = sub_timestep;
255 
256  // STRT HACK -- this hack can be used to approximate the no-substepping algorithm
257  // nsubsteps = 1; dtau = timestep;
258  // END HACK
259  }
260  time_stage = time + timestep;
261  }
262 
263  // step 1 starts with S_stage = S^n and we always start substepping at the old time
264  // step 2 starts with S_stage = S^* and we always start substepping at the old time
265  // step 3 starts with S_stage = S^** and we always start substepping at the old time
266 
267  slow_rhs_pre(*F_slow, S_old, S_new, time, old_time_stage, time_stage, nrk);
268 
269  amrex::Real inv_fac = 1.0 / static_cast<amrex::Real>(nsubsteps);
270 
271  // ****************************************************
272  // Acoustic substepping
273  // ****************************************************
274  if (!no_substepping)
275  {
276  // *******************************************************************************
277  // Update the fast variables
278  // *******************************************************************************
279  for (int ks = 0; ks < nsubsteps; ++ks)
280  {
281  acoustic_substepping(ks, nsubsteps, nrk, *F_slow, S_old, S_new, *S_sum, dtau, timestep, inv_fac,
282  time + ks*dtau, time + (ks+1) * dtau);
283 
284  } // ks
285 
286  } else {
287  no_substep(*S_sum, S_old, *F_slow, time + nsubsteps*dtau, nsubsteps*dtau, nrk);
288  }
289 
290  // ****************************************************
291  // Evaluate F_slow(S_stage) only for the slow variables
292  // Note that we are using the current stage versions (in S_new) of the slow variables
293  // (because we didn't update the slow variables in the substepping)
294  // but we are using the "new" versions (in S_sum) of the velocities
295  // (because we did update the fast variables in the substepping)
296  // ****************************************************
297  slow_rhs_post(*F_slow, S_old, S_new, *S_sum, time, old_time_stage, time_stage, nrk);
298  } // nrk
299 
300  } else {
301  // RK2 for anelastic integrator
302  for (int nrk = 0; nrk < 2; nrk++)
303  {
304  // Capture the time we got to in the previous RK step
305  old_time_stage = time_stage;
306 
307  if (nrk == 0) { nsubsteps = 1; dtau = timestep; time_stage = time + timestep; }
308  if (nrk == 1) { nsubsteps = 1; dtau = timestep; time_stage = time + timestep; }
309 
310  slow_rhs_pre(*F_slow, S_old, S_new, time, old_time_stage, time_stage, nrk);
311 
312  no_substep(*S_sum, S_old, *F_slow, time + nsubsteps*dtau, nsubsteps*dtau, nrk);
313 
314  // ****************************************************
315  // Evaluate F_slow(S_stage) only for the slow variables
316  // Note that we are using the current stage versions (in S_new) of the slow variables
317  // (because we didn't update the slow variables in the substepping)
318  // but we are using the "new" versions (in S_sum) of the velocities
319  // (because we did update the fast variables in the substepping)
320  // ****************************************************
321  slow_rhs_post(*F_slow, S_old, S_new, *S_sum, time, old_time_stage, time_stage, nrk);
322  } // nrk
323  }
324 
325  // Return timestep
326  return timestep;
327  }
328 
329  void map_data (std::function<void(T&)> Map)
330  {
331  for (auto& F : T_store) {
332  Map(*F);
333  }
334  }
335 };
336 
337 #endif
amrex::Real Real
Definition: ERF_ShocInterface.H:19
Definition: ERF_MRI.H:16
T * F_slow
Definition: ERF_MRI.H:66
void set_acoustic_substepping(std::function< void(int, int, int, T &, const T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> F)
Definition: ERF_MRI.H:140
std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_post
Definition: ERF_MRI.H:23
amrex::Vector< std::unique_ptr< T > > T_store
Definition: ERF_MRI.H:64
void map_data(std::function< void(T &)> Map)
Definition: ERF_MRI.H:329
void set_no_substep(std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> F)
Definition: ERF_MRI.H:158
int anelastic
Should we use the anelastic integrator.
Definition: ERF_MRI.H:46
void setNcompCons(int _ncomp_cons)
Definition: ERF_MRI.H:111
std::function< void(T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> slow_rhs_pre
Definition: ERF_MRI.H:22
amrex::Real timestep
Integrator timestep size (Real)
Definition: ERF_MRI.H:31
MRISplitIntegrator()=default
void setForceFirstStageSingleSubstep(int _force_stage1_single_substep)
Definition: ERF_MRI.H:126
int force_stage1_single_substep
Do we follow the recommendation to only perform a single substep in the first RK stage.
Definition: ERF_MRI.H:56
int ncomp_cons
How many components in the cell-centered MultiFab.
Definition: ERF_MRI.H:51
void setNoSubstepping(int _no_substepping)
Definition: ERF_MRI.H:121
std::function< void(int, int, int, T &, const T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> acoustic_substepping
Definition: ERF_MRI.H:26
void initialize(const T &S_data)
Definition: ERF_MRI.H:87
MRISplitIntegrator(MRISplitIntegrator &&) noexcept=default
void initialize_data(const T &S_data)
Definition: ERF_MRI.H:68
MRISplitIntegrator(const T &S_data)
Definition: ERF_MRI.H:82
std::function< void(T &, const T &, const amrex::Real, int)> get_rhs()
Definition: ERF_MRI.H:163
std::function< void(T &, const T &, const amrex::Real, const amrex::Real)> rhs
rhs is the right-hand-side function the integrator will use.
Definition: ERF_MRI.H:21
void setAnelastic(int _anelastic)
Definition: ERF_MRI.H:116
int get_slow_fast_timestep_ratio()
Definition: ERF_MRI.H:153
std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> no_substep
The no_substep function is called when we have no acoustic substepping.
Definition: ERF_MRI.H:61
void set_slow_rhs_post(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:135
int slow_fast_timestep_ratio
The ratio of slow timestep size / fast timestep size (int)
Definition: ERF_MRI.H:36
void set_slow_rhs_pre(std::function< void(T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:131
~MRISplitIntegrator()=default
void set_slow_fast_timestep_ratio(const int timestep_ratio=1)
Definition: ERF_MRI.H:148
T * S_sum
Definition: ERF_MRI.H:65
amrex::Real advance(T &S_old, T &S_new, amrex::Real time, const amrex::Real time_step)
Definition: ERF_MRI.H:168
int no_substepping
Should we not do acoustic substepping.
Definition: ERF_MRI.H:41
@ NumTypes
Definition: ERF_IndexDefines.H:162
@ T
Definition: ERF_IndexDefines.H:110
Definition: ERF_ConsoleIO.cpp:12