ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
ERF_SlowRhsPost.cpp File Reference
#include <AMReX.H>
#include <ERF_SrcHeaders.H>
#include <ERF_TI_slow_headers.H>
#include <ERF_EBAdvection.H>
#include <ERF_EBRedistribute.H>
Include dependency graph for ERF_SlowRhsPost.cpp:

Functions

void erf_slow_rhs_post (int level, int finest_level, int nrk, Real dt, int n_qstate, Vector< MultiFab > &S_rhs, Vector< MultiFab > &S_old, Vector< MultiFab > &S_new, Vector< MultiFab > &S_data, const MultiFab &S_prim, Vector< MultiFab > &S_scratch, const MultiFab &xvel, const MultiFab &yvel, const MultiFab &, const MultiFab &source, const MultiFab *SmnSmn, const MultiFab *eddyDiffs, MultiFab *Hfx1, MultiFab *Hfx2, MultiFab *Hfx3, MultiFab *Q1fx1, MultiFab *Q1fx2, MultiFab *Q1fx3, MultiFab *Q2fx3, MultiFab *Diss, const Geometry geom, const SolverChoice &solverChoice, std::unique_ptr< SurfaceLayer > &SurfLayer, const Gpu::DeviceVector< BCRec > &domain_bcs_type_d, const Vector< BCRec > &domain_bcs_type_h, std::unique_ptr< MultiFab > &z_phys_nd, std::unique_ptr< MultiFab > &z_phys_cc, std::unique_ptr< MultiFab > &ax, std::unique_ptr< MultiFab > &ay, std::unique_ptr< MultiFab > &az, std::unique_ptr< MultiFab > &detJ, MultiFab *detJ_new, Gpu::DeviceVector< Real > &stretched_dz_d, Vector< std::unique_ptr< MultiFab >> &mapfac, amrex::EBFArrayBoxFactory const &ebfact, YAFluxRegister *fr_as_crse, YAFluxRegister *fr_as_fine)
 

Function Documentation

◆ erf_slow_rhs_post()

void erf_slow_rhs_post ( int  level,
int  finest_level,
int  nrk,
Real  dt,
int  n_qstate,
Vector< MultiFab > &  S_rhs,
Vector< MultiFab > &  S_old,
Vector< MultiFab > &  S_new,
Vector< MultiFab > &  S_data,
const MultiFab &  S_prim,
Vector< MultiFab > &  S_scratch,
const MultiFab &  xvel,
const MultiFab &  yvel,
const MultiFab &  ,
const MultiFab &  source,
const MultiFab *  SmnSmn,
const MultiFab *  eddyDiffs,
MultiFab *  Hfx1,
MultiFab *  Hfx2,
MultiFab *  Hfx3,
MultiFab *  Q1fx1,
MultiFab *  Q1fx2,
MultiFab *  Q1fx3,
MultiFab *  Q2fx3,
MultiFab *  Diss,
const Geometry  geom,
const SolverChoice solverChoice,
std::unique_ptr< SurfaceLayer > &  SurfLayer,
const Gpu::DeviceVector< BCRec > &  domain_bcs_type_d,
const Vector< BCRec > &  domain_bcs_type_h,
std::unique_ptr< MultiFab > &  z_phys_nd,
std::unique_ptr< MultiFab > &  z_phys_cc,
std::unique_ptr< MultiFab > &  ax,
std::unique_ptr< MultiFab > &  ay,
std::unique_ptr< MultiFab > &  az,
std::unique_ptr< MultiFab > &  detJ,
MultiFab *  detJ_new,
Gpu::DeviceVector< Real > &  stretched_dz_d,
Vector< std::unique_ptr< MultiFab >> &  mapfac,
amrex::EBFArrayBoxFactory const &  ebfact,
YAFluxRegister *  fr_as_crse,
YAFluxRegister *  fr_as_fine 
)

Function for computing the slow RHS for the evolution equations for the scalars other than density or potential temperature

Parameters
[in]levellevel of resolution
[in]finest_levelfinest level of resolution
[in]nrkwhich RK stage
[in]dtslow time step
[out]S_rhsRHS computed here
[in]S_oldsolution at start of time step
[in]S_newsolution at end of current RK stage
[in]S_datacurrent solution
[in]S_primprimitive variables (i.e. conserved variables divided by density)
[in]S_scratchscratch space
[in]xvelx-component of velocity
[in]yvely-component of velocity
[in]zvelz-component of velocity
[in]sourcesource terms for conserved variables
[in]SmnSmnstrain rate magnitude
[in]eddyDiffsdiffusion coefficients for LES turbulence models
[in]Hfx3heat flux in z-dir
[in]Dissdissipation of turbulent kinetic energy
[in]geomContainer for geometric information
[in]solverChoiceContainer for solver parameters
[in]SurfLayerPointer to SurfaceLayer class for Monin-Obukhov Similarity Theory boundary condition
[in]domain_bcs_type_ddevice vector for domain boundary conditions
[in]z_phys_ndheight coordinate at nodes
[in]axarea fractions on x-faces
[in]ayarea fractions on y-faces
[in]azarea fractions on z-faces
[in]detJJacobian of the metric transformation at start of time step (= 1 if use_terrain is false)
[in]detJ_newJacobian of the metric transformation at new RK stage time (= 1 if use_terrain is false)
[in]mapfacmap factors
[in,out]fr_as_crseYAFluxRegister at level l at level l / l+1 interface
[in,out]fr_as_fineYAFluxRegister at level l at level l-1 / l interface
98 {
99  BL_PROFILE_REGION("erf_slow_rhs_post()");
100 
101  const BCRec* bc_ptr_d = domain_bcs_type_d.data();
102  const BCRec* bc_ptr_h = domain_bcs_type_h.data();
103 
104  AdvChoice ac = solverChoice.advChoice;
105  DiffChoice dc = solverChoice.diffChoice;
106  TurbChoice tc = solverChoice.turbChoice[level];
107 
108  const MultiFab* t_mean_mf = nullptr;
109  if (SurfLayer) { t_mean_mf = SurfLayer->get_mac_avg(level,2); }
110 
111  const bool l_use_terrain = (solverChoice.mesh_type != MeshType::ConstantDz);
