ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
ERF_DataStruct.H
Go to the documentation of this file.
1 #ifndef ERF_DATA_STRUCT_H_
2 #define ERF_DATA_STRUCT_H_
3 
4 #include <string>
5 #include <iostream>
6 
7 #include <AMReX_ParmParse.H>
8 #include <AMReX_Print.H>
9 #include <AMReX_Gpu.H>
10 #include <AMReX_Geometry.H>
11 
12 #include <ERF_Constants.H>
13 #include <ERF_IndexDefines.H>
14 #include <ERF_AdvStruct.H>
15 #include <ERF_DampingStruct.H>
16 #include <ERF_DiffStruct.H>
17 #include <ERF_SpongeStruct.H>
18 #include <ERF_TurbStruct.H>
19 #include <ERF_TurbPertStruct.H>
20 
21 enum MapFacType {
22 // This version assumes isotropic
23  m_x, u_x, v_x, num,
24  m_y = 0, u_y = 1, v_y = 2
25 // This version allows for non-isotropic
26 // m_x, u_x, v_x,
27 // m_y, u_y, v_y, num
28 };
29 
30 enum TauType {
32 };
33 
34 AMREX_ENUM(InitType,
35  None, Input_Sounding, NCFile, WRFInput, Metgrid, Uniform, HindCast
36 );
37 
38 AMREX_ENUM(SoundingType,
39  ConstantDensity, Ideal, Isentropic, DryIsentropic
40 );
41 
42 AMREX_ENUM(ABLDriverType,
43  None, PressureGradient, GeostrophicWind
44 );
45 
46 AMREX_ENUM(CouplingType,
47  OneWay, TwoWay
48 );
49 
50 AMREX_ENUM(SubsteppingType,
51  None, Implicit
52 );
53 
54 AMREX_ENUM(MeshType,
55  ConstantDz, StretchedDz, VariableDz
56 );
57 
58 AMREX_ENUM(TerrainType,
59  None, StaticFittedMesh, MovingFittedMesh, EB, ImmersedForcing
60 );
61 
62 AMREX_ENUM(BuildingsType,
63  None, ImmersedForcing
64 );
65 
66 AMREX_ENUM(MoistureModelType,
67  Eulerian, Lagrangian, Undefined
68 );
69 
70 AMREX_ENUM(MoistureType,
71  SAM, SAM_NoIce, SAM_NoPrecip_NoIce, Kessler, Kessler_NoRain, SatAdj, Morrison, Morrison_NoIce, None
72 );
73 
74 AMREX_ENUM(WindFarmType,
75  Fitch, EWP, SimpleAD, GeneralAD, None
76 );
77 
78 AMREX_ENUM(WindFarmLocType,
79  lat_lon, x_y, None
80 );
81 
82 AMREX_ENUM(LandSurfaceType,
83  SLM, MM5, None, NOAHMP
84 );
85 
86 AMREX_ENUM(RadiationType,
87  None, RRTMGP
88 );
89 
90 enum struct Coord {
91  x, y, z
92 };
93 
94 // These are used as integers so must be enum not enum struct
95 enum Rayleigh {
97 };
98 
99 // These are used as integers so must be enum not enum struct
100 enum Sponge {
102 };
103 
105  int qv = -1; // Water vapor
106  int qc = -1; // Cloud liquid water
107  int qi = -1; // Cloud ice
108  int qr = -1; // Rain
109  int qs = -1; // Snow
110  int qg = -1; // Graupel
111 
112  // Constructor for easy initialization
113  MoistureComponentIndices (int qv_comp, int qc_comp,
114  int qi_comp=-1,
115  int qr_comp=-1,
116  int qs_comp=-1,
117  int qg_comp=-1)
118  : qv(qv_comp), qc(qc_comp), qi(qi_comp), qr(qr_comp), qs(qs_comp), qg(qg_comp) {}
119 
120  // Default constructor
122 };
123 
124 /**
125  * Container holding many of the algorithmic options and parameters
126  */
127 
128 struct SolverChoice {
129  public:
130  void init_params (int max_level, std::string pp_prefix)
131  {
132  amrex::ParmParse pp(pp_prefix);
133 
134  bool bogus;
135  if (pp.query("use_terrain",bogus) > 0) {
136  amrex::Abort("The input use_terrain is deprecated. Set terrain_type instead.");
137  }
138 
139  // Do we set map scale factors to 0.5 instead of 1 for testing?
140  pp.query("test_mapfactor", test_mapfactor);
141 
142  // Which horizontal pressure gradient formulation to use with terrain fitted coords?
143  // 0: dp/dx with dp/dz correction (default)
144  // 1: gradient of vertically interpolated p, see Klemp 2011
145  pp.query("gradp_type", gradp_type);
146  AMREX_ALWAYS_ASSERT(gradp_type == 0 || gradp_type == 1);
147 
148  // What type of moisture model to use?
149  moisture_type = MoistureType::None; // Default
150  if (pp.query("moisture_type",moisture_type) > 0) {
151  amrex::Abort("The input moisture_type is deprecated. Set moisture_model instead.");
152  }
153  pp.query_enum_case_insensitive("moisture_model",moisture_type);
154  if ( (moisture_type == MoistureType::Morrison) ||
155  (moisture_type == MoistureType::SAM) ) {
157  RhoQ1_comp, // water vapor
158  RhoQ2_comp, // cloud water
159  RhoQ3_comp, // cloud ice
160  RhoQ4_comp, // rain
161  RhoQ5_comp, // snow
162  RhoQ6_comp // graupel
163  );
164  } else if ( (moisture_type == MoistureType::Morrison_NoIce) ||
165  (moisture_type == MoistureType::SAM_NoIce) ) {
167  RhoQ1_comp, // water vapor
168  RhoQ2_comp, // cloud water
169  -1, // cloud ice
170  RhoQ4_comp // rain
171  );
172  } else if ( (moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
173  (moisture_type == MoistureType::Kessler_NoRain) ||
174  (moisture_type == MoistureType::SatAdj) ) {
176  RhoQ1_comp, // water vapor
177  RhoQ2_comp // cloud water
178  );
179  } else if (moisture_type == MoistureType::Kessler) {
181  RhoQ1_comp, // water vapor
182  RhoQ2_comp, // cloud water
183  -1, // cloud ice
184  RhoQ3_comp // rain
185  );
186  }
187 
188  // Set a default for dry
189  buoyancy_type.resize(max_level+1);
190  for (int i = 0; i <= max_level; ++i) {
191  buoyancy_type[i] = 1; // uses Rhoprime
192  }
193 
194  // Set a default for moist
195  if (moisture_type != MoistureType::None) {
196  if ( !(moisture_type == MoistureType::Kessler_NoRain ||
197  moisture_type == MoistureType::SAM ||
198  moisture_type == MoistureType::SAM_NoIce ||
199  moisture_type == MoistureType::SAM_NoPrecip_NoIce ||
200  moisture_type == MoistureType::Morrison ||
201  moisture_type == MoistureType::Morrison_NoIce ||
202  moisture_type == MoistureType::SatAdj) )
203  {
204  for (int i = 0; i <= max_level; ++i) {
205  buoyancy_type[i] = 2; // uses Tprime
206  }
207  }
208 
209  pp.query("moisture_tight_coupling",moisture_tight_coupling);
210  }
211 
212  // Which expression (1,2/3 or 4) to use for buoyancy
213  int default_buoyancy_type = buoyancy_type[0];
214  read_int_string(max_level, "buoyancy_type", buoyancy_type, default_buoyancy_type);
215 
216  // What type of land surface model to use
217  lsm_type = LandSurfaceType::None; // Default
218  pp.query_enum_case_insensitive("land_surface_model",lsm_type);
219 
220  // What type of radiation model to use
221  rad_type = RadiationType::None; // Default
222  pp.query_enum_case_insensitive("radiation_model", rad_type);
223 
224  // Verify that radiation model cannot be RRTMGP if ERF was not compiled with RRTMGP
225 #ifndef ERF_USE_RRTMGP
226  if (rad_type == RadiationType::RRTMGP)
227  {
228  amrex::Abort("ERF was not compiled with RRTMGP enabled!");
229  }
230 #endif
231 
232  // Is the terrain none, static or moving?
