ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
ERF_ComputeDiffusivityMYNN25.cpp File Reference
#include "ERF_SurfaceLayer.H"
#include "ERF_DirectionSelector.H"
#include "ERF_Diffusion.H"
#include "ERF_Constants.H"
#include "ERF_TurbStruct.H"
#include "ERF_PBLModels.H"
Include dependency graph for ERF_ComputeDiffusivityMYNN25.cpp:

Functions

void ComputeDiffusivityMYNN25 (const MultiFab &xvel, const MultiFab &yvel, const MultiFab &cons_in, MultiFab &eddyViscosity, const Geometry &geom, const TurbChoice &turbChoice, std::unique_ptr< SurfaceLayer > &SurfLayer, bool use_terrain_fitted_coords, bool use_moisture, int level, const BCRec *bc_ptr, bool, const std::unique_ptr< MultiFab > &z_phys_nd, const int RhoQv_comp, const int RhoQc_comp, const int RhoQr_comp)
 

Function Documentation

◆ ComputeDiffusivityMYNN25()

void ComputeDiffusivityMYNN25 ( const MultiFab &  xvel,
const MultiFab &  yvel,
const MultiFab &  cons_in,
MultiFab &  eddyViscosity,
const Geometry &  geom,
const TurbChoice turbChoice,
std::unique_ptr< SurfaceLayer > &  SurfLayer,
bool  use_terrain_fitted_coords,
bool  use_moisture,
int  level,
const BCRec *  bc_ptr,
bool  ,
const std::unique_ptr< MultiFab > &  z_phys_nd,
const int  RhoQv_comp,
const int  RhoQc_comp,
const int  RhoQr_comp 
)
27 {
28  auto mynn = turbChoice.pbl_mynn;
29  auto level2 = turbChoice.pbl_mynn_level2;
30 
31  Real Lt_alpha = (mynn.config == MYNNConfigType::CHEN2021) ? 0.1 : 0.23;
32 
33  // Dirichlet flags to switch derivative stencil
34  bool c_ext_dir_on_zlo = ( (bc_ptr[BCVars::cons_bc].lo(2) == ERFBCType::ext_dir) );
35  bool c_ext_dir_on_zhi = ( (bc_ptr[BCVars::cons_bc].lo(5) == ERFBCType::ext_dir) );
36  bool u_ext_dir_on_zlo = ( (bc_ptr[BCVars::xvel_bc].lo(2) == ERFBCType::ext_dir) );
37  bool u_ext_dir_on_zhi = ( (bc_ptr[BCVars::xvel_bc].lo(5) == ERFBCType::ext_dir) );
38  bool v_ext_dir_on_zlo = ( (bc_ptr[BCVars::yvel_bc].lo(2) == ERFBCType::ext_dir) );
39  bool v_ext_dir_on_zhi = ( (bc_ptr[BCVars::yvel_bc].lo(5) == ERFBCType::ext_dir) );
40 
41  // Epsilon
43 
44 #ifdef _OPENMP
45 #pragma omp parallel if (Gpu::notInLaunchRegion())
46 #endif
47  for ( MFIter mfi(eddyViscosity,false); mfi.isValid(); ++mfi) {
48 
49  const Box &bx = mfi.growntilebox(1);
50  const Array4<Real const>& cell_data = cons_in.array(mfi);
51  const Array4<Real >& K_turb = eddyViscosity.array(mfi);
52  const Array4<Real const>& uvel = xvel.array(mfi);
53  const Array4<Real const>& vvel = yvel.array(mfi);
54 
55  // Compute some quantities that are constant in each column
56  // Sbox is shrunk to only include the interior of the domain in the vertical direction to compute integrals
57  // Box includes one ghost cell in each direction
58  const Box &dbx = geom.Domain();
59  Box sbx(bx.smallEnd(), bx.bigEnd());
60  sbx.grow(2,-1);
61  AMREX_ALWAYS_ASSERT(sbx.smallEnd(2) == dbx.smallEnd(2) && sbx.bigEnd(2) == dbx.bigEnd(2));
62 
63  const GeometryData gdata = geom.data();
64 
65  const Box xybx = PerpendicularBox<ZDir>(bx, IntVect{0,0,0});
66  FArrayBox qintegral(xybx,2);
67  qintegral.setVal<RunOn::Device>(0.0);
68  FArrayBox qturb(bx,1); FArrayBox qturb_old(bx,1);