112  const bool l_moving_terrain = (solverChoice.terrain_type == TerrainType::MovingFittedMesh);
113  const bool l_reflux = ( (solverChoice.coupling_type == CouplingType::TwoWay) && (nrk == 2) && (finest_level > 0) );
114  if (l_moving_terrain) AMREX_ALWAYS_ASSERT(l_use_terrain);
115 
116  const bool l_anelastic = solverChoice.anelastic[level];
117 
118  const bool l_use_mono_adv = solverChoice.use_mono_adv;
119  const bool l_use_KE = ( tc.use_tke );
120  const bool l_need_SmnSmn = ( tc.les_type == LESType::Deardorff ||
121  tc.rans_type == RANSType::kEqn );
122  const bool l_advect_KE = ( tc.use_tke && tc.advect_tke );
123  const bool l_use_diff = ((dc.molec_diff_type != MolecDiffType::None) ||
124  (tc.les_type != LESType::None) ||
125  (tc.rans_type != RANSType::None) ||
126  (tc.pbl_type != PBLType::None) );
127  const bool l_use_turb = ( tc.les_type == LESType::Smagorinsky ||
128  tc.les_type == LESType::Deardorff ||
129  tc.rans_type == RANSType::kEqn ||
130  tc.pbl_type == PBLType::MYNN25 ||
131  tc.pbl_type == PBLType::MYNNEDMF ||
132  tc.pbl_type == PBLType::YSU );
133  const bool l_rotate = (solverChoice.use_rotate_surface_flux);
134 
135  const Box& domain = geom.Domain();
136 
137  const GpuArray<Real, AMREX_SPACEDIM> dxInv = geom.InvCellSizeArray();
138  const Real* dx = geom.CellSize();
139 
140  // *************************************************************************
141  // Set gravity as a vector
142  // *************************************************************************
143  const Array<Real,AMREX_SPACEDIM> grav{0.0, 0.0, -solverChoice.gravity};
144  const GpuArray<Real,AMREX_SPACEDIM> grav_gpu{grav[0], grav[1], grav[2]};
145 
146  // *************************************************************************
147  // Pre-computed quantities
148  // *************************************************************************
149  int nvars = S_data[IntVars::cons].nComp();
150  const BoxArray& ba = S_data[IntVars::cons].boxArray();
151  const DistributionMapping& dm = S_data[IntVars::cons].DistributionMap();
152 
153  std::unique_ptr<MultiFab> dflux_x;
154  std::unique_ptr<MultiFab> dflux_y;
155  std::unique_ptr<MultiFab> dflux_z;
156 
157  if (l_use_diff) {
158  dflux_x = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)), dm, 1, 0);
159  dflux_y = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)), dm, 1, 0);
160  dflux_z = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)), dm, 1, 0);
161  } else {
162  dflux_x = nullptr;
163  dflux_y = nullptr;
164  dflux_z = nullptr;
165  }
166 
167  // Valid vars
168  Vector<int> is_valid_slow_var; is_valid_slow_var.resize(RhoQ1_comp+1,0);
169  if (l_use_KE) {is_valid_slow_var[ RhoKE_comp] = 1;}
170  is_valid_slow_var[RhoScalar_comp] = 1;
171  if (solverChoice.moisture_type != MoistureType::None) {
172  is_valid_slow_var[RhoQ1_comp] = 1;
173  }
174 
175  // *****************************************************************************
176  // Monotonic advection for scalars
177  // *****************************************************************************
178  int nvar = S_new[IntVars::cons].nComp();
179  Vector<Real> max_scal(nvar, 1.0e34); Gpu::DeviceVector<Real> max_scal_d(nvar);
180  Vector<Real> min_scal(nvar,-1.0e34); Gpu::DeviceVector<Real> min_scal_d(nvar);
181  if (l_use_mono_adv) {
182  auto const& ma_s_arr = S_new[IntVars::cons].const_arrays();
183  for (int ivar(RhoKE_comp); ivar<nvar; ++ivar) {
184  GpuTuple<Real,Real> mm = ParReduce(TypeList<ReduceOpMax,ReduceOpMin>{},
185  TypeList<Real, Real>{},
186  S_new[IntVars::cons], IntVect(0),
187  [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
188  -> GpuTuple<Real,Real>
189  {
190  return { ma_s_arr[box_no](i,j,k,ivar), ma_s_arr[box_no](i,j,k,ivar) };
191  });
192  max_scal[ivar] = get<0>(mm);
193  min_scal[ivar] = get<1>(mm);
194  }
195  }
196  Gpu::copy(Gpu::hostToDevice, max_scal.begin(), max_scal.end(), max_scal_d.begin());
197  Gpu::copy(Gpu::hostToDevice, min_scal.begin(), min_scal.end(), min_scal_d.begin());
198  Real* max_s_ptr = max_scal_d.data();
199  Real* min_s_ptr = min_scal_d.data();
200 
201  // *************************************************************************
202  // Calculate cell-centered eddy viscosity & diffusivities
203  //
204  // Notes -- we fill all the data in ghost cells before calling this so
205  // that we can fill the eddy viscosity in the ghost regions and
206  // not have to call a boundary filler on this data itself
207  //
208  // LES - updates both horizontal and vertical eddy viscosityS_tmp components
209  // PBL - only updates vertical eddy viscosity components so horizontal
210  // components come from the LES model or are left as zero.
211  // *************************************************************************
212 
213  // *************************************************************************
214  // Define updates and fluxes in the current RK stage
215  // *************************************************************************
216 #ifdef _OPENMP
217 #pragma omp parallel if (Gpu::notInLaunchRegion())
218 #endif
219  {
220  std::array<FArrayBox,AMREX_SPACEDIM> flux;
221  std::array<FArrayBox,AMREX_SPACEDIM> flux_tmp;
222 
223  int start_comp;
224  int num_comp;
225 
226  // Cell-centered masks for EB (used for flux interpolation)
227  iMultiFab physbnd_mask;
228  bool already_on_centroids = false;
229  if (solverChoice.terrain_type == TerrainType::EB) {
230  physbnd_mask.define(S_data[IntVars::cons].boxArray(), S_data[IntVars::cons].DistributionMap(), 1, 1);
231  physbnd_mask.BuildMask(geom.Domain(), geom.periodicity(), 1, 1, 0, 1);
232  }
233 
234  for (MFIter mfi(S_data[IntVars::cons],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
235 
236  Box tbx = mfi.tilebox();
237 
238  // *************************************************************************
239  // Define flux arrays for use in advection
240  // *************************************************************************
241  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
242  if (solverChoice.terrain_type != TerrainType::EB) {
243  flux[dir].resize(surroundingNodes(tbx,dir),nvars);
244  } else {
245  flux[dir].resize(surroundingNodes(tbx,dir).grow(1),nvars);
246  }
247  flux[dir].setVal<RunOn::Device>(0.);
248  if (l_use_mono_adv) {
249  flux_tmp[dir].resize(surroundingNodes(tbx,dir),1);
250  flux_tmp[dir].setVal<RunOn::Device>(0.);
251  }
252  }
253  const GpuArray<const Array4<Real>, AMREX_SPACEDIM>
254  flx_arr{{AMREX_D_DECL(flux[0].array(), flux[1].array(), flux[2].array())}};
255  Array4<Real> tmpx = (l_use_mono_adv) ? flux_tmp[0].array() : Array4<Real>{};
256  Array4<Real> tmpy = (l_use_mono_adv) ? flux_tmp[1].array() : Array4<Real>{};
257  Array4<Real> tmpz = (l_use_mono_adv) ? flux_tmp[2].array() : Array4<Real>{};
258  const GpuArray<Array4<Real>, AMREX_SPACEDIM> flx_tmp_arr{{AMREX_D_DECL(tmpx,tmpy,tmpz)}};
259 
260  // *************************************************************************
261  // Define Array4's
262  // *************************************************************************
263  const Array4<const Real> & old_cons = S_old[IntVars::cons].array(mfi);
264  const Array4< Real> & cell_rhs = S_rhs[IntVars::cons].array(mfi);
265 
266  const Array4< Real> & new_cons = S_new[IntVars::cons].array(mfi);
267  const Array4< Real> & new_xmom = S_new[IntVars::xmom].array(mfi);
268  const Array4< Real> & new_ymom = S_new[IntVars::ymom].array(mfi);
269  const Array4< Real> & new_zmom = S_new[IntVars::zmom].array(mfi);
270 
271  const Array4< Real> & cur_cons = S_data[IntVars::cons].array(mfi);
272  const Array4<const Real> & cur_prim = S_prim.array(mfi);
273  const Array4< Real> & cur_xmom = S_data[IntVars::xmom].array(mfi);
274  const Array4< Real> & cur_ymom = S_data[IntVars::ymom].array(mfi);
275  const Array4< Real> & cur_zmom = S_data[IntVars::zmom].array(mfi);
276 
277  Array4<Real> avg_xmom = S_scratch[IntVars::xmom].array(mfi);
278  Array4<Real> avg_ymom = S_scratch[IntVars::ymom].array(mfi);
279  Array4<Real> avg_zmom = S_scratch[IntVars::zmom].array(mfi);
280 
281  const Array4<const Real> & u = xvel.array(mfi);
282  const Array4<const Real> & v = yvel.array(mfi);
283 
284  const Array4<Real const>& mu_turb = l_use_turb ? eddyDiffs->const_array(mfi) : Array4<const Real>{};
285 
286  const Array4<const Real>& z_nd = z_phys_nd->const_array(mfi);
287  const Array4<const Real>& z_cc = z_phys_cc->const_array(mfi);
288  const Array4<const Real>& detJ_new_arr = l_moving_terrain ? detJ_new->const_array(mfi) : Array4<const Real>{};
289 
290  // Map factors
291  const Array4<const Real>& mf_mx = mapfac[MapFacType::m_x]->const_array(mfi);
292  const Array4<const Real>& mf_ux = mapfac[MapFacType::u_x]->const_array(mfi);
293  const Array4<const Real>& mf_vx = mapfac[MapFacType::v_x]->const_array(mfi);
294  const Array4<const Real>& mf_my = mapfac[MapFacType::m_y]->const_array(mfi);
295  const Array4<const Real>& mf_uy = mapfac[MapFacType::u_y]->const_array(mfi);
296  const Array4<const Real>& mf_vy = mapfac[MapFacType::v_y]->const_array(mfi);
297 
298  // SmnSmn for KE src with Deardorff or k-eqn RANS
299  const Array4<const Real>& SmnSmn_a = l_need_SmnSmn ? SmnSmn->const_array(mfi) : Array4<const Real>{};
300 
301  // **************************************************************************
302  // Here we fill the "current" data with "new" data because that is the result of the previous RK stage
303  // **************************************************************************
304  int nsv = S_old[IntVars::cons].nComp() - 2;
305  const GpuArray<int, IntVars::NumTypes> scomp_slow = { 2,0,0,0};
