Function for computing the scalar RHS for diffusion operator without terrain.
45 const int prim_index = qty_index - 1;
49 int ilo = bx.smallEnd(0);
50 int ihi = bx.bigEnd(0);
51 int jlo = bx.smallEnd(1);
52 int jhi = bx.bigEnd(1);
53 int klo = bx.smallEnd(2);
54 int khi = bx.bigEnd(2);
58 amrex::FArrayBox RHS_fab, soln_fab, coeffA_fab, coeffB_fab, inv_coeffB_fab, coeffC_fab;
59 RHS_fab.resize(bx,1, amrex::The_Async_Arena());
60 soln_fab.resize(bx,1, amrex::The_Async_Arena());
61 coeffA_fab.resize(bx,1, amrex::The_Async_Arena());
62 coeffB_fab.resize(bx,1, amrex::The_Async_Arena());
63 inv_coeffB_fab.resize(bx,1, amrex::The_Async_Arena());
64 coeffC_fab.resize(bx,1, amrex::The_Async_Arena());
65 auto const& RHS_a = RHS_fab.array();
66 auto const& soln_a = soln_fab.array();
67 auto const& coeffA_a = coeffA_fab.array();
68 auto const& coeffB_a = coeffB_fab.array();
69 auto const& inv_coeffB_a = inv_coeffB_fab.array();
70 auto const& coeffC_a = coeffC_fab.array();
77 Real dz_inv = cellSizeInv[2];
86 for (
int j(jlo); j<=jhi; ++j) {
87 for (
int i(ilo); i<=ihi; ++i) {
90 for (
int k(klo); k <= khi; k++)
120 RHS_a(i,j,k) = cell_data(i,j,k,n);
122 coeffA_a(i,j,k) = -implicit_fac * rhoAlpha_lo * dt * dz_inv * dz_inv;
123 coeffC_a(i,j,k) = -implicit_fac * rhoAlpha_hi * dt * dz_inv * dz_inv;
127 RHS_a(i,j,klo) += implicit_fac * dt * dz_inv * hfx_z(i,j,0);
128 }
else if (neumann_on_zlo) {
129 RHS_a(i,j,klo) += coeffA_a(i,j,klo) * bc_neumann_vals[2] / dz_inv;
132 coeffA_a(i,j,klo) = 0.;
135 if (neumann_on_zhi) {
136 RHS_a(i,j,khi) -= coeffC_a(i,j,khi) * bc_neumann_vals[5] / dz_inv;
139 coeffC_a(i,j,khi) = 0.;
142 coeffB_a(i,j,k) = cell_data(i,j,k,
Rho_comp) - coeffA_a(i,j,k) - coeffC_a(i,j,k);
147 Real bet = coeffB_a(i,j,klo);
149 for (
int k(klo+1); k<=khi; ++k) {
150 Real gam = coeffC_a(i,j,k-1) / bet;
151 bet = coeffB_a(i,j,k) - coeffA_a(i,j,k)*gam;
152 AMREX_ASSERT(bet != 0.0);
153 coeffB_a(i,j,k) = bet;
156 for (
int k(klo); k<=khi; ++k) {
157 inv_coeffB_a(i,j,k) = 1.0 / coeffB_a(i,j,k);
163 soln_a(i,j,klo) = RHS_a(i,j,klo) * inv_coeffB_a(i,j,klo);
165 for (
int k(klo+1); k<=khi; ++k) {
166 soln_a(i,j,k) = (RHS_a(i,j,k)-coeffA_a(i,j,k)*soln_a(i,j,k-1)) * inv_coeffB_a(i,j,k);
169 for (
int k(khi-1); k>=klo; --k) {
170 soln_a(i,j,k) -= ( coeffC_a(i,j,k) * inv_coeffB_a(i,j,k) ) * soln_a(i,j,k+1);
176 for (
int k(klo); k<=khi; ++k) {
177 cell_data(i,j,k,n) = soln_a(i,j,k) * cell_data(i,j,k,
Rho_comp);
void ImplicitDiffForState_N(const Box &bx, const Box &domain, const int level, const Real dt, const GpuArray< Real, AMREX_SPACEDIM *2 > &bc_neumann_vals, const Array4< Real > &cell_data, const GpuArray< Real, AMREX_SPACEDIM > &cellSizeInv, const Array4< Real > &hfx_z, const Array4< const Real > &mu_turb, const SolverChoice &solverChoice, const BCRec *bc_ptr, const bool use_SurfLayer, const Real implicit_fac)
Definition: ERF_ImplicitDiff_N.cpp:25
const int bc_comp
Definition: ERF_Implicit.H:8
#define RhoScalar_comp
Definition: ERF_IndexDefines.H:40
#define Rho_comp
Definition: ERF_IndexDefines.H:36
#define RhoTheta_comp
Definition: ERF_IndexDefines.H:37
#define NSCALARS
Definition: ERF_IndexDefines.H:16
#define PrimScalar_comp
Definition: ERF_IndexDefines.H:52
const auto & dom_hi
Definition: ERF_SetupVertDiff.H:2
bool l_turb
Definition: ERF_SetupVertDiff.H:8
const auto & dom_lo
Definition: ERF_SetupVertDiff.H:1
bool l_consA
Definition: ERF_SetupVertDiff.H:7
int * d_eddy_diff_idz
Definition: ERF_SetupVertDiff.H:107
Real * d_alpha_eff
Definition: ERF_SetupVertDiff.H:104
amrex::Real Real
Definition: ERF_ShocInterface.H:19
@ neumann
Definition: ERF_IndexDefines.H:213