233  std::string terrain_type_temp = "";
234  pp.query("terrain_type", terrain_type_temp);
235  if (terrain_type_temp == "Moving") {
236  amrex::Warning("erf.terrain_type = Moving is deprecated; please replace Moving by MovingFittedMesh");
237  terrain_type = TerrainType::MovingFittedMesh;
238  } else if (terrain_type_temp == "Static") {
239  amrex::Warning("erf.terrain_type = Static is deprecated; please replace Static by StaticFittedMesh");
240  terrain_type = TerrainType::StaticFittedMesh;
241  } else {
242  pp.query_enum_case_insensitive("terrain_type",terrain_type);
243  }
244 
245  // Get buildings type
246  std::string buildings_type_temp = "";
247  pp.query("buildings_type", buildings_type_temp);
248  if (buildings_type_temp == "ImmersedForcing") {
249  buildings_type = BuildingsType::ImmersedForcing;
250  }
251 
252  //
253  // Read the init_type here to make sure we correctly set the mesh and terrain types
254  //
255  std::string init_type_temp_string;
256  pp.query("init_type",init_type_temp_string);
257  if ( (init_type_temp_string == "Real") || (init_type_temp_string == "real") ) {
258  amrex::Abort("erf.init_type = Real is deprecated; please replace Real by WRFInput");
259  } else if ( (init_type_temp_string == "Ideal") || (init_type_temp_string == "ideal") ) {
260  amrex::Abort("erf.init_type = Ideal is deprecated; please replace Ideal by WRFInput");
261  } else if (init_type_temp_string == "hindcast") {
262  init_type = InitType::HindCast;
263  }
264  else {
265  pp.query_enum_case_insensitive("init_type",init_type);
266  use_real_bcs = ( (init_type == InitType::WRFInput) || (init_type == InitType::Metgrid) );
267  }
268 
269  if ( (init_type == InitType::WRFInput) || (init_type == InitType::Metgrid) ) {
270  if (terrain_type != TerrainType::StaticFittedMesh) {
271  amrex::Abort("Only terrain_type = StaticFittedMesh are allowed with init_type = WRFInput or Metgrid");
272  }
273  }
274 
275  if (init_type == InitType::WRFInput) {
276  if (moisture_type == MoistureType::None) {
277  amrex::Abort("Can't have moisture_type = None with init_type = WRFInput");
278  }
279 
280  // NetCDF wrfbdy lateral boundary file
281  std::string nc_bdy_file_temp_string;
282  bool has_bdy = pp.query("nc_bdy_file", nc_bdy_file_temp_string);
283  if (!has_bdy) use_real_bcs = false;
284 
285  bool use_real_bcs_temp = use_real_bcs;
286  pp.query("use_real_bcs", use_real_bcs_temp);
287  if (use_real_bcs && !use_real_bcs_temp) {
288  use_real_bcs = false;
289  }
290  }
291 
292  if (use_real_bcs) {
293  pp.query("upwind_real_bcs",upwind_real_bcs);
294  }
295 
296  // Check for rebalancing with wrfinput
297  if (init_type == InitType::WRFInput) {
298  pp.query("rebalance_wrfinput",rebalance_wrfinput);
299  }
300 
301  // How to interpret input_sounding
302  if (init_type == InitType::Input_Sounding) {
303  pp.query_enum_case_insensitive("sounding_type",sounding_type);
304  }
305 
306  if (terrain_type == TerrainType::StaticFittedMesh ||
307  terrain_type == TerrainType::MovingFittedMesh) {
308  mesh_type = MeshType::VariableDz;
309  }
310 
311  pp.query("grid_stretching_ratio", grid_stretching_ratio);
312  if (grid_stretching_ratio != 0) {
313  AMREX_ASSERT_WITH_MESSAGE((grid_stretching_ratio >= 1.),
314  "The grid stretching ratio must be greater than 1");
315  }
316  if (grid_stretching_ratio >= 1) {
317  if (terrain_type == TerrainType::None) {
318  terrain_type = TerrainType::StaticFittedMesh;
319  }
320  if (mesh_type == MeshType::ConstantDz) {
321  mesh_type = MeshType::StretchedDz;
322  }
323  pp.query("zsurface", zsurf);
324  if (zsurf != 0.0) {
325  amrex::Print() << "Nominal zsurface height != 0, may result in unexpected behavior"
326  << std::endl;
327  }
328  pp.get("initial_dz", dz0);
329  }
330 
331  int n_zlevels = pp.countval("terrain_z_levels");
332  if (n_zlevels > 0)
333  {
334  if (terrain_type == TerrainType::None) {
335  terrain_type = TerrainType::StaticFittedMesh;
336  }
337  if (mesh_type == MeshType::ConstantDz) {
338  mesh_type = MeshType::StretchedDz;
339  }
340  }
341 
342  // Use lagged_delta_rt in the fast integrator?
343  pp.query("use_lagged_delta_rt", use_lagged_delta_rt);
344 
345  // These default to true but are used for unit testing
346  pp.query("use_gravity", use_gravity);
348 
349  pp.query("c_p", c_p);
350  rdOcp = R_d / c_p;
351 
352  // *******************************************************************************
353  // Read anelastic etc and over-ride if necessary
354  // *******************************************************************************
355 
356  read_int_string(max_level, "anelastic", anelastic, 0);
357  read_int_string(max_level, "fixed_density", fixed_density, 0);
358  read_int_string(max_level, "project_initial_velocity", project_initial_velocity, 0);
359 
360  for (int i = 0; i <= max_level; ++i) {
361  if (anelastic[i] == 1) {
362  project_initial_velocity[i] = true;
363  fixed_density[i] = true; // We default to true but are allowed to override below
364  buoyancy_type[i] = 3; // (This isn't actually used when anelastic is set)
365  }
366  }
367 
368  // *******************************************************************************
369 
370  if (!upwind_real_bcs && anelastic[0]) {
371  amrex::Print() << "Setting upwind_real_bcs to true because we are doing anelastic at level 0" << std::endl;
372  upwind_real_bcs = true;
373  }
374 
375  // *******************************************************************************
376  // Read substepping_type and allow for different values at each level
377  // *******************************************************************************
378  substepping_type.resize(max_level+1);
379 
380  for (int i = 0; i <= max_level; i++) {
381  substepping_type[i] = SubsteppingType::Implicit;
382  }
383 
384  int nvals = pp.countval("substepping_type");
385  AMREX_ALWAYS_ASSERT(nvals == 0 || nvals == 1 || nvals >= max_level+1);
386 
387  if (nvals == 1) {
388  pp.query_enum_case_insensitive("substepping_type",substepping_type[0]);
389  for (int i = 1; i <= max_level; i++) {
391  }
392  } else if (nvals > 1) { // in this case we have asserted nvals >= max_level+1
393  for (int i = 0; i <= max_level; i++) {
394  pp.query_enum_case_insensitive("substepping_type",substepping_type[i],i);
395  }
396  }
397 
398  pp.query("substepping_diag", substepping_diag);
399 
400  pp.query("beta_s", beta_s);
401 
402 
403 
404  // *******************************************************************************
405  // Error check on deprecated input
406  // *******************************************************************************
407  int nvals_old = pp.countval("no_substepping");
408  if (nvals_old > 0) {
409  amrex::Abort("The no_substepping flag is deprecated -- set substepping_type instead");
410  }
411 
412  // *******************************************************************************
413 
414  pp.query("ncorr", ncorr);
415  pp.query("poisson_abstol", poisson_abstol);
416  pp.query("poisson_reltol", poisson_reltol);
417 
418  for (int lev = 0; lev <= max_level; lev++) {
419  if (anelastic[lev] != 0)
420  {
421  substepping_type[lev] = SubsteppingType::None;
422  }
423  }
424 
425  pp.query("force_stage1_single_substep", force_stage1_single_substep);
426 
427  // Include Coriolis forcing?
428  pp.query("use_coriolis", use_coriolis);
429  pp.query("has_lat_lon", has_lat_lon);
430  pp.query("variable_coriolis", variable_coriolis);
431 
432  // Include four stream radiation approximation
433  pp.query("four_stream_radiation", four_stream_radiation);
434 
435  // flags for whether to apply other source terms in substep only
436  pp.query("immersed_forcing_substep", immersed_forcing_substep); // apply immersed forcing source terms in substep only
437  pp.query("forest_substep", forest_substep); // apply canopy-related source terms in substep only
438 
439  // immersed forcing parameters
440  pp.query("if_Cd_scalar", if_Cd_scalar);
441  pp.query("if_Cd_momentum", if_Cd_momentum);
442  pp.query("if_z0", if_z0);
443  pp.query("if_surf_temp_flux", if_surf_temp_flux);
444  pp.query("if_init_surf_temp", if_init_surf_temp);
445  pp.query("if_surf_heating_rate", if_surf_heating_rate);
446  pp.query("if_Olen", if_Olen_in);
447  pp.query("if_use_most",if_use_most);
448 
449  if ((if_init_surf_temp > 0.0 && if_surf_temp_flux != 1e-8) ||
450  (if_init_surf_temp > 0.0 && if_Olen_in != 1e-8) ||
451  (if_Olen_in != 1e-8 && if_surf_temp_flux != 1e-8))
452  {
453  amrex::Abort("Can only specify one of init_surf_temp, surf_temp_flux, or Olen");
454  }
455 
456  if (if_use_most && buildings_type == BuildingsType::ImmersedForcing)
457  {
458  amrex::Abort("MOST wall-model with immersed forcing for buildings is not currently supported");
459  }
460 
461  if (if_surf_temp_flux != 1e-8 && buildings_type == BuildingsType::ImmersedForcing)
462  {
463  amrex::Abort("Specifying surf_temp_flux with immersed forcing for buildings is not currently supported");
464  }
465 
466  if (if_Olen_in != 1e-8 && buildings_type == BuildingsType::ImmersedForcing)
467  {
468  amrex::Abort("Specifying Olen with immersed forcing for buildings is not currently supported");
469  }
470 
471  // Flag to do MOST rotations with terrain
472  pp.query("use_rotate_surface_flux",use_rotate_surface_flux);
474  AMREX_ASSERT_WITH_MESSAGE(terrain_type != TerrainType::None,"MOST stress rotations are only valid with terrain!");
475  }
476 
477  // Which external forcings?
478  abl_driver_type = ABLDriverType::None; // Default: no ABL driver for simulating classical fluid dynamics problems
479  pp.query_enum_case_insensitive("abl_driver_type",abl_driver_type);
480  pp.query("const_massflux_u", const_massflux_u);
481  pp.query("const_massflux_v", const_massflux_v);
482  pp.query("const_massflux_tau", const_massflux_tau);
483  pp.query("const_massflux_layer_lo", const_massflux_layer_lo);
484  pp.query("const_massflux_layer_hi", const_massflux_layer_hi);
485 
486  // Which type of inflow turbulent generation
487  pert_type = PerturbationType::None; // Default
488  pp.query_enum_case_insensitive("perturbation_type",pert_type);
489 
490  amrex::Vector<amrex::Real> abl_pressure_grad_in = {0.0, 0.0, 0.0};
491  pp.queryarr("abl_pressure_grad",abl_pressure_grad_in);
492  for(int i = 0; i < AMREX_SPACEDIM; ++i) abl_pressure_grad[i] = abl_pressure_grad_in[i];
493 
494  amrex::Vector<amrex::Real> abl_geo_forcing_in = {0.0, 0.0, 0.0};
495  if(pp.queryarr("abl_geo_forcing",abl_geo_forcing_in)) {
496  amrex::Print() << "Specified abl_geo_forcing: (";
497  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
498  abl_geo_forcing[i] = abl_geo_forcing_in[i];
499  amrex::Print() << abl_geo_forcing[i] << " ";
500  }
501  amrex::Print() << ")" << std::endl;
502  }
503 
504  if (use_coriolis)
505  {
507  }
508 
509  pp.query("add_custom_rhotheta_forcing", custom_rhotheta_forcing);
510  pp.query("add_custom_moisture_forcing", custom_moisture_forcing);
511  pp.query("add_custom_w_subsidence", custom_w_subsidence);
512  pp.query("add_custom_geostrophic_profile", custom_geostrophic_profile);
513  pp.query("custom_forcing_uses_primitive_vars", custom_forcing_prim_vars);
514 
515  pp.query("nudging_from_input_sounding", nudging_from_input_sounding);
516 
518  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!(!abl_geo_wind_table.empty() && custom_geostrophic_profile),
519  "Should not have both abl_geo_wind_table and custom_geostrophic_profile set.");
520 
521  pp.query("Ave_Plane", ave_plane);
522 
523  pp.query("use_moist_background", use_moist_background);
524 
525  // Use numerical diffusion?
526  pp.query("num_diff_coeff",num_diff_coeff);
527  AMREX_ASSERT_WITH_MESSAGE(( (num_diff_coeff >= 0.) && (num_diff_coeff <= 1.) ),
528  "Numerical diffusion coefficient must be between 0 & 1.");
530  if (use_num_diff) {
531  amrex::Print() << "6th-order numerical diffusion turned on with coefficient = "
532  << num_diff_coeff << std::endl;
533  num_diff_coeff *= std::pow(2.0,-6);
534  }
535 
536  advChoice.init_params(pp_prefix);
537  diffChoice.init_params(pp_prefix);
538  dampingChoice.init_params(pp_prefix);
539  spongeChoice.init_params(pp_prefix);
540 
541 
542 
543  turbChoice.resize(max_level+1);
544  for (int lev = 0; lev <= max_level; lev++) {
545  turbChoice[lev].init_params(lev,max_level,pp_prefix);
546  }
547 
548  // YSU PBL: use consistent coriolis frequency
549  for (int lev = 0; lev <= max_level; lev++) {
550  if (turbChoice[lev].pbl_ysu_use_consistent_coriolis) {
551  if (use_coriolis) {
552  turbChoice[lev].pbl_ysu_coriolis_freq = coriolis_factor * sinphi;
553  if (lev == 0) {
554  amrex::Print() << "YSU PBL using ERF coriolis frequency: " << turbChoice[lev].pbl_ysu_coriolis_freq << std::endl;
555  }
556  } else {
557  amrex::Abort("YSU cannot use ERF coriolis frequency if not using coriolis");
558  }
559  }
560  }
561  // MRF
562  for (int lev = 0; lev <= max_level; lev++) {
563  if (turbChoice[lev].pbl_ysu_use_consistent_coriolis) {
564  if (use_coriolis) {
565  turbChoice[lev].pbl_ysu_coriolis_freq = coriolis_factor * sinphi;
566  if (lev == 0) {
567  amrex::Print() << "MRF PBL using ERF coriolis frequency: " << turbChoice[lev].pbl_ysu_coriolis_freq << std::endl;
568  }
569  } else {
570  amrex::Abort("MRF cannot use ERF coriolis frequency if not using coriolis");
571  }
572  }
573  }
574 
575  // Are we using SHOC? (test on compilation done in turb struct)
576  if (turbChoice[0].pbl_type == PBLType::SHOC) { use_shoc = true; }
577 
578  // Implicit vertical diffusion (not available with Shoc)
579  if (!use_shoc) {
580  // This controls the time-centering of the vertical differences in the diffusive term
581  bool do_vert_implicit = false;
582  if (pp.query("vert_implicit", do_vert_implicit) && do_vert_implicit) {
583  // set to default here
584  vert_implicit_fac[0] = 1.0;
585  vert_implicit_fac[1] = 1.0;
586  vert_implicit_fac[2] = 0.0;
587  }
588 
589  // This may be one value for all RK stages or a different value in each stage
590  int n_impfac = pp.countval("vert_implicit_fac");
591  AMREX_ALWAYS_ASSERT(n_impfac == 0 || n_impfac == 1 || n_impfac==3);
592  if (n_impfac > 0 && do_vert_implicit) {
593  amrex::Print() << "Overriding defaults with specified implicit factor(s)" << std::endl;
594  }
595 
596  if (n_impfac == 1) {
597  amrex::Real fac_in;
598  pp.get("vert_implicit_fac", fac_in);
599  for (int i=0; i<3; ++i) { vert_implicit_fac[i] = fac_in; }
600  } else if (n_impfac == 3) {
601  pp.getarr("vert_implicit_fac", vert_implicit_fac);
602  }
603 
604  // If true (default), include implicit contributions to vertical
605  // thermal diffusion
606  pp.query("implicit_thermal_diffusion", implicit_thermal_diffusion);
607 
608  // If true (default), include implicit contributions in tau13, tau23,
609  // (and if ERF_IMPLICIT_W is set, tau33) to correct u, v, (and w).
610  pp.query("implicit_momentum_diffusion", implicit_momentum_diffusion);
611 
613  amrex::Print() << "Thermal and momentum diffusion are both turned off -- turning off vertical implicit solve" << std::endl;
614  vert_implicit_fac[0] = 0.0;
615  vert_implicit_fac[1] = 0.0;
616  vert_implicit_fac[2] = 0.0;
617  }
618 
619  // This controls when the vertical implicit solve for the diffusive terms will happen relative to
620  // the acoustic substepping (if it happens, i.e. if any of the implicit_fac > 0.)
621  // The default is true (i.e. that it happens before the acoustic substepping).
622  pp.query("implicit_before_substep", implicit_before_substep);
623  }
624 
625  // Which type of multilevel coupling
626  coupling_type = CouplingType::TwoWay; // Default
627  pp.query_enum_case_insensitive("coupling_type",coupling_type);
628 
629  // Test for hybrid (compressible + anelastic) -- in this case we must use one-way coupling
630  bool any_anelastic = false;
631  bool any_compress = false;
632  for (int lev = 0; lev <= max_level; lev++) {
633  if (anelastic[lev] == 0) {
634  any_compress = true;
635  } else {
636  any_anelastic = true;
637  }
638  }
639  if (any_anelastic && any_compress) {
640  coupling_type = CouplingType::OneWay;
641  }
642 
643  // Which type of windfarm model
644  windfarm_type = WindFarmType::None; // Default
645  pp.query_enum_case_insensitive("windfarm_type",windfarm_type);
646 
647  static std::string windfarm_loc_type_string = "None";
648  windfarm_loc_type = WindFarmLocType::None;
649  pp.query_enum_case_insensitive("windfarm_loc_type",windfarm_loc_type);
650 
651  pp.query("windfarm_loc_table", windfarm_loc_table);
652  pp.query("windfarm_spec_table", windfarm_spec_table);
653  pp.query("windfarm_blade_table", windfarm_blade_table);
654  pp.query("windfarm_airfoil_tables", windfarm_airfoil_tables);
655  pp.query("windfarm_spec_table_extra", windfarm_spec_table_extra);
656 
657  // Sampling distance upstream of the turbine to find the
658  // incoming free stream velocity as a factor of the diameter of the
659  // turbine. ie. the sampling distance will be this number multiplied
660  // by the diameter of the turbine
661  pp.query("sampling_distance_by_D", sampling_distance_by_D);
662  pp.query("turb_disk_angle_from_x", turb_disk_angle);
663 
664  pp.query("windfarm_x_shift",windfarm_x_shift);
665  pp.query("windfarm_y_shift",windfarm_y_shift);
666  // Test if time averaged data is to be output
667  pp.query("time_avg_vel",time_avg_vel);
668 
669  pp.query("hindcast_lateral_forcing", hindcast_lateral_forcing);
670 
672  pp.query("hindcast_boundary_data_dir", hindcast_boundary_data_dir);
673 
674  if(hindcast_boundary_data_dir.empty()) {
675  amrex::Abort("ERROR: Missing input parameter 'erf.hindcast_boundary_data_dir' for boundary data for lateral forcing");
676  }
677  pp.query("hindcast_data_interval_in_hrs", hindcast_data_interval_in_hrs);
679  amrex::Abort("ERROR: Input parameter 'erf.hindcast_data_interval_in_hrs' which is the time interval between the "
680  "data files is either missing or set to less than zero");
681  }
682  pp.query("hindcast_lateral_sponge_strength", hindcast_lateral_sponge_strength);
683  pp.query("hindcast_lateral_sponge_length", hindcast_lateral_sponge_length);
684 
685  pp.query("hindcast_zhi_sponge_length", hindcast_zhi_sponge_length);
686  pp.query("hindcast_zhi_sponge_strength", hindcast_zhi_sponge_strength);
687 
688  pp.query("hindcast_zhi_sponge_damping", hindcast_zhi_sponge_damping);
689 
691  amrex::Abort("ERROR: Missing input parameter 'erf.hindcast_lateral_sponge_strength' or it is specified to be less than zero");
692  }
693 
695  amrex::Abort("ERROR: Missing input parameter 'erf.hindcast_lateral_sponge_length' or it is specified to be less than zero");
696  }
697 
699  amrex::Abort("ERROR: Missing input parameter 'erf.hindcast_zhi_sponge_strength' or it is specified to be less than zero");
700  }
701 
703  amrex::Abort("ERROR: Missing input parameter 'erf.hindcast_zhi_sponge_strength' or it is specified to be less than zero");
704  }
705  }
706 
707  pp.query("io_hurricane_eye_tracker", io_hurricane_eye_tracker);
709  pp.query("hurricane_eye_latitude", hurricane_eye_latitude);
710  pp.query("hurricane_eye_longitude", hurricane_eye_longitude);
711  if(hurricane_eye_latitude == -1e10 or hurricane_eye_longitude == -1e10) {
712  amrex::Abort("ERROR: You are using 'erf.io_hurricane_eye_tracker' to write out the files that track the eye of the hurricane"
713  " but have not provided the initial location of the eye of the hurricane to be tracked. There has to be two"
714  " options in the inputs - erf.hurricane_eye_latitude and erf.hurricane_eye_longitude that gives an approximate"
715  " location of the eye in the initial condition");
716  }
717  }
718 
719  pp.query("file_name_digits", file_name_digits);
720 
721  check_params(max_level);
722  }
723 
724  void check_params (int max_level)
725  {
726 #if 0
727  // Warn for PBL models and moisture - these may not yet be compatible
728  for (int lev = 0; lev <= max_level; lev++) {
729  if ((moisture_type != MoistureType::None) && (turbChoice[lev].pbl_type != PBLType::None)) {
730  amrex::Warning("\n*** WARNING: Moisture may not yet be compatible with PBL models, \n proceed with caution ***");
731  }
732  }
733 #endif
734  //
735  // Buoyancy type check
736  //
737  for (int lev = 0; lev <= max_level; lev++) {
738  if (buoyancy_type[lev] != 1 && buoyancy_type[lev] != 2 && buoyancy_type[lev] != 3 && buoyancy_type[lev] != 4) {
739  amrex::Abort("buoyancy_type must be 1, 2, 3 or 4");
740  }
741  }
742 
743  if (!use_lagged_delta_rt && !(terrain_type == TerrainType::MovingFittedMesh)) {
744  amrex::Error("Can't turn off lagged_delta_rt when terrain not moving");
745  }
746 
747  //
748  // Wind farm checks
749  //
750  if (windfarm_type==WindFarmType::SimpleAD and sampling_distance_by_D < 0.0) {
751  amrex::Abort("To use simplified actuator disks, you need to provide a variable"
752  " erf.sampling_distance_by_D in the inputs which specifies the upstream"
753  " distance as a factor of the turbine diameter at which the incoming free stream"
754  " velocity will be computed at.");
755  }
756  if ( (windfarm_type==WindFarmType::SimpleAD ||
757  windfarm_type==WindFarmType::GeneralAD ) && turb_disk_angle < 0.0) {
758  amrex::Abort("To use simplified actuator disks, you need to provide a variable"
759  " erf.turb_disk_angle_from_x in the inputs which is the angle of the face of the"
760  " turbine disk from the x-axis. A turbine facing an oncoming flow in the x-direction"
761  " will have turb_disk_angle value of 90 deg.");
762  }
763  if (windfarm_loc_type == WindFarmLocType::lat_lon and (windfarm_x_shift < 0.0 or windfarm_y_shift < 0.0)) {
764  amrex::Abort("You are using windfarms with latitude-logitude option to position the turbines."
765  " For this you should provide the inputs erf.windfarm_x_shift and"
766  " erf.windfarm_y_shift which are the values by which the bounding box of the"
767  " windfarm is shifted from the x and the y axes.");
768  }
769  }
770 
771  void display (int max_level, std::string pp_prefix)
772  {
773  amrex::Print() << "SOLVER CHOICE: " << std::endl;
774  for (int lev = 0; lev <= max_level; lev++) {
775  amrex::Print() << "At level " << lev << " : " << std::endl;
776  if (anelastic[lev]) {
777  amrex::Print() << " anelastic with no substepping" << std::endl;
778  } else {
779  if (substepping_type[lev] == SubsteppingType::None) {
780  amrex::Print() << " compressible with no substepping" << std::endl;
781  } else if (substepping_type[lev] == SubsteppingType::Implicit) {
782  amrex::Print() << " compressible with implicit substepping" << std::endl;
783  }
784  }
785  if (fixed_density[lev]) {
786  amrex::Print() << " and fixed density" << std::endl;
787  }
788  }
789 
790  amrex::Print() << "vert_implicit_fac : " << vert_implicit_fac[0] << " "
791  << vert_implicit_fac[1] << " "
792  << vert_implicit_fac[2];
793  if (vert_implicit_fac[0] > 0 ||
794  vert_implicit_fac[0] > 1 ||
795  vert_implicit_fac[0] > 2)
796  {
797  amrex::Print() << " (theta=" << implicit_thermal_diffusion
798  << ", momenta=" << implicit_momentum_diffusion;
799 #ifdef ERF_IMPLICIT_W
800  amrex::Print() << ", including w";
801 #endif
802  amrex::Print() << ")";
803  }
804  amrex::Print() << std::endl;
805  amrex::Print() << "use_coriolis : " << use_coriolis << std::endl;
806  amrex::Print() << "use_gravity : " << use_gravity << std::endl;
807 
808  if (moisture_type == MoistureType::SAM) {
809  amrex::Print() << "Moisture Model: SAM" << std::endl;
810  } else if (moisture_type == MoistureType::SAM_NoIce) {
811  amrex::Print() << "Moisture Model: SAM No Ice" << std::endl;
812  } else if (moisture_type == MoistureType::SAM_NoPrecip_NoIce) {
813  amrex::Print() << "Moisture Model: SAM No Precip No Ice" << std::endl;
814  } else if (moisture_type == MoistureType::Morrison) {
815  amrex::Print() << "Moisture Model: Morrison" << std::endl;
816  } else if (moisture_type == MoistureType::Morrison_NoIce) {
817  amrex::Print() << "Moisture Model: Morrison_NoIce" << std::endl;
818  } else if (moisture_type == MoistureType::Kessler) {
819  amrex::Print() << "Moisture Model: Kessler" << std::endl;
820  } else if (moisture_type == MoistureType::Kessler_NoRain) {
821  amrex::Print() << "Moisture Model: Kessler No Rain" << std::endl;
822  } else if (moisture_type == MoistureType::SatAdj) {
823  amrex::Print() << "Moisture Model: Saturation Adjustment" << std::endl;
824  } else {
825  amrex::Print() << "Moisture Model: None" << std::endl;
826  }
827 
828  if (terrain_type == TerrainType::StaticFittedMesh) {
829  amrex::Print() << "Terrain Type: StaticFittedMesh" << std::endl;
830  } else if (terrain_type == TerrainType::MovingFittedMesh) {
831  amrex::Print() << "Terrain Type: MovingFittedMesh" << std::endl;
832  } else if (terrain_type == TerrainType::EB) {
833  amrex::Print() << "Terrain Type: EB" << std::endl;
834  } else if (terrain_type == TerrainType::ImmersedForcing) {
835  amrex::Print() << "Terrain Type: ImmersedForcing" << std::endl;
836  } else {
837  amrex::Print() << "Terrain Type: None" << std::endl;
838  }
839 
840  if (buildings_type == BuildingsType::ImmersedForcing) {
841  amrex::Print() << "Buildings Type: ImmersedForcing" << std::endl;
842  } else {
843  amrex::Print() << "Buildings Type: None" << std::endl;
844  }
845 
846  if (mesh_type == MeshType::ConstantDz) {
847  amrex::Print() << " Mesh Type: ConstantDz" << std::endl;
848  } else if (mesh_type == MeshType::StretchedDz) {
849  amrex::Print() << " Mesh Type: StretchedDz" << std::endl;
850  } else if (mesh_type == MeshType::VariableDz) {
851  amrex::Print() << " Mesh Type: VariableDz" << std::endl;
852  } else {
853  amrex::Abort("No mesh_type set!");
854  }
855 
856  amrex::Print() << "ABL Driver Type: " << std::endl;
857  if (abl_driver_type == ABLDriverType::None) {
858  amrex::Print() << " None" << std::endl;
859  } else if (abl_driver_type == ABLDriverType::PressureGradient) {
860  amrex::Print() << " Pressure Gradient "
861  << amrex::RealVect(abl_pressure_grad[0],abl_pressure_grad[1],abl_pressure_grad[2])
862  << std::endl;
863  } else if (abl_driver_type == ABLDriverType::GeostrophicWind) {
864  amrex::Print() << " Geostrophic Wind "
865  << amrex::RealVect(abl_geo_forcing[0],abl_geo_forcing[1],abl_geo_forcing[2])
866  << std::endl;
867  }
868 
869  if (max_level > 0) {
870  amrex::Print() << "Coupling Type: " << std::endl;
871  if (coupling_type == CouplingType::TwoWay) {
872  amrex::Print() << " Two-way" << std::endl;
873  } else if (coupling_type == CouplingType::OneWay) {
874  amrex::Print() << " One-way" << std::endl;
875  }
876  }
877 
878  if (rad_type == RadiationType::RRTMGP) {
879  amrex::Print() << "Radiation Model: RRTMGP" << std::endl;
880  } else {
881  amrex::Print() << "Radiation Model: None" << std::endl;
882  }
883 
884  amrex::Print() << "Gradp_type : " << gradp_type << std::endl;
885 
886  for (int lev = 0; lev <= max_level; lev++) {
887  amrex::Print() << "Buoyancy_type at level " << lev << " : " << buoyancy_type[lev] << std::endl;
888  }
889 
890  advChoice.display(pp_prefix);
894 
895  for (int lev = 0; lev <= max_level; lev++) {
896  turbChoice[lev].display(lev);
897  }
898  }
899 
900  void build_coriolis_forcings_const_lat (std::string pp_prefix)
901  {
902  amrex::ParmParse pp(pp_prefix);
903 
904  // Read the rotational time period (in seconds)
905  amrex::Real rot_time_period = 86400.0;
906  pp.query("rotational_time_period", rot_time_period);
907 
908  coriolis_factor = 2.0 * 2.0 * PI / rot_time_period;
909 
910  amrex::Real latitude = 90.0;
911  pp.query("latitude", latitude);
912 
913  pp.query("coriolis_3d", coriolis_3d);
914 
915  // Convert to radians
916  latitude *= (PI/180.);
917  sinphi = std::sin(latitude);
918  if (coriolis_3d) {
919  cosphi = std::cos(latitude);
920  }
921 
922  amrex::Print() << "Coriolis frequency, f = " << coriolis_factor * sinphi << " 1/s" << std::endl;
923 
924  if (abl_driver_type == ABLDriverType::GeostrophicWind) {
925  // Read in the geostrophic wind -- we only use this to construct
926  // the forcing term so no need to keep it
927  amrex::Vector<amrex::Real> abl_geo_wind(3);
928  pp.queryarr("abl_geo_wind",abl_geo_wind);
929 
930  if(!pp.query("abl_geo_wind_table",abl_geo_wind_table)) {
931  abl_geo_forcing = {
932  -coriolis_factor * (abl_geo_wind[1]*sinphi - abl_geo_wind[2]*cosphi),
933  coriolis_factor * abl_geo_wind[0]*sinphi,
934  -coriolis_factor * abl_geo_wind[0]*cosphi
935  };
936  } else {
937  amrex::Print() << "NOTE: abl_geo_wind_table provided, ignoring input abl_geo_wind" << std::endl;
938  }
939  }
940  }
941 
942  void read_int_string (int max_level, const char* string_to_read,
943  amrex::Vector<int>& vec_to_fill, int default_int)
944  {
945  amrex::ParmParse pp("erf");
946  int nvals = pp.countval(string_to_read);
947  AMREX_ALWAYS_ASSERT(nvals == 0 || nvals == 1 || nvals >= max_level+1);
948  amrex::Vector<int> temp; temp.resize(nvals);
949  pp.queryarr(string_to_read,temp);
950 
951  if (vec_to_fill.size() < max_level+1) {
952  vec_to_fill.resize(max_level+1);
953  }
954 
955  if (nvals == 0) {
956  for (int i = 0; i <= max_level; ++i) vec_to_fill[i] = default_int;
957  } else if (nvals == 1) {
958  for (int i = 0; i <= max_level; ++i) vec_to_fill[i] = temp[0];
959  } else {
960  for (int i = 0; i <= max_level; ++i) vec_to_fill[i] = temp[i];
961  }
962  }
963 
964  inline static
965  InitType init_type = InitType::None;
966 
967  inline static
968  SoundingType sounding_type = SoundingType::Ideal;
969 
970  inline static
971  TerrainType terrain_type = TerrainType::None;
972 
973  inline static
974  BuildingsType buildings_type = BuildingsType::None;
975 
976  inline static
977  bool use_real_bcs = false;
978 
979  inline static
980  bool upwind_real_bcs = false;
981 
982  inline static
983  MeshType mesh_type = MeshType::ConstantDz;
984 
985  static
986  void set_mesh_type (MeshType new_mesh_type)
987  {
988  mesh_type = new_mesh_type;
989  }
990 
995  amrex::Vector<TurbChoice> turbChoice;
996 
998 
999  amrex::Vector<SubsteppingType> substepping_type;
1000  amrex::Vector<int> anelastic;
1001  amrex::Vector<int> fixed_density;
1002  amrex::Vector<int> project_initial_velocity;
1003  amrex::Vector<int> buoyancy_type;
1004 
1005  // do some extra CFL diagnostics for compressible with substepping
1006  bool substepping_diag = false;
1007 
1008  // time off-centering coefficient, > 0 for forward weighting (i.e., bias
1009  // towards the future time step)
1011 
1012  // This controls the time-centering of the *vertical* differences in the diffusive term for
1013  // theta, u, v (and w if ERF_IMPLICIT_W is set)
1014  // 0: fully explicit
1015  // 1: fully implicit
1016  amrex::Vector<amrex::Real> vert_implicit_fac = {0.0, 0.0, 0.0}; // one value per RK stage
1017  // if any vert_implicit_fac > 0, then the following apply:
1021 
1022  int ncorr = 1;
1025 
1026  bool test_mapfactor = false;
1027 
1028  int gradp_type = 0;
1029 
1030  // Specify what additional physics/forcing modules we use
1031  bool use_gravity = false;
1032  bool use_coriolis = false;
1033  bool coriolis_3d = true;
1034 
1036 
1037  // Specify whether to apply other various source terms on substep only
1039  bool forest_substep = false;
1040 
1041  // immersed forcing parameters
1044  // immersed forcing MOST parameters.
1045  amrex::Real if_z0 = 0.1; // [m]
1046  amrex::Real if_surf_temp_flux = 1e-8; // [K m/s]
1049  amrex::Real if_Olen_in = 1e-8; // [m]
1050  bool if_use_most = false;
1051 
1052  // This defaults to true but can be set to false for moving terrain cases only
1053  bool use_lagged_delta_rt = true;
1054 
1055  // Constants
1057  amrex::Real c_p = Cp_d; // specific heat at constant pressure for dry air [J/(kg-K)]
1059 
1060  // Staggered z levels for vertical grid stretching
1064 
1065  // Coriolis forcing
1069 
1070  // User-specified forcings in problem definition
1073  bool custom_w_subsidence = false;
1076 
1077  // Do we use source terms to nudge the solution towards
1078  // the time-varying data provided in input sounding files?
1080 
1081  // MOST stress rotations
1083 
1084  // Should we use SHOC?
1085  bool use_shoc = false;
1086 
1087  // User wishes to output time averaged velocity fields
1088  bool time_avg_vel = false;
1089 
1090  // Type of perturbation
1091  PerturbationType pert_type;
1092 
1093  // Numerical diffusion
1094  bool use_num_diff{false};
1096 
1097  // Rebalance wrfinput
1098  bool rebalance_wrfinput{false};
1099 
1100  CouplingType coupling_type;
1101  MoistureType moisture_type;
1102  WindFarmType windfarm_type;
1103  WindFarmLocType windfarm_loc_type;
1104  LandSurfaceType lsm_type;
1105  RadiationType rad_type;
1106 
1107  ABLDriverType abl_driver_type;
1108  amrex::GpuArray<amrex::Real, AMREX_SPACEDIM> abl_pressure_grad;
1109  amrex::GpuArray<amrex::Real, AMREX_SPACEDIM> abl_geo_forcing;
1110  std::string abl_geo_wind_table;
1112 
1113  bool has_lat_lon{false};
1114  bool variable_coriolis{false};
1115 
1116  int ave_plane {2};
1117 
1118  // Microphysics params
1119  bool use_moist_background {false};
1121 
1123 
1130 
1131  // Use forest canopy model?
1132  bool do_forest_drag {false};
1133 
1134  // Enforce constant mass flux?
1140  int massflux_klo {0}; // these are updated in ERF.cpp
1141  int massflux_khi {0};
1142 
1149 
1152 
1154 };
1155 #endif
constexpr amrex::Real Cp_d
Definition: ERF_Constants.H:12
constexpr amrex::Real PI
Definition: ERF_Constants.H:6
constexpr amrex::Real CONST_GRAV
Definition: ERF_Constants.H:21
constexpr amrex::Real R_d
Definition: ERF_Constants.H:10
TauType
Definition: ERF_DataStruct.H:30
@ tau12
Definition: ERF_DataStruct.H:31
@ tau23
Definition: ERF_DataStruct.H:31
@ tau33
Definition: ERF_DataStruct.H:31
@ tau22
Definition: ERF_DataStruct.H:31
@ tau11
Definition: ERF_DataStruct.H:31
@ tau32
Definition: ERF_DataStruct.H:31
@ tau31
Definition: ERF_DataStruct.H:31
@ tau21
Definition: ERF_DataStruct.H:31
@ tau13
Definition: ERF_DataStruct.H:31
Rayleigh
Definition: ERF_DataStruct.H:95
@ ubar
Definition: ERF_DataStruct.H:96
@ wbar
Definition: ERF_DataStruct.H:96
@ nvars
Definition: ERF_DataStruct.H:96
@ vbar
Definition: ERF_DataStruct.H:96
@ thetabar
Definition: ERF_DataStruct.H:96
Sponge
Definition: ERF_DataStruct.H:100
@ nvars_sponge
Definition: ERF_DataStruct.H:101
@ vbar_sponge
Definition: ERF_DataStruct.H:101
@ ubar_sponge
Definition: ERF_DataStruct.H:101
MapFacType
Definition: ERF_DataStruct.H:21
@ v_x
Definition: ERF_DataStruct.H:23
@ num
Definition: ERF_DataStruct.H:23
@ u_y
Definition: ERF_DataStruct.H:24
@ v_y
Definition: ERF_DataStruct.H:24
@ m_y
Definition: ERF_DataStruct.H:24
@ u_x
Definition: ERF_DataStruct.H:23
@ m_x
Definition: ERF_DataStruct.H:23
Coord
Definition: ERF_DataStruct.H:90
AMREX_ENUM(InitType, None, Input_Sounding, NCFile, WRFInput, Metgrid, Uniform, HindCast)
#define RhoQ4_comp
Definition: ERF_IndexDefines.H:45
#define RhoQ2_comp
Definition: ERF_IndexDefines.H:43
#define RhoQ3_comp
Definition: ERF_IndexDefines.H:44
#define RhoQ1_comp
Definition: ERF_IndexDefines.H:42
#define RhoQ6_comp
Definition: ERF_IndexDefines.H:47
#define RhoQ5_comp
Definition: ERF_IndexDefines.H:46
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real pp(amrex::Real y)
Definition: ERF_MicrophysicsUtils.H:233
amrex::Real Real
Definition: ERF_ShocInterface.H:19
Definition: ERF_EWP.H:9
Definition: ERF_Fitch.H:9
Definition: ERF_GeneralAD.H:8
Definition: ERF_Kessler.H:38
Definition: ERF_MM5.H:26
Definition: ERF_Morrison.H:58
Definition: ERF_NOAHMP.H:49
Definition: ERF_SAM.H:53
Definition: ERF_SLM.H:26
Definition: ERF_SatAdj.H:41
Definition: ERF_SimpleAD.H:8
@ bogus
Definition: ERF_IndexDefines.H:204
Definition: ERF_AdvStruct.H:19
void display(std::string &pp_prefix)
Definition: ERF_AdvStruct.H:235
void init_params(std::string pp_prefix)
Definition: ERF_AdvStruct.H:21
Definition: ERF_DampingStruct.H:19
void init_params(std::string pp_prefix)
Definition: ERF_DampingStruct.H:21
void display()
Definition: ERF_DampingStruct.H:61
Definition: ERF_DiffStruct.H:19
void init_params(std::string pp_prefix)
Definition: ERF_DiffStruct.H:21
void display()
Definition: ERF_DiffStruct.H:67
Definition: ERF_DataStruct.H:104
int qs
Definition: ERF_DataStruct.H:109
int qr
Definition: ERF_DataStruct.H:108
MoistureComponentIndices()=default
int qi
Definition: ERF_DataStruct.H:107
int qv
Definition: ERF_DataStruct.H:105
int qc
Definition: ERF_DataStruct.H:106
int qg
Definition: ERF_DataStruct.H:110
MoistureComponentIndices(int qv_comp, int qc_comp, int qi_comp=-1, int qr_comp=-1, int qs_comp=-1, int qg_comp=-1)
Definition: ERF_DataStruct.H:113
Definition: ERF_DataStruct.H:128
amrex::Real hurricane_eye_latitude
Definition: ERF_DataStruct.H:1151
amrex::Real if_init_surf_temp
Definition: ERF_DataStruct.H:1047
amrex::Real dz0
Definition: ERF_DataStruct.H:1063
amrex::Real const_massflux_layer_lo
Definition: ERF_DataStruct.H:1138
bool use_lagged_delta_rt
Definition: ERF_DataStruct.H:1053
amrex::Real coriolis_factor
Definition: ERF_DataStruct.H:1066
static MeshType mesh_type
Definition: ERF_DataStruct.H:983
amrex::Real if_surf_temp_flux
Definition: ERF_DataStruct.H:1046
amrex::Real windfarm_x_shift
Definition: ERF_DataStruct.H:1128
void display(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:771
bool rebalance_wrfinput
Definition: ERF_DataStruct.H:1098
amrex::Real hindcast_lateral_sponge_strength
Definition: ERF_DataStruct.H:1146
amrex::Real poisson_reltol
Definition: ERF_DataStruct.H:1024
void build_coriolis_forcings_const_lat(std::string pp_prefix)
Definition: ERF_DataStruct.H:900
bool if_use_most
Definition: ERF_DataStruct.H:1050
DampingChoice dampingChoice
Definition: ERF_DataStruct.H:993
amrex::Real rdOcp
Definition: ERF_DataStruct.H:1058
RadiationType rad_type
Definition: ERF_DataStruct.H:1105
void read_int_string(int max_level, const char *string_to_read, amrex::Vector< int > &vec_to_fill, int default_int)
Definition: ERF_DataStruct.H:942
amrex::Vector< int > project_initial_velocity
Definition: ERF_DataStruct.H:1002
std::string windfarm_spec_table
Definition: ERF_DataStruct.H:1124
amrex::Real hindcast_zhi_sponge_length
Definition: ERF_DataStruct.H:1147
DiffChoice diffChoice
Definition: ERF_DataStruct.H:992
amrex::Real const_massflux_v
Definition: ERF_DataStruct.H:1136
amrex::Real if_z0
Definition: ERF_DataStruct.H:1045
bool use_gravity
Definition: ERF_DataStruct.H:1031
int ncorr
Definition: ERF_DataStruct.H:1022
int force_stage1_single_substep
Definition: ERF_DataStruct.H:997
bool hindcast_zhi_sponge_damping
Definition: ERF_DataStruct.H:1148
std::string windfarm_spec_table_extra
Definition: ERF_DataStruct.H:1124
amrex::Real cosphi
Definition: ERF_DataStruct.H:1067
LandSurfaceType lsm_type
Definition: ERF_DataStruct.H:1104
amrex::Real c_p
Definition: ERF_DataStruct.H:1057
amrex::Vector< int > buoyancy_type
Definition: ERF_DataStruct.H:1003
std::string windfarm_loc_table
Definition: ERF_DataStruct.H:1124
amrex::Real gravity
Definition: ERF_DataStruct.H:1056
void check_params(int max_level)
Definition: ERF_DataStruct.H:724
amrex::Real beta_s
Definition: ERF_DataStruct.H:1010
bool custom_rhotheta_forcing
Definition: ERF_DataStruct.H:1071
amrex::Real hindcast_lateral_sponge_length
Definition: ERF_DataStruct.H:1146
amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > abl_geo_forcing
Definition: ERF_DataStruct.H:1109
bool use_shoc
Definition: ERF_DataStruct.H:1085
WindFarmLocType windfarm_loc_type
Definition: ERF_DataStruct.H:1103
bool hindcast_lateral_forcing
Definition: ERF_DataStruct.H:1145
int massflux_klo
Definition: ERF_DataStruct.H:1140
bool moisture_tight_coupling
Definition: ERF_DataStruct.H:1122
bool custom_w_subsidence
Definition: ERF_DataStruct.H:1073
bool nudging_from_input_sounding
Definition: ERF_DataStruct.H:1079
bool custom_geostrophic_profile
Definition: ERF_DataStruct.H:1074
amrex::Real if_Cd_scalar
Definition: ERF_DataStruct.H:1042
bool immersed_forcing_substep
Definition: ERF_DataStruct.H:1038
amrex::Real grid_stretching_ratio
Definition: ERF_DataStruct.H:1061
amrex::Real sinphi
Definition: ERF_DataStruct.H:1068
bool have_geo_wind_profile
Definition: ERF_DataStruct.H:1111
amrex::Vector< amrex::Real > vert_implicit_fac
Definition: ERF_DataStruct.H:1016
amrex::Real hurricane_eye_longitude
Definition: ERF_DataStruct.H:1151
amrex::Real const_massflux_u
Definition: ERF_DataStruct.H:1135
amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > abl_pressure_grad
Definition: ERF_DataStruct.H:1108
void init_params(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:130
bool io_hurricane_eye_tracker
Definition: ERF_DataStruct.H:1150
amrex::Vector< SubsteppingType > substepping_type
Definition: ERF_DataStruct.H:999
bool coriolis_3d
Definition: ERF_DataStruct.H:1033
amrex::Real if_Olen_in
Definition: ERF_DataStruct.H:1049
bool use_num_diff
Definition: ERF_DataStruct.H:1094
amrex::Real sampling_distance_by_D
Definition: ERF_DataStruct.H:1126
bool implicit_thermal_diffusion
Definition: ERF_DataStruct.H:1018
amrex::Real hindcast_zhi_sponge_strength
Definition: ERF_DataStruct.H:1147
bool test_mapfactor
Definition: ERF_DataStruct.H:1026
bool use_coriolis
Definition: ERF_DataStruct.H:1032
static SoundingType sounding_type
Definition: ERF_DataStruct.H:968
bool four_stream_radiation
Definition: ERF_DataStruct.H:1035
bool custom_moisture_forcing
Definition: ERF_DataStruct.H:1072
amrex::Real num_diff_coeff
Definition: ERF_DataStruct.H:1095
std::string windfarm_blade_table
Definition: ERF_DataStruct.H:1125
amrex::Real zsurf
Definition: ERF_DataStruct.H:1062
amrex::Real if_surf_heating_rate
Definition: ERF_DataStruct.H:1048
amrex::Vector< TurbChoice > turbChoice
Definition: ERF_DataStruct.H:995
bool variable_coriolis
Definition: ERF_DataStruct.H:1114
amrex::Vector< int > anelastic
Definition: ERF_DataStruct.H:1000
amrex::Real if_Cd_momentum
Definition: ERF_DataStruct.H:1043
static bool upwind_real_bcs
Definition: ERF_DataStruct.H:980
AdvChoice advChoice
Definition: ERF_DataStruct.H:991
bool use_moist_background
Definition: ERF_DataStruct.H:1119
MoistureType moisture_type
Definition: ERF_DataStruct.H:1101
bool custom_forcing_prim_vars
Definition: ERF_DataStruct.H:1075
std::string abl_geo_wind_table
Definition: ERF_DataStruct.H:1110
static BuildingsType buildings_type
Definition: ERF_DataStruct.H:974
static TerrainType terrain_type
Definition: ERF_DataStruct.H:971
amrex::Real hindcast_data_interval_in_hrs
Definition: ERF_DataStruct.H:1144
ABLDriverType abl_driver_type
Definition: ERF_DataStruct.H:1107
amrex::Vector< int > fixed_density
Definition: ERF_DataStruct.H:1001
PerturbationType pert_type
Definition: ERF_DataStruct.H:1091
SpongeChoice spongeChoice
Definition: ERF_DataStruct.H:994
WindFarmType windfarm_type
Definition: ERF_DataStruct.H:1102
static InitType init_type
Definition: ERF_DataStruct.H:965
bool substepping_diag
Definition: ERF_DataStruct.H:1006
bool implicit_momentum_diffusion
Definition: ERF_DataStruct.H:1019
amrex::Real const_massflux_layer_hi
Definition: ERF_DataStruct.H:1139
bool implicit_before_substep
Definition: ERF_DataStruct.H:1020
static bool use_real_bcs
Definition: ERF_DataStruct.H:977
amrex::Real poisson_abstol
Definition: ERF_DataStruct.H:1023
MoistureComponentIndices moisture_indices
Definition: ERF_DataStruct.H:1120
amrex::Real turb_disk_angle
Definition: ERF_DataStruct.H:1127
amrex::Real windfarm_y_shift
Definition: ERF_DataStruct.H:1129
int file_name_digits
Definition: ERF_DataStruct.H:1153
bool has_lat_lon
Definition: ERF_DataStruct.H:1113
bool use_rotate_surface_flux
Definition: ERF_DataStruct.H:1082
bool do_forest_drag
Definition: ERF_DataStruct.H:1132
amrex::Real const_massflux_tau
Definition: ERF_DataStruct.H:1137
int massflux_khi
Definition: ERF_DataStruct.H:1141
bool time_avg_vel
Definition: ERF_DataStruct.H:1088
bool forest_substep
Definition: ERF_DataStruct.H:1039
CouplingType coupling_type
Definition: ERF_DataStruct.H:1100
std::string windfarm_airfoil_tables
Definition: ERF_DataStruct.H:1125
int gradp_type
Definition: ERF_DataStruct.H:1028
static void set_mesh_type(MeshType new_mesh_type)
Definition: ERF_DataStruct.H:986
int ave_plane
Definition: ERF_DataStruct.H:1116
std::string hindcast_boundary_data_dir
Definition: ERF_DataStruct.H:1143
Definition: ERF_SpongeStruct.H:15
void display()
Definition: ERF_SpongeStruct.H:45
void init_params(std::string pp_prefix)
Definition: ERF_SpongeStruct.H:17