306  const GpuArray<int, IntVars::NumTypes> ncomp_slow = {nsv,0,0,0};
307 
308  // **************************************************************************
309  // Note that here we do copy only the "slow" variables, not (rho) or (rho theta)
310  // **************************************************************************
311  ParallelFor(tbx, ncomp_slow[IntVars::cons],
312  [=] AMREX_GPU_DEVICE (int i, int j, int k, int nn) {
313  const int n = scomp_slow[IntVars::cons] + nn;
314  cur_cons(i,j,k,n) = new_cons(i,j,k,n);
315  });
316 
317  // We have projected the velocities stored in S_data but we will use
318  // the velocities stored in S_scratch to update the scalars, so
319  // we need to copy from S_data (projected) into S_scratch
320  if (l_anelastic) {
321  Box tbx_inc = mfi.nodaltilebox(0);
322  Box tby_inc = mfi.nodaltilebox(1);
323  Box tbz_inc = mfi.nodaltilebox(2);
324 
325  ParallelFor(tbx_inc, tby_inc, tbz_inc,
326  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
327  avg_xmom(i,j,k) = cur_xmom(i,j,k);
328  },
329  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
330  avg_ymom(i,j,k) = cur_ymom(i,j,k);
331  },
332  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
333  avg_zmom(i,j,k) = cur_zmom(i,j,k);
334  });
335  }
336 
337  // **************************************************************************
338  // Define updates in the RHS of continuity, temperature, and scalar equations
339  // **************************************************************************
340  Array4<const int> mask_arr{};
341  Array4<const EBCellFlag> cfg_arr{};
342  Array4<const Real> ax_arr{};
343  Array4<const Real> ay_arr{};
344  Array4<const Real> az_arr{};
345  Array4<const Real> fcx_arr{};
346  Array4<const Real> fcy_arr{};
347  Array4<const Real> fcz_arr{};
348  Array4<const Real> detJ_arr{};
349  if (solverChoice.terrain_type == TerrainType::EB) {
350  EBCellFlagFab const& cfg = ebfact.getMultiEBCellFlagFab()[mfi];
351  cfg_arr = cfg.const_array();
352  ax_arr = ebfact.getAreaFrac()[0]->const_array(mfi);
353  ay_arr = ebfact.getAreaFrac()[1]->const_array(mfi);
354  az_arr = ebfact.getAreaFrac()[2]->const_array(mfi);
355  fcx_arr = ebfact.getFaceCent()[0]->const_array(mfi);
356  fcy_arr = ebfact.getFaceCent()[1]->const_array(mfi);
357  fcz_arr = ebfact.getFaceCent()[2]->const_array(mfi);
358  detJ_arr = ebfact.getVolFrac().const_array(mfi);
359  // if (!already_on_centroids) {mask_arr = physbnd_mask.const_array(mfi);}
360  mask_arr = physbnd_mask.const_array(mfi);
361  } else {
362  ax_arr = ax->const_array(mfi);
363  ay_arr = ay->const_array(mfi);
364  az_arr = az->const_array(mfi);
365  detJ_arr = detJ->const_array(mfi);
366  }
367 
368  AdvType horiz_adv_type, vert_adv_type;
369  Real horiz_upw_frac, vert_upw_frac;
370 
371  Array4<Real> diffflux_x, diffflux_y, diffflux_z;
372  Array4<Real> hfx_x, hfx_y, hfx_z, diss;
373  Array4<Real> q1fx_x, q1fx_y, q1fx_z, q2fx_z;
374  const bool use_SurfLayer = (SurfLayer != nullptr);
375 
376  if (l_use_diff) {
377  diffflux_x = dflux_x->array(mfi);
378  diffflux_y = dflux_y->array(mfi);
379  diffflux_z = dflux_z->array(mfi);
380 
381  hfx_x = Hfx1->array(mfi);
382  hfx_y = Hfx2->array(mfi);
383  hfx_z = Hfx3->array(mfi);
384  diss = Diss->array(mfi);
385 
386  if (Q1fx1) q1fx_x = Q1fx1->array(mfi);
387  if (Q1fx2) q1fx_y = Q1fx2->array(mfi);
388  if (Q1fx3) q1fx_z = Q1fx3->array(mfi);
389  if (Q2fx3) q2fx_z = Q2fx3->array(mfi);
390  }
391 
392  //
393  // Note that we either advect and diffuse all or none of the moisture variables
394  //
395  for (int ivar(RhoKE_comp); ivar<= RhoQ1_comp; ++ivar)
396  {
397  if (is_valid_slow_var[ivar])
398  {
399  start_comp = ivar;
400  num_comp = 1;
401 
402  if (ivar == RhoQ1_comp) {
403  horiz_adv_type = ac.moistscal_horiz_adv_type;
404  vert_adv_type = ac.moistscal_vert_adv_type;
405  horiz_upw_frac = ac.moistscal_horiz_upw_frac;
406  vert_upw_frac = ac.moistscal_vert_upw_frac;
407 
408  if (ac.use_efficient_advection){
409  horiz_adv_type = EfficientAdvType(nrk,ac.moistscal_horiz_adv_type);
410  vert_adv_type = EfficientAdvType(nrk,ac.moistscal_vert_adv_type);
411  }
412 
413  num_comp = n_qstate;
414 
415  } else {
416  horiz_adv_type = ac.dryscal_horiz_adv_type;
417  vert_adv_type = ac.dryscal_vert_adv_type;
418  horiz_upw_frac = ac.dryscal_horiz_upw_frac;
419  vert_upw_frac = ac.dryscal_vert_upw_frac;
420 
421  if (ac.use_efficient_advection){
422  horiz_adv_type = EfficientAdvType(nrk,ac.dryscal_horiz_adv_type);
423  vert_adv_type = EfficientAdvType(nrk,ac.dryscal_vert_adv_type);
424  }
425 
426  if (ivar == RhoScalar_comp) {
427  num_comp = NSCALARS;
428  }
429  }
430 
431  if (( ivar != RhoKE_comp ) ||
432  ((ivar == RhoKE_comp) && l_advect_KE))
433  {
434  if (solverChoice.terrain_type != TerrainType::EB){
435  AdvectionSrcForScalars(dt, tbx, start_comp, num_comp, avg_xmom, avg_ymom, avg_zmom,
436  cur_cons, cur_prim, cell_rhs,