69  const Array4<Real> qint = qintegral.array();
70  const Array4<Real> qvel = qturb.array();
71 
72  // vertical integrals to compute lengthscale
73  if (use_terrain_fitted_coords) {
74  const Array4<Real const> &z_nd_arr = z_phys_nd->array(mfi);
75  const auto invCellSize = geom.InvCellSizeArray();
76  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
77  {
78  qvel(i,j,k) = std::sqrt(2.0 * cell_data(i,j,k,RhoKE_comp) / cell_data(i,j,k,Rho_comp));
79  AMREX_ASSERT_WITH_MESSAGE(qvel(i,j,k) > 0.0, "KE must have a positive value");
80 
81  Real fac = (sbx.contains(i,j,k)) ? 1.0 : 0.0;
82  const Real Zval = Compute_Zrel_AtCellCenter(i,j,k,z_nd_arr);
83  const Real dz = Compute_h_zeta_AtCellCenter(i,j,k,invCellSize,z_nd_arr);
84  Gpu::Atomic::Add(&qint(i,j,0,0), Zval*qvel(i,j,k)*dz*fac);
85  Gpu::Atomic::Add(&qint(i,j,0,1), qvel(i,j,k)*dz*fac);
86  });
87  } else {
88  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
89  {
90  qvel(i,j,k) = std::sqrt(2.0 * cell_data(i,j,k,RhoKE_comp) / cell_data(i,j,k,Rho_comp));
91  AMREX_ASSERT_WITH_MESSAGE(qvel(i,j,k) > 0.0, "KE must have a positive value");
92 
93  // Not multiplying by dz: its constant and would fall out when we divide qint0/qint1 anyway
94 
95  Real fac = (sbx.contains(i,j,k)) ? 1.0 : 0.0;
96  const Real Zval = gdata.ProbLo(2) + (k + 0.5)*gdata.CellSize(2);
97  Gpu::Atomic::Add(&qint(i,j,0,0), Zval*qvel(i,j,k)*fac);
98  Gpu::Atomic::Add(&qint(i,j,0,1), qvel(i,j,k)*fac);
99  });
100  }
101 
102  Real dz_inv = geom.InvCellSize(2);
103  const auto& dxInv = geom.InvCellSizeArray();
104  int izmin = geom.Domain().smallEnd(2);
105  int izmax = geom.Domain().bigEnd(2);
106 
107  // Spatially varying MOST
108  Real d_kappa = KAPPA;
109  Real d_gravity = CONST_GRAV;
110 
111  const auto& t_mean_mf = SurfLayer->get_mac_avg(level,4); // theta_v
112  const auto& q_mean_mf = SurfLayer->get_mac_avg(level,3); // q_v
113  const auto& u_star_mf = SurfLayer->get_u_star(level);
114  const auto& t_star_mf = SurfLayer->get_t_star(level);
115  const auto& q_star_mf = SurfLayer->get_q_star(level);
116 
117  const auto& tm_arr = t_mean_mf->const_array(mfi);
118  const auto& qm_arr = q_mean_mf->const_array(mfi);
119  const auto& u_star_arr = u_star_mf->const_array(mfi);
120  const auto& t_star_arr = t_star_mf->const_array(mfi);
121  const auto& q_star_arr = (use_moisture) ? q_star_mf->const_array(mfi) : Array4<Real>{};
122 
123  const Array4<Real const> z_nd_arr = z_phys_nd->const_array(mfi);
124 
125  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
126  {
127  // Compute some partial derivatives that we will need (second order)
128  // U and V derivatives are interpolated to account for staggered grid
129  const Real met_h_zeta = use_terrain_fitted_coords ? Compute_h_zeta_AtCellCenter(i,j,k,dxInv,z_nd_arr) : 1.0;
130  Real dthetadz, dudz, dvdz;
132  uvel, vvel, cell_data, izmin, izmax, dz_inv/met_h_zeta,
133  c_ext_dir_on_zlo, c_ext_dir_on_zhi,
134  u_ext_dir_on_zlo, u_ext_dir_on_zhi,
135  v_ext_dir_on_zlo, v_ext_dir_on_zhi,
136  dthetadz, dudz, dvdz,
137  RhoQv_comp, RhoQc_comp, RhoQr_comp);
138 
139  // Spatially varying MOST
140  Real theta0 = tm_arr(i,j,0);
141  Real qv0 = qm_arr(i,j,0);
142  Real surface_heat_flux = -u_star_arr(i,j,0) * t_star_arr(i,j,0);
143  Real surface_latent_heat{0};
144  if (use_moisture) {
145  // Compute buoyancy flux (Stull Eqn. 4.4.5d)
146  surface_latent_heat = -u_star_arr(i,j,0) * q_star_arr(i,j,0);
147  surface_heat_flux *= (1.0 + 0.61*qv0);
148  surface_heat_flux += 0.61 * theta0 * surface_latent_heat;
149  }
150 
151  Real l_obukhov;
152  if (std::abs(surface_heat_flux) > eps) {
153  l_obukhov = -( theta0 * u_star_arr(i,j,0)*u_star_arr(i,j,0)*u_star_arr(i,j,0) )
154  / ( d_kappa * d_gravity * surface_heat_flux );
155  } else {
156  l_obukhov = std::numeric_limits<Real>::max();
157  }
158 
159  // Surface-layer length scale (NN09, Eqn. 53)
160  AMREX_ASSERT(l_obukhov != 0);
161  int lk = amrex::max(k,0);
162  const Real zval = use_terrain_fitted_coords ? Compute_Zrel_AtCellCenter(i,j,lk,z_nd_arr)
163  : gdata.ProbLo(2) + (lk + 0.5)*gdata.CellSize(2);
164  const Real zeta = zval/l_obukhov;
165  Real l_S;
166  if (zeta >= 1.0) {
167  l_S = KAPPA*zval/3.7;
168  } else if (zeta >= 0) {
169  l_S = KAPPA*zval/(1+2.7*zeta);
170  } else {
171  l_S = KAPPA*zval*std::pow(1.0 - 100.0 * zeta, 0.2);
172  }
173 
174  // ABL-depth length scale (NN09, Eqn. 54)
175  Real l_T;
176  if (qint(i,j,0,1) > 0.0) {
177  l_T = Lt_alpha*qint(i,j,0,0)/qint(i,j,0,1);
178  } else {
179  l_T = std::numeric_limits<Real>::max();
180  }
181 
182  // Buoyancy length scale (NN09, Eqn. 55)
183  Real l_B;
184  if (dthetadz > 0) {
185  Real N_brunt_vaisala = std::sqrt(CONST_GRAV/theta0 * dthetadz);
186  if (zeta < 0) {
187  Real qc = CONST_GRAV/theta0 * surface_heat_flux * l_T; // velocity scale
188  qc = std::pow(qc,1.0/3.0);
189  l_B = (1.0 + 5.0*std::sqrt(qc/(N_brunt_vaisala * l_T))) * qvel(i,j,k)/N_brunt_vaisala;
190  } else {
191  l_B = qvel(i,j,k) / N_brunt_vaisala;
192  }
193  } else {
194  l_B = std::numeric_limits<Real>::max();
195  }
196 
197  // Master length scale
198  Real Lm;
199  if (mynn.config == MYNNConfigType::CHEN2021) {
200  Lm = std::pow(1.0/(l_S*l_S) + 1.0/(l_T*l_T) + 1.0/(l_B*l_B), -0.5);
201  } else {
202  // NN09, Eqn 52
203  Lm = 1.0 / (1.0/l_S + 1.0/l_T + 1.0/l_B);
204  }
205 
206  // Calculate nondimensional production terms
207  Real shearProd = dudz*dudz + dvdz*dvdz;
208  Real buoyProd = -(CONST_GRAV/theta0) * dthetadz;
209  Real L2_over_q2 = Lm*Lm/(qvel(i,j,k)*qvel(i,j,k));
210  Real GM = L2_over_q2 * shearProd;
211  Real GH = L2_over_q2 * buoyProd;
212 
213  // Equilibrium (Level-2) q calculation follows NN09, Appendix 2
214  Real Rf = level2.calc_Rf(GM, GH);
215  Real SM2 = level2.calc_SM(Rf);
216  Real qe2 = mynn.B1*Lm*Lm*SM2*(1.0-Rf)*shearProd;
217  Real qe = (qe2 < 0.0) ? 0.0 : std::sqrt(qe2);
218 
219  // Level 2 limiting (Helfand and Labraga 1988)
220  Real alphac = (qvel(i,j,k) > qe) ? 1.0 : qvel(i,j,k) / (qe + eps);
221 
222  // Level 2.5 stability functions
223  Real SM, SH, SQ;
224  mynn.calc_stability_funcs(SM,SH,SQ,GM,GH,alphac);
225 
226  // Clip SM, SH following WRF
227  SM = amrex::min(amrex::max(SM,mynn.SMmin), mynn.SMmax);
228  SH = amrex::min(amrex::max(SH,mynn.SHmin), mynn.SHmax);
229 
230  // Finally, compute the eddy viscosity/diffusivities
231  const Real rho = cell_data(i,j,k,Rho_comp);
232  K_turb(i,j,k,EddyDiff::Mom_v) = rho * Lm * qvel(i,j,k) * SM;
233  K_turb(i,j,k,EddyDiff::Theta_v) = rho * Lm * qvel(i,j,k) * SH;
234  K_turb(i,j,k,EddyDiff::KE_v) = rho * Lm * qvel(i,j,k) * SQ;
235 
236  // TODO: implement partial-condensation scheme?
237  // Currently, implementation matches NN09 without rain (i.e.,
238  // the liquid water potential temperature is equal to the
239  // potential temperature.
240 
241  // NN09 gives the total water content flux; this assumes that
242  // all the species have the same eddy diffusivity
243  if (mynn.diffuse_moistvars) {
244  K_turb(i,j,k,EddyDiff::Q_v) = rho * Lm * qvel(i,j,k) * SH;
245  }
246 
247  K_turb(i,j,k,EddyDiff::Turb_lengthscale) = Lm;
248  });
249  }
250 }
constexpr amrex::Real KAPPA
Definition: ERF_Constants.H:20
constexpr amrex::Real CONST_GRAV
Definition: ERF_Constants.H:21
#define Rho_comp
Definition: ERF_IndexDefines.H:36
#define RhoKE_comp
Definition: ERF_IndexDefines.H:38
AMREX_GPU_DEVICE AMREX_FORCE_INLINE void ComputeVerticalDerivativesPBL(int i, int j, int k, const amrex::Array4< const amrex::Real > &uvel, const amrex::Array4< const amrex::Real > &vvel, const amrex::Array4< const amrex::Real > &cell_data, const int izmin, const int izmax, const amrex::Real &dz_inv, const bool c_ext_dir_on_zlo, const bool c_ext_dir_on_zhi, const bool u_ext_dir_on_zlo, const bool u_ext_dir_on_zhi, const bool v_ext_dir_on_zlo, const bool v_ext_dir_on_zhi, amrex::Real &dthetadz, amrex::Real &dudz, amrex::Real &dvdz, const int RhoQv_comp, const int RhoQc_comp, const int RhoQr_comp)
Definition: ERF_PBLModels.H:119
AMREX_FORCE_INLINE AMREX_GPU_DEVICE amrex::Real Compute_h_zeta_AtCellCenter(const int &i, const int &j, const int &k, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &cellSizeInv, const amrex::Array4< const amrex::Real > &z_nd)
Definition: ERF_TerrainMetrics.H:47
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real Compute_Zrel_AtCellCenter(const int &i, const int &j, const int &k, const amrex::Array4< const amrex::Real > &z_nd)
Definition: ERF_TerrainMetrics.H:390
@ yvel_bc
Definition: ERF_IndexDefines.H:88
@ cons_bc
Definition: ERF_IndexDefines.H:76
@ xvel_bc
Definition: ERF_IndexDefines.H:87
@ ext_dir
Definition: ERF_IndexDefines.H:209
@ Theta_v
Definition: ERF_IndexDefines.H:176
@ Turb_lengthscale
Definition: ERF_IndexDefines.H:180
@ Q_v
Definition: ERF_IndexDefines.H:179
@ Mom_v
Definition: ERF_IndexDefines.H:175
@ KE_v
Definition: ERF_IndexDefines.H:177
@ rho
Definition: ERF_Kessler.H:22
@ qc
Definition: ERF_SatAdj.H:36
@ xvel
Definition: ERF_IndexDefines.H:141
@ yvel
Definition: ERF_IndexDefines.H:142
real(c_double), parameter epsilon
Definition: ERF_module_model_constants.F90:12
MYNNLevel25 pbl_mynn
Definition: ERF_TurbStruct.H:278
MYNNLevel2 pbl_mynn_level2
Definition: ERF_TurbStruct.H:279

Referenced by ComputeTurbulentViscosity().

Here is the call graph for this function:
Here is the caller graph for this function: