ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
ERF Class Reference

#include <ERF.H>

Inheritance diagram for ERF:
Collaboration diagram for ERF:

Public Member Functions

 ERF ()
 
 ~ERF () override
 
void ERF_shared ()
 
 ERF (ERF &&) noexcept=delete
 
ERFoperator= (ERF &&other) noexcept=delete
 
 ERF (const ERF &other)=delete
 
ERFoperator= (const ERF &other)=delete
 
void Evolve ()
 
void ErrorEst (int lev, amrex::TagBoxArray &tags, amrex::Real time, int ngrow) override
 
void HurricaneTracker (int lev, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, const bool is_track_io, amrex::TagBoxArray *tags=nullptr)
 
std::string MakeVTKFilename (int nstep)
 
void WriteVTKPolyline (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void InitData ()
 
void InitData_pre ()
 
void InitData_post ()
 
void WriteMyEBSurface ()
 
void compute_divergence (int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
 
void project_velocity (int lev, amrex::Real dt)
 
void project_momenta (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void project_velocity_tb (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void poisson_wall_dist (int lev)
 
void make_subdomains (const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
 
void solve_with_EB_mlmg (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void solve_with_gmres (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void solve_with_mlmg (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void ImposeBCsOnPhi (int lev, amrex::MultiFab &phi)
 
amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > get_projection_bc (amrex::Orientation::Side side) const noexcept
 
bool projection_has_dirichlet (amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > bcs) const
 
void init_only (int lev, amrex::Real time)
 
void restart ()
 
bool writeNow (const amrex::Real cur_time, const amrex::Real dt, const int nstep, const int plot_int, const amrex::Real plot_per)
 
void post_timestep (int nstep, amrex::Real time, amrex::Real dt_lev)
 
void sum_integrated_quantities (amrex::Real time)
 
void sum_derived_quantities (amrex::Real time)
 
void sum_energy_quantities (amrex::Real time)
 
void write_1D_profiles (amrex::Real time)
 
void write_1D_profiles_stag (amrex::Real time)
 
amrex::Real cloud_fraction (amrex::Real time)
 
void FillBdyCCVels (amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
 
void sample_points (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void sample_lines (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void derive_diag_profiles (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_diag_profiles_stag (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_stress_profiles (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
void derive_stress_profiles_stag (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
amrex::Real volWgtSumMF (int lev, const amrex::MultiFab &mf, int comp, bool finemask)
 
void MakeNewLevelFromCoarse (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void RemakeLevel (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void ClearLevel (int lev) override
 
void MakeNewLevelFromScratch (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
amrex::Real estTimeStep (int lev, long &dt_fast_ratio) const
 
void advance_dycore (int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
 
void advance_microphysics (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
 
void advance_lsm (int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
 
void advance_radiation (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
 
amrex::MultiFab & build_fine_mask (int lev)
 
void MakeHorizontalAverages ()
 
void MakeDiagnosticAverage (amrex::Vector< amrex::Real > &h_havg, amrex::MultiFab &S, int n)
 
void derive_upwp (amrex::Vector< amrex::Real > &h_havg)
 
void WritePlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void WriteSubvolume ()
 
void WriteMultiLevelPlotfileWithTerrain (const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
 
void WriteGenericPlotfileHeaderWithTerrain (std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
 
void erf_enforce_hse (int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
 
void init_from_input_sounding (int lev)
 
void input_sponge (int lev)
 
void init_from_hse (int lev)
 
void init_thin_body (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void init_coarse_weather_data ()
 
void interp_weather_data_onto_mesh ()
 
void fill_from_bndryregs (const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
 
void MakeEBGeometry ()
 
void make_eb_box ()
 
void make_eb_regular ()
 
void AverageDownTo (int crse_lev, int scomp, int ncomp)
 
void WriteCheckpointFile () const
 
void ReadCheckpointFile ()
 
void ReadCheckpointFileSurfaceLayer ()
 
void init_zphys (int lev, amrex::Real time)
 
void remake_zphys (int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
 
void update_terrain_arrays (int lev)
 
void writeJobInfo (const std::string &dir) const
 

Static Public Member Functions

static bool is_it_time_for_action (int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
 
static void writeBuildInfo (std::ostream &os)
 
static void print_banner (MPI_Comm, std::ostream &)
 
static void print_usage (MPI_Comm, std::ostream &)
 
static void print_error (MPI_Comm, const std::string &msg)
 
static void print_summary (std::ostream &)
 
static void print_tpls (std::ostream &)
 

Public Attributes

amrex::Vector< std::array< amrex::Real, 2 > > hurricane_track_xy
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > initial_state
 
std::string pp_prefix {"erf"}
 

Private Member Functions

void ReadParameters ()
 
void ParameterSanityChecks ()
 
void AverageDown ()
 
void update_diffusive_arrays (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void Construct_ERFFillPatchers (int lev)
 
void Define_ERFFillPatchers (int lev)
 
void init1DArrays ()
 
void init_bcs ()
 
void init_custom (int lev)
 
void init_uniform (int lev)
 
void init_stuff (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
 
void turbPert_update (const int lev, const amrex::Real dt)
 
void turbPert_amplitude (const int lev)
 
void initialize_integrator (int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
 
void make_physbcs (int lev)
 
void initializeMicrophysics (const int &)
 
void FillPatch (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
 
void FillPatch (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
 
void FillIntermediatePatch (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
 
void FillCoarsePatch (int lev, amrex::Real time)
 
void timeStep (int lev, amrex::Real time, int iteration)
 
void Advance (int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
 
void initHSE ()
 Initialize HSE. More...
 
void initHSE (int lev)
 
void initRayleigh ()
 Initialize Rayleigh damping profiles. More...
 
void initSponge ()
 Initialize sponge profiles. More...
 
void setRayleighRefFromSounding (bool restarting)
 Set Rayleigh mean profiles from input sounding. More...
 
void setSpongeRefFromSounding (bool restarting)
 Set sponge mean profiles from input sounding. More...
 
void ComputeDt (int step=-1)
 
std::string PlotFileName (int lev) const
 
void setPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void appendPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void init_Dirichlet_bc_data (const std::string input_file)
 
void InitializeFromFile ()
 
void InitializeLevelFromData (int lev, const amrex::MultiFab &initial_data)
 
void post_update (amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void fill_rhs (amrex::MultiFab &rhs_mf, const amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void init_geo_wind_profile (const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
 
void refinement_criteria_setup ()
 
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg (int lev)
 
AMREX_FORCE_INLINE std::ostream & DataLog (int i)
 
AMREX_FORCE_INLINE std::ostream & DerDataLog (int i)
 
AMREX_FORCE_INLINE int NumDataLogs () noexcept
 
AMREX_FORCE_INLINE int NumDerDataLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SamplePointLog (int i)
 
AMREX_FORCE_INLINE int NumSamplePointLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SampleLineLog (int i)
 
AMREX_FORCE_INLINE int NumSampleLineLogs () noexcept
 
amrex::IntVect & SamplePoint (int i)
 
AMREX_FORCE_INLINE int NumSamplePoints () noexcept
 
amrex::IntVect & SampleLine (int i)
 
AMREX_FORCE_INLINE int NumSampleLines () noexcept
 
void setRecordDataInfo (int i, const std::string &filename)
 
void setRecordDerDataInfo (int i, const std::string &filename)
 
void setRecordEnergyDataInfo (int i, const std::string &filename)
 
void setRecordSamplePointInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
void setRecordSampleLineInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
std::string DataLogName (int i) const noexcept
 The filename of the ith datalog file. More...
 
std::string DerDataLogName (int i) const noexcept
 
std::string SamplePointLogName (int i) const noexcept
 The filename of the ith sampleptlog file. More...
 
std::string SampleLineLogName (int i) const noexcept
 The filename of the ith samplelinelog file. More...
 
eb_ const & get_eb (int lev) const noexcept
 
amrex::EBFArrayBoxFactory const & EBFactory (int lev) const noexcept
 

Static Private Member Functions

static amrex::Vector< std::string > PlotFileVarNames (amrex::Vector< std::string > plot_var_names)
 
static void GotoNextLine (std::istream &is)
 
static AMREX_FORCE_INLINE int ComputeGhostCells (const SolverChoice &sc)
 
static amrex::Real getCPUTime ()
 
static int nghost_eb_basic ()
 
static int nghost_eb_volume ()
 
static int nghost_eb_full ()
 

Private Attributes

amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
 
InputSoundingData input_sounding_data
 
InputSpongeData input_sponge_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
 
std::unique_ptr< ProblemBaseprob = nullptr
 
amrex::Vector< int > num_boxes_at_level
 
amrex::Vector< int > num_files_at_level
 
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
 
amrex::Vector< int > istep
 
amrex::Vector< int > nsubsteps
 
amrex::Vector< amrex::Real > t_new
 
amrex::Vector< amrex::Real > t_old
 
amrex::Vector< amrex::Real > dt
 
amrex::Vector< long > dt_mri_ratio
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
 
amrex::Vector< amrex::Real > t_avg_cnt
 
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
 
amrex::Vector< amrex::MultiFab > pp_inc
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
 
amrex::Vector< amrex::MultiFab > rU_old
 
amrex::Vector< amrex::MultiFab > rU_new
 
amrex::Vector< amrex::MultiFab > rV_old
 
amrex::Vector< amrex::MultiFab > rV_new
 
amrex::Vector< amrex::MultiFab > rW_old
 
amrex::Vector< amrex::MultiFab > rW_new
 
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
 
std::unique_ptr< Microphysicsmicro
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
 
LandSurface lsm
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
 
amrex::Vector< std::unique_ptr< IRadiation > > rad
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
 
bool plot_rad = false
 
int rad_datalog_int = -1
 
int cf_width {0}
 
int cf_set_width {0}
 
amrex::Vector< ERFFillPatcherFPr_c
 
amrex::Vector< ERFFillPatcherFPr_u
 
amrex::Vector< ERFFillPatcherFPr_v
 
amrex::Vector< ERFFillPatcherFPr_w
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
 
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
 
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
 
amrex::Vector< amrex::MultiFab > base_state
 
amrex::Vector< amrex::MultiFab > base_state_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
 
bool finished_wave = false
 
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
 
amrex::Vector< amrex::BCRec > domain_bcs_type
 
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
 
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_extdir_vals
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_neumann_vals
 
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
 
amrex::Vector< amrex::MultiFab > weather_forecast_data
 
amrex::Geometry geom_weather
 
int last_plot_file_step_1
 
int last_plot_file_step_2
 
int last_subvol
 
int last_check_file_step
 
int plot_file_on_restart = 1
 
const int datwidth = 14
 
const int datprecision = 6
 
const int timeprecision = 13
 
int max_step = std::numeric_limits<int>::max()
 
amrex::Real start_time = 0.0
 
amrex::Real stop_time = std::numeric_limits<amrex::Real>::max()
 
bool use_datetime = false
 
const std::string datetime_format = "%Y-%m-%d %H:%M:%S"
 
std::string restart_chkfile = ""
 
amrex::Vector< amrex::Real > fixed_dt
 
amrex::Vector< amrex::Real > fixed_fast_dt
 
int regrid_int = -1
 
bool regrid_level_0_on_restart = false
 
std::string plot_file_1 {"plt_1_"}
 
std::string plot_file_2 {"plt_2_"}
 
std::string subvol_file {"subvol"}
 
bool m_expand_plotvars_to_unif_rr = false
 
int m_plot_int_1 = -1
 
int m_plot_int_2 = -1
 
int m_subvol_int = -1
 
amrex::Real m_plot_per_1 = -1.0
 
amrex::Real m_plot_per_2 = -1.0
 
amrex::Real m_subvol_per = -1.0
 
bool m_plot_face_vels = false
 
bool plot_lsm = false
 
int profile_int = -1
 
bool destag_profiles = true
 
std::string check_file {"chk"}
 
int m_check_int = -1
 
amrex::Real m_check_per = -1.0
 
amrex::Vector< std::string > plot_var_names_1
 
amrex::Vector< std::string > plot_var_names_2
 
const amrex::Vector< std::string > cons_names
 
const amrex::Vector< std::string > derived_names
 
TurbulentPerturbation turbPert
 
int real_width {0}
 
int real_set_width {0}
 
bool metgrid_debug_quiescent {false}
 
bool metgrid_debug_isothermal {false}
 
bool metgrid_debug_dry {false}
 
bool metgrid_debug_psfc {false}
 
bool metgrid_debug_msf {false}
 
bool metgrid_interp_theta {false}
 
bool metgrid_basic_linear {false}
 
bool metgrid_use_below_sfc {true}
 
bool metgrid_use_sfc {true}
 
bool metgrid_retain_sfc {false}
 
amrex::Real metgrid_proximity {500.0}
 
int metgrid_order {2}
 
int metgrid_force_sfc_k {6}
 
amrex::Vector< amrex::BoxArray > ba1d
 
amrex::Vector< amrex::BoxArray > ba2d
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_C1H
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_C2H
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_MUB
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
 
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
 
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
 
amrex::Vector< amrex::Real > h_havg_density
 
amrex::Vector< amrex::Real > h_havg_temperature
 
amrex::Vector< amrex::Real > h_havg_pressure
 
amrex::Vector< amrex::Real > h_havg_qv
 
amrex::Vector< amrex::Real > h_havg_qc
 
amrex::Gpu::DeviceVector< amrex::Real > d_havg_density
 
amrex::Gpu::DeviceVector< amrex::Real > d_havg_temperature
 
amrex::Gpu::DeviceVector< amrex::Real > d_havg_pressure
 
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qv
 
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qc
 
std::unique_ptr< WriteBndryPlanesm_w2d = nullptr
 
std::unique_ptr< ReadBndryPlanesm_r2d = nullptr
 
std::unique_ptr< SurfaceLayerm_SurfaceLayer = nullptr
 
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
 
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
 
amrex::MultiFab fine_mask
 
amrex::Vector< amrex::Real > dz_min
 
int sampler_interval = -1
 
amrex::Real sampler_per = -1.0
 
std::unique_ptr< SampleDatadata_sampler = nullptr
 
amrex::Vector< std::unique_ptr< std::fstream > > datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
 
amrex::Vector< std::string > datalogname
 
amrex::Vector< std::string > der_datalogname
 
amrex::Vector< std::string > tot_e_datalogname
 
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
 
amrex::Vector< std::string > sampleptlogname
 
amrex::Vector< amrex::IntVect > samplepoint
 
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
 
amrex::Vector< std::string > samplelinelogname
 
amrex::Vector< amrex::IntVect > sampleline
 
amrex::Vector< std::unique_ptr< eb_ > > eb
 

Static Private Attributes

static amrex::Real cfl = 0.8
 
static amrex::Real sub_cfl = 1.0
 
static amrex::Real init_shrink = 1.0
 
static amrex::Real change_max = 1.1
 
static amrex::Real dt_max_initial = 2.0e100
 
static amrex::Real dt_max = 1e9
 
static int fixed_mri_dt_ratio = 0
 
static SolverChoice solverChoice
 
static int verbose = 0
 
static int mg_verbose = 0
 
static bool use_fft = false
 
static int sum_interval = -1
 
static int pert_interval = -1
 
static amrex::Real sum_per = -1.0
 
static PlotFileType plotfile_type_1 = PlotFileType::None
 
static PlotFileType plotfile_type_2 = PlotFileType::None
 
static StateInterpType interpolation_type
 
static std::string sponge_type
 
static amrex::Vector< amrex::Vector< std::string > > nc_init_file = {{""}}
 
static std::string nc_bdy_file
 
static std::string nc_low_file
 
static int output_1d_column = 0
 
static int column_interval = -1
 
static amrex::Real column_per = -1.0
 
static amrex::Real column_loc_x = 0.0
 
static amrex::Real column_loc_y = 0.0
 
static std::string column_file_name = "column_data.nc"
 
static int output_bndry_planes = 0
 
static int bndry_output_planes_interval = -1
 
static amrex::Real bndry_output_planes_per = -1.0
 
static amrex::Real bndry_output_planes_start_time = 0.0
 
static int input_bndry_planes = 0
 
static int ng_dens_hse
 
static int ng_pres_hse
 
static amrex::Vector< amrex::AMRErrorTag > ref_tags
 
static amrex::Real startCPUTime = 0.0
 
static amrex::Real previousCPUTimeUsed = 0.0
 

Detailed Description

Main class in ERF code, instantiated from main.cpp

Constructor & Destructor Documentation

◆ ERF() [1/3]

ERF::ERF ( )
90 {
91  int fix_random_seed = 0;
92  ParmParse pp("erf"); pp.query("fix_random_seed", fix_random_seed);
93  // Note that the value of 1024UL is not significant -- the point here is just to set the
94  // same seed for all MPI processes for the purpose of regression testing
95  if (fix_random_seed) {
96  Print() << "Fixing the random seed" << std::endl;
97  InitRandom(1024UL);
98  }
99 
100  ERF_shared();
101 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real pp(amrex::Real y)
Definition: ERF_MicrophysicsUtils.H:230
void ERF_shared()
Definition: ERF.cpp:104
Here is the call graph for this function:

◆ ~ERF()

ERF::~ERF ( )
overridedefault

◆ ERF() [2/3]

ERF::ERF ( ERF &&  )
deletenoexcept

◆ ERF() [3/3]

ERF::ERF ( const ERF other)
delete

Member Function Documentation

◆ Advance()

void ERF::Advance ( int  lev,
amrex::Real  time,
amrex::Real  dt_lev,
int  iteration,
int  ncycle 
)
private
24 {
25  BL_PROFILE("ERF::Advance()");
26 
27  // We must swap the pointers so the previous step's "new" is now this step's "old"
28  std::swap(vars_old[lev], vars_new[lev]);
29 
30  MultiFab& S_old = vars_old[lev][Vars::cons];
31  MultiFab& S_new = vars_new[lev][Vars::cons];
32 
33  MultiFab& U_old = vars_old[lev][Vars::xvel];
34  MultiFab& V_old = vars_old[lev][Vars::yvel];
35  MultiFab& W_old = vars_old[lev][Vars::zvel];
36 
37  MultiFab& U_new = vars_new[lev][Vars::xvel];
38  MultiFab& V_new = vars_new[lev][Vars::yvel];
39  MultiFab& W_new = vars_new[lev][Vars::zvel];
40 
41  // We need to set these because otherwise in the first call to erf_advance we may
42  // read uninitialized data on ghost values in setting the bc's on the velocities
43  U_new.setVal(1.e34,U_new.nGrowVect());
44  V_new.setVal(1.e34,V_new.nGrowVect());
45  W_new.setVal(1.e34,W_new.nGrowVect());
46 
47  // Do error checking for negative (rho theta) here
48  if (solverChoice.anelastic[lev] != 1) {
50  }
51 
52  //
53  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
54  // If lev == 0 we have already FillPatched this in ERF::TimeStep
55  //
56  if (lev > 0) {
57  FillPatch(lev, time, {&S_old, &U_old, &V_old, &W_old},
58  {&S_old, &rU_old[lev], &rV_old[lev], &rW_old[lev]},
59  base_state[lev], base_state[lev]);
60  }
61 
62  //
63  // So we must convert the fillpatched to momenta, including the ghost values
64  //
65  VelocityToMomentum(U_old, rU_old[lev].nGrowVect(),
66  V_old, rV_old[lev].nGrowVect(),
67  W_old, rW_old[lev].nGrowVect(),
68  S_old, rU_old[lev], rV_old[lev], rW_old[lev],
69  Geom(lev).Domain(),
71 
72  // Update the inflow perturbation update time and amplitude
73  if (solverChoice.pert_type == PerturbationType::Source ||
74  solverChoice.pert_type == PerturbationType::Direct ||
75  solverChoice.pert_type == PerturbationType::CPM)
76  {
77  turbPert.calc_tpi_update(lev, dt_lev, U_old, V_old, S_old);
78  }
79 
80  // If PerturbationType::Direct or CPM is selected, directly add the computed perturbation
81  // on the conserved field
82  if (solverChoice.pert_type == PerturbationType::Direct ||
83  solverChoice.pert_type == PerturbationType::CPM)
84  {
85  auto m_ixtype = S_old.boxArray().ixType(); // Conserved term
86  for (MFIter mfi(S_old,TileNoZ()); mfi.isValid(); ++mfi) {
87  Box bx = mfi.tilebox();
88  const Array4<Real> &cell_data = S_old.array(mfi);
89  const Array4<const Real> &pert_cell = turbPert.pb_cell[lev].array(mfi);
90  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cell_data, pert_cell);
91  }
92  }
93 
94  // configure SurfaceLayer params if needed
95  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
96  if (m_SurfaceLayer) {
97  IntVect ng = Theta_prim[lev]->nGrowVect();
98  MultiFab::Copy( *Theta_prim[lev], S_old, RhoTheta_comp, 0, 1, ng);
99  MultiFab::Divide(*Theta_prim[lev], S_old, Rho_comp , 0, 1, ng);
100  if (solverChoice.moisture_type != MoistureType::None) {
101  ng = Qv_prim[lev]->nGrowVect();
102 
103  MultiFab::Copy( *Qv_prim[lev], S_old, RhoQ1_comp, 0, 1, ng);
104  MultiFab::Divide(*Qv_prim[lev], S_old, Rho_comp , 0, 1, ng);
105 
106  if (solverChoice.moisture_indices.qr > -1) {
107  MultiFab::Copy( *Qr_prim[lev], S_old, solverChoice.moisture_indices.qr, 0, 1, ng);
108  MultiFab::Divide(*Qr_prim[lev], S_old, Rho_comp , 0, 1, ng);
109  } else {
110  Qr_prim[lev]->setVal(0.0);
111  }
112  }
113  // NOTE: std::swap above causes the field ptrs to be out of date.
114  // Reassign the field ptrs for MAC avg computation.
115  m_SurfaceLayer->update_mac_ptrs(lev, vars_old, Theta_prim, Qv_prim, Qr_prim);
116  m_SurfaceLayer->update_pblh(lev, vars_old, z_phys_cc[lev].get(),
118  m_SurfaceLayer->update_fluxes(lev, time);
119  }
120  }
121 
122 #if defined(ERF_USE_WINDFARM)
123  if (solverChoice.windfarm_type != WindFarmType::None) {
124  advance_windfarm(Geom(lev), dt_lev, S_old,
125  U_old, V_old, W_old, vars_windfarm[lev],
126  Nturb[lev], SMark[lev], time);
127  }
128 
129 #endif
130 
131  const BoxArray& ba = S_old.boxArray();
132  const DistributionMapping& dm = S_old.DistributionMap();
133 
134  int nvars = S_old.nComp();
135 
136  // Source array for conserved cell-centered quantities -- this will be filled
137  // in the call to make_sources in ERF_TI_slow_rhs_pre.H
138  MultiFab cc_source(ba,dm,nvars,1); cc_source.setVal(0.0);
139 
140  // Source arrays for momenta -- these will be filled
141  // in the call to make_mom_sources in ERF_TI_slow_rhs_pre.H
142  BoxArray ba_x(ba); ba_x.surroundingNodes(0);
143  MultiFab xmom_source(ba_x,dm,1,1); xmom_source.setVal(0.0);
144 
145  BoxArray ba_y(ba); ba_y.surroundingNodes(1);
146  MultiFab ymom_source(ba_y,dm,1,1); ymom_source.setVal(0.0);
147 
148  BoxArray ba_z(ba); ba_z.surroundingNodes(2);
149  MultiFab zmom_source(ba_z,dm,1,1); zmom_source.setVal(0.0);
150  MultiFab buoyancy(ba_z,dm,1,1); buoyancy.setVal(0.0);
151 
152  amrex::Vector<MultiFab> state_old;
153  amrex::Vector<MultiFab> state_new;
154 
155  // **************************************************************************************
156  // Here we define state_old and state_new which are to be advanced
157  // **************************************************************************************
158  // Initial solution
159  // Note that "old" and "new" here are relative to each RK stage.
160  state_old.push_back(MultiFab(S_old , amrex::make_alias, 0, nvars)); // cons
161  state_old.push_back(MultiFab(rU_old[lev], amrex::make_alias, 0, 1)); // xmom
162  state_old.push_back(MultiFab(rV_old[lev], amrex::make_alias, 0, 1)); // ymom
163  state_old.push_back(MultiFab(rW_old[lev], amrex::make_alias, 0, 1)); // zmom
164 
165  // Final solution
166  // state_new at the end of the last RK stage holds the t^{n+1} data
167  state_new.push_back(MultiFab(S_new , amrex::make_alias, 0, nvars)); // cons
168  state_new.push_back(MultiFab(rU_new[lev], amrex::make_alias, 0, 1)); // xmom
169  state_new.push_back(MultiFab(rV_new[lev], amrex::make_alias, 0, 1)); // ymom
170  state_new.push_back(MultiFab(rW_new[lev], amrex::make_alias, 0, 1)); // zmom
171 
172  // **************************************************************************************
173  // Update the dycore
174  // **************************************************************************************
175  advance_dycore(lev, state_old, state_new,
176  U_old, V_old, W_old,
177  U_new, V_new, W_new,
178  cc_source, xmom_source, ymom_source, zmom_source, buoyancy,
179  Geom(lev), dt_lev, time);
180 
181  // **************************************************************************************
182  // Update the microphysics (moisture)
183  // **************************************************************************************
185  advance_microphysics(lev, S_new, dt_lev, iteration, time);
186  }
187 
188  // **************************************************************************************
189  // Update the land surface model
190  // **************************************************************************************
191  advance_lsm(lev, S_new, U_new, V_new, dt_lev);
192 
193  // **************************************************************************************
194  // Update the radiation
195  // **************************************************************************************
196  advance_radiation(lev, S_new, dt_lev);
197 
198 #ifdef ERF_USE_PARTICLES
199  // **************************************************************************************
200  // Update the particle positions
201  // **************************************************************************************
202  evolveTracers( lev, dt_lev, vars_new, z_phys_nd );
203 #endif
204 
205  // ***********************************************************************************************
206  // Impose domain boundary conditions here so that in FillPatching the fine data we won't
207  // need to re-fill these
208  // ***********************************************************************************************
209  if (lev < finest_level) {
210  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
212  0,vars_new[lev][Vars::cons].nComp(),
213  vars_new[lev][Vars::cons].nGrowVect(),time,BCVars::cons_bc,true);
214  (*physbcs_u[lev])(vars_new[lev][Vars::xvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
215  ngvect_vels,time,BCVars::xvel_bc,true);
216  (*physbcs_v[lev])(vars_new[lev][Vars::yvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
217  ngvect_vels,time,BCVars::yvel_bc,true);
218  (*physbcs_w[lev])(vars_new[lev][Vars::zvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
219  ngvect_vels,time,BCVars::zvel_bc,true);
220  }
221 
222  // **************************************************************************************
223  // Register old and new coarse data if we are at a level less than the finest level
224  // **************************************************************************************
225  if (lev < finest_level)
226  {
227  if (cf_width > 0) {
228  // We must fill the ghost cells of these so that the parallel copy works correctly
229  state_old[IntVars::cons].FillBoundary(geom[lev].periodicity());
230  state_new[IntVars::cons].FillBoundary(geom[lev].periodicity());
231  FPr_c[lev].RegisterCoarseData({&state_old[IntVars::cons], &state_new[IntVars::cons]},
232  {time, time + dt_lev});
233  }
234 
235  if (cf_width >= 0) {
236  // We must fill the ghost cells of these so that the parallel copy works correctly
237  state_old[IntVars::xmom].FillBoundary(geom[lev].periodicity());
238  state_new[IntVars::xmom].FillBoundary(geom[lev].periodicity());
239  FPr_u[lev].RegisterCoarseData({&state_old[IntVars::xmom], &state_new[IntVars::xmom]},
240  {time, time + dt_lev});
241 
242  state_old[IntVars::ymom].FillBoundary(geom[lev].periodicity());
243  state_new[IntVars::ymom].FillBoundary(geom[lev].periodicity());
244  FPr_v[lev].RegisterCoarseData({&state_old[IntVars::ymom], &state_new[IntVars::ymom]},
245  {time, time + dt_lev});
246 
247  state_old[IntVars::zmom].FillBoundary(geom[lev].periodicity());
248  state_new[IntVars::zmom].FillBoundary(geom[lev].periodicity());
249  FPr_w[lev].RegisterCoarseData({&state_old[IntVars::zmom], &state_new[IntVars::zmom]},
250  {time, time + dt_lev});
251  }
252 
253  //
254  // Now create a MultiFab that holds (S_new - S_old) / dt from the coarse level interpolated
255  // on to the coarse/fine boundary at the fine resolution
256  //
257  Interpolater* mapper_f = &face_cons_linear_interp;
258 
259  // PhysBCFunctNoOp null_bc;
260  // MultiFab tempx(vars_new[lev+1][Vars::xvel].boxArray(),vars_new[lev+1][Vars::xvel].DistributionMap(),1,0);
261  // tempx.setVal(0.0);
262  // xmom_crse_rhs[lev+1].setVal(0.0);
263  // FPr_u[lev].FillSet(tempx , time , null_bc, domain_bcs_type);
264  // FPr_u[lev].FillSet(xmom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
265  // MultiFab::Subtract(xmom_crse_rhs[lev+1],tempx,0,0,1,IntVect{0});
266  // xmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
267 
268  // MultiFab tempy(vars_new[lev+1][Vars::yvel].boxArray(),vars_new[lev+1][Vars::yvel].DistributionMap(),1,0);
269  // tempy.setVal(0.0);
270  // ymom_crse_rhs[lev+1].setVal(0.0);
271  // FPr_v[lev].FillSet(tempy , time , null_bc, domain_bcs_type);
272  // FPr_v[lev].FillSet(ymom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
273  // MultiFab::Subtract(ymom_crse_rhs[lev+1],tempy,0,0,1,IntVect{0});
274  // ymom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
275 
276  MultiFab temp_state(zmom_crse_rhs[lev+1].boxArray(),zmom_crse_rhs[lev+1].DistributionMap(),1,0);
277  InterpFromCoarseLevel(temp_state, IntVect{0}, IntVect{0}, state_old[IntVars::zmom], 0, 0, 1,
278  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
279  InterpFromCoarseLevel(zmom_crse_rhs[lev+1], IntVect{0}, IntVect{0}, state_new[IntVars::zmom], 0, 0, 1,
280  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
281  MultiFab::Subtract(zmom_crse_rhs[lev+1],temp_state,0,0,1,IntVect{0});
282  zmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
283  }
284 
285  // ***********************************************************************************************
286  // Update the time averaged velocities if they are requested
287  // ***********************************************************************************************
289  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(), U_new, V_new, W_new);
290  }
291 }
void check_for_negative_theta(amrex::MultiFab &S_old)
Definition: ERF_Advance.cpp:294
@ nvars
Definition: ERF_DataStruct.H:91
#define Rho_comp
Definition: ERF_IndexDefines.H:36
#define RhoTheta_comp
Definition: ERF_IndexDefines.H:37
#define RhoQ1_comp
Definition: ERF_IndexDefines.H:42
@ surface_layer
AMREX_FORCE_INLINE amrex::IntVect TileNoZ()
Definition: ERF_TileNoZ.H:11
void Time_Avg_Vel_atCC(const Real &dt, Real &t_avg_cnt, MultiFab *vel_t_avg, MultiFab &xvel, MultiFab &yvel, MultiFab &zvel)
Definition: ERF_TimeAvgVel.cpp:9
void VelocityToMomentum(const amrex::MultiFab &xvel_in, const amrex::IntVect &xvel_ngrow, const amrex::MultiFab &yvel_in, const amrex::IntVect &yvel_ngrow, const amrex::MultiFab &zvel_in, const amrex::IntVect &zvel_ngrow, const amrex::MultiFab &cons_in, amrex::MultiFab &xmom_out, amrex::MultiFab &ymom_out, amrex::MultiFab &zmom_out, const amrex::Box &domain, const amrex::Vector< amrex::BCRec > &domain_bcs_type_h)
amrex::Vector< amrex::MultiFab > rU_new
Definition: ERF.H:745
amrex::Vector< ERFFillPatcher > FPr_u
Definition: ERF.H:789
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
Definition: ERF.H:717
amrex::Vector< ERFFillPatcher > FPr_v
Definition: ERF.H:790
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
Definition: ERF.H:732
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
Definition: ERF.H:814
static SolverChoice solverChoice
Definition: ERF.H:1010
amrex::Vector< ERFFillPatcher > FPr_c
Definition: ERF.H:788
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
Definition: ERF.H:724
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
Definition: ERF.H:735
amrex::Vector< amrex::MultiFab > base_state
Definition: ERF.H:845
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
Definition: ERF.H:740
amrex::Vector< amrex::MultiFab > rV_new
Definition: ERF.H:747
amrex::Vector< amrex::BCRec > domain_bcs_type
Definition: ERF.H:861
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
Definition: ERF.H:741
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
Definition: ERF.H:733
amrex::Vector< amrex::Real > t_avg_cnt
Definition: ERF.H:725
amrex::Vector< amrex::MultiFab > rU_old
Definition: ERF.H:744
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
Definition: ERF.H:739
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
Definition: ERF.H:734
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
Definition: ERF.H:813
void advance_dycore(int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
Definition: ERF_AdvanceDycore.cpp:38
amrex::Vector< amrex::MultiFab > rW_new
Definition: ERF.H:749
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
Definition: ERF.H:753
void advance_lsm(int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceLSM.cpp:5
TurbulentPerturbation turbPert
Definition: ERF.H:1013
amrex::Vector< amrex::MultiFab > rW_old
Definition: ERF.H:748
std::unique_ptr< SurfaceLayer > m_SurfaceLayer
Definition: ERF.H:1168
amrex::Vector< ERFFillPatcher > FPr_w
Definition: ERF.H:791
amrex::Vector< amrex::Real > dt
Definition: ERF.H:711
void advance_radiation(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceRadiation.cpp:5
void advance_microphysics(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
Definition: ERF_AdvanceMicrophysics.cpp:5
int cf_width
Definition: ERF.H:786
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
Definition: ERF.H:874
amrex::Vector< amrex::MultiFab > rV_old
Definition: ERF.H:746
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
Definition: ERF.H:718
void FillPatch(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
@ zvel_bc
Definition: ERF_IndexDefines.H:89
@ yvel_bc
Definition: ERF_IndexDefines.H:88
@ cons_bc
Definition: ERF_IndexDefines.H:76
@ xvel_bc
Definition: ERF_IndexDefines.H:87
@ ymom
Definition: ERF_IndexDefines.H:160
@ cons
Definition: ERF_IndexDefines.H:158
@ zmom
Definition: ERF_IndexDefines.H:161
@ xmom
Definition: ERF_IndexDefines.H:159
@ ng
Definition: ERF_Morrison.H:48
@ xvel
Definition: ERF_IndexDefines.H:141
@ cons
Definition: ERF_IndexDefines.H:140
@ zvel
Definition: ERF_IndexDefines.H:143
@ yvel
Definition: ERF_IndexDefines.H:142
int qr
Definition: ERF_DataStruct.H:103
bool moisture_tight_coupling
Definition: ERF_DataStruct.H:869
amrex::Vector< int > anelastic
Definition: ERF_DataStruct.H:771
MoistureType moisture_type
Definition: ERF_DataStruct.H:848
PerturbationType pert_type
Definition: ERF_DataStruct.H:838
WindFarmType windfarm_type
Definition: ERF_DataStruct.H:849
MoistureComponentIndices moisture_indices
Definition: ERF_DataStruct.H:867
bool time_avg_vel
Definition: ERF_DataStruct.H:835
amrex::Vector< amrex::MultiFab > pb_cell
Definition: ERF_TurbPertStruct.H:647
void calc_tpi_update(const int lev, const amrex::Real dt, amrex::MultiFab &mf_xvel, amrex::MultiFab &mf_yvel, amrex::MultiFab &mf_cons)
Definition: ERF_TurbPertStruct.H:223
void apply_tpi(const int &lev, const amrex::Box &vbx, const int &comp, const amrex::IndexType &m_ixtype, const amrex::Array4< amrex::Real > &src_arr, const amrex::Array4< amrex::Real const > &pert_cell)
Definition: ERF_TurbPertStruct.H:324
Here is the call graph for this function:

◆ advance_dycore()

void ERF::advance_dycore ( int  level,
amrex::Vector< amrex::MultiFab > &  state_old,
amrex::Vector< amrex::MultiFab > &  state_new,
amrex::MultiFab &  xvel_old,
amrex::MultiFab &  yvel_old,
amrex::MultiFab &  zvel_old,
amrex::MultiFab &  xvel_new,
amrex::MultiFab &  yvel_new,
amrex::MultiFab &  zvel_new,
amrex::MultiFab &  source,
amrex::MultiFab &  xmom_src,
amrex::MultiFab &  ymom_src,
amrex::MultiFab &  zmom_src,
amrex::MultiFab &  buoyancy,
amrex::Geometry  fine_geom,
amrex::Real  dt,
amrex::Real  time 
)

Function that advances the solution at one level for a single time step – this sets up the multirate time integrator and calls the integrator's advance function

Parameters
[in]levellevel of refinement (coarsest level is 0)
[in]state_oldold-time conserved variables
[in]state_newnew-time conserved variables
[in]xvel_oldold-time x-component of velocity
[in]yvel_oldold-time y-component of velocity
[in]zvel_oldold-time z-component of velocity
[in]xvel_newnew-time x-component of velocity
[in]yvel_newnew-time y-component of velocity
[in]zvel_newnew-time z-component of velocity
[in]cc_srcsource term for conserved variables
[in]xmom_srcsource term for x-momenta
[in]ymom_srcsource term for y-momenta
[in]zmom_srcsource term for z-momenta
[in]fine_geomcontainer for geometry information at current level
[in]dt_advancetime step for this time advance
[in]old_timeold time for this time advance
48 {
49  BL_PROFILE_VAR("erf_advance_dycore()",erf_advance_dycore);
50 
51  const Box& domain = fine_geom.Domain();
52 
56 
57  MultiFab r_hse (base_state[level], make_alias, BaseState::r0_comp , 1);
58  MultiFab p_hse (base_state[level], make_alias, BaseState::p0_comp , 1);
59  MultiFab pi_hse(base_state[level], make_alias, BaseState::pi0_comp, 1);
60 
61  // These pointers are used in the MRI utility functions
62  MultiFab* r0 = &r_hse;
63  MultiFab* p0 = &p_hse;
64  MultiFab* pi0 = &pi_hse;
65 
66  Real* dptr_rhotheta_src = solverChoice.custom_rhotheta_forcing ? d_rhotheta_src[level].data() : nullptr;
67  Real* dptr_rhoqt_src = solverChoice.custom_moisture_forcing ? d_rhoqt_src[level].data() : nullptr;
68  Real* dptr_wbar_sub = solverChoice.custom_w_subsidence ? d_w_subsid[level].data() : nullptr;
69 
70  // Turbulent Perturbation Pointer
71  //Real* dptr_rhotheta_src = solverChoice.pert_type ? d_rhotheta_src[level].data() : nullptr;
72 
73  Vector<Real*> d_rayleigh_ptrs_at_lev;
74  d_rayleigh_ptrs_at_lev.resize(Rayleigh::nvars);
75  d_rayleigh_ptrs_at_lev[Rayleigh::ubar] = solverChoice.rayleigh_damp_U ? d_rayleigh_ptrs[level][Rayleigh::ubar].data() : nullptr;
76  d_rayleigh_ptrs_at_lev[Rayleigh::vbar] = solverChoice.rayleigh_damp_V ? d_rayleigh_ptrs[level][Rayleigh::vbar].data() : nullptr;
77  d_rayleigh_ptrs_at_lev[Rayleigh::wbar] = solverChoice.rayleigh_damp_W ? d_rayleigh_ptrs[level][Rayleigh::wbar].data() : nullptr;
78  d_rayleigh_ptrs_at_lev[Rayleigh::thetabar] = solverChoice.rayleigh_damp_T ? d_rayleigh_ptrs[level][Rayleigh::thetabar].data() : nullptr;
79 
80  Vector<Real*> d_sponge_ptrs_at_lev;
81  if(sc.sponge_type=="input_sponge")
82  {
83  d_sponge_ptrs_at_lev.resize(Sponge::nvars_sponge);
84  d_sponge_ptrs_at_lev[Sponge::ubar_sponge] = d_sponge_ptrs[level][Sponge::ubar_sponge].data();
85  d_sponge_ptrs_at_lev[Sponge::vbar_sponge] = d_sponge_ptrs[level][Sponge::vbar_sponge].data();
86  }
87 
88  bool l_use_terrain_fitted_coords = (solverChoice.mesh_type != MeshType::ConstantDz);
89  bool l_use_kturb = tc.use_kturb;
90  bool l_use_diff = ( (dc.molec_diff_type != MolecDiffType::None) ||
91  l_use_kturb );
92  bool l_use_moisture = ( solverChoice.moisture_type != MoistureType::None );
93  bool l_implicit_substepping = ( solverChoice.substepping_type[level] == SubsteppingType::Implicit );
94 
95  const bool use_SurfLayer = (m_SurfaceLayer != nullptr);
96  const FArrayBox* z_0 = (use_SurfLayer) ? m_SurfaceLayer->get_z0(level) : nullptr;
97 
98  const BoxArray& ba = state_old[IntVars::cons].boxArray();
99  const BoxArray& ba_z = zvel_old.boxArray();
100  const DistributionMapping& dm = state_old[IntVars::cons].DistributionMap();
101 
102  int num_prim = state_old[IntVars::cons].nComp() - 1;
103 
104  MultiFab S_prim (ba , dm, num_prim, state_old[IntVars::cons].nGrowVect());
105  MultiFab pi_stage (ba , dm, 1, state_old[IntVars::cons].nGrowVect());
106  MultiFab fast_coeffs(ba_z, dm, 5, 0);
107  MultiFab* eddyDiffs = eddyDiffs_lev[level].get();
108  MultiFab* SmnSmn = SmnSmn_lev[level].get();
109 
110  // **************************************************************************************
111  // Compute strain for use in slow RHS and Smagorinsky model
112  // **************************************************************************************
113  {
114  BL_PROFILE("erf_advance_strain");
115  if (l_use_diff) {
116 
117  const BCRec* bc_ptr_h = domain_bcs_type.data();
118  const GpuArray<Real, AMREX_SPACEDIM> dxInv = fine_geom.InvCellSizeArray();
119 
120 #ifdef _OPENMP
121 #pragma omp parallel if (Gpu::notInLaunchRegion())
122 #endif
123  for ( MFIter mfi(state_new[IntVars::cons],TileNoZ()); mfi.isValid(); ++mfi)
124  {
125  Box bxcc = mfi.growntilebox(IntVect(1,1,0));
126  Box tbxxy = mfi.tilebox(IntVect(1,1,0),IntVect(1,1,0));
127  Box tbxxz = mfi.tilebox(IntVect(1,0,1),IntVect(1,1,0));
128  Box tbxyz = mfi.tilebox(IntVect(0,1,1),IntVect(1,1,0));
129 
130  if (bxcc.smallEnd(2) != domain.smallEnd(2)) {
131  bxcc.growLo(2,1);
132  tbxxy.growLo(2,1);
133  tbxxz.growLo(2,1);
134  tbxyz.growLo(2,1);
135  }
136 
137  if (bxcc.bigEnd(2) != domain.bigEnd(2)) {
138  bxcc.growHi(2,1);
139  tbxxy.growHi(2,1);
140  tbxxz.growHi(2,1);
141  tbxyz.growHi(2,1);
142  }
143 
144  const Array4<const Real> & u = xvel_old.array(mfi);
145  const Array4<const Real> & v = yvel_old.array(mfi);
146  const Array4<const Real> & w = zvel_old.array(mfi);
147 
148  Array4<Real> tau11 = Tau[level][TauType::tau11].get()->array(mfi);
149  Array4<Real> tau22 = Tau[level][TauType::tau22].get()->array(mfi);
150  Array4<Real> tau33 = Tau[level][TauType::tau33].get()->array(mfi);
151  Array4<Real> tau12 = Tau[level][TauType::tau12].get()->array(mfi);
152  Array4<Real> tau13 = Tau[level][TauType::tau13].get()->array(mfi);
153  Array4<Real> tau23 = Tau[level][TauType::tau23].get()->array(mfi);
154 
155  Array4<Real> tau21 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau21].get()->array(mfi) : Array4<Real>{};
156  Array4<Real> tau31 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau31].get()->array(mfi) : Array4<Real>{};
157  Array4<Real> tau32 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau32].get()->array(mfi) : Array4<Real>{};
158  const Array4<const Real>& z_nd = z_phys_nd[level]->const_array(mfi);
159 
160  const Array4<const Real> mf_mx = mapfac[level][MapFacType::m_x]->const_array(mfi);
161  const Array4<const Real> mf_ux = mapfac[level][MapFacType::u_x]->const_array(mfi);
162  const Array4<const Real> mf_vx = mapfac[level][MapFacType::v_x]->const_array(mfi);
163  const Array4<const Real> mf_my = mapfac[level][MapFacType::m_y]->const_array(mfi);
164  const Array4<const Real> mf_uy = mapfac[level][MapFacType::u_y]->const_array(mfi);
165  const Array4<const Real> mf_vy = mapfac[level][MapFacType::v_y]->const_array(mfi);
166 
167  if (solverChoice.mesh_type == MeshType::StretchedDz) {
168  ComputeStrain_S(bxcc, tbxxy, tbxxz, tbxyz, domain,
169  u, v, w,
170  tau11, tau22, tau33,
171  tau12, tau21,
172  tau13, tau31,
173  tau23, tau32,
174  stretched_dz_d[level], dxInv,
175  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h);
176  } else if (l_use_terrain_fitted_coords) {
177  ComputeStrain_T(bxcc, tbxxy, tbxxz, tbxyz, domain,
178  u, v, w,
179  tau11, tau22, tau33,
180  tau12, tau21,
181  tau13, tau31,
182  tau23, tau32,
183  z_nd, detJ_cc[level]->const_array(mfi), dxInv,
184  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h);
185  } else {
186  ComputeStrain_N(bxcc, tbxxy, tbxxz, tbxyz, domain,
187  u, v, w,
188  tau11, tau22, tau33,
189  tau12, tau13, tau23,
190  dxInv,
191  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h);
192  }
193  } // mfi
194  } // l_use_diff
195  } // profile
196 
197 #include "ERF_TI_utils.H"
198 
199  // Additional SFS quantities, calculated once per timestep
200  MultiFab* Hfx1 = SFS_hfx1_lev[level].get();
201  MultiFab* Hfx2 = SFS_hfx2_lev[level].get();
202  MultiFab* Hfx3 = SFS_hfx3_lev[level].get();
203  MultiFab* Q1fx1 = SFS_q1fx1_lev[level].get();
204  MultiFab* Q1fx2 = SFS_q1fx2_lev[level].get();
205  MultiFab* Q1fx3 = SFS_q1fx3_lev[level].get();
206  MultiFab* Q2fx3 = SFS_q2fx3_lev[level].get();
207  MultiFab* Diss = SFS_diss_lev[level].get();
208 
209  // *************************************************************************
210  // Calculate cell-centered eddy viscosity & diffusivities
211  //
212  // Notes -- we fill all the data in ghost cells before calling this so
213  // that we can fill the eddy viscosity in the ghost regions and
214  // not have to call a boundary filler on this data itself
215  //
216  // LES - updates both horizontal and vertical eddy viscosity components
217  // PBL - only updates vertical eddy viscosity components so horizontal
218  // components come from the LES model or are left as zero.
219  // *************************************************************************
220  if (l_use_kturb)
221  {
222  // NOTE: state_new transfers to state_old for PBL (due to ptr swap in advance)
223  const BCRec* bc_ptr_h = domain_bcs_type.data();
224  ComputeTurbulentViscosity(xvel_old, yvel_old,Tau[level],
225  state_old[IntVars::cons],
226  *walldist[level].get(),
227  *eddyDiffs, *Hfx1, *Hfx2, *Hfx3, *Diss, // to be updated
228  fine_geom, mapfac[level],
229  z_phys_nd[level], solverChoice,
230  m_SurfaceLayer, z_0, l_use_terrain_fitted_coords,
231  l_use_moisture, level, bc_ptr_h);
232  }
233 
234  // ***********************************************************************************************
235  // Update user-defined source terms -- these are defined once per time step (not per RK stage)
236  // ***********************************************************************************************
238  prob->update_rhotheta_sources(old_time,
239  h_rhotheta_src[level], d_rhotheta_src[level],
240  fine_geom, z_phys_cc[level]);
241  }
242 
244  prob->update_rhoqt_sources(old_time,
245  h_rhoqt_src[level], d_rhoqt_src[level],
246  fine_geom, z_phys_cc[level]);
247  }
248 
250  prob->update_geostrophic_profile(old_time,
251  h_u_geos[level], d_u_geos[level],
252  h_v_geos[level], d_v_geos[level],
253  fine_geom, z_phys_cc[level]);
254  }
255 
257  prob->update_w_subsidence(old_time,
258  h_w_subsid[level], d_w_subsid[level],
259  fine_geom, z_phys_nd[level]);
260  }
261 
262  // ***********************************************************************************************
263  // Convert old velocity available on faces to old momentum on faces to be used in time integration
264  // ***********************************************************************************************
265  MultiFab density(state_old[IntVars::cons], make_alias, Rho_comp, 1);
266 
267  //
268  // This is an optimization since we won't need more than one ghost
269  // cell of momentum in the integrator if not using numerical diffusion
270  //
271  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : xvel_old.nGrowVect();
272  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : yvel_old.nGrowVect();
273  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : zvel_old.nGrowVect();
274 
275  VelocityToMomentum(xvel_old, ngu, yvel_old, ngv, zvel_old, ngw, density,
276  state_old[IntVars::xmom],
277  state_old[IntVars::ymom],
278  state_old[IntVars::zmom],
279  domain, domain_bcs_type);
280 
281  MultiFab::Copy(xvel_new,xvel_old,0,0,1,xvel_old.nGrowVect());
282  MultiFab::Copy(yvel_new,yvel_old,0,0,1,yvel_old.nGrowVect());
283  MultiFab::Copy(zvel_new,zvel_old,0,0,1,zvel_old.nGrowVect());
284 
285  bool fast_only = false;
286  bool vel_and_mom_synced = true;
287 
288  apply_bcs(state_old, old_time,
289  state_old[IntVars::cons].nGrow(), state_old[IntVars::xmom].nGrow(),
290  fast_only, vel_and_mom_synced);
291  cons_to_prim(state_old[IntVars::cons], state_old[IntVars::cons].nGrow());
292 
293  // ***********************************************************************************************
294  // Define a new MultiFab that holds q_total and fill it by summing the moisture components --
295  // to be used in buoyancy calculation and as part of the inertial weighting in the
296  // ***********************************************************************************************
297  MultiFab qt(grids[level], dmap[level], 1, 1);
298  qt.setVal(0.0);
299 
300 #include "ERF_TI_no_substep_fun.H"
301 #include "ERF_TI_substep_fun.H"
302 #include "ERF_TI_slow_rhs_pre.H"
303 #include "ERF_TI_slow_rhs_post.H"
304 
305  // ***************************************************************************************
306  // Setup the integrator and integrate for a single timestep
307  // **************************************************************************************
308  MRISplitIntegrator<Vector<MultiFab> >& mri_integrator = *mri_integrator_mem[level];
309 
310  // Define rhs and 'post update' utility function that is called after calculating
311  // any state data (e.g. at RK stages or at the end of a timestep)
312  mri_integrator.set_slow_rhs_pre(slow_rhs_fun_pre);
313  mri_integrator.set_slow_rhs_post(slow_rhs_fun_post);
314 
315  mri_integrator.set_fast_rhs(fast_rhs_fun);
317  mri_integrator.set_no_substep(no_substep_fun);
318 
319  mri_integrator.advance(state_old, state_new, old_time, dt_advance);
320 
321  if (verbose) Print() << "Done with advance_dycore at level " << level << std::endl;
322 }
void ComputeStrain_N(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau13, Array4< Real > &tau23, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr)
Definition: ERF_ComputeStrain_N.cpp:28
void ComputeStrain_S(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Gpu::DeviceVector< Real > &stretched_dz_d, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr)
Definition: ERF_ComputeStrain_S.cpp:36
void ComputeStrain_T(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Array4< const Real > &z_nd, const Array4< const Real > &detJ, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr)
Definition: ERF_ComputeStrain_T.cpp:36
void ComputeTurbulentViscosity(const MultiFab &xvel, const MultiFab &yvel, Vector< std::unique_ptr< MultiFab >> &Tau_lev, const MultiFab &cons_in, const MultiFab &wdist, MultiFab &eddyViscosity, MultiFab &Hfx1, MultiFab &Hfx2, MultiFab &Hfx3, MultiFab &Diss, const Geometry &geom, Vector< std::unique_ptr< MultiFab >> &mapfac, const std::unique_ptr< MultiFab > &z_phys_nd, const SolverChoice &solverChoice, std::unique_ptr< SurfaceLayer > &SurfLayer, const FArrayBox *z_0, const bool &use_terrain_fitted_coords, const bool &use_moisture, int level, const BCRec *bc_ptr, bool vert_only)
Definition: ERF_ComputeTurbulentViscosity.cpp:595
@ tau12
Definition: ERF_DataStruct.H:30
@ tau23
Definition: ERF_DataStruct.H:30
@ tau33
Definition: ERF_DataStruct.H:30
@ tau22
Definition: ERF_DataStruct.H:30
@ tau11
Definition: ERF_DataStruct.H:30
@ tau32
Definition: ERF_DataStruct.H:30
@ tau31
Definition: ERF_DataStruct.H:30
@ tau21
Definition: ERF_DataStruct.H:30
@ tau13
Definition: ERF_DataStruct.H:30
@ ubar
Definition: ERF_DataStruct.H:91
@ wbar
Definition: ERF_DataStruct.H:91
@ vbar
Definition: ERF_DataStruct.H:91
@ thetabar
Definition: ERF_DataStruct.H:91
@ nvars_sponge
Definition: ERF_DataStruct.H:96
@ vbar_sponge
Definition: ERF_DataStruct.H:96
@ ubar_sponge
Definition: ERF_DataStruct.H:96
@ v_x
Definition: ERF_DataStruct.H:22
@ u_y
Definition: ERF_DataStruct.H:23
@ v_y
Definition: ERF_DataStruct.H:23
@ m_y
Definition: ERF_DataStruct.H:23
@ u_x
Definition: ERF_DataStruct.H:22
@ m_x
Definition: ERF_DataStruct.H:22
auto no_substep_fun
Definition: ERF_TI_no_substep_fun.H:4
auto slow_rhs_fun_post
Definition: ERF_TI_slow_rhs_post.H:3
auto slow_rhs_fun_pre
Definition: ERF_TI_slow_rhs_pre.H:6
auto fast_rhs_fun
Definition: ERF_TI_substep_fun.H:6
auto apply_bcs
Definition: ERF_TI_utils.H:71
auto cons_to_prim
Definition: ERF_TI_utils.H:4
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
Definition: ERF.H:837
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
Definition: ERF.H:840
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
Definition: ERF.H:727
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
Definition: ERF.H:1117
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
Definition: ERF.H:806
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
Definition: ERF.H:804
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
Definition: ERF.H:1122
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
Definition: ERF.H:804
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
Definition: ERF.H:816
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
Definition: ERF.H:795
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
Definition: ERF.H:1150
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
Definition: ERF.H:1119
amrex::Vector< long > dt_mri_ratio
Definition: ERF.H:712
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
Definition: ERF.H:794
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
Definition: ERF.H:807
static int verbose
Definition: ERF.H:1045
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
Definition: ERF.H:806
std::unique_ptr< ProblemBase > prob
Definition: ERF.H:699
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
Definition: ERF.H:843
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
Definition: ERF.H:805
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
Definition: ERF.H:1129
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
Definition: ERF.H:1128
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
Definition: ERF.H:1120
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
Definition: ERF.H:1116
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
Definition: ERF.H:1125
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
Definition: ERF.H:796
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
Definition: ERF.H:1126
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
Definition: ERF.H:1123
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
Definition: ERF.H:804
static int fixed_mri_dt_ratio
Definition: ERF.H:928
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
Definition: ERF.H:1147
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
Definition: ERF.H:806
Definition: ERF_MRI.H:16
void set_slow_rhs_pre(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:133
void set_no_substep(std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> F)
Definition: ERF_MRI.H:159
void set_fast_rhs(std::function< void(int, int, int, T &, const T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> F)
Definition: ERF_MRI.H:142
void set_slow_fast_timestep_ratio(const int timestep_ratio=1)
Definition: ERF_MRI.H:149
amrex::Real advance(T &S_old, T &S_new, amrex::Real time, const amrex::Real time_step)
Definition: ERF_MRI.H:169
void set_slow_rhs_post(std::function< void(T &, T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:137
@ pi0_comp
Definition: ERF_IndexDefines.H:65
@ p0_comp
Definition: ERF_IndexDefines.H:64
@ r0_comp
Definition: ERF_IndexDefines.H:63
@ qt
Definition: ERF_Kessler.H:27
real(c_double), parameter p0
Definition: ERF_module_model_constants.F90:40
Definition: ERF_DiffStruct.H:19
MolecDiffType molec_diff_type
Definition: ERF_DiffStruct.H:84
bool rayleigh_damp_T
Definition: ERF_DataStruct.H:790
static MeshType mesh_type
Definition: ERF_DataStruct.H:755
bool rayleigh_damp_V
Definition: ERF_DataStruct.H:788
DiffChoice diffChoice
Definition: ERF_DataStruct.H:764
bool custom_rhotheta_forcing
Definition: ERF_DataStruct.H:821
bool custom_w_subsidence
Definition: ERF_DataStruct.H:823
bool rayleigh_damp_U
Definition: ERF_DataStruct.H:787
bool custom_geostrophic_profile
Definition: ERF_DataStruct.H:824
amrex::Vector< SubsteppingType > substepping_type
Definition: ERF_DataStruct.H:770
bool use_num_diff
Definition: ERF_DataStruct.H:841
bool custom_moisture_forcing
Definition: ERF_DataStruct.H:822
amrex::Vector< TurbChoice > turbChoice
Definition: ERF_DataStruct.H:766
bool rayleigh_damp_W
Definition: ERF_DataStruct.H:789
SpongeChoice spongeChoice
Definition: ERF_DataStruct.H:765
Definition: ERF_SpongeStruct.H:15
std::string sponge_type
Definition: ERF_SpongeStruct.H:58
Definition: ERF_TurbStruct.H:41
bool use_kturb
Definition: ERF_TurbStruct.H:376
Here is the call graph for this function:

◆ advance_lsm()

void ERF::advance_lsm ( int  lev,
amrex::MultiFab &  cons_in,
amrex::MultiFab &  xvel_in,
amrex::MultiFab &  yvel_in,
const amrex::Real &  dt_advance 
)
10 {
11  if (solverChoice.lsm_type != LandSurfaceType::None) {
12  if (solverChoice.lsm_type == LandSurfaceType::NOAH) {
13  lsm.Advance(lev, cons_in, xvel_in, yvel_in, SFS_hfx3_lev[lev].get(), SFS_q1fx3_lev[lev].get(), dt_advance, istep[lev]);
14  } else {
15  lsm.Advance(lev, dt_advance);
16  }
17  }
18 }
LandSurface lsm
Definition: ERF.H:771
amrex::Vector< int > istep
Definition: ERF.H:705
void Advance(const int &lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, amrex::MultiFab *hfx3_out, amrex::MultiFab *qfx3_out, const amrex::Real &dt_advance, const int &nstep)
Definition: ERF_LandSurface.H:52
LandSurfaceType lsm_type
Definition: ERF_DataStruct.H:851

◆ advance_microphysics()

void ERF::advance_microphysics ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real &  dt_advance,
const int &  iteration,
const amrex::Real &  time 
)
10 {
11  if (solverChoice.moisture_type != MoistureType::None) {
12  micro->Update_Micro_Vars_Lev(lev, cons);
13  micro->Advance(lev, dt_advance, iteration, time, solverChoice, vars_new, z_phys_nd, phys_bc_type);
14  micro->Update_State_Vars_Lev(lev, cons);
15  }
16 }
std::unique_ptr< Microphysics > micro
Definition: ERF.H:755

◆ advance_radiation()

void ERF::advance_radiation ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real &  dt_advance 
)
8 {
9  if (solverChoice.rad_type != RadiationType::None) {
10  // TODO: Address issue with lev>0 not spanning all z?
11  if (lev == 0) {
12 #ifdef ERF_USE_NETCDF
13  MultiFab *lat_ptr = lat_m[lev].get();
14  MultiFab *lon_ptr = lon_m[lev].get();
15 #else
16  MultiFab *lat_ptr = nullptr;
17  MultiFab *lon_ptr = nullptr;
18 #endif
19  rad[lev]->Run(lev, istep[lev], t_new[lev], dt_advance,
20  cons.boxArray(), geom[lev], &(cons),
21  sw_lw_fluxes[lev].get() , solar_zenith[lev].get(),
22  qheating_rates[lev].get(), z_phys_nd[lev].get() ,
23  lat_ptr, lon_ptr);
24  /*
25  // TODO: fix this - can't use set_lsm_inputs with IRadiation::Run()
26  if (solverChoice.lsm_type == LandSurfaceType::SLM) {
27  rad[lev]->set_lsm_inputs(lsm.get_model_lev<SLM>(lev));
28  }
29  */
30  }
31  }
32 }
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
Definition: ERF.H:779
amrex::Vector< std::unique_ptr< IRadiation > > rad
Definition: ERF.H:775
amrex::Vector< amrex::Real > t_new
Definition: ERF.H:709
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
Definition: ERF.H:780
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
Definition: ERF.H:776
RadiationType rad_type
Definition: ERF_DataStruct.H:852

◆ appendPlotVariables()

void ERF::appendPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
185 {
186  ParmParse pp(pp_prefix);
187 
188  Vector<std::string> plot_var_names(0);
189  if (pp.contains(pp_plot_var_names.c_str())) {
190  std::string nm;
191  int nPltVars = pp.countval(pp_plot_var_names.c_str());
192  for (int i = 0; i < nPltVars; i++) {
193  pp.get(pp_plot_var_names.c_str(), nm, i);
194  // Add the named variable to our list of plot variables
195  // if it is not already in the list
196  if (!containerHasElement(plot_var_names, nm)) {
197  plot_var_names.push_back(nm);
198  }
199  }
200  }
201 
202  Vector<std::string> tmp_plot_names(0);
203 #ifdef ERF_USE_PARTICLES
204  Vector<std::string> particle_mesh_plot_names;
205  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
206  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
207  std::string tmp(particle_mesh_plot_names[i]);
208  if (containerHasElement(plot_var_names, tmp) ) {
209  tmp_plot_names.push_back(tmp);
210  }
211  }
212 #endif
213 
214  {
215  Vector<std::string> microphysics_plot_names;
216  micro->GetPlotVarNames(microphysics_plot_names);
217  if (microphysics_plot_names.size() > 0) {
218  static bool first_call = true;
219  if (first_call) {
220  Print() << getEnumNameString(solverChoice.moisture_type)
221  << ": the following additional variables are available to plot:\n";
222  for (int i = 0; i < microphysics_plot_names.size(); i++) {
223  Print() << " " << microphysics_plot_names[i] << "\n";
224  }
225  first_call = false;
226  }
227  for (auto& plot_name : microphysics_plot_names) {
228  if (containerHasElement(plot_var_names, plot_name)) {
229  tmp_plot_names.push_back(plot_name);
230  }
231  }
232  }
233  }
234 
235  for (int i = 0; i < tmp_plot_names.size(); i++) {
236  a_plot_var_names.push_back( tmp_plot_names[i] );
237  }
238 
239  // Finally, check to see if we found all the requested variables
240  for (const auto& plot_name : plot_var_names) {
241  if (!containerHasElement(a_plot_var_names, plot_name)) {
242  if (amrex::ParallelDescriptor::IOProcessor()) {
243  Warning("\nWARNING: Requested to plot variable '" + plot_name + "' but it is not available");
244  }
245  }
246  }
247 }
bool containerHasElement(const V &iterable, const T &query)
Definition: ERF_Container.H:5
std::string pp_prefix
Definition: ERF.H:450
Here is the call graph for this function:

◆ AverageDown()

void ERF::AverageDown ( )
private
17 {
18  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
19 
20  int src_comp, num_comp;
21  for (int lev = finest_level-1; lev >= 0; --lev)
22  {
23  // If anelastic we don't average down rho because rho == rho0.
24  if (solverChoice.anelastic[lev]) {
25  src_comp = 1;
26  } else {
27  src_comp = 0;
28  }
29  num_comp = vars_new[0][Vars::cons].nComp() - src_comp;
30  AverageDownTo(lev,src_comp,num_comp);
31  }
32 }
void AverageDownTo(int crse_lev, int scomp, int ncomp)
Definition: ERF_AverageDown.cpp:36
CouplingType coupling_type
Definition: ERF_DataStruct.H:847

◆ AverageDownTo()

void ERF::AverageDownTo ( int  crse_lev,
int  scomp,
int  ncomp 
)
37 {
38  if (solverChoice.anelastic[crse_lev]) {
39  AMREX_ALWAYS_ASSERT(scomp == 1);
40  } else {
41  AMREX_ALWAYS_ASSERT(scomp == 0);
42  }
43 
44  AMREX_ALWAYS_ASSERT(ncomp == vars_new[crse_lev][Vars::cons].nComp() - scomp);
45  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
46 
47  // ******************************************************************************************
48  // First do cell-centered quantities
49  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
50  // m is the map scale factor at cell centers
51  // Here we multiply (rho S) by detJ and divide (rho S) by m^2 before average down
52  // ******************************************************************************************
53  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
54  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
55  const Box& bx = mfi.tilebox();
56  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
57  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
58  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
59  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
60  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
61  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
62  {
63  cons_arr(i,j,k,scomp+n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
64  });
65  } else {
66  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
67  {
68  cons_arr(i,j,k,scomp+n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
69  });
70  }
71  } // mfi
72  } // lev
73 
74  int fine_lev = crse_lev+1;
75 
76  if (interpolation_type == StateInterpType::Perturbational) {
77  // Make the fine rho and (rho theta) be perturbational
78  MultiFab::Divide(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
79  Rho_comp,RhoTheta_comp,1,IntVect{0});
80  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
81  BaseState::r0_comp,Rho_comp,1,IntVect{0});
82  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
83  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
84 
85  // Make the crse rho and (rho theta) be perturbational
86  MultiFab::Divide(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
87  Rho_comp,RhoTheta_comp,1,IntVect{0});
88  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
89  BaseState::r0_comp,Rho_comp,1,IntVect{0});
90  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
91  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
92  }
93 
94  average_down(vars_new[crse_lev+1][Vars::cons],vars_new[crse_lev ][Vars::cons],
95  scomp, ncomp, refRatio(crse_lev));
96 
97  if (interpolation_type == StateInterpType::Perturbational) {
98  // Restore the fine data to what it was
99  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
100  BaseState::r0_comp,Rho_comp,1,IntVect{0});
101  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
102  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
103  MultiFab::Multiply(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
104  Rho_comp,RhoTheta_comp,1,IntVect{0});
105 
106  // Make the crse data be full values not perturbational
107  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
108  BaseState::r0_comp,Rho_comp,1,IntVect{0});
109  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
110  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
111  MultiFab::Multiply(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
112  Rho_comp,RhoTheta_comp,1,IntVect{0});
113  }
114 
115  vars_new[crse_lev][Vars::cons].FillBoundary(geom[crse_lev].periodicity());
116 
117  // ******************************************************************************************
118  // Here we multiply (rho S) by m^2 and divide by detJ after average down
119  // ******************************************************************************************
120  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
121  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
122  const Box& bx = mfi.tilebox();
123  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
124  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
125  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
126  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
127  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
128  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
129  {
130  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
131  });
132  } else {
133  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
134  {
135  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
136  });
137  }
138  } // mfi
139  } // lev
140 
141  // ******************************************************************************************
142  // Now average down momenta.
143  // Note that vars_new holds velocities not momenta, but we want to do conservative
144  // averaging so we first convert to momentum, then average down, then convert
145  // back to velocities -- only on the valid region
146  // ******************************************************************************************
147  for (int lev = crse_lev; lev <= crse_lev+1; lev++)
148  {
149  // FillBoundary for density so we can go back and forth between velocity and momentum
150  vars_new[lev][Vars::cons].FillBoundary(geom[lev].periodicity());
151 
152  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect(0,0,0),
153  vars_new[lev][Vars::yvel], IntVect(0,0,0),
154  vars_new[lev][Vars::zvel], IntVect(0,0,0),
155  vars_new[lev][Vars::cons],
156  rU_new[lev],
157  rV_new[lev],
158  rW_new[lev],
159  Geom(lev).Domain(),
161  }
162 
163  average_down_faces(rU_new[crse_lev+1], rU_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
164  average_down_faces(rV_new[crse_lev+1], rV_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
165  average_down_faces(rW_new[crse_lev+1], rW_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
166 
167  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
169  vars_new[lev][Vars::yvel],
170  vars_new[lev][Vars::zvel],
171  vars_new[lev][Vars::cons],
172  rU_new[lev],
173  rV_new[lev],
174  rW_new[lev],
175  Geom(lev).Domain(),
177  }
178 }
void MomentumToVelocity(MultiFab &xvel, MultiFab &yvel, MultiFab &zvel, const MultiFab &density, const MultiFab &xmom_in, const MultiFab &ymom_in, const MultiFab &zmom_in, const Box &domain, const Vector< BCRec > &domain_bcs_type_h)
Definition: ERF_MomentumToVelocity.cpp:25
static StateInterpType interpolation_type
Definition: ERF.H:1058
@ th0_comp
Definition: ERF_IndexDefines.H:66
Here is the call graph for this function:

◆ build_fine_mask()

MultiFab & ERF::build_fine_mask ( int  level)

Helper function for constructing a fine mask, that is, a MultiFab masking coarser data at a lower level by zeroing out covered cells in the fine mask MultiFab we compute.

Parameters
levelFine level index which masks underlying coarser data
722 {
723  // Mask for zeroing covered cells
724  AMREX_ASSERT(level > 0);
725 
726  const BoxArray& cba = grids[level-1];
727  const DistributionMapping& cdm = dmap[level-1];
728 
729  // TODO -- we should make a vector of these a member of ERF class
730  fine_mask.define(cba, cdm, 1, 0, MFInfo());
731  fine_mask.setVal(1.0);
732 
733  BoxArray fba = grids[level];
734  iMultiFab ifine_mask = makeFineMask(cba, cdm, fba, ref_ratio[level-1], 1, 0);
735 
736  const auto fma = fine_mask.arrays();
737  const auto ifma = ifine_mask.arrays();
738  ParallelFor(fine_mask, [=] AMREX_GPU_DEVICE(int bno, int i, int j, int k) noexcept
739  {
740  fma[bno](i,j,k) = ifma[bno](i,j,k);
741  });
742 
743  return fine_mask;
744 }
amrex::MultiFab fine_mask
Definition: ERF.H:1182

◆ ClearLevel()

void ERF::ClearLevel ( int  lev)
override
651 {
652  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
653  vars_new[lev][var_idx].clear();
654  vars_old[lev][var_idx].clear();
655  }
656 
657  base_state[lev].clear();
658 
659  rU_new[lev].clear();
660  rU_old[lev].clear();
661  rV_new[lev].clear();
662  rV_old[lev].clear();
663  rW_new[lev].clear();
664  rW_old[lev].clear();
665 
666  if (lev > 0) {
667  zmom_crse_rhs[lev].clear();
668  }
669 
671  pp_inc[lev].clear();
672  }
673 
674  // Clears the integrator memory
675  mri_integrator_mem[lev].reset();
676 
677  // Clears the physical boundary condition routines
678  physbcs_cons[lev].reset();
679  physbcs_u[lev].reset();
680  physbcs_v[lev].reset();
681  physbcs_w[lev].reset();
682  physbcs_base[lev].reset();
683 
684  // Clears the flux register array
685  advflux_reg[lev]->reset();
686 }
amrex::Vector< amrex::MultiFab > pp_inc
Definition: ERF.H:729
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
Definition: ERF.H:856
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
Definition: ERF.H:736
@ NumTypes
Definition: ERF_IndexDefines.H:144
bool project_initial_velocity
Definition: ERF_DataStruct.H:813

◆ cloud_fraction()

Real ERF::cloud_fraction ( amrex::Real  time)
452 {
453  BL_PROFILE("ERF::cloud_fraction()");
454 
455  int lev = 0;
456  // This holds all of qc
457  MultiFab qc(vars_new[lev][Vars::cons],make_alias,RhoQ2_comp,1);
458 
459  int direction = 2; // z-direction
460  Box const& domain = geom[lev].Domain();
461 
462  auto const& qc_arr = qc.const_arrays();
463 
464  // qc_2d is an BaseFab<int> holding the max value over the column
465  auto qc_2d = ReduceToPlane<ReduceOpMax,int>(direction, domain, qc,
466  [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) -> int
467  {
468  if (qc_arr[box_no](i,j,k) > 0) {
469  return 1;
470  } else {
471  return 0;
472  }
473  });
474 
475  auto* p = qc_2d.dataPtr();
476 
477  Long numpts = qc_2d.numPts();
478 
479  AMREX_ASSERT(numpts < Long(std::numeric_limits<int>::max));
480 
481 #if 1
482  if (ParallelDescriptor::UseGpuAwareMpi()) {
483  ParallelDescriptor::ReduceIntMax(p,static_cast<int>(numpts));
484  } else {
485  Gpu::PinnedVector<int> hv(numpts);
486  Gpu::copyAsync(Gpu::deviceToHost, p, p+numpts, hv.data());
487  Gpu::streamSynchronize();
488  ParallelDescriptor::ReduceIntMax(hv.data(),static_cast<int>(numpts));
489  Gpu::copyAsync(Gpu::hostToDevice, hv.data(), hv.data()+numpts, p);
490  }
491 
492  // Sum over component 0
493  Long num_cloudy = qc_2d.template sum<RunOn::Device>(0);
494 
495 #else
496  //
497  // We need this if we allow domain decomposition in the vertical
498  // but for now we leave it commented out
499  //
500  Long num_cloudy = Reduce::Sum<Long>(numpts,
501  [=] AMREX_GPU_DEVICE (Long i) -> Long {
502  if (p[i] == 1) {
503  return 1;
504  } else {
505  return 0;
506  }
507  });
508  ParallelDescriptor::ReduceLongSum(num_cloudy);
509 #endif
510 
511  Real num_total = qc_2d.box().d_numPts();
512 
513  Real cloud_frac = num_cloudy / num_total;
514 
515  return cloud_frac;
516 }
#define RhoQ2_comp
Definition: ERF_IndexDefines.H:43
@ qc
Definition: ERF_SatAdj.H:36

◆ compute_divergence()

void ERF::compute_divergence ( int  lev,
amrex::MultiFab &  rhs,
amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM >  rho0_u_const,
amrex::Geometry const &  geom_at_lev 
)

Project the single-level velocity field to enforce incompressibility Note that the level may or may not be level 0.

11 {
12  BL_PROFILE("ERF::compute_divergence()");
13 
14  auto dxInv = geom_at_lev.InvCellSizeArray();
15 
16  // ****************************************************************************
17  // Compute divergence which will form RHS
18  // Note that we replace "rho0w" with the contravariant momentum, Omega
19  // ****************************************************************************
20  if (solverChoice.terrain_type == TerrainType::EB)
21  {
22  bool already_on_centroids = true;
23  EB_computeDivergence(rhs, rho0_u_const, geom_at_lev, already_on_centroids);
24  }
25  else if (SolverChoice::mesh_type == MeshType::ConstantDz)
26  {
27  computeDivergence(rhs, rho0_u_const, geom_at_lev);
28  }
29  else
30  {
31  for ( MFIter mfi(rhs,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Box bx = mfi.tilebox();
34  const Array4<Real const>& rho0u_arr = rho0_u_const[0]->const_array(mfi);
35  const Array4<Real const>& rho0v_arr = rho0_u_const[1]->const_array(mfi);
36  const Array4<Real const>& rho0w_arr = rho0_u_const[2]->const_array(mfi);
37  const Array4<Real >& rhs_arr = rhs.array(mfi);
38 
39  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
40  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
41 
42  if (SolverChoice::mesh_type == MeshType::StretchedDz) {
43  Real* stretched_dz_d_ptr = stretched_dz_d[lev].data();
44  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
45  Real dz = stretched_dz_d_ptr[k];
46  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
47  rhs_arr(i,j,k) = mfsq * ( (rho0u_arr(i+1,j ,k ) - rho0u_arr(i,j,k)) * dxInv[0]
48  +(rho0v_arr(i ,j+1,k ) - rho0v_arr(i,j,k)) * dxInv[1]
49  +(rho0w_arr(i ,j ,k+1) - rho0w_arr(i,j,k)) / dz );
50  });
51 
52  } else {
53 
54  //
55  // Note we compute the divergence using "rho0w" == Omega
56  //
57  const Array4<Real const>& ax_arr = ax[lev]->const_array(mfi);
58  const Array4<Real const>& ay_arr = ay[lev]->const_array(mfi);
59  const Array4<Real const>& dJ_arr = detJ_cc[lev]->const_array(mfi);
60  //
61  // az == 1 for terrain-fitted coordinates
62  //
63  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
64  {
65  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
66  rhs_arr(i,j,k) = mfsq * ( (ax_arr(i+1,j,k)*rho0u_arr(i+1,j,k) - ax_arr(i,j,k)*rho0u_arr(i,j,k)) * dxInv[0]
67  +(ay_arr(i,j+1,k)*rho0v_arr(i,j+1,k) - ay_arr(i,j,k)*rho0v_arr(i,j,k)) * dxInv[1]
68  +( rho0w_arr(i,j,k+1) - rho0w_arr(i,j,k)) * dxInv[2] ) / dJ_arr(i,j,k);
69  });
70  }
71  } // mfi
72  }
73 }
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
Definition: ERF.H:817
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
Definition: ERF.H:818
static TerrainType terrain_type
Definition: ERF_DataStruct.H:749

◆ ComputeDt()

void ERF::ComputeDt ( int  step = -1)
private

Function that calls estTimeStep for each level

12 {
13  Vector<Real> dt_tmp(finest_level+1);
14 
15  for (int lev = 0; lev <= finest_level; ++lev)
16  {
17  dt_tmp[lev] = estTimeStep(lev, dt_mri_ratio[lev]);
18  }
19 
20  ParallelDescriptor::ReduceRealMin(&dt_tmp[0], dt_tmp.size());
21 
22  Real dt_0 = dt_tmp[0];
23  int n_factor = 1;
24  for (int lev = 0; lev <= finest_level; ++lev) {
25  dt_tmp[lev] = amrex::min(dt_tmp[lev], change_max*dt[lev]);
26  n_factor *= nsubsteps[lev];
27  dt_0 = amrex::min(dt_0, n_factor*dt_tmp[lev]);
28  if (step == 0){
29  dt_0 *= init_shrink;
30  if (verbose && init_shrink != 1.0) {
31  Print() << "Timestep 0: shrink initial dt at level " << lev << " by " << init_shrink << std::endl;
32  }
33  }
34  }
35  // Limit dt's by the value of stop_time.
36  const Real eps = 1.e-3*dt_0;
37  if (t_new[0] + dt_0 > stop_time - eps) {
38  dt_0 = stop_time - t_new[0];
39  }
40 
41  dt[0] = dt_0;
42  for (int lev = 1; lev <= finest_level; ++lev) {
43  dt[lev] = dt[lev-1] / nsubsteps[lev];
44  }
45 }
amrex::Real stop_time
Definition: ERF.H:909
amrex::Real estTimeStep(int lev, long &dt_fast_ratio) const
Definition: ERF_ComputeTimestep.cpp:54
amrex::Vector< int > nsubsteps
Definition: ERF.H:706
static amrex::Real init_shrink
Definition: ERF.H:920
static amrex::Real change_max
Definition: ERF.H:921

◆ ComputeGhostCells()

static AMREX_FORCE_INLINE int ERF::ComputeGhostCells ( const SolverChoice sc)
inlinestaticprivate
1189  {
1190  int ngrow = 0;
1191 
1192  if (sc.use_num_diff)
1193  {
1194  ngrow = 3;
1195  } else {
1196  if (
1203  { ngrow = 3; }
1204  else if (
1211  { ngrow = 3; }
1212  else if (
1221  { ngrow = 3; }
1222  else if (
1231  { ngrow = 4; }
1232  else
1233  {
1234  if (sc.terrain_type == TerrainType::EB){
1235  ngrow = 3;
1236  } else {
1237  ngrow = 2;
1238  }
1239  }
1240  }
1241 
1242  return ngrow;
1243  }
@ Centered_6th
AdvType moistscal_horiz_adv_type
Definition: ERF_AdvStruct.H:399
AdvType dycore_vert_adv_type
Definition: ERF_AdvStruct.H:396
AdvType moistscal_vert_adv_type
Definition: ERF_AdvStruct.H:400
AdvType dryscal_horiz_adv_type
Definition: ERF_AdvStruct.H:397
AdvType dycore_horiz_adv_type
Definition: ERF_AdvStruct.H:395
AdvType dryscal_vert_adv_type
Definition: ERF_AdvStruct.H:398
AdvChoice advChoice
Definition: ERF_DataStruct.H:763

◆ Construct_ERFFillPatchers()

void ERF::Construct_ERFFillPatchers ( int  lev)
private
2180 {
2181  auto& fine_new = vars_new[lev];
2182  auto& crse_new = vars_new[lev-1];
2183  auto& ba_fine = fine_new[Vars::cons].boxArray();
2184  auto& ba_crse = crse_new[Vars::cons].boxArray();
2185  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2186  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2187 
2188  int ncomp = vars_new[lev][Vars::cons].nComp();
2189 
2190  FPr_c.emplace_back(ba_fine, dm_fine, geom[lev] ,
2191  ba_crse, dm_crse, geom[lev-1],
2192  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2193  FPr_u.emplace_back(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2194  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2195  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2196  FPr_v.emplace_back(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2197  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2198  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2199  FPr_w.emplace_back(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2200  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2201  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2202 }
int cf_set_width
Definition: ERF.H:787

◆ DataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DataLog ( int  i)
inlineprivate
1254  {
1255  return *datalog[i];
1256  }
amrex::Vector< std::unique_ptr< std::fstream > > datalog
Definition: ERF.H:1430

◆ DataLogName()

std::string ERF::DataLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith datalog file.

1446 { return datalogname[i]; }
amrex::Vector< std::string > datalogname
Definition: ERF.H:1433

◆ Define_ERFFillPatchers()

void ERF::Define_ERFFillPatchers ( int  lev)
private
2206 {
2207  auto& fine_new = vars_new[lev];
2208  auto& crse_new = vars_new[lev-1];
2209  auto& ba_fine = fine_new[Vars::cons].boxArray();
2210  auto& ba_crse = crse_new[Vars::cons].boxArray();
2211  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2212  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2213 
2214  int ncomp = fine_new[Vars::cons].nComp();
2215 
2216  FPr_c[lev-1].Define(ba_fine, dm_fine, geom[lev] ,
2217  ba_crse, dm_crse, geom[lev-1],
2218  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2219  FPr_u[lev-1].Define(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2220  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2221  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2222  FPr_v[lev-1].Define(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2223  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2224  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2225  FPr_w[lev-1].Define(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2226  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2227  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2228 }

◆ DerDataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DerDataLog ( int  i)
inlineprivate
1261  {
1262  return *der_datalog[i];
1263  }
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
Definition: ERF.H:1431

◆ DerDataLogName()

std::string ERF::DerDataLogName ( int  i) const
inlineprivatenoexcept
1447 { return der_datalogname[i]; }
amrex::Vector< std::string > der_datalogname
Definition: ERF.H:1434

◆ derive_diag_profiles()

void ERF::derive_diag_profiles ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
205 {
206  // We assume that this is always called at level 0
207  int lev = 0;
208 
209  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
210  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
211  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, uw, vv, vw, ww, uth, vth, wth,
212  // 0 1 2 3 4 5 6 7 8 9 10 11 12 13
213  // thth, uiuiu, uiuiv, uiuiw, p, pu, pv, pw, qv, qc, qr, wqv, wqc, wqr,
214  // 14 15 16 17 18 19 20 21 22 23 24 25 26 27
215  // qi, qs, qg, wthv
216  // 28 29 30 31
217  MultiFab mf_out(grids[lev], dmap[lev], 32, 0);
218 
219  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
220 
221  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
222  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
223  MultiFab w_cc(mf_vels, make_alias, 2, 1); // w at cell centers
224 
225  average_face_to_cellcenter(mf_vels,0,
226  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
227 
228  int zdir = 2;
229  auto domain = geom[0].Domain();
230 
231  // Sum in the horizontal plane
232  h_avg_u = sumToLine(mf_vels ,0,1,domain,zdir);
233  h_avg_v = sumToLine(mf_vels ,1,1,domain,zdir);
234  h_avg_w = sumToLine(mf_vels ,2,1,domain,zdir);
235 
236  int hu_size = h_avg_u.size();
237 
238  // Divide by the total number of cells we are averaging over
239  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
240  for (int k = 0; k < hu_size; ++k) {
241  h_avg_u[k] /= area_z; h_avg_v[k] /= area_z; h_avg_w[k] /= area_z;
242  }
243 
244  Gpu::DeviceVector<Real> d_avg_u(hu_size, Real(0.0));
245  Gpu::DeviceVector<Real> d_avg_v(hu_size, Real(0.0));
246  Gpu::DeviceVector<Real> d_avg_w(hu_size, Real(0.0));
247 
248 #if 0
249  auto* avg_u_ptr = d_avg_u.data();
250  auto* avg_v_ptr = d_avg_v.data();
251  auto* avg_w_ptr = d_avg_w.data();
252 #endif
253 
254  Gpu::copy(Gpu::hostToDevice, h_avg_u.begin(), h_avg_u.end(), d_avg_u.begin());
255  Gpu::copy(Gpu::hostToDevice, h_avg_v.begin(), h_avg_v.end(), d_avg_v.begin());
256  Gpu::copy(Gpu::hostToDevice, h_avg_w.begin(), h_avg_w.end(), d_avg_w.begin());
257 
258  int nvars = vars_new[lev][Vars::cons].nComp();
259  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
260 
261  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
262 
263  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
264 
265  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
266  {
267  const Box& bx = mfi.tilebox();
268  const Array4<Real>& fab_arr = mf_out.array(mfi);
269  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
270  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
271  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
272  const Array4<Real>& cons_arr = mf_cons.array(mfi);
273  const Array4<Real>& p0_arr = p_hse.array(mfi);
274  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
275  Array4<const Real>{};
276 
277  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
278  {
279  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
280  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
281  fab_arr(i, j, k, 1) = theta;
282  Real ksgs = 0.0;
283  if (l_use_KE) {
284  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
285  }
286  fab_arr(i, j, k, 2) = ksgs;
287 #if 1
288  if (l_use_kturb) {
289  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
290  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
291  } else {
292  fab_arr(i, j, k, 3) = 0.0;
293  fab_arr(i, j, k, 4) = 0.0;
294  }
295 #else
296  // Here we hijack the "Kturb" variable name to print out the resolved kinetic energy
297  Real upert = u_cc_arr(i,j,k) - avg_u_ptr[k];
298  Real vpert = v_cc_arr(i,j,k) - avg_v_ptr[k];
299  Real wpert = w_cc_arr(i,j,k) - avg_w_ptr[k];
300  fab_arr(i, j, k, 3) = 0.5 * (upert*upert + vpert*vpert + wpert*wpert);
301 #endif
302  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
303  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
304  fab_arr(i, j, k, 7) = u_cc_arr(i,j,k) * w_cc_arr(i,j,k); // u*w
305  fab_arr(i, j, k, 8) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
306  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * w_cc_arr(i,j,k); // v*w
307  fab_arr(i, j, k,10) = w_cc_arr(i,j,k) * w_cc_arr(i,j,k); // w*w
308  fab_arr(i, j, k,11) = u_cc_arr(i,j,k) * theta; // u*th
309  fab_arr(i, j, k,12) = v_cc_arr(i,j,k) * theta; // v*th
310  fab_arr(i, j, k,13) = w_cc_arr(i,j,k) * theta; // w*th
311  fab_arr(i, j, k,14) = theta * theta; // th*th
312 
313  // if the number of fields is changed above, then be sure to update
314  // the following def!
315  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,8) + fab_arr(i,j,k,10);
316  fab_arr(i, j, k,15) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
317  fab_arr(i, j, k,16) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
318  fab_arr(i, j, k,17) = uiui * w_cc_arr(i,j,k); // (ui*ui)*w
319 
320  if (!use_moisture) {
321  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
322  p -= p0_arr(i,j,k);
323  fab_arr(i, j, k,18) = p; // p
324  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
325  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
326  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
327  fab_arr(i, j, k,22) = 0.; // qv
328  fab_arr(i, j, k,23) = 0.; // qc
329  fab_arr(i, j, k,24) = 0.; // qr
330  fab_arr(i, j, k,25) = 0.; // w*qv
331  fab_arr(i, j, k,26) = 0.; // w*qc
332  fab_arr(i, j, k,27) = 0.; // w*qr
333  fab_arr(i, j, k,28) = 0.; // qi
334  fab_arr(i, j, k,29) = 0.; // qs
335  fab_arr(i, j, k,30) = 0.; // qg
336  fab_arr(i, j, k,31) = 0.; // w*thv
337  }
338  });
339  } // mfi
340 
341  if (use_moisture)
342  {
343  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
344 
345  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
346  {
347  const Box& bx = mfi.tilebox();
348  const Array4<Real>& fab_arr = mf_out.array(mfi);
349  const Array4<Real>& cons_arr = mf_cons.array(mfi);
350  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
351  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
352  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
353  const Array4<Real>& p0_arr = p_hse.array(mfi);
354 
355  int rhoqr_comp = solverChoice.moisture_indices.qr;
356 
357  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
358  {
359  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
360  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
361  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
362  Real(0.0);
363  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
364 
365  p -= p0_arr(i,j,k);
366  fab_arr(i, j, k,18) = p; // p
367  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
368  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
369  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
370  fab_arr(i, j, k,22) = qv; // qv
371  fab_arr(i, j, k,23) = qc; // qc
372  fab_arr(i, j, k,24) = qr; // qr
373  fab_arr(i, j, k,25) = w_cc_arr(i,j,k) * qv; // w*qv
374  fab_arr(i, j, k,26) = w_cc_arr(i,j,k) * qc; // w*qc
375  fab_arr(i, j, k,27) = w_cc_arr(i,j,k) * qr; // w*qr
376  if (n_qstate_moist > 3) {
377  fab_arr(i, j, k,28) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
378  fab_arr(i, j, k,29) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
379  fab_arr(i, j, k,30) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
380  } else {
381  fab_arr(i, j, k,28) = 0.0; // qi
382  fab_arr(i, j, k,29) = 0.0; // qs
383  fab_arr(i, j, k,30) = 0.0; // qg
384  }
385  Real ql = qc + qr;
386  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
387  Real thv = theta * (1 + 0.61*qv - ql);
388  fab_arr(i, j, k,31) = w_cc_arr(i,j,k) * thv; // w*thv
389  });
390  } // mfi
391  } // use_moisture
392 
393  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
394  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
395  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
396  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
397  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
398  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
399  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
400  h_avg_uw = sumToLine(mf_out, 7,1,domain,zdir);
401  h_avg_vv = sumToLine(mf_out, 8,1,domain,zdir);
402  h_avg_vw = sumToLine(mf_out, 9,1,domain,zdir);
403  h_avg_ww = sumToLine(mf_out,10,1,domain,zdir);
404  h_avg_uth = sumToLine(mf_out,11,1,domain,zdir);
405  h_avg_vth = sumToLine(mf_out,12,1,domain,zdir);
406  h_avg_wth = sumToLine(mf_out,13,1,domain,zdir);
407  h_avg_thth = sumToLine(mf_out,14,1,domain,zdir);
408  h_avg_uiuiu = sumToLine(mf_out,15,1,domain,zdir);
409  h_avg_uiuiv = sumToLine(mf_out,16,1,domain,zdir);
410  h_avg_uiuiw = sumToLine(mf_out,17,1,domain,zdir);
411  h_avg_p = sumToLine(mf_out,18,1,domain,zdir);
412  h_avg_pu = sumToLine(mf_out,19,1,domain,zdir);
413  h_avg_pv = sumToLine(mf_out,20,1,domain,zdir);
414  h_avg_pw = sumToLine(mf_out,21,1,domain,zdir);
415  h_avg_qv = sumToLine(mf_out,22,1,domain,zdir);
416  h_avg_qc = sumToLine(mf_out,23,1,domain,zdir);
417  h_avg_qr = sumToLine(mf_out,24,1,domain,zdir);
418  h_avg_wqv = sumToLine(mf_out,25,1,domain,zdir);
419  h_avg_wqc = sumToLine(mf_out,26,1,domain,zdir);
420  h_avg_wqr = sumToLine(mf_out,27,1,domain,zdir);
421  h_avg_qi = sumToLine(mf_out,28,1,domain,zdir);
422  h_avg_qs = sumToLine(mf_out,29,1,domain,zdir);
423  h_avg_qg = sumToLine(mf_out,30,1,domain,zdir);
424  h_avg_wthv = sumToLine(mf_out,31,1,domain,zdir);
425 
426  // Divide by the total number of cells we are averaging over
427  int h_avg_u_size = static_cast<int>(h_avg_u.size());
428  for (int k = 0; k < h_avg_u_size; ++k) {
429  h_avg_rho[k] /= area_z;
430  h_avg_ksgs[k] /= area_z;
431  h_avg_Kmv[k] /= area_z;
432  h_avg_Khv[k] /= area_z;
433  h_avg_th[k] /= area_z;
434  h_avg_thth[k] /= area_z;
435  h_avg_uu[k] /= area_z;
436  h_avg_uv[k] /= area_z;
437  h_avg_uw[k] /= area_z;
438  h_avg_vv[k] /= area_z;
439  h_avg_vw[k] /= area_z;
440  h_avg_ww[k] /= area_z;
441  h_avg_uth[k] /= area_z;
442  h_avg_vth[k] /= area_z;
443  h_avg_wth[k] /= area_z;
444  h_avg_uiuiu[k] /= area_z;
445  h_avg_uiuiv[k] /= area_z;
446  h_avg_uiuiw[k] /= area_z;
447  h_avg_p[k] /= area_z;
448  h_avg_pu[k] /= area_z;
449  h_avg_pv[k] /= area_z;
450  h_avg_pw[k] /= area_z;
451  h_avg_qv[k] /= area_z;
452  h_avg_qc[k] /= area_z;
453  h_avg_qr[k] /= area_z;
454  h_avg_wqv[k] /= area_z;
455  h_avg_wqc[k] /= area_z;
456  h_avg_wqr[k] /= area_z;
457  h_avg_qi[k] /= area_z;
458  h_avg_qs[k] /= area_z;
459  h_avg_qg[k] /= area_z;
460  h_avg_wthv[k] /= area_z;
461  }
462 
463 #if 0
464  // Here we print the integrated total kinetic energy as computed in the 1D profile above
465  Real sum = 0.;
466  Real dz = geom[0].ProbHi(2) / static_cast<Real>(h_avg_u_size);
467  for (int k = 0; k < h_avg_u_size; ++k) {
468  sum += h_avg_kturb[k] * h_avg_rho[k] * dz;
469  }
470  amrex::Print() << "ITKE " << time << " " << sum << " using " << h_avg_u_size << " " << dz << std::endl;
471 #endif
472 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getPgivenRTh(const amrex::Real rhotheta, const amrex::Real qv=0.)
Definition: ERF_EOS.H:81
#define RhoQ3_comp
Definition: ERF_IndexDefines.H:44
#define RhoQ6_comp
Definition: ERF_IndexDefines.H:47
#define RhoQ5_comp
Definition: ERF_IndexDefines.H:46
#define RhoKE_comp
Definition: ERF_IndexDefines.H:38
@ Theta_v
Definition: ERF_IndexDefines.H:176
@ Mom_v
Definition: ERF_IndexDefines.H:175
@ theta
Definition: ERF_MM5.H:20
@ qv
Definition: ERF_Kessler.H:28
Here is the call graph for this function:

◆ derive_diag_profiles_stag()

void ERF::derive_diag_profiles_stag ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities at staggered heights.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
311 {
312  // We assume that this is always called at level 0
313  int lev = 0;
314 
315  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
316  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
317  // Note: "uiui" == u_i*u_i = u*u + v*v + w*w
318  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, vv, uth, vth,
319  // indices: 0 1 2 3 4 5 6 7 8 9
320  // thth, uiuiu, uiuiv, p, pu, pv, qv, qc, qr, qi, qs, qg
321  // 10 11 12 13 14 15 16 17 18 19 20 21
322  MultiFab mf_out(grids[lev], dmap[lev], 22, 0);
323 
324  // This will hold uw, vw, ww, wth, uiuiw, pw, wqv, wqc, wqr, wthv
325  // indices: 0 1 2 3 4 5 6 7 8 9
326  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 10, 0);
327 
328  // This is only used to average u and v; w is not averaged to cell centers
329  MultiFab mf_vels(grids[lev], dmap[lev], 2, 0);
330 
331  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
332  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
333  MultiFab w_fc(vars_new[lev][Vars::zvel], make_alias, 0, 1); // w at face centers (staggered)
334 
335  int zdir = 2;
336  auto domain = geom[0].Domain();
337  Box stag_domain = domain;
338  stag_domain.convert(IntVect(0,0,1));
339 
340  int nvars = vars_new[lev][Vars::cons].nComp();
341  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
342 
343  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
344 
345  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
346 
347  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
348  {
349  const Box& bx = mfi.tilebox();
350  const Array4<Real>& fab_arr = mf_out.array(mfi);
351  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
352  const Array4<Real>& u_arr = vars_new[lev][Vars::xvel].array(mfi);
353  const Array4<Real>& v_arr = vars_new[lev][Vars::yvel].array(mfi);
354  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
355  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
356  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
357  const Array4<Real>& cons_arr = mf_cons.array(mfi);
358  const Array4<Real>& p0_arr = p_hse.array(mfi);
359  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
360  Array4<const Real>{};
361 
362  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
363  {
364  u_cc_arr(i,j,k) = 0.5 * (u_arr(i,j,k) + u_arr(i+1,j ,k));
365  v_cc_arr(i,j,k) = 0.5 * (v_arr(i,j,k) + v_arr(i ,j+1,k));
366 
367  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
368  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
369  fab_arr(i, j, k, 1) = theta;
370  Real ksgs = 0.0;
371  if (l_use_KE) {
372  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
373  }
374  fab_arr(i, j, k, 2) = ksgs;
375  if (l_use_kturb) {
376  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
377  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
378  } else {
379  fab_arr(i, j, k, 3) = 0.0;
380  fab_arr(i, j, k, 4) = 0.0;
381  }
382  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
383  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
384  fab_arr(i, j, k, 7) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
385  fab_arr(i, j, k, 8) = u_cc_arr(i,j,k) * theta; // u*th
386  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * theta; // v*th
387  fab_arr(i, j, k,10) = theta * theta; // th*th
388 
389  Real wcc = 0.5 * (w_fc_arr(i,j,k) + w_fc_arr(i,j,k+1));
390 
391  // if the number of fields is changed above, then be sure to update
392  // the following def!
393  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,7) + wcc*wcc;
394  fab_arr(i, j, k,11) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
395  fab_arr(i, j, k,12) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
396 
397  if (!use_moisture) {
398  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
399  p -= p0_arr(i,j,k);
400  fab_arr(i, j, k,13) = p; // p
401  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
402  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
403  fab_arr(i, j, k,16) = 0.; // qv
404  fab_arr(i, j, k,17) = 0.; // qc
405  fab_arr(i, j, k,18) = 0.; // qr
406  fab_arr(i, j, k,19) = 0.; // qi
407  fab_arr(i, j, k,20) = 0.; // qs
408  fab_arr(i, j, k,21) = 0.; // qg
409  }
410  });
411 
412  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
413  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
414  {
415  // average to z faces (first to cell centers, then in z)
416  Real uface = 0.25 * ( u_arr(i ,j,k) + u_arr(i ,j,k-1)
417  + u_arr(i+1,j,k) + u_arr(i+1,j,k-1));
418  Real vface = 0.25 * ( v_arr(i,j ,k) + v_arr(i,j ,k-1)
419  + v_arr(i,j+1,k) + v_arr(i,j+1,k-1));
420  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
421  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
422  Real thface = 0.5*(theta0 + theta1);
423  fab_arr_stag(i,j,k,0) = uface * w_fc_arr(i,j,k); // u*w
424  fab_arr_stag(i,j,k,1) = vface * w_fc_arr(i,j,k); // v*w
425  fab_arr_stag(i,j,k,2) = w_fc_arr(i,j,k) * w_fc_arr(i,j,k); // w*w
426  fab_arr_stag(i,j,k,3) = thface * w_fc_arr(i,j,k); // th*w
427  Real uiui = uface*uface + vface*vface + fab_arr_stag(i,j,k,2);
428  fab_arr_stag(i,j,k,4) = uiui * w_fc_arr(i,j,k); // (ui*ui)*w
429  if (!use_moisture) {
430  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp)) - p0_arr(i,j,k );
431  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp)) - p0_arr(i,j,k-1);
432  Real pface = 0.5 * (p0 + p1);
433  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
434  fab_arr_stag(i,j,k,6) = 0.; // w*qv
435  fab_arr_stag(i,j,k,7) = 0.; // w*qc
436  fab_arr_stag(i,j,k,8) = 0.; // w*qr
437  fab_arr_stag(i,j,k,9) = 0.; // w*thv
438  }
439  });
440 
441  } // mfi
442 
443  if (use_moisture)
444  {
445  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
446 
447  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
448  {
449  const Box& bx = mfi.tilebox();
450  const Array4<Real>& fab_arr = mf_out.array(mfi);
451  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
452  const Array4<Real>& cons_arr = mf_cons.array(mfi);
453  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
454  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
455  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
456  const Array4<Real>& p0_arr = p_hse.array(mfi);
457 
458  int rhoqr_comp = solverChoice.moisture_indices.qr;
459 
460  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
461  {
462  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
463  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
464  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
465  Real(0.0);
466  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
467 
468  p -= p0_arr(i,j,k);
469  fab_arr(i, j, k,13) = p; // p
470  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
471  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
472  fab_arr(i, j, k,16) = qv; // qv
473  fab_arr(i, j, k,17) = qc; // qc
474  fab_arr(i, j, k,18) = qr; // qr
475  if (n_qstate_moist > 3) { // SAM model
476  fab_arr(i, j, k,19) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
477  fab_arr(i, j, k,20) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
478  fab_arr(i, j, k,21) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
479  } else {
480  fab_arr(i, j, k,19) = 0.0; // qi
481  fab_arr(i, j, k,20) = 0.0; // qs
482  fab_arr(i, j, k,21) = 0.0; // qg
483  }
484  });
485 
486  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
487  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
488  {
489  Real qv0 = cons_arr(i,j,k ,RhoQ1_comp) / cons_arr(i,j,k ,Rho_comp);
490  Real qv1 = cons_arr(i,j,k-1,RhoQ1_comp) / cons_arr(i,j,k-1,Rho_comp);
491  Real qc0 = cons_arr(i,j,k ,RhoQ2_comp) / cons_arr(i,j,k ,Rho_comp);
492  Real qc1 = cons_arr(i,j,k-1,RhoQ2_comp) / cons_arr(i,j,k-1,Rho_comp);
493  Real qr0 = (rhoqr_comp > -1) ? cons_arr(i,j,k ,RhoQ3_comp) / cons_arr(i,j,k ,Rho_comp) :
494  Real(0.0);
495  Real qr1 = (rhoqr_comp > -1) ? cons_arr(i,j,k-1,RhoQ3_comp) / cons_arr(i,j,k-1,Rho_comp) :
496  Real(0.0);
497  Real qvface = 0.5 * (qv0 + qv1);
498  Real qcface = 0.5 * (qc0 + qc1);
499  Real qrface = 0.5 * (qr0 + qr1);
500 
501  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp), qv0) - p0_arr(i,j,k );
502  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp), qv1) - p0_arr(i,j,k-1);
503  Real pface = 0.5 * (p0 + p1);
504 
505  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
506  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
507  Real thface = 0.5*(theta0 + theta1);
508  Real ql = qcface + qrface;
509  Real thv = thface * (1 + 0.61*qvface - ql);
510 
511  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
512  fab_arr_stag(i,j,k,6) = qvface * w_fc_arr(i,j,k); // w*qv
513  fab_arr_stag(i,j,k,7) = qcface * w_fc_arr(i,j,k); // w*qc
514  fab_arr_stag(i,j,k,8) = qrface * w_fc_arr(i,j,k); // w*qr
515  fab_arr_stag(i,j,k,9) = thv * w_fc_arr(i,j,k); // w*thv
516  });
517  } // mfi
518  } // use_moisture
519 
520  // Sum in the horizontal plane
521  h_avg_u = sumToLine(u_cc,0,1, domain,zdir);
522  h_avg_v = sumToLine(v_cc,0,1, domain,zdir);
523  h_avg_w = sumToLine(w_fc,0,1,stag_domain,zdir);
524 
525  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
526  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
527  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
528  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
529  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
530  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
531  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
532  h_avg_vv = sumToLine(mf_out, 7,1,domain,zdir);
533  h_avg_uth = sumToLine(mf_out, 8,1,domain,zdir);
534  h_avg_vth = sumToLine(mf_out, 9,1,domain,zdir);
535  h_avg_thth = sumToLine(mf_out,10,1,domain,zdir);
536  h_avg_uiuiu = sumToLine(mf_out,11,1,domain,zdir);
537  h_avg_uiuiv = sumToLine(mf_out,12,1,domain,zdir);
538  h_avg_p = sumToLine(mf_out,13,1,domain,zdir);
539  h_avg_pu = sumToLine(mf_out,14,1,domain,zdir);
540  h_avg_pv = sumToLine(mf_out,15,1,domain,zdir);
541  h_avg_qv = sumToLine(mf_out,16,1,domain,zdir);
542  h_avg_qc = sumToLine(mf_out,17,1,domain,zdir);
543  h_avg_qr = sumToLine(mf_out,18,1,domain,zdir);
544  h_avg_qi = sumToLine(mf_out,19,1,domain,zdir);
545  h_avg_qs = sumToLine(mf_out,20,1,domain,zdir);
546  h_avg_qg = sumToLine(mf_out,21,1,domain,zdir);
547 
548  h_avg_uw = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
549  h_avg_vw = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
550  h_avg_ww = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
551  h_avg_wth = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
552  h_avg_uiuiw = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
553  h_avg_pw = sumToLine(mf_out_stag,5,1,stag_domain,zdir);
554  h_avg_wqv = sumToLine(mf_out_stag,6,1,stag_domain,zdir);
555  h_avg_wqc = sumToLine(mf_out_stag,7,1,stag_domain,zdir);
556  h_avg_wqr = sumToLine(mf_out_stag,8,1,stag_domain,zdir);
557  h_avg_wthv = sumToLine(mf_out_stag,9,1,stag_domain,zdir);
558 
559  // Divide by the total number of cells we are averaging over
560  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
561  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
562  for (int k = 0; k < unstag_size; ++k) {
563  h_avg_u[k] /= area_z;
564  h_avg_v[k] /= area_z;
565  h_avg_rho[k] /= area_z;
566  h_avg_ksgs[k] /= area_z;
567  h_avg_Kmv[k] /= area_z;
568  h_avg_Khv[k] /= area_z;
569  h_avg_th[k] /= area_z;
570  h_avg_thth[k] /= area_z;
571  h_avg_uu[k] /= area_z;
572  h_avg_uv[k] /= area_z;
573  h_avg_vv[k] /= area_z;
574  h_avg_uth[k] /= area_z;
575  h_avg_vth[k] /= area_z;
576  h_avg_uiuiu[k] /= area_z;
577  h_avg_uiuiv[k] /= area_z;
578  h_avg_p[k] /= area_z;
579  h_avg_pu[k] /= area_z;
580  h_avg_pv[k] /= area_z;
581  h_avg_qv[k] /= area_z;
582  h_avg_qc[k] /= area_z;
583  h_avg_qr[k] /= area_z;
584  h_avg_qi[k] /= area_z;
585  h_avg_qs[k] /= area_z;
586  h_avg_qg[k] /= area_z;
587  }
588 
589  for (int k = 0; k < unstag_size+1; ++k) { // staggered heights
590  h_avg_w[k] /= area_z;
591  h_avg_uw[k] /= area_z;
592  h_avg_vw[k] /= area_z;
593  h_avg_ww[k] /= area_z;
594  h_avg_wth[k] /= area_z;
595  h_avg_uiuiw[k] /= area_z;
596  h_avg_pw[k] /= area_z;
597  h_avg_wqv[k] /= area_z;
598  h_avg_wqc[k] /= area_z;
599  h_avg_wqr[k] /= area_z;
600  h_avg_wthv[k] /= area_z;
601  }
602 }
const Box zbx
Definition: ERF_DiffSetup.H:23
Here is the call graph for this function:

◆ derive_stress_profiles()

void ERF::derive_stress_profiles ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
480 {
481  int lev = 0;
482 
483  // This will hold the stress tensor components
484  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
485 
486  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
487 
488  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
489 
490  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
491  {
492  const Box& bx = mfi.tilebox();
493  const Array4<Real>& fab_arr = mf_out.array(mfi);
494 
495  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
496 
497  // NOTE: These are from the last RK stage...
498  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
499  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
500  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
501  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
502  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
503  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
504 
505  // These should be re-calculated during ERF_slow_rhs_post
506  // -- just vertical SFS kinematic heat flux for now
507  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
508  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
509  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
510  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
511  Array4<const Real>{};
512  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
513  Array4<const Real>{};
514  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
515 
516  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
517  {
518  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
519  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
520  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
521  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
522  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
523  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
524  fab_arr(i, j, k, 2) = ( tau13_arr(i,j,k ) + tau13_arr(i+1,j,k )
525  + tau13_arr(i,j,k+1) + tau13_arr(i+1,j,k+1) )
526  / ( rho_arr(i,j,k ) + rho_arr(i+1,j,k )
527  + rho_arr(i,j,k+1) + rho_arr(i+1,j,k+1) );
528  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
529  fab_arr(i, j, k, 4) = ( tau23_arr(i,j,k ) + tau23_arr(i,j+1,k )
530  + tau23_arr(i,j,k+1) + tau23_arr(i,j+1,k+1) )
531  / ( rho_arr(i,j,k ) + rho_arr(i,j+1,k )
532  + rho_arr(i,j,k+1) + rho_arr(i,j+1,k+1) );
533  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
534  fab_arr(i, j, k, 6) = 0.5 * ( hfx3_arr(i,j,k) + hfx3_arr(i,j,k+1) ) / rho_arr(i,j,k);
535  fab_arr(i, j, k, 7) = (l_use_moist) ? 0.5 * ( q1fx3_arr(i,j,k) + q1fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
536  fab_arr(i, j, k, 8) = (l_use_moist) ? 0.5 * ( q2fx3_arr(i,j,k) + q2fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
537  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
538  });
539  }
540 
541  int zdir = 2;
542  auto domain = geom[0].Domain();
543 
544  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
545  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
546  h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
547  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
548  h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
549  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
550  h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
551  h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
552  h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
553  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
554 
555  int ht_size = h_avg_tau11.size();
556 
557  // Divide by the total number of cells we are averaging over
558  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
559  for (int k = 0; k < ht_size; ++k) {
560  h_avg_tau11[k] /= area_z;
561  h_avg_tau12[k] /= area_z;
562  h_avg_tau13[k] /= area_z;
563  h_avg_tau22[k] /= area_z;
564  h_avg_tau23[k] /= area_z;
565  h_avg_tau33[k] /= area_z;
566  h_avg_hfx3[k] /= area_z;
567  h_avg_q1fx3[k] /= area_z;
568  h_avg_q2fx3[k] /= area_z;
569  h_avg_diss[k] /= area_z;
570  }
571 }

◆ derive_stress_profiles_stag()

void ERF::derive_stress_profiles_stag ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
610 {
611  int lev = 0;
612 
613  // This will hold the stress tensor components
614  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
615 
616  // This will hold Tau13 and Tau23
617  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 5, 0);
618 
619  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
620 
621  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
622 
623  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
624  {
625  const Box& bx = mfi.tilebox();
626  const Array4<Real>& fab_arr = mf_out.array(mfi);
627  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
628 
629  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
630 
631  // NOTE: These are from the last RK stage...
632  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
633  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
634  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
635  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
636  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
637  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
638 
639  // These should be re-calculated during ERF_slow_rhs_post
640  // -- just vertical SFS kinematic heat flux for now
641  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
642  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
643  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
644  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
645  Array4<const Real>{};
646  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
647  Array4<const Real>{};
648  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
649 
650  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
651  {
652  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
653  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
654  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
655  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
656  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
657  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
658  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
659  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
660  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
661  });
662 
663  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
664  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
665  {
666  Real rho_face = 0.5 * (rho_arr(i,j,k-1) + rho_arr(i,j,k));
667  // average from edge to face center
668  fab_arr_stag(i,j,k,0) = 0.5*(tau13_arr(i,j,k) + tau13_arr(i+1,j ,k)) / rho_face;
669  fab_arr_stag(i,j,k,1) = 0.5*(tau23_arr(i,j,k) + tau23_arr(i ,j+1,k)) / rho_face;
670 
671  fab_arr_stag(i,j,k,2) = hfx3_arr(i,j,k) / rho_face;
672  fab_arr_stag(i,j,k,3) = (l_use_moist) ? q1fx3_arr(i,j,k) / rho_face : 0.0;
673  fab_arr_stag(i,j,k,4) = (l_use_moist) ? q2fx3_arr(i,j,k) / rho_face : 0.0;
674  });
675  }
676 
677  int zdir = 2;
678  auto domain = geom[0].Domain();
679  Box stag_domain = domain;
680  stag_domain.convert(IntVect(0,0,1));
681 
682  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
683  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
684 // h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
685  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
686 // h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
687  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
688 // h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
689 // h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
690 // h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
691  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
692 
693  h_avg_tau13 = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
694  h_avg_tau23 = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
695  h_avg_hfx3 = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
696  h_avg_q1fx3 = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
697  h_avg_q2fx3 = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
698 
699  int ht_size = h_avg_tau11.size(); // _un_staggered
700 
701  // Divide by the total number of cells we are averaging over
702  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
703  for (int k = 0; k < ht_size; ++k) {
704  h_avg_tau11[k] /= area_z;
705  h_avg_tau12[k] /= area_z;
706  h_avg_tau13[k] /= area_z;
707  h_avg_tau22[k] /= area_z;
708  h_avg_tau23[k] /= area_z;
709  h_avg_tau33[k] /= area_z;
710  h_avg_hfx3[k] /= area_z;
711  h_avg_q1fx3[k] /= area_z;
712  h_avg_q2fx3[k] /= area_z;
713  h_avg_diss[k] /= area_z;
714  }
715  // staggered heights
716  h_avg_tau13[ht_size] /= area_z;
717  h_avg_tau23[ht_size] /= area_z;
718  h_avg_hfx3[ht_size] /= area_z;
719  h_avg_q1fx3[ht_size] /= area_z;
720  h_avg_q2fx3[ht_size] /= area_z;
721 }

◆ derive_upwp()

void ERF::derive_upwp ( amrex::Vector< amrex::Real > &  h_havg)

◆ EBFactory()

amrex::EBFArrayBoxFactory const& ERF::EBFactory ( int  lev) const
inlineprivatenoexcept
1464  {
1465  return *(eb[lev]->get_const_factory());
1466  }
amrex::Vector< std::unique_ptr< eb_ > > eb
Definition: ERF.H:1456

Referenced by WriteMyEBSurface().

Here is the caller graph for this function:

◆ erf_enforce_hse()

void ERF::erf_enforce_hse ( int  lev,
amrex::MultiFab &  dens,
amrex::MultiFab &  pres,
amrex::MultiFab &  pi,
amrex::MultiFab &  th,
amrex::MultiFab &  qv,
std::unique_ptr< amrex::MultiFab > &  z_cc 
)

Enforces hydrostatic equilibrium when using terrain.

Parameters
[in]levInteger specifying the current level
[out]densMultiFab storing base state density
[out]presMultiFab storing base state pressure
[out]piMultiFab storing base state Exner function
[in]z_ccPointer to MultiFab storing cell centered z-coordinates
163 {
164  Real l_gravity = solverChoice.gravity;
165  bool l_use_terrain = (solverChoice.mesh_type != MeshType::ConstantDz);
166 
167  const auto geomdata = geom[lev].data();
168  const Real dz = geomdata.CellSize(2);
169 
170  for ( MFIter mfi(dens, TileNoZ()); mfi.isValid(); ++mfi )
171  {
172  // Create a flat box with same horizontal extent but only one cell in vertical
173  const Box& tbz = mfi.nodaltilebox(2);
174  int klo = tbz.smallEnd(2);
175  int khi = tbz.bigEnd(2);
176 
177  // Note we only grow by 1 because that is how big z_cc is.
178  Box b2d = tbz; // Copy constructor
179  b2d.grow(0,1);
180  b2d.grow(1,1);
181  b2d.setRange(2,0);
182 
183  // Intersect this box with the domain
184  Box zdomain = convert(geom[lev].Domain(),tbz.ixType());
185  b2d &= zdomain;
186 
187  // We integrate to the first cell (and below) by using rho in this cell
188  // If gravity == 0 this is constant pressure
189  // If gravity != 0, hence this is a wall, this gives gp0 = dens[0] * gravity
190  // (dens_hse*gravity would also be dens[0]*gravity because we use foextrap for rho at k = -1)
191  // Note ng_pres_hse = 1
192 
193  // We start by assuming pressure on the ground is p_0 (in ERF_Constants.H)
194  // Note that gravity is positive
195 
196  Array4<Real> rho_arr = dens.array(mfi);
197  Array4<Real> pres_arr = pres.array(mfi);
198  Array4<Real> pi_arr = pi.array(mfi);
199  Array4<Real> th_arr = theta.array(mfi);
200  Array4<Real> zcc_arr;
201  if (l_use_terrain) {
202  zcc_arr = z_cc->array(mfi);
203  }
204 
205  const Real rdOcp = solverChoice.rdOcp;
206 
207  ParallelFor(b2d, [=] AMREX_GPU_DEVICE (int i, int j, int)
208  {
209  // Set value at surface from Newton iteration for rho
210  if (klo == 0)
211  {
212  // Physical height of the terrain at cell center
213  Real hz;
214  if (l_use_terrain) {
215  hz = zcc_arr(i,j,klo);
216  } else {
217  hz = 0.5*dz;
218  }
219 
220  pres_arr(i,j,klo) = p_0 - hz * rho_arr(i,j,klo) * l_gravity;
221  pi_arr(i,j,klo) = getExnergivenP(pres_arr(i,j,klo), rdOcp);
222  th_arr(i,j,klo) = getRhoThetagivenP(pres_arr(i,j,klo)) / rho_arr(i,j,klo);
223 
224  //
225  // Set ghost cell with dz and rho at boundary
226  // (We will set the rest of the ghost cells in the boundary condition routine)
227  //
228  pres_arr(i,j,klo-1) = p_0 + hz * rho_arr(i,j,klo) * l_gravity;
229  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
230  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
231 
232  } else {
233 
234  // If level > 0 and klo > 0, we need to use the value of pres_arr(i,j,klo-1) which was
235  // filled from FillPatch-ing it.
236  Real dz_loc;
237  if (l_use_terrain) {
238  dz_loc = (zcc_arr(i,j,klo) - zcc_arr(i,j,klo-1));
239  } else {
240  dz_loc = dz;
241  }
242 
243  Real dens_interp = 0.5*(rho_arr(i,j,klo) + rho_arr(i,j,klo-1));
244  pres_arr(i,j,klo) = pres_arr(i,j,klo-1) - dz_loc * dens_interp * l_gravity;
245 
246  pi_arr(i,j,klo ) = getExnergivenP(pres_arr(i,j,klo ), rdOcp);
247  th_arr(i,j,klo ) = getRhoThetagivenP(pres_arr(i,j,klo )) / rho_arr(i,j,klo );
248 
249  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
250  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
251  }
252 
253  Real dens_interp;
254  if (l_use_terrain) {
255  for (int k = klo+1; k <= khi; k++) {
256  Real dz_loc = (zcc_arr(i,j,k) - zcc_arr(i,j,k-1));
257  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
258  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz_loc * dens_interp * l_gravity;
259  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
260  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
261  }
262  } else {
263  for (int k = klo+1; k <= khi; k++) {
264  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
265  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz * dens_interp * l_gravity;
266  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
267  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
268  }
269  }
270  });
271 
272  } // mfi
273 
274  dens.FillBoundary(geom[lev].periodicity());
275  pres.FillBoundary(geom[lev].periodicity());
276  pi.FillBoundary(geom[lev].periodicity());
277  theta.FillBoundary(geom[lev].periodicity());
278  qv.FillBoundary(geom[lev].periodicity());
279 }
constexpr amrex::Real p_0
Definition: ERF_Constants.H:18
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getRhoThetagivenP(const amrex::Real p, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:172
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getExnergivenP(const amrex::Real P, const amrex::Real rdOcp)
Definition: ERF_EOS.H:141
@ pres
Definition: ERF_Kessler.H:25
real(c_double), parameter, private pi
Definition: ERF_module_mp_morr_two_moment.F90:100
amrex::Real rdOcp
Definition: ERF_DataStruct.H:806
amrex::Real gravity
Definition: ERF_DataStruct.H:804
Here is the call graph for this function:

◆ ERF_shared()

void ERF::ERF_shared ( )
105 {
106  if (ParallelDescriptor::IOProcessor()) {
107  const char* erf_hash = buildInfoGetGitHash(1);
108  const char* amrex_hash = buildInfoGetGitHash(2);
109  const char* buildgithash = buildInfoGetBuildGitHash();
110  const char* buildgitname = buildInfoGetBuildGitName();
111 
112  if (strlen(erf_hash) > 0) {
113  Print() << "\n"
114  << "ERF git hash: " << erf_hash << "\n";
115  }
116  if (strlen(amrex_hash) > 0) {
117  Print() << "AMReX git hash: " << amrex_hash << "\n";
118  }
119  if (strlen(buildgithash) > 0) {
120  Print() << buildgitname << " git hash: " << buildgithash << "\n";
121  }
122 
123  Print() << "\n";
124  }
125 
126  int nlevs_max = max_level + 1;
127 
128 #ifdef ERF_USE_WINDFARM
129  Nturb.resize(nlevs_max);
130  vars_windfarm.resize(nlevs_max);
131  SMark.resize(nlevs_max);
132 #endif
133 
134  qheating_rates.resize(nlevs_max);
135  sw_lw_fluxes.resize(nlevs_max);
136  solar_zenith.resize(nlevs_max);
137 
138  // NOTE: size lsm before readparams (chooses the model at all levels)
139  lsm.ReSize(nlevs_max);
140  lsm_data.resize(nlevs_max);
141  lsm_flux.resize(nlevs_max);
142 
143  // NOTE: size canopy model before readparams (if file exists, we construct)
144  m_forest_drag.resize(nlevs_max);
145  for (int lev = 0; lev <= max_level; ++lev) { m_forest_drag[lev] = nullptr;}
146 
147  ReadParameters();
148  initializeMicrophysics(nlevs_max);
149 
150 #ifdef ERF_USE_WINDFARM
151  initializeWindFarm(nlevs_max);
152 #endif
153 
154  rad.resize(nlevs_max);
155  for (int lev = 0; lev <= max_level; ++lev) {
156  if (solverChoice.rad_type == RadiationType::RRTMGP) {
157 #ifdef ERF_USE_RRTMGP
158  rad[lev] = std::make_unique<Radiation>(lev, solverChoice);
159  // pass radiation datalog frequency to model - RRTMGP needs to know when to save data for profiles
160  rad[lev]->setDataLogFrequency(rad_datalog_int);
161 #endif
162  } else if (solverChoice.rad_type != RadiationType::None) {
163  Abort("Don't know this radiation model!");
164  }
165  }
166 
167  const std::string& pv1 = "plot_vars_1"; setPlotVariables(pv1,plot_var_names_1);
168  const std::string& pv2 = "plot_vars_2"; setPlotVariables(pv2,plot_var_names_2);
169 
170  // This is only used when we have mesh_type == MeshType::StretchedDz
171  stretched_dz_h.resize(nlevs_max);
172  stretched_dz_d.resize(nlevs_max);
173 
174  // Initialize staggered vertical levels for grid stretching or terrain, and
175  // to simplify Rayleigh damping layer calculations.
176  zlevels_stag.resize(max_level+1);
180  geom,
181  refRatio(),
184  solverChoice.dz0);
185 
186  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
187  SolverChoice::mesh_type == MeshType::VariableDz) {
188  int nz = geom[0].Domain().length(2) + 1; // staggered
189  if (std::fabs(zlevels_stag[0][nz-1]-geom[0].ProbHi(2)) > 1.0e-4) {
190  Print() << "Note: prob_hi[2]=" << geom[0].ProbHi(2)
191  << " does not match highest requested z level " << zlevels_stag[0][nz-1]
192  << std::endl;
193  }
194  if (std::fabs(zlevels_stag[0][0]-geom[0].ProbLo(2)) > 1.0e-4) {
195  Print() << "Note: prob_lo[2]=" << geom[0].ProbLo(2)
196  << " does not match lowest requested level " << zlevels_stag[0][0]
197  << std::endl;
198  }
199 
200  // Redefine the problem domain here?
201  }
202 
203  // Get lo/hi indices for massflux calc
205  if (solverChoice.mesh_type == MeshType::ConstantDz) {
206  const Real massflux_zlo = solverChoice.const_massflux_layer_lo - geom[0].ProbLo(2);
207  const Real massflux_zhi = solverChoice.const_massflux_layer_hi - geom[0].ProbLo(2);
208  const Real dz = geom[0].CellSize(2);
209  if (massflux_zlo == -1e34) {
210  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
211  } else {
212  solverChoice.massflux_klo = static_cast<int>(std::ceil(massflux_zlo / dz - 0.5));
213  }
214  if (massflux_zhi == 1e34) {
215  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2);
216  } else {
217  solverChoice.massflux_khi = static_cast<int>(std::floor(massflux_zhi / dz - 0.5));
218  }
219  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
220  const Real massflux_zlo = solverChoice.const_massflux_layer_lo;
221  const Real massflux_zhi = solverChoice.const_massflux_layer_hi;
222  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
223  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2) + 1;
224  for (int k=0; k <= geom[0].Domain().bigEnd(2)+1; ++k) {
225  if (zlevels_stag[0][k] <= massflux_zlo) solverChoice.massflux_klo = k;
226  if (zlevels_stag[0][k] <= massflux_zhi) solverChoice.massflux_khi = k;
227  }
228  } else { // solverChoice.mesh_type == MeshType::VariableDz
229  Error("Const massflux with variable dz not supported -- planar averages are on k rather than constant-z planes");
230  }
231 
232  Print() << "Constant mass flux based on k in ["
233  << solverChoice.massflux_klo << ", " << solverChoice.massflux_khi << "]" << std::endl;
234  }
235 
236  prob = amrex_probinit(geom[0].ProbLo(),geom[0].ProbHi());
237 
238  // Geometry on all levels has been defined already.
239 
240  // No valid BoxArray and DistributionMapping have been defined.
241  // But the arrays for them have been resized.
242 
243  istep.resize(nlevs_max, 0);
244  nsubsteps.resize(nlevs_max, 1);
245  for (int lev = 1; lev <= max_level; ++lev) {
246  nsubsteps[lev] = MaxRefRatio(lev-1);
247  }
248 
249  t_new.resize(nlevs_max, 0.0);
250  t_old.resize(nlevs_max, -1.e100);
251  dt.resize(nlevs_max, std::min(1.e100,dt_max_initial));
252  dt_mri_ratio.resize(nlevs_max, 1);
253 
254  vars_new.resize(nlevs_max);
255  vars_old.resize(nlevs_max);
256  gradp.resize(nlevs_max);
257 
258  // We resize this regardless in order to pass it without error
259  pp_inc.resize(nlevs_max);
260 
261  rU_new.resize(nlevs_max);
262  rV_new.resize(nlevs_max);
263  rW_new.resize(nlevs_max);
264 
265  rU_old.resize(nlevs_max);
266  rV_old.resize(nlevs_max);
267  rW_old.resize(nlevs_max);
268 
269  // xmom_crse_rhs.resize(nlevs_max);
270  // ymom_crse_rhs.resize(nlevs_max);
271  zmom_crse_rhs.resize(nlevs_max);
272 
273  for (int lev = 0; lev < nlevs_max; ++lev) {
274  vars_new[lev].resize(Vars::NumTypes);
275  vars_old[lev].resize(Vars::NumTypes);
276  gradp[lev].resize(AMREX_SPACEDIM);
277  }
278 
279  // Time integrator
280  mri_integrator_mem.resize(nlevs_max);
281 
282  // Physical boundary conditions
283  physbcs_cons.resize(nlevs_max);
284  physbcs_u.resize(nlevs_max);
285  physbcs_v.resize(nlevs_max);
286  physbcs_w.resize(nlevs_max);
287  physbcs_base.resize(nlevs_max);
288 
289  // Planes to hold Dirichlet values at boundaries
290  xvel_bc_data.resize(nlevs_max);
291  yvel_bc_data.resize(nlevs_max);
292  zvel_bc_data.resize(nlevs_max);
293  th_bc_data.resize(nlevs_max);
294 
295  advflux_reg.resize(nlevs_max);
296 
297  // Stresses
298  Tau.resize(nlevs_max);
299  SFS_hfx1_lev.resize(nlevs_max); SFS_hfx2_lev.resize(nlevs_max); SFS_hfx3_lev.resize(nlevs_max);
300  SFS_diss_lev.resize(nlevs_max);
301  SFS_q1fx1_lev.resize(nlevs_max); SFS_q1fx2_lev.resize(nlevs_max); SFS_q1fx3_lev.resize(nlevs_max);
302  SFS_q2fx3_lev.resize(nlevs_max);
303  eddyDiffs_lev.resize(nlevs_max);
304  SmnSmn_lev.resize(nlevs_max);
305 
306  // Sea surface temps
307  sst_lev.resize(nlevs_max);
308  tsk_lev.resize(nlevs_max);
309  lmask_lev.resize(nlevs_max);
310 
311  // Metric terms
312  z_phys_nd.resize(nlevs_max);
313  z_phys_cc.resize(nlevs_max);
314  detJ_cc.resize(nlevs_max);
315  ax.resize(nlevs_max);
316  ay.resize(nlevs_max);
317  az.resize(nlevs_max);
318 
319  z_phys_nd_new.resize(nlevs_max);
320  detJ_cc_new.resize(nlevs_max);
321 
322  z_phys_nd_src.resize(nlevs_max);
323  z_phys_cc_src.resize(nlevs_max);
324  detJ_cc_src.resize(nlevs_max);
325  ax_src.resize(nlevs_max);
326  ay_src.resize(nlevs_max);
327  az_src.resize(nlevs_max);
328 
329  z_t_rk.resize(nlevs_max);
330 
331  terrain_blanking.resize(nlevs_max);
332 
333  // Wall distance
334  walldist.resize(nlevs_max);
335 
336  // BoxArrays to make MultiFabs needed to convert WRFBdy data
337  ba1d.resize(nlevs_max);
338  ba2d.resize(nlevs_max);
339 
340  // MultiFabs needed to convert WRFBdy data
341  mf_C1H.resize(nlevs_max);
342  mf_C2H.resize(nlevs_max);
343  mf_MUB.resize(nlevs_max);
344 
345  // Map factors
346  mapfac.resize(nlevs_max);
347 
348  // Thin immersed body
349  xflux_imask.resize(nlevs_max);
350  yflux_imask.resize(nlevs_max);
351  zflux_imask.resize(nlevs_max);
352  //overset_imask.resize(nlevs_max);
353  thin_xforce.resize(nlevs_max);
354  thin_yforce.resize(nlevs_max);
355  thin_zforce.resize(nlevs_max);
356 
357  // Base state
358  base_state.resize(nlevs_max);
359  base_state_new.resize(nlevs_max);
360 
361  // Wave coupling data
362  Hwave.resize(nlevs_max);
363  Lwave.resize(nlevs_max);
364  for (int lev = 0; lev < max_level; ++lev)
365  {
366  Hwave[lev] = nullptr;
367  Lwave[lev] = nullptr;
368  }
369  Hwave_onegrid.resize(nlevs_max);
370  Lwave_onegrid.resize(nlevs_max);
371  for (int lev = 0; lev < max_level; ++lev)
372  {
373  Hwave_onegrid[lev] = nullptr;
374  Lwave_onegrid[lev] = nullptr;
375  }
376 
377  // Theta prim for MOST
378  Theta_prim.resize(nlevs_max);
379 
380  // Qv prim for MOST
381  Qv_prim.resize(nlevs_max);
382 
383  // Qr prim for MOST
384  Qr_prim.resize(nlevs_max);
385 
386  // Time averaged velocity field
387  vel_t_avg.resize(nlevs_max);
388  t_avg_cnt.resize(nlevs_max);
389 
390 #ifdef ERF_USE_NETCDF
391  // Size lat long arrays if using netcdf
392  lat_m.resize(nlevs_max);
393  lon_m.resize(nlevs_max);
394  for (int lev = 0; lev < max_level; ++lev) {
395  lat_m[lev] = nullptr;
396  lon_m[lev] = nullptr;
397  }
398 #endif
399 
400  // Variable coriolis
401  sinPhi_m.resize(nlevs_max);
402  cosPhi_m.resize(nlevs_max);
403  for (int lev = 0; lev < max_level; ++lev) {
404  sinPhi_m[lev] = nullptr;
405  cosPhi_m[lev] = nullptr;
406  }
407 
408  // Initialize tagging criteria for mesh refinement
410 
411  for (int lev = 0; lev < max_level; ++lev)
412  {
413  Print() << "Refinement ratio at level " << lev+1 << " set to be " <<
414  ref_ratio[lev][0] << " " << ref_ratio[lev][1] << " " << ref_ratio[lev][2] << std::endl;
415  }
416 
417  // We will create each of these in MakeNewLevelFromScratch
418  eb.resize(max_level+1);
419  for (int lev = 0; lev < max_level + 1; lev++){
420  eb[lev] = std::make_unique<eb_>();
421  }
422 
423  //
424  // Construct the EB data structures and store in a separate class
425  //
426  // This is needed before initializing level MultiFabs
427  if ( solverChoice.terrain_type == TerrainType::EB ||
428  solverChoice.terrain_type == TerrainType::ImmersedForcing)
429  {
430  Box terrain_bx(surroundingNodes(geom[max_level].Domain())); terrain_bx.grow(3);
431  FArrayBox terrain_fab(makeSlab(terrain_bx,2,0),1);
432  Real dummy_time = 0.0;
433  prob->init_terrain_surface(geom[max_level], terrain_fab, dummy_time);
434  TerrainIF ebterrain(terrain_fab, geom[max_level], stretched_dz_d[max_level]);
435  auto gshop = EB2::makeShop(ebterrain);
436  bool build_coarse_level_by_coarsening(false);
437  // Note this just needs to be an integer > number of V-cycles one might use
438  int max_coarsening_level = ( solverChoice.terrain_type == TerrainType::EB &&
440  solverChoice.anelastic[0] == 1) ) ? 100 : 0;
441  amrex::EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level, build_coarse_level_by_coarsening);
442  }
443 }
void init_zlevels(Vector< Vector< Real >> &zlevels_stag, Vector< Vector< Real >> &stretched_dz_h, Vector< Gpu::DeviceVector< Real >> &stretched_dz_d, Vector< Geometry > const &geom, Vector< IntVect > const &ref_ratio, const Real grid_stretching_ratio, const Real zsurf, const Real dz0)
Definition: ERF_InitZLevels.cpp:11
std::unique_ptr< ProblemBase > amrex_probinit(const amrex_real *problo, const amrex_real *probhi) AMREX_ATTRIBUTE_WEAK
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
Definition: ERF.H:851
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
Definition: ERF.H:884
void setPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:22
amrex::Vector< amrex::BoxArray > ba2d
Definition: ERF.H:1090
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
Definition: ERF.H:721
void ReadParameters()
Definition: ERF.cpp:1655
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
Definition: ERF.H:821
amrex::Vector< amrex::MultiFab > base_state_new
Definition: ERF.H:846
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
Definition: ERF.H:819
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
Definition: ERF.H:801
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
Definition: ERF.H:834
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
Definition: ERF.H:828
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
Definition: ERF.H:885
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
Definition: ERF.H:799
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
Definition: ERF.H:883
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
Definition: ERF.H:676
amrex::Vector< std::string > plot_var_names_1
Definition: ERF.H:962
amrex::Vector< amrex::Real > t_old
Definition: ERF.H:710
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
Definition: ERF.H:831
amrex::Vector< std::string > plot_var_names_2
Definition: ERF.H:963
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
Definition: ERF.H:852
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_C1H
Definition: ERF.H:1091
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
Definition: ERF.H:1169
amrex::Vector< amrex::BoxArray > ba1d
Definition: ERF.H:1089
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
Definition: ERF.H:673
int rad_datalog_int
Definition: ERF.H:783
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
Definition: ERF.H:823
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
Definition: ERF.H:825
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
Definition: ERF.H:878
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
Definition: ERF.H:773
void refinement_criteria_setup()
Definition: ERF_Tagging.cpp:223
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
Definition: ERF.H:664
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
Definition: ERF.H:824
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
Definition: ERF.H:822
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
Definition: ERF.H:810
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
Definition: ERF.H:772
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
Definition: ERF.H:842
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
Definition: ERF.H:826
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_C2H
Definition: ERF.H:1092
static amrex::Real dt_max_initial
Definition: ERF.H:922
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
Definition: ERF.H:850
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
Definition: ERF.H:664
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
Definition: ERF.H:879
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
Definition: ERF.H:675
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
Definition: ERF.H:829
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
Definition: ERF.H:674
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_MUB
Definition: ERF.H:1093
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
Definition: ERF.H:849
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
Definition: ERF.H:877
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
Definition: ERF.H:800
void initializeMicrophysics(const int &)
Definition: ERF.cpp:1455
void ReSize(const int &nlev)
Definition: ERF_LandSurface.H:24
Definition: ERF_EBIFTerrain.H:14
const char * buildInfoGetGitHash(int i)
amrex::Real dz0
Definition: ERF_DataStruct.H:811
amrex::Real const_massflux_layer_lo
Definition: ERF_DataStruct.H:885
amrex::Real const_massflux_v
Definition: ERF_DataStruct.H:883
int massflux_klo
Definition: ERF_DataStruct.H:887
amrex::Real grid_stretching_ratio
Definition: ERF_DataStruct.H:809
amrex::Real const_massflux_u
Definition: ERF_DataStruct.H:882
amrex::Real zsurf
Definition: ERF_DataStruct.H:810
amrex::Real const_massflux_layer_hi
Definition: ERF_DataStruct.H:886
int massflux_khi
Definition: ERF_DataStruct.H:888
Here is the call graph for this function:

◆ ErrorEst()

void ERF::ErrorEst ( int  lev,
amrex::TagBoxArray &  tags,
amrex::Real  time,
int  ngrow 
)
override

Function to tag cells for refinement – this overrides the pure virtual function in AmrCore

Parameters
[in]levclevel of refinement at which we tag cells (0 is coarsest level)
[out]tagsarray of tagged cells
[in]timecurrent time
21 {
22  const int clearval = TagBox::CLEAR;
23  const int tagval = TagBox::SET;
24 
25 
26 #ifdef ERF_USE_NETCDF
27  if (solverChoice.init_type == InitType::WRFInput) {
28  int ratio;
29  Box subdomain;
30  if (!nc_init_file[levc+1].empty()) {
31  amrex::Print() << "WRFIinput file to read: " << nc_init_file[levc+1][0] << std::endl;
32  subdomain = read_subdomain_from_wrfinput(levc, nc_init_file[levc+1][0], ratio);
33  amrex::Print() << " WRFInput subdomain at level " << levc+1 << " is " << subdomain << std::endl;
34  }
35 
36  if ( (ratio != ref_ratio[levc][0]) || (ratio != ref_ratio[levc][1]) ) {
37  amrex::Print() << "File " << nc_init_file[levc+1][0] << " has refinement ratio = " << ratio << std::endl;
38  amrex::Print() << "The inputs file has refinement ratio = " << ref_ratio[levc] << std::endl;
39  amrex::Abort("These must be the same -- please edit your inputs file and try again.");
40  }
41 
42  subdomain.coarsen(IntVect(ratio,ratio,1));
43 
44  // We assume there is only one subdomain at levc; otherwise we don't know
45  // which one is the parent of the fine region we are trying to create
46  AMREX_ALWAYS_ASSERT(subdomains[levc].size() == 1);
47 
48  // We assume there is only one box in the first subdomain at levc; otherwise we don't know
49  // how to compute the offset
50  AMREX_ALWAYS_ASSERT(subdomains[levc][0].size() == 1);
51 
52  Box coarser_level(subdomains[levc][0].minimalBox());
53  subdomain.shift(coarser_level.smallEnd());
54 
55  if (verbose > 0) {
56  amrex::Print() << " Crse subdomain to be tagged is" << subdomain << std::endl;
57  }
58 
59  Box new_fine(subdomain); new_fine.refine(IntVect(ratio,ratio,1));
60  num_boxes_at_level[levc+1] = 1;
61  boxes_at_level[levc+1].push_back(new_fine);
62 
63  for (MFIter mfi(tags); mfi.isValid(); ++mfi) {
64  auto tag_arr = tags.array(mfi); // Get device-accessible array
65 
66  Box bx = mfi.validbox(); bx &= subdomain;
67 
68  if (!bx.isEmpty()) {
69  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
70  tag_arr(i,j,k) = TagBox::SET;
71  });
72  }
73  }
74  return;
75  }
76 #endif
77 
78  //
79  // Make sure the ghost cells of the level we are tagging at are filled
80  // in case we take differences that require them
81  // NOTE: We are Fillpatching only the cell-centered variables here
82  //
83  MultiFab& S_new = vars_new[levc][Vars::cons];
84  MultiFab& U_new = vars_new[levc][Vars::xvel];
85  MultiFab& V_new = vars_new[levc][Vars::yvel];
86  MultiFab& W_new = vars_new[levc][Vars::zvel];
87  //
88  if (levc == 0) {
89  FillPatch(levc, time, {&S_new, &U_new, &V_new, &W_new});
90  } else {
91  FillPatch(levc, time, {&S_new, &U_new, &V_new, &W_new},
92  {&S_new, &rU_new[levc], &rV_new[levc], &rW_new[levc]},
93  base_state[levc], base_state[levc],
94  false, true);
95  }
96 
97  for (int j=0; j < ref_tags.size(); ++j)
98  {
99  //
100  // This mf must have ghost cells because we may take differences between adjacent values
101  //
102  std::unique_ptr<MultiFab> mf = std::make_unique<MultiFab>(grids[levc], dmap[levc], 1, 1);
103 
104  // This allows dynamic refinement based on the value of the density
105  if (ref_tags[j].Field() == "density")
106  {
107  MultiFab::Copy(*mf,vars_new[levc][Vars::cons],Rho_comp,0,1,1);
108 
109  // This allows dynamic refinement based on the value of qv
110  } else if ( ref_tags[j].Field() == "qv" ) {
111  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ1_comp, 0, 1, 1);
112  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
113 
114 
115  // This allows dynamic refinement based on the value of qc
116  } else if (ref_tags[j].Field() == "qc" ) {
117  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ2_comp, 0, 1, 1);
118  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
119 
120  // This allows dynamic refinement based on the value of the z-component of vorticity
121  } else if (ref_tags[j].Field() == "vorticity" ) {
122  Vector<MultiFab> mf_cc_vel(1);
123  mf_cc_vel[0].define(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(1,1,1));
124  average_face_to_cellcenter(mf_cc_vel[0],0,Array<const MultiFab*,3>{&U_new, &V_new, &W_new});
125 
126  // Impose bc's at domain boundaries at all levels
127  FillBdyCCVels(mf_cc_vel,levc);
128 
129  mf->setVal(0.);
130 
131  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
132  {
133  const Box& bx = mfi.tilebox();
134  auto& dfab = (*mf)[mfi];
135  auto& sfab = mf_cc_vel[0][mfi];
136  derived::erf_dervortz(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
137  }
138 
139  // This allows dynamic refinement based on the value of the scalar/theta
140  } else if ( (ref_tags[j].Field() == "scalar" ) ||
141  (ref_tags[j].Field() == "theta" ) )
142  {
143  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
144  {
145  const Box& bx = mfi.growntilebox();
146  auto& dfab = (*mf)[mfi];
147  auto& sfab = vars_new[levc][Vars::cons][mfi];
148  if (ref_tags[j].Field() == "scalar") {
149  derived::erf_derscalar(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
150  } else if (ref_tags[j].Field() == "theta") {
151  derived::erf_dertheta(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
152  }
153  } // mfi
154  // This allows dynamic refinement based on the value of the density
155  } else if ( (SolverChoice::terrain_type == TerrainType::ImmersedForcing) &&
156  (ref_tags[j].Field() == "terrain_blanking") )
157  {
158  MultiFab::Copy(*mf,*terrain_blanking[levc],0,0,1,1);
159  } else if (ref_tags[j].Field() == "velmag") {
160  mf->setVal(0.0);
161  ParmParse pp(pp_prefix);
162  Vector<std::string> refinement_indicators;
163  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
164  Real velmag_threshold = 1e10;
165  for (int i=0; i<refinement_indicators.size(); ++i)
166  {
167  if(refinement_indicators[i]=="hurricane_tracker"){
168  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
169  ParmParse ppr(ref_prefix);
170  ppr.get("value_greater",velmag_threshold);
171  break;
172  }
173  }
174  HurricaneTracker(levc, U_new, V_new, W_new, velmag_threshold, false, &tags);
175 #ifdef ERF_USE_PARTICLES
176  } else {
177  //
178  // This allows dynamic refinement based on the number of particles per cell
179  //
180  // Note that we must count all the particles in levels both at and above the current,
181  // since otherwise, e.g., if the particles are all at level 1, counting particles at
182  // level 0 will not trigger refinement when regridding so level 1 will disappear,
183  // then come back at the next regridding
184  //
185  const auto& particles_namelist( particleData.getNames() );
186  mf->setVal(0.0);
187  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++)
188  {
189  std::string tmp_string(particles_namelist[i]+"_count");
190  IntVect rr = IntVect::TheUnitVector();
191  if (ref_tags[j].Field() == tmp_string) {
192  for (int lev = levc; lev <= finest_level; lev++)
193  {
194  MultiFab temp_dat(grids[lev], dmap[lev], 1, 0); temp_dat.setVal(0);
195  particleData[particles_namelist[i]]->IncrementWithTotal(temp_dat, lev);
196 
197  MultiFab temp_dat_crse(grids[levc], dmap[levc], 1, 0); temp_dat_crse.setVal(0);
198 
199  if (lev == levc) {
200  MultiFab::Copy(*mf, temp_dat, 0, 0, 1, 0);
201  } else {
202  for (int d = 0; d < AMREX_SPACEDIM; d++) {
203  rr[d] *= ref_ratio[levc][d];
204  }
205  average_down(temp_dat, temp_dat_crse, 0, 1, rr);
206  MultiFab::Add(*mf, temp_dat_crse, 0, 0, 1, 0);
207  }
208  }
209  }
210  }
211 #endif
212  }
213 
214  ref_tags[j](tags,mf.get(),clearval,tagval,time,levc,geom[levc]);
215  } // loop over j
216 }
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
Definition: ERF.H:703
void FillBdyCCVels(amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
Definition: ERF_FillBdyCCVels.cpp:11
void HurricaneTracker(int lev, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, const bool is_track_io, amrex::TagBoxArray *tags=nullptr)
Definition: ERF_Tagging.cpp:451
static amrex::Vector< amrex::Vector< std::string > > nc_init_file
Definition: ERF.H:1064
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
Definition: ERF.H:1176
static amrex::Vector< amrex::AMRErrorTag > ref_tags
Definition: ERF.H:1174
amrex::Vector< int > num_boxes_at_level
Definition: ERF.H:701
void erf_derscalar(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:165
void erf_dervortz(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:256
void erf_dertheta(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:144
real(c_double), private rr
Definition: ERF_module_mp_morr_two_moment.F90:223
static InitType init_type
Definition: ERF_DataStruct.H:743
Here is the call graph for this function:

◆ estTimeStep()

Real ERF::estTimeStep ( int  level,
long &  dt_fast_ratio 
) const

Function that calls estTimeStep for each level

Parameters
[in]levellevel of refinement (coarsest level i 0)
[out]dt_fast_ratioratio of slow to fast time step
55 {
56  BL_PROFILE("ERF::estTimeStep()");
57 
58  Real estdt_comp = 1.e20;
59  Real estdt_lowM = 1.e20;
60 
61  // We intentionally use the level 0 domain to compute whether to use this direction in the dt calculation
62  const int nxc = geom[0].Domain().length(0);
63  const int nyc = geom[0].Domain().length(1);
64 
65  auto const dxinv = geom[level].InvCellSizeArray();
66  auto const dzinv = 1.0 / dz_min[level];
67 
68  MultiFab const& S_new = vars_new[level][Vars::cons];
69 
70  MultiFab ccvel(grids[level],dmap[level],3,0);
71 
72  average_face_to_cellcenter(ccvel,0,
73  Array<const MultiFab*,3>{&vars_new[level][Vars::xvel],
74  &vars_new[level][Vars::yvel],
75  &vars_new[level][Vars::zvel]});
76 
77  int l_implicit_substepping = (solverChoice.substepping_type[level] == SubsteppingType::Implicit);
78  int l_anelastic = solverChoice.anelastic[level];
79 
80  Real estdt_comp_inv;
81 
82  if (solverChoice.terrain_type == TerrainType::EB)
83  {
84  const eb_& eb_lev = get_eb(level);
85  const MultiFab& detJ = (eb_lev.get_const_factory())->getVolFrac();
86 
87  estdt_comp_inv = ReduceMax(S_new, ccvel, detJ, 0,
88  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
89  Array4<Real const> const& s,
90  Array4<Real const> const& u,
91  Array4<Real const> const& vf) -> Real
92  {
93  Real new_comp_dt = -1.e100;
94  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
95  {
96  if (vf(i,j,k) > 0.)
97  {
98  const Real rho = s(i, j, k, Rho_comp);
99  const Real rhotheta = s(i, j, k, RhoTheta_comp);
100 
101  // NOTE: even when moisture is present,
102  // we only use the partial pressure of the dry air
103  // to compute the soundspeed
104  Real pressure = getPgivenRTh(rhotheta);
105  Real c = std::sqrt(Gamma * pressure / rho);
106 
107  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
108  // to the computation of the time step
109  if (l_implicit_substepping) {
110  if ((nxc > 1) && (nyc==1)) {
111  // 2-D in x-z
112  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
113  } else if ((nyc > 1) && (nxc==1)) {
114  // 2-D in y-z
115  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
116  } else {
117  // 3-D or SCM
118  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
119  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
120  }
121 
122  // If we are not doing implicit acoustic substepping, then the z-direction contributes
123  // to the computation of the time step
124  } else {
125  if (nxc > 1 && nyc > 1) {
126  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
127  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
128  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
129  } else if (nxc > 1) {
130  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
131  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
132  } else if (nyc > 1) {
133  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
134  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
135  } else {
136  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
137  }
138 
139  }
140  }
141  });
142  return new_comp_dt;
143  });
144 
145  } else {
146  estdt_comp_inv = ReduceMax(S_new, ccvel, 0,
147  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
148  Array4<Real const> const& s,
149  Array4<Real const> const& u) -> Real
150  {
151  Real new_comp_dt = -1.e100;
152  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
153  {
154  {
155  const Real rho = s(i, j, k, Rho_comp);
156  const Real rhotheta = s(i, j, k, RhoTheta_comp);
157 
158  // NOTE: even when moisture is present,
159  // we only use the partial pressure of the dry air
160  // to compute the soundspeed
161  Real pressure = getPgivenRTh(rhotheta);
162  Real c = std::sqrt(Gamma * pressure / rho);
163 
164  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
165  // to the computation of the time step
166  if (l_implicit_substepping) {
167  if ((nxc > 1) && (nyc==1)) {
168  // 2-D in x-z
169  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
170  } else if ((nyc > 1) && (nxc==1)) {
171  // 2-D in y-z
172  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
173  } else {
174  // 3-D or SCM
175  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
176  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
177  }
178 
179  // If we are not doing implicit acoustic substepping, then the z-direction contributes
180  // to the computation of the time step
181  } else {
182  if (nxc > 1 && nyc > 1) {
183  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
184  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
185  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
186  } else if (nxc > 1) {
187  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
188  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
189  } else if (nyc > 1) {
190  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
191  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
192  } else {
193  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
194  }
195 
196  }
197  }
198  });
199  return new_comp_dt;
200  });
201  } // not EB
202 
203  ParallelDescriptor::ReduceRealMax(estdt_comp_inv);
204  estdt_comp = cfl / estdt_comp_inv;
205 
206  Real estdt_lowM_inv = ReduceMax(ccvel, 0,
207  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
208  Array4<Real const> const& u) -> Real
209  {
210  Real new_lm_dt = -1.e100;
211  Loop(b, [=,&new_lm_dt] (int i, int j, int k) noexcept
212  {
213  new_lm_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0)))*dxinv[0]),
214  ((amrex::Math::abs(u(i,j,k,1)))*dxinv[1]),
215  ((amrex::Math::abs(u(i,j,k,2)))*dxinv[2]), new_lm_dt);
216  });
217  return new_lm_dt;
218  });
219 
220  ParallelDescriptor::ReduceRealMax(estdt_lowM_inv);
221  if (estdt_lowM_inv > 0.0_rt)
222  estdt_lowM = cfl / estdt_lowM_inv;
223 
224  if (verbose) {
225  if (fixed_dt[level] <= 0.0) {
226  Print() << "Using cfl = " << cfl << " and dx/dy/dz_min = " <<
227  1.0/dxinv[0] << " " << 1.0/dxinv[1] << " " << dz_min[level] << std::endl;
228  Print() << "Compressible dt at level " << level << ": " << estdt_comp << std::endl;
229  if (estdt_lowM_inv > 0.0_rt) {
230  Print() << "Anelastic dt at level " << level << ": " << estdt_lowM << std::endl;
231  } else {
232  Print() << "Anelastic dt at level " << level << ": undefined " << std::endl;
233  }
234  }
235 
236  if (fixed_dt[level] > 0.0) {
237  Print() << "Based on cfl of 1.0 " << std::endl;
238  Print() << "Compressible dt at level " << level << " would be: " << estdt_comp/cfl << std::endl;
239  if (estdt_lowM_inv > 0.0_rt) {
240  Print() << "Anelastic dt at level " << level << " would be: " << estdt_lowM/cfl << std::endl;
241  } else {
242  Print() << "Anelastic dt at level " << level << " would be undefined " << std::endl;
243  }
244  Print() << "Fixed dt at level " << level << " is: " << fixed_dt[level] << std::endl;
245  if (fixed_fast_dt[level] > 0.0) {
246  Print() << "Fixed fast dt at level " << level << " is: " << fixed_fast_dt[level] << std::endl;
247  }
248  }
249  }
250 
251  if (solverChoice.substepping_type[level] != SubsteppingType::None) {
252  if (fixed_dt[level] > 0. && fixed_fast_dt[level] > 0.) {
253  dt_fast_ratio = static_cast<long>( fixed_dt[level] / fixed_fast_dt[level] );
254  } else if (fixed_dt[level] > 0.) {
255  // Max CFL_c = 1.0 for substeps by default, but we enforce a min of 4 substeps
256  auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
257  dt_fast_ratio = static_cast<long>( std::max(fixed_dt[level]/dt_sub_max,4.) );
258  } else {
259  // auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
260  // dt_fast_ratio = static_cast<long>( std::max(estdt_comp/dt_sub_max,4.) );
261  dt_fast_ratio = static_cast<long>( std::max(cfl / sub_cfl, 4.) );
262  }
263 
264  // Force time step ratio to be an even value
266  if ( dt_fast_ratio%2 != 0) dt_fast_ratio += 1;
267  } else {
268  if ( dt_fast_ratio%6 != 0) {
269  Print() << "mri_dt_ratio = " << dt_fast_ratio
270  << " not divisible by 6 for N/3 substeps in stage 1" << std::endl;
271  dt_fast_ratio = static_cast<int>(std::ceil(dt_fast_ratio/6.0) * 6);
272  }
273  }
274 
275  if (verbose) {
276  Print() << "smallest even ratio is: " << dt_fast_ratio << std::endl;
277  }
278  } // if substepping, either explicit or implicit
279 
280  if (fixed_dt[level] > 0.0) {
281  return fixed_dt[level];
282  } else {
283  // Anelastic (substepping is not allowed)
284  if (l_anelastic) {
285 
286  // Make sure that timestep is less than the dt_max
287  estdt_lowM = amrex::min(estdt_lowM, dt_max);
288 
289  // On the first timestep enforce dt_max_initial
290  if(istep[level] == 0){
291  return amrex::min(dt_max_initial, estdt_lowM);
292  }
293  else{
294  return estdt_lowM;
295  }
296 
297 
298  // Compressible with or without substepping
299  } else {
300  return estdt_comp;
301  }
302  }
303 }
constexpr amrex::Real Gamma
Definition: ERF_Constants.H:19
amrex::Vector< amrex::Real > dz_min
Definition: ERF.H:1184
eb_ const & get_eb(int lev) const noexcept
Definition: ERF.H:1458
amrex::Vector< amrex::Real > fixed_dt
Definition: ERF.H:926
static amrex::Real dt_max
Definition: ERF.H:923
amrex::Vector< amrex::Real > fixed_fast_dt
Definition: ERF.H:927
static amrex::Real cfl
Definition: ERF.H:918
static amrex::Real sub_cfl
Definition: ERF.H:919
Definition: ERF_EB.H:13
const std::unique_ptr< amrex::EBFArrayBoxFactory > & get_const_factory() const noexcept
Definition: ERF_EB.H:46
@ rho
Definition: ERF_Kessler.H:22
int force_stage1_single_substep
Definition: ERF_DataStruct.H:768
Here is the call graph for this function:

◆ Evolve()

void ERF::Evolve ( )
450 {
451  BL_PROFILE_VAR("ERF::Evolve()", evolve);
452 
453  Real cur_time = t_new[0];
454 
455  // Take one coarse timestep by calling timeStep -- which recursively calls timeStep
456  // for finer levels (with or without subcycling)
457  for (int step = istep[0]; step < max_step && cur_time < stop_time; ++step)
458  {
459  if (use_datetime) {
460  Print() << "\n" << getTimestamp(cur_time, datetime_format)
461  << " (" << cur_time-start_time << " s elapsed)"
462  << std::endl;
463  }
464  Print() << "\nCoarse STEP " << step+1 << " starts ..." << std::endl;
465 
466  ComputeDt(step);
467 
468  // Make sure we have read enough of the boundary plane data to make it through this timestep
469  if (input_bndry_planes)
470  {
471  m_r2d->read_input_files(cur_time,dt[0],m_bc_extdir_vals);
472  }
473 
474  int lev = 0;
475  int iteration = 1;
476  timeStep(lev, cur_time, iteration);
477 
478  cur_time += dt[0];
479 
480  Print() << "Coarse STEP " << step+1 << " ends." << " TIME = " << cur_time
481  << " DT = " << dt[0] << std::endl;
482 
483  post_timestep(step, cur_time, dt[0]);
484 
485  if (writeNow(cur_time, dt[0], step+1, m_plot_int_1, m_plot_per_1)) {
486  last_plot_file_step_1 = step+1;
488  }
489  if (writeNow(cur_time, dt[0], step+1, m_plot_int_2, m_plot_per_2)) {
490  last_plot_file_step_2 = step+1;
492  }
493  if (writeNow(cur_time, dt[0], step+1, m_subvol_int, m_subvol_per)) {
494  last_subvol = step+1;
495  WriteSubvolume();
496  }
497 
498  if (writeNow(cur_time, dt[0], step+1, m_check_int, m_check_per)) {
499  last_check_file_step = step+1;
501  }
502 
503 #ifdef AMREX_MEM_PROFILING
504  {
505  std::ostringstream ss;
506  ss << "[STEP " << step+1 << "]";
507  MemProfiler::report(ss.str());
508  }
509 #endif
510 
511  if (cur_time >= stop_time - 1.e-6*dt[0]) break;
512  }
513 
514  // Write plotfiles at final time
515  if ( (m_plot_int_1 > 0 || m_plot_per_1 > 0.) && istep[0] > last_plot_file_step_1 ) {
517  }
518  if ( (m_plot_int_2 > 0 || m_plot_per_2 > 0.) && istep[0] > last_plot_file_step_2) {
520  }
521  if ( (m_subvol_int > 0 || m_subvol_per > 0.) && istep[0] > last_subvol) {
522  WriteSubvolume();
523  }
524 
525  if ( (m_check_int > 0 || m_check_per > 0.) && istep[0] > last_check_file_step) {
527  }
528 
529  BL_PROFILE_VAR_STOP(evolve);
530 }
AMREX_FORCE_INLINE std::string getTimestamp(const amrex::Real epoch_real, const std::string &datetime_format)
Definition: ERF_EpochTime.H:35
int last_check_file_step
Definition: ERF.H:894
int max_step
Definition: ERF.H:907
int last_plot_file_step_2
Definition: ERF.H:891
static PlotFileType plotfile_type_1
Definition: ERF.H:1055
int m_subvol_int
Definition: ERF.H:945
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_extdir_vals
Definition: ERF.H:868
amrex::Real m_plot_per_1
Definition: ERF.H:946
void WriteSubvolume()
Definition: ERF_WriteSubvolume.cpp:9
int m_plot_int_1
Definition: ERF.H:943
void post_timestep(int nstep, amrex::Real time, amrex::Real dt_lev)
Definition: ERF.cpp:534
amrex::Real m_subvol_per
Definition: ERF.H:948
amrex::Real m_check_per
Definition: ERF.H:960
int m_check_int
Definition: ERF.H:959
int last_plot_file_step_1
Definition: ERF.H:890
static int input_bndry_planes
Definition: ERF.H:1110
int last_subvol
Definition: ERF.H:892
const std::string datetime_format
Definition: ERF.H:912
bool use_datetime
Definition: ERF.H:911
static PlotFileType plotfile_type_2
Definition: ERF.H:1056
void WritePlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:263
amrex::Real start_time
Definition: ERF.H:908
void ComputeDt(int step=-1)
Definition: ERF_ComputeTimestep.cpp:11
void WriteCheckpointFile() const
Definition: ERF_Checkpoint.cpp:26
int m_plot_int_2
Definition: ERF.H:944
std::unique_ptr< ReadBndryPlanes > m_r2d
Definition: ERF.H:1167
bool writeNow(const amrex::Real cur_time, const amrex::Real dt, const int nstep, const int plot_int, const amrex::Real plot_per)
Definition: ERF.cpp:2256
void timeStep(int lev, amrex::Real time, int iteration)
Definition: ERF_TimeStep.cpp:17
amrex::Real m_plot_per_2
Definition: ERF.H:947

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ fill_from_bndryregs()

void ERF::fill_from_bndryregs ( const amrex::Vector< amrex::MultiFab * > &  mfs,
amrex::Real  time 
)
14 {
15  //
16  // We now assume that if we read in on one face, we read in on all faces
17  //
18  AMREX_ALWAYS_ASSERT(m_r2d);
19 
20  int lev = 0;
21  const Box& domain = geom[lev].Domain();
22 
23  const auto& dom_lo = lbound(domain);
24  const auto& dom_hi = ubound(domain);
25 
26  Vector<std::unique_ptr<PlaneVector>>& bndry_data = m_r2d->interp_in_time(time);
27 
28  const BCRec* bc_ptr = domain_bcs_type_d.data();
29 
30  // xlo: ori = 0
31  // ylo: ori = 1
32  // zlo: ori = 2
33  // xhi: ori = 3
34  // yhi: ori = 4
35  // zhi: ori = 5
36  const auto& bdatxlo = (*bndry_data[0])[lev].const_array();
37  const auto& bdatylo = (*bndry_data[1])[lev].const_array();
38  const auto& bdatxhi = (*bndry_data[3])[lev].const_array();
39  const auto& bdatyhi = (*bndry_data[4])[lev].const_array();
40 
41  int bccomp;
42 
43  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx)
44  {
45  MultiFab& mf = *mfs[var_idx];
46  const int icomp = 0;
47  const int ncomp = mf.nComp();
48 
49  if (var_idx == Vars::xvel) {
50  bccomp = BCVars::xvel_bc;
51  } else if (var_idx == Vars::yvel) {
52  bccomp = BCVars::yvel_bc;
53  } else if (var_idx == Vars::zvel) {
54  bccomp = BCVars::zvel_bc;
55  } else if (var_idx == Vars::cons) {
56  bccomp = BCVars::cons_bc;
57  }
58 
59 #ifdef AMREX_USE_OMP
60 #pragma omp parallel if (Gpu::notInLaunchRegion())
61 #endif
62  for (MFIter mfi(mf); mfi.isValid(); ++mfi)
63  {
64  const Array4<Real>& dest_arr = mf.array(mfi);
65  Box bx = mfi.growntilebox();
66 
67  // x-faces
68  {
69  Box bx_xlo(bx); bx_xlo.setBig(0,dom_lo.x-1);
70  if (var_idx == Vars::xvel) bx_xlo.setBig(0,dom_lo.x);
71 
72  Box bx_xhi(bx); bx_xhi.setSmall(0,dom_hi.x+1);
73  if (var_idx == Vars::xvel) bx_xhi.setSmall(0,dom_hi.x);
74 
75  ParallelFor(
76  bx_xlo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
77  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
78  BCVars::RhoScalar_bc_comp : icomp+n;
79  if (bc_ptr[bc_comp].lo(0) == ERFBCType::ext_dir_ingested) {
80  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
81  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
82  dest_arr(i,j,k,icomp+n) = bdatxlo(dom_lo.x-1,jb,kb,bccomp+n);
83  }
84  },
85  bx_xhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
86  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
87  BCVars::RhoScalar_bc_comp : icomp+n;
88  if (bc_ptr[bc_comp].hi(0) == ERFBCType::ext_dir_ingested) {
89  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
90  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
91  dest_arr(i,j,k,icomp+n) = bdatxhi(dom_hi.x+1,jb,kb,bccomp+n);
92  }
93  }
94  );
95  } // x-faces
96 
97  // y-faces
98  {
99  Box bx_ylo(bx); bx_ylo.setBig (1,dom_lo.y-1);
100  if (var_idx == Vars::yvel) bx_ylo.setBig(1,dom_lo.y);
101 
102  Box bx_yhi(bx); bx_yhi.setSmall(1,dom_hi.y+1);
103  if (var_idx == Vars::yvel) bx_yhi.setSmall(1,dom_hi.y);
104 
105  ParallelFor(
106  bx_ylo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
107  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
108  BCVars::RhoScalar_bc_comp : icomp+n;
109  if (bc_ptr[bc_comp].lo(1) == ERFBCType::ext_dir_ingested) {
110  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
111  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
112  dest_arr(i,j,k,icomp+n) = bdatylo(ib,dom_lo.y-1,kb,bccomp+n);
113  }
114  },
115  bx_yhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
116  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
117  BCVars::RhoScalar_bc_comp : icomp+n;
118  if (bc_ptr[bc_comp].hi(1) == ERFBCType::ext_dir_ingested) {
119  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
120  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
121  dest_arr(i,j,k,icomp+n) = bdatyhi(ib,dom_hi.y+1,kb,bccomp+n);
122  }
123  }
124  );
125  } // y-faces
126  } // mf
127  } // var_idx
128 }
const auto & dom_hi
Definition: ERF_DiffSetup.H:10
const auto & dom_lo
Definition: ERF_DiffSetup.H:9
#define RhoScalar_comp
Definition: ERF_IndexDefines.H:40
#define NSCALARS
Definition: ERF_IndexDefines.H:16
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
Definition: ERF.H:862
@ RhoScalar_bc_comp
Definition: ERF_IndexDefines.H:80
@ ext_dir_ingested
Definition: ERF_IndexDefines.H:212

◆ fill_rhs()

void ERF::fill_rhs ( amrex::MultiFab &  rhs_mf,
const amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ FillBdyCCVels()

void ERF::FillBdyCCVels ( amrex::Vector< amrex::MultiFab > &  mf_cc_vel,
int  levc = 0 
)
12 {
13  // Impose bc's at domain boundaries
14  for (int ilev(0); ilev < mf_cc_vel.size(); ++ilev)
15  {
16  int lev = ilev + levc;
17  Box domain(Geom(lev).Domain());
18 
19  int ihi = domain.bigEnd(0);
20  int jhi = domain.bigEnd(1);
21  int khi = domain.bigEnd(2);
22 
23  // Impose periodicity first
24  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
25 
26  int jper = (Geom(lev).isPeriodic(1));
27  int kper = (Geom(lev).isPeriodic(2));
28 
29  for (MFIter mfi(mf_cc_vel[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
30  {
31  const Box& bx = mfi.tilebox();
32  const Array4<Real>& vel_arr = mf_cc_vel[lev].array(mfi);
33 
34  if (!Geom(lev).isPeriodic(0)) {
35  // Low-x side
36  if (bx.smallEnd(0) <= domain.smallEnd(0)) {
37  Real multn = ( (phys_bc_type[0] == ERF_BC::slip_wall ) ||
39  (phys_bc_type[0] == ERF_BC::symmetry ) ) ? -1. : 1.;
40  Real multt = (phys_bc_type[0] == ERF_BC::no_slip_wall) ? -1. : 1.;
41  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
42  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
43  {
44  vel_arr(-1,j,k,0) = multn*vel_arr(0,j,k,0); // u
45  vel_arr(-1,j,k,1) = multt*vel_arr(0,j,k,1); // v
46  vel_arr(-1,j,k,2) = multt*vel_arr(0,j,k,2); // w
47  });
48  }
49 
50  // High-x side
51  if (bx.bigEnd(0) >= domain.bigEnd(0)) {
52  Real multn = ( (phys_bc_type[3] == ERF_BC::slip_wall ) ||
54  (phys_bc_type[3] == ERF_BC::symmetry ) ) ? -1. : 1.;
55  Real multt = (phys_bc_type[3] == ERF_BC::no_slip_wall) ? -1. : 1.;
56  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
57  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
58  {
59  vel_arr(ihi+1,j,k,0) = multn*vel_arr(ihi,j,k,0); // u
60  vel_arr(ihi+1,j,k,1) = multt*vel_arr(ihi,j,k,1); // v
61  vel_arr(ihi+1,j,k,2) = multt*vel_arr(ihi,j,k,2); // w
62  });
63  }
64  } // !periodic
65 
66  if (!Geom(lev).isPeriodic(1)) {
67  // Low-y side
68  if (bx.smallEnd(1) <= domain.smallEnd(1)) {
69  Real multn = ( (phys_bc_type[1] == ERF_BC::slip_wall ) ||
71  (phys_bc_type[1] == ERF_BC::symmetry ) ) ? -1. : 1.;
72  Real multt = (phys_bc_type[1] == ERF_BC::no_slip_wall) ? -1. : 1.;
73  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
74  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
75  {
76  vel_arr(i,-1,k,0) = multt*vel_arr(i,0,k,0); // u
77  vel_arr(i,-1,k,1) = multn*vel_arr(i,0,k,1); // u
78  vel_arr(i,-1,k,2) = multt*vel_arr(i,0,k,2); // w
79  });
80  }
81 
82  // High-y side
83  if (bx.bigEnd(1) >= domain.bigEnd(1)) {
84  Real multn = ( (phys_bc_type[4] == ERF_BC::slip_wall ) ||
86  (phys_bc_type[4] == ERF_BC::symmetry ) ) ? -1. : 1.;
87  Real multt = (phys_bc_type[4] == ERF_BC::no_slip_wall) ? -1. : 1.;
88  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
89  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
90  {
91  vel_arr(i,jhi+1,k,0) = multt*vel_arr(i,jhi,k,0); // u
92  vel_arr(i,jhi+1,k,1) = multn*vel_arr(i,jhi,k,1); // v
93  vel_arr(i,jhi+1,k,2) = multt*vel_arr(i,jhi,k,2); // w
94  });
95  }
96  } // !periodic
97 
98  if (!Geom(lev).isPeriodic(2)) {
99  // Low-z side
100  if (bx.smallEnd(2) <= domain.smallEnd(2)) {
101  Real multn = ( (phys_bc_type[2] == ERF_BC::slip_wall ) ||
103  (phys_bc_type[2] == ERF_BC::symmetry ) ) ? -1. : 1.;
104  Real multt = (phys_bc_type[2] == ERF_BC::no_slip_wall) ? -1. : 1.;
105  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
106  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
107  {
108  vel_arr(i,j,-1,0) = multt*vel_arr(i,j,0,0); // u
109  vel_arr(i,j,-1,1) = multt*vel_arr(i,j,0,1); // v
110  vel_arr(i,j,-1,2) = multn*vel_arr(i,j,0,2); // w
111  });
112  }
113 
114  // High-z side
115  if (bx.bigEnd(2) >= domain.bigEnd(2)) {
116  Real multn = ( (phys_bc_type[5] == ERF_BC::slip_wall ) ||
118  (phys_bc_type[5] == ERF_BC::symmetry ) ) ? -1. : 1.;
119  Real multt = (phys_bc_type[5] == ERF_BC::no_slip_wall) ? -1. : 1.;
120  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
121  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
122  {
123  vel_arr(i,j,khi+1,0) = multt*vel_arr(i,j,khi,0); // u
124  vel_arr(i,j,khi+1,1) = multt*vel_arr(i,j,khi,1); // v
125  vel_arr(i,j,khi+1,2) = multn*vel_arr(i,j,khi,2); // w
126  });
127  }
128  } // !periodic
129  } // MFIter
130 
131  // Impose periodicity again
132  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
133  } // lev
134 }
@ no_slip_wall

◆ FillCoarsePatch()

void ERF::FillCoarsePatch ( int  lev,
amrex::Real  time 
)
private
22 {
23  BL_PROFILE_VAR("FillCoarsePatch()",FillCoarsePatch);
24  AMREX_ASSERT(lev > 0);
25 
26  //
27  //****************************************************************************************************************
28  // First fill velocities and density at the COARSE level so we can convert velocity to momenta at the COARSE level
29  //****************************************************************************************************************
30  //
31  bool cons_only = false;
32  if (lev == 1) {
33  FillPatch(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
34  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
35  cons_only);
36  } else {
37  FillPatch(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
38  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
39  {&vars_new[lev-1][Vars::cons],
40  &rU_new[lev-1], &rV_new[lev-1], &rW_new[lev-1]},
41  base_state[lev-1], base_state[lev-1],
42  false, cons_only);
43  }
44 
45  //
46  // ************************************************
47  // Convert velocity to momentum at the COARSE level
48  // ************************************************
49  //
50  VelocityToMomentum(vars_new[lev-1][Vars::xvel], IntVect{0},
51  vars_new[lev-1][Vars::yvel], IntVect{0},
52  vars_new[lev-1][Vars::zvel], IntVect{0},
53  vars_new[lev-1][Vars::cons],
54  rU_new[lev-1],
55  rV_new[lev-1],
56  rW_new[lev-1],
57  Geom(lev).Domain(),
59  //
60  // *****************************************************************
61  // Interpolate all cell-centered variables from coarse to fine level
62  // *****************************************************************
63  //
64  Interpolater* mapper_c = &cell_cons_interp;
65  Interpolater* mapper_f = &face_cons_linear_interp;
66 
67  //
68  //************************************************************************************************
69  // Interpolate cell-centered data from coarse to fine level
70  // with InterpFromCoarseLevel which ASSUMES that all ghost cells have already been filled
71  // ************************************************************************************************
72  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
73  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
74 
75  InterpFromCoarseLevel(vars_new[lev ][Vars::cons], ngvect_cons, IntVect(0,0,0),
76  vars_new[lev-1][Vars::cons], 0, 0, ncomp_cons,
77  geom[lev-1], geom[lev],
78  refRatio(lev-1), mapper_c, domain_bcs_type, BCVars::cons_bc);
79 
80  // ***************************************************************************
81  // Physical bc's for cell centered variables at domain boundary
82  // ***************************************************************************
84  0,ncomp_cons,ngvect_cons,time,BCVars::cons_bc,true);
85 
86  //
87  //************************************************************************************************
88  // Interpolate x-momentum from coarse to fine level
89  // with InterpFromCoarseLevel which ASSUMES that all ghost cells have already been filled
90  // ************************************************************************************************
91  //
92  InterpFromCoarseLevel(rU_new[lev], IntVect{0}, IntVect{0}, rU_new[lev-1], 0, 0, 1,
93  geom[lev-1], geom[lev],
94  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::xvel_bc);
95 
96  //
97  //************************************************************************************************
98  // Interpolate y-momentum from coarse to fine level
99  // with InterpFromCoarseLevel which ASSUMES that all ghost cells have already been filled
100  // ************************************************************************************************
101  //
102  InterpFromCoarseLevel(rV_new[lev], IntVect{0}, IntVect{0}, rV_new[lev-1], 0, 0, 1,
103  geom[lev-1], geom[lev],
104  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::yvel_bc);
105 
106  //************************************************************************************************
107  // Interpolate z-momentum from coarse to fine level
108  // with InterpFromCoarseLevel which ASSUMES that all ghost cells have already been filled
109  // ************************************************************************************************
110  InterpFromCoarseLevel(rW_new[lev], IntVect{0}, IntVect{0}, rW_new[lev-1], 0, 0, 1,
111  geom[lev-1], geom[lev],
112  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::zvel_bc);
113  //
114  // *********************************************************
115  // After interpolation of momentum, convert back to velocity
116  // *********************************************************
117  //
118  for (int which_lev = lev-1; which_lev <= lev; which_lev++)
119  {
121  vars_new[which_lev][Vars::yvel],
122  vars_new[which_lev][Vars::zvel],
123  vars_new[which_lev][Vars::cons],
124  rU_new[which_lev],
125  rV_new[which_lev],
126  rW_new[which_lev],
127  Geom(lev).Domain(),
129  }
130 
131  // ***************************************************************************
132  // Physical bc's at domain boundary
133  // ***************************************************************************
134  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
135 
137  ngvect_vels,time,BCVars::xvel_bc,true);
139  ngvect_vels,time,BCVars::yvel_bc,true);
141  ngvect_vels,time,BCVars::zvel_bc,true);
142 
143  // ***************************************************************************
144  // Since lev > 0 here we don't worry about m_r2d or wrfbdy data
145  // ***************************************************************************
146 }
void FillCoarsePatch(int lev, amrex::Real time)
Definition: ERF_FillCoarsePatch.cpp:21
Here is the call graph for this function:

◆ FillIntermediatePatch()

void ERF::FillIntermediatePatch ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
int  ng_cons,
int  ng_vel,
bool  cons_only,
int  icomp_cons,
int  ncomp_cons 
)
private
33 {
34  BL_PROFILE_VAR("FillIntermediatePatch()",FillIntermediatePatch);
35  Interpolater* mapper;
36 
37  PhysBCFunctNoOp null_bc;
38 
39  //
40  // ***************************************************************************
41  // The first thing we do is interpolate the momenta on the "valid" faces of
42  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
43  // will not be over-written by interpolation below because the FillPatch
44  // operators see these as valid faces. But we must have these interpolated
45  // values in the fine data before we call FillPatchTwoLevels.
46  //
47  // Also -- note that we might be filling values by interpolation at physical boundaries
48  // here but that's ok because we will overwrite those values when we impose
49  // the physical bc's below
50  // ***************************************************************************
51  if (lev>0) {
52  if (cf_set_width > 0) {
53  // We note that mfs_vel[Vars::cons] and mfs_mom[Vars::cons] are in fact the same pointer
54  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
55  }
56  if ( !cons_only && (cf_set_width >= 0) ) {
57  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
58  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
59  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
60  }
61  }
62 
63  // amrex::Print() << "LEVEL " << lev << " CONS ONLY " << cons_only <<
64  // " ICOMP NCOMP " << icomp_cons << " " << ncomp_cons << " NGHOST " << ng_cons << std::endl;
65 
66  if (!cons_only) {
67  AMREX_ALWAYS_ASSERT(mfs_mom.size() == IntVars::NumTypes);
68  AMREX_ALWAYS_ASSERT(mfs_vel.size() == Vars::NumTypes);
69  }
70 
71  // Enforce no penetration for thin immersed body
72  if (!cons_only) {
73  // Enforce no penetration for thin immersed body
74  if (xflux_imask[lev]) {
75  ApplyMask(*mfs_mom[IntVars::xmom], *xflux_imask[lev]);
76  }
77  if (yflux_imask[lev]) {
78  ApplyMask(*mfs_mom[IntVars::ymom], *yflux_imask[lev]);
79  }
80  if (zflux_imask[lev]) {
81  ApplyMask(*mfs_mom[IntVars::zmom], *zflux_imask[lev]);
82  }
83  }
84 
85  //
86  // We now start working on conserved quantities + VELOCITY
87  //
88  if (lev == 0)
89  {
90  // We don't do anything here because we will call the physbcs routines below,
91  // which calls FillBoundary and fills other domain boundary conditions
92  // Physical boundaries will be filled below
93 
94  if (!cons_only)
95  {
96  // ***************************************************************************
97  // We always come in to this call with updated momenta but we need to create updated velocity
98  // in order to impose the rest of the bc's
99  // ***************************************************************************
100  // This only fills VALID region of velocity
101  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
102  *mfs_vel[Vars::cons],
103  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
104  Geom(lev).Domain(), domain_bcs_type);
105  }
106  }
107  else
108  {
109  //
110  // We must fill a temporary then copy it back so we don't double add/subtract
111  //
112  MultiFab mf(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
113  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
114  //
115  // Set all components to 1.789e19, then copy just the density from *mfs_vel[Vars::cons]
116  //
117  mf.setVal(1.789e19);
118  MultiFab::Copy(mf,*mfs_vel[Vars::cons],Rho_comp,Rho_comp,1,mf.nGrowVect());
119 
120  Vector<MultiFab*> fmf = {mfs_vel[Vars::cons],mfs_vel[Vars::cons]};
121  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
122  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
123  Vector<Real> ftime = {time,time};
124 
125  // Impose physical bc's on fine data (note time and 0 are not used)
126  bool do_fb = true; bool do_terrain_adjustment = false;
127  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
128  icomp_cons,ncomp_cons,IntVect{ng_cons},time,BCVars::cons_bc,
129  do_fb, do_terrain_adjustment