437  l_use_mono_adv, max_s_ptr, min_s_ptr,
438  detJ_arr, dxInv, mf_mx, mf_my,
439  horiz_adv_type, vert_adv_type,
440  horiz_upw_frac, vert_upw_frac,
441  flx_arr, flx_tmp_arr, domain, bc_ptr_h);
442  } else {
443  EBAdvectionSrcForScalars(tbx, start_comp, num_comp,
444  avg_xmom, avg_ymom, avg_zmom,
445  cur_prim, cell_rhs,
446  mask_arr, cfg_arr, ax_arr, ay_arr, az_arr,
447  fcx_arr, fcy_arr, fcz_arr,
448  detJ_arr, dxInv, mf_mx, mf_my,
449  horiz_adv_type, vert_adv_type,
450  horiz_upw_frac, vert_upw_frac,
451  flx_arr, domain, bc_ptr_h,
452  already_on_centroids);
453  }
454  }
455 
456  if (l_use_diff) {
457  const Array4<const Real> tm_arr = t_mean_mf ? t_mean_mf->const_array(mfi) : Array4<const Real>{};
458  if (solverChoice.mesh_type == MeshType::StretchedDz && solverChoice.terrain_type != TerrainType::EB) {
459  DiffusionSrcForState_S(tbx, domain, start_comp, num_comp, l_rotate, u, v,
460  new_cons, cur_prim, cell_rhs,
461  diffflux_x, diffflux_y, diffflux_z,
462  stretched_dz_d, dxInv, SmnSmn_a,
463  mf_mx, mf_ux, mf_vx,
464  mf_my, mf_uy, mf_vy,
465  hfx_x, hfx_y, hfx_z, q1fx_x, q1fx_y, q1fx_z,q2fx_z, diss,
466  mu_turb, solverChoice, level,
467  tm_arr, grav_gpu, bc_ptr_d, use_SurfLayer);
468  } else if (l_use_terrain) {
469  DiffusionSrcForState_T(tbx, domain, start_comp, num_comp, l_rotate, u, v,
470  new_cons, cur_prim, cell_rhs,
471  diffflux_x, diffflux_y, diffflux_z,
472  z_nd, z_cc, ax_arr, ay_arr, az_arr,
473  detJ_arr, dxInv, SmnSmn_a,
474  mf_mx, mf_ux, mf_vx,
475  mf_my, mf_uy, mf_vy,
476  hfx_x, hfx_y, hfx_z, q1fx_x, q1fx_y, q1fx_z,q2fx_z, diss,
477  mu_turb, solverChoice, level,
478  tm_arr, grav_gpu, bc_ptr_d, use_SurfLayer);
479  } else {
480  DiffusionSrcForState_N(tbx, domain, start_comp, num_comp, u, v,
481  new_cons, cur_prim, cell_rhs,
482  diffflux_x, diffflux_y, diffflux_z, dxInv, SmnSmn_a,
483  mf_mx, mf_ux, mf_vx,
484  mf_my, mf_uy, mf_vy,
485  hfx_z, q1fx_z, q2fx_z, diss,
486  mu_turb, solverChoice, level,
487  tm_arr, grav_gpu, bc_ptr_d, use_SurfLayer);
488  }
489  } // use_diff
490  } // valid slow var
491  } // loop ivar
492 
493 #if defined(ERF_USE_NETCDF)
494  if (moist_set_rhs_bool)
495  {
496  const Array4<const Real> & old_cons_const = S_old[IntVars::cons].const_array(mfi);
497  const Array4<const Real> & new_cons_const = S_new[IntVars::cons].const_array(mfi);
498  moist_set_rhs(tbx, old_cons_const, new_cons_const, cell_rhs, bdy_time_interval,
499  start_bdy_time, new_stage_time, dt, width, set_width, domain,
500  bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi);
501  }
502 #endif
503 
504  // This updates just the "slow" conserved variables
505  {
506  BL_PROFILE("rhs_post_8");
507 
508  const Real eps = std::numeric_limits<Real>::epsilon();
509 
510  auto const& src_arr = source.const_array(mfi);
511 
512  for (int ivar(RhoKE_comp); ivar<= RhoQ1_comp; ++ivar)
513  {
514  if (is_valid_slow_var[ivar])
515  {
516  start_comp = ivar;
517  num_comp = 1;
518  if (ivar == RhoQ1_comp) {
519  num_comp = nvars - RhoQ1_comp;
520  } else if (ivar == RhoScalar_comp) {
521  num_comp = NSCALARS;
522  }
523 
524  if (l_moving_terrain)
525  {
526  ParallelFor(tbx, num_comp,
527  [=] AMREX_GPU_DEVICE (int i, int j, int k, int nn) noexcept {
528  const int n = start_comp + nn;
529  cell_rhs(i,j,k,n) += src_arr(i,j,k,n);
530  Real temp_val = detJ_arr(i,j,k) * old_cons(i,j,k,n) + dt * detJ_arr(i,j,k) * cell_rhs(i,j,k,n);
531  cur_cons(i,j,k,n) = temp_val / detJ_new_arr(i,j,k);
532  if (ivar == RhoKE_comp) {
533  cur_cons(i,j,k,n) = amrex::max(cur_cons(i,j,k,n), eps);
534  }
535  });
536 
537  } else if (l_anelastic && (nrk == 1)) { // not moving and ( (anelastic) and second RK stage) )
538 
539  ParallelFor(tbx, num_comp,
540  [=] AMREX_GPU_DEVICE (int i, int j, int k, int nn) noexcept {
541  const int n = start_comp + nn;
542  cell_rhs(i,j,k,n) += src_arr(i,j,k,n);
543 
544  // Re-construct the cell_rhs used in the first RK stage
545  Real dt_times_old_cell_rhs = cur_cons(i,j,k,n) - old_cons(i,j,k,n);
546 
547  // Add the time-averaged RHS to the old state
548  cur_cons(i,j,k,n) = old_cons(i,j,k,n) + 0.5 * (dt_times_old_cell_rhs + dt * cell_rhs(i,j,k,n));
549 
550  if (ivar == RhoKE_comp) {
551  cur_cons(i,j,k,n) = amrex::max(cur_cons(i,j,k,n), eps);
552  } else if (ivar >= RhoQ1_comp) {
553  cur_cons(i,j,k,n) = amrex::max(cur_cons(i,j,k,n), 0.0);
554  }
555  });
556 
557  } else { // not moving and ( (not anelastic) or (first RK stage) )
558 
559  ParallelFor(tbx, num_comp,
560  [=] AMREX_GPU_DEVICE (int i, int j, int k, int nn) noexcept {
561  const int n = start_comp + nn;
562  cell_rhs(i,j,k,n) += src_arr(i,j,k,n);
563  cur_cons(i,j,k,n) = old_cons(i,j,k,n) + dt * cell_rhs(i,j,k,n);
564  if (ivar == RhoKE_comp) {
565  cur_cons(i,j,k,n) = amrex::max(cur_cons(i,j,k,n), eps);
566  } else if (ivar >= RhoQ1_comp) {
567  cur_cons(i,j,k,n) = amrex::max(cur_cons(i,j,k,n), 0.0);
568  }
569  });
570 
571  } // moving, anelastic or neither?
572 
573  } // is_valid
574  } // ivar
575  } // profile
576 
577  {
578  BL_PROFILE("rhs_post_9");
579  // This updates all the conserved variables (not just the "slow" ones)
580  int num_comp_all = S_data[IntVars::cons].nComp();
581  ParallelFor(tbx, num_comp_all,
582  [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept {
583  new_cons(i,j,k,n) = cur_cons(i,j,k,n);
584  });
585  } // end profile
586 
587  Box xtbx = mfi.nodaltilebox(0);
588  Box ytbx = mfi.nodaltilebox(1);
589  Box ztbx = mfi.nodaltilebox(2);
590 
591  {
592  BL_PROFILE("rhs_post_10()");
593  ParallelFor(xtbx, ytbx, ztbx,
594  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
595  new_xmom(i,j,k) = cur_xmom(i,j,k);
596  },
597  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
598  new_ymom(i,j,k) = cur_ymom(i,j,k);
599  },
600  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
601  new_zmom(i,j,k) = cur_zmom(i,j,k);
602  });
603  } // end profile
604 
605  {
606  BL_PROFILE("rhs_post_10");
607  // We only add to the flux registers in the final RK step
608  if (l_reflux) {
609  int strt_comp_reflux = RhoTheta_comp + 1;
610  int num_comp_reflux = nvars - strt_comp_reflux;
611  if (level < finest_level) {
612  fr_as_crse->CrseAdd(mfi,
613  {{AMREX_D_DECL(&(flux[0]), &(flux[1]), &(flux[2]))}},
614  dx, dt, strt_comp_reflux, strt_comp_reflux, num_comp_reflux, RunOn::Device);
615  }
616  if (level > 0) {
617  fr_as_fine->FineAdd(mfi,
618  {{AMREX_D_DECL(&(flux[0]), &(flux[1]), &(flux[2]))}},
619  dx, dt, strt_comp_reflux, strt_comp_reflux, num_comp_reflux, RunOn::Device);
620  }
621 
622  // This is necessary here so we don't go on to the next FArrayBox without
623  // having finished copying the fluxes into the FluxRegisters (since the fluxes
624  // are stored in temporary FArrayBox's)
625  Gpu::streamSynchronize();
626 
627  } // two-way coupling
628  } // end profile
629  } // mfi
630 
631  if (solverChoice.terrain_type == TerrainType::EB)
632  {
633  // start_comp and num_comp
634  for (int ivar(RhoKE_comp); ivar<= RhoQ1_comp; ++ivar)
635  {
636  if (is_valid_slow_var[ivar])
637  {
638  start_comp = ivar;
639  num_comp = 1;
640  if (ivar == RhoQ1_comp) {
641  num_comp = nvars - RhoQ1_comp;
642  } else if (ivar == RhoScalar_comp) {
643  num_comp = NSCALARS;
644  }
645  }
646  }
647 
648  // Redistribute cons states (cell-centered)
649  const int num_comp_total{S_rhs[IntVars::cons].nComp()};
650  MultiFab dUdt_tmp(ba, dm, num_comp_total, S_rhs[IntVars::cons].nGrow(), MFInfo(), ebfact);
651  dUdt_tmp.setVal(0.);
652  MultiFab::Copy(dUdt_tmp, S_rhs[IntVars::cons], start_comp, start_comp, num_comp, S_rhs[IntVars::cons].nGrow());
653  dUdt_tmp.FillBoundary(geom.periodicity());
654  dUdt_tmp.setDomainBndry(1.234e10, 0, num_comp_total, geom);
655 
656  S_old[IntVars::cons].FillBoundary(geom.periodicity());
657  S_old[IntVars::cons].setDomainBndry(1.234e10, 0, num_comp_total, geom);
658 
659  // Update S_rhs by Redistribution.
660  // To-do: Currently, redistributing all the scalar variables.
661  // This needs to be redistributed only for num_comp variables starting from ivar, for efficiency.
662  redistribute_term ( num_comp_total, geom, S_rhs[IntVars::cons], dUdt_tmp,
663  S_old[IntVars::cons], ebfact, bc_ptr_d, dt);
664 
665  // Update state using the updated S_rhs. (NOTE: redistribute_term returns RHS not state variables.)
666  for ( MFIter mfi(S_new[IntVars::cons],TilingIfNotGPU()); mfi.isValid(); ++mfi)
667  {
668  Box tbx = mfi.tilebox();
669  const Array4<Real>& snew = S_new[IntVars::cons].array(mfi);
670  const Array4<Real>& sold = S_old[IntVars::cons].array(mfi);
671  const Array4<Real>& srhs = S_rhs[IntVars::cons].array(mfi);
672  Array4<const Real> detJ_arr = ebfact.getVolFrac().const_array(mfi);
673 
674  ParallelFor(tbx, num_comp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int nn)
675  {
676  if (detJ_arr(i,j,k) > 0.0) {
677  const int n = start_comp + nn;
678  snew(i,j,k,n) = sold(i,j,k,n) + dt * srhs(i,j,k,n);
679  }
680  });
681  }
682 
683  // Redistribute momentum states (face-centered) will be added here.
684  } // EB
685 
686  } // OMP
687 }
void AdvectionSrcForScalars(const amrex::Real &dt, const amrex::Box &bx, const int icomp, const int ncomp, const amrex::Array4< const amrex::Real > &avg_xmom, const amrex::Array4< const amrex::Real > &avg_ymom, const amrex::Array4< const amrex::Real > &avg_zmom, const amrex::Array4< const amrex::Real > &cur_cons, const amrex::Array4< const amrex::Real > &cell_prim, const amrex::Array4< amrex::Real > &src, const bool &use_mono_adv, amrex::Real *max_s_ptr, amrex::Real *min_s_ptr, const amrex::Array4< const amrex::Real > &vf_arr, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &cellSizeInv, const amrex::Array4< const amrex::Real > &mf_mx, const amrex::Array4< const amrex::Real > &mf_my, const AdvType horiz_adv_type, const AdvType vert_adv_type, const amrex::Real horiz_upw_frac, const amrex::Real vert_upw_frac, const amrex::GpuArray< const amrex::Array4< amrex::Real >, AMREX_SPACEDIM > &flx_arr, const amrex::GpuArray< amrex::Array4< amrex::Real >, AMREX_SPACEDIM > &flx_tmp_arr, const amrex::Box &domain, const amrex::BCRec *bc_ptr_h)
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE AdvType EfficientAdvType(int nrk, AdvType adv_type)
Definition: ERF_Advection.H:287
@ nvars
Definition: ERF_DataStruct.H:87
@ v_x
Definition: ERF_DataStruct.H:22
@ u_y
Definition: ERF_DataStruct.H:23
@ v_y
Definition: ERF_DataStruct.H:23
@ m_y
Definition: ERF_DataStruct.H:23
@ u_x
Definition: ERF_DataStruct.H:22
@ m_x
Definition: ERF_DataStruct.H:22
void DiffusionSrcForState_S(const amrex::Box &bx, const amrex::Box &domain, int start_comp, int num_comp, const bool &rotate, const amrex::Array4< const amrex::Real > &u, const amrex::Array4< const amrex::Real > &v, const amrex::Array4< const amrex::Real > &cell_data, const amrex::Array4< const amrex::Real > &cell_prim, const amrex::Array4< amrex::Real > &cell_rhs, const amrex::Array4< amrex::Real > &xflux, const amrex::Array4< amrex::Real > &yflux, const amrex::Array4< amrex::Real > &zflux, const amrex::Gpu::DeviceVector< amrex::Real > &stretched_dz_d, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv, const amrex::Array4< const amrex::Real > &SmnSmn_a, const amrex::Array4< const amrex::Real > &mf_mx, const amrex::Array4< const amrex::Real > &mf_ux, const amrex::Array4< const amrex::Real > &mf_vx, const amrex::Array4< const amrex::Real > &mf_my, const amrex::Array4< const amrex::Real > &mf_uy, const amrex::Array4< const amrex::Real > &mf_vy, amrex::Array4< amrex::Real > &hfx_x, amrex::Array4< amrex::Real > &hfx_y, amrex::Array4< amrex::Real > &hfx_z, amrex::Array4< amrex::Real > &qfx1_x, amrex::Array4< amrex::Real > &qfx1_y, amrex::Array4< amrex::Real > &qfx1_z, amrex::Array4< amrex::Real > &qfx2_z, amrex::Array4< amrex::Real > &diss, const amrex::Array4< const amrex::Real > &mu_turb, const SolverChoice &solverChoice, const int level, const amrex::Array4< const amrex::Real > &tm_arr, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > grav_gpu, const amrex::BCRec *bc_ptr, const bool use_SurfLayer)
void DiffusionSrcForState_N(const amrex::Box &bx, const amrex::Box &domain, int start_comp, int num_comp, const amrex::Array4< const amrex::Real > &u, const amrex::Array4< const amrex::Real > &v, const amrex::Array4< const amrex::Real > &cell_data, const amrex::Array4< const amrex::Real > &cell_prim, const amrex::Array4< amrex::Real > &cell_rhs, const amrex::Array4< amrex::Real > &xflux, const amrex::Array4< amrex::Real > &yflux, const amrex::Array4< amrex::Real > &zflux, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &cellSizeInv, const amrex::Array4< const amrex::Real > &SmnSmn_a, const amrex::Array4< const amrex::Real > &mf_mx, const amrex::Array4< const amrex::Real > &mf_ux, const amrex::Array4< const amrex::Real > &mf_vx, const amrex::Array4< const amrex::Real > &mf_my, const amrex::Array4< const amrex::Real > &mf_uy, const amrex::Array4< const amrex::Real > &mf_vy, amrex::Array4< amrex::Real > &hfx_z, amrex::Array4< amrex::Real > &qfx1_z, amrex::Array4< amrex::Real > &qfx2_z, amrex::Array4< amrex::Real > &diss, const amrex::Array4< const amrex::Real > &mu_turb, const SolverChoice &solverChoice, const int level, const amrex::Array4< const amrex::Real > &tm_arr, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > grav_gpu, const amrex::BCRec *bc_ptr, const bool use_SurfLayer)
void DiffusionSrcForState_T(const amrex::Box &bx, const amrex::Box &domain, int start_comp, int num_comp, const bool &rotate, const amrex::Array4< const amrex::Real > &u, const amrex::Array4< const amrex::Real > &v, const amrex::Array4< const amrex::Real > &cell_data, const amrex::Array4< const amrex::Real > &cell_prim, const amrex::Array4< amrex::Real > &cell_rhs, const amrex::Array4< amrex::Real > &xflux, const amrex::Array4< amrex::Real > &yflux, const amrex::Array4< amrex::Real > &zflux, const amrex::Array4< const amrex::Real > &z_nd, const amrex::Array4< const amrex::Real > &z_cc, const amrex::Array4< const amrex::Real > &ax, const amrex::Array4< const amrex::Real > &ay, const amrex::Array4< const amrex::Real > &az, const amrex::Array4< const amrex::Real > &detJ, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv, const amrex::Array4< const amrex::Real > &SmnSmn_a, const amrex::Array4< const amrex::Real > &mf_mx, const amrex::Array4< const amrex::Real > &mf_ux, const amrex::Array4< const amrex::Real > &mf_vx, const amrex::Array4< const amrex::Real > &mf_my, const amrex::Array4< const amrex::Real > &mf_uy, const amrex::Array4< const amrex::Real > &mf_vy, amrex::Array4< amrex::Real > &hfx_x, amrex::Array4< amrex::Real > &hfx_y, amrex::Array4< amrex::Real > &hfx_z, amrex::Array4< amrex::Real > &qfx1_x, amrex::Array4< amrex::Real > &qfx1_y, amrex::Array4< amrex::Real > &qfx1_z, amrex::Array4< amrex::Real > &qfx2_z, amrex::Array4< amrex::Real > &diss, const amrex::Array4< const amrex::Real > &mu_turb, const SolverChoice &solverChoice, const int level, const amrex::Array4< const amrex::Real > &tm_arr, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > grav_gpu, const amrex::BCRec *bc_ptr, const bool use_SurfLayer)
void EBAdvectionSrcForScalars(const amrex::Box &bx, const int icomp, const int ncomp, const amrex::Array4< const amrex::Real > &avg_xmom, const amrex::Array4< const amrex::Real > &avg_ymom, const amrex::Array4< const amrex::Real > &avg_zmom, const amrex::Array4< const amrex::Real > &cell_prim, const amrex::Array4< amrex::Real > &src, const amrex::Array4< const int > &mask_arr, const amrex::Array4< const amrex::EBCellFlag > &cfg_arr, const amrex::Array4< const amrex::Real > &ax_arr, const amrex::Array4< const amrex::Real > &ay_arr, const amrex::Array4< const amrex::Real > &az_arr, const amrex::Array4< const amrex::Real > &fcx_arr, const amrex::Array4< const amrex::Real > &fcy_arr, const amrex::Array4< const amrex::Real > &fcz_arr, const amrex::Array4< const amrex::Real > &vf_arr, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &cellSizeInv, const amrex::Array4< const amrex::Real > &mf_mx, const amrex::Array4< const amrex::Real > &mf_my, const AdvType horiz_adv_type, const AdvType vert_adv_type, const amrex::Real horiz_upw_frac, const amrex::Real vert_upw_frac, const amrex::GpuArray< const amrex::Array4< amrex::Real >, AMREX_SPACEDIM > &flx_arr, const amrex::Box &domain, const amrex::BCRec *bc_ptr_h, bool already_on_centroids)
void redistribute_term(int ncomp, const Geometry &geom, MultiFab &result, MultiFab &result_tmp, MultiFab const &state, EBFArrayBoxFactory const &ebfact, BCRec const *bc, Real const local_dt)
Definition: ERF_EBRedistribute.cpp:13
#define RhoScalar_comp
Definition: ERF_IndexDefines.H:40
#define RhoTheta_comp
Definition: ERF_IndexDefines.H:37
#define NSCALARS
Definition: ERF_IndexDefines.H:16
#define RhoQ1_comp
Definition: ERF_IndexDefines.H:42
AdvType
Definition: ERF_IndexDefines.H:221
#define RhoKE_comp
Definition: ERF_IndexDefines.H:38
@ ymom
Definition: ERF_IndexDefines.H:160
@ cons
Definition: ERF_IndexDefines.H:158
@ zmom
Definition: ERF_IndexDefines.H:161
@ xmom
Definition: ERF_IndexDefines.H:159
@ xvel
Definition: ERF_IndexDefines.H:141
@ yvel
Definition: ERF_IndexDefines.H:142
real(c_double), parameter epsilon
Definition: ERF_module_model_constants.F90:12
real(c_double), private ac
Definition: ERF_module_mp_morr_two_moment.F90:180
Definition: ERF_AdvStruct.H:19
Definition: ERF_DiffStruct.H:19
MolecDiffType molec_diff_type
Definition: ERF_DiffStruct.H:81
static MeshType mesh_type
Definition: ERF_DataStruct.H:691
bool use_mono_adv
Definition: ERF_DataStruct.H:781
DiffChoice diffChoice
Definition: ERF_DataStruct.H:700
amrex::Real gravity
Definition: ERF_DataStruct.H:740
amrex::Vector< TurbChoice > turbChoice
Definition: ERF_DataStruct.H:702
amrex::Vector< int > anelastic
Definition: ERF_DataStruct.H:707
AdvChoice advChoice
Definition: ERF_DataStruct.H:699
MoistureType moisture_type
Definition: ERF_DataStruct.H:787
static TerrainType terrain_type
Definition: ERF_DataStruct.H:685
bool use_rotate_surface_flux
Definition: ERF_DataStruct.H:768
CouplingType coupling_type
Definition: ERF_DataStruct.H:786
Definition: ERF_TurbStruct.H:31
PBLType pbl_type
Definition: ERF_TurbStruct.H:276
RANSType rans_type
Definition: ERF_TurbStruct.H:273
bool advect_tke
Definition: ERF_TurbStruct.H:296
bool use_tke
Definition: ERF_TurbStruct.H:285
LESType les_type
Definition: ERF_TurbStruct.H:236
Here is the call graph for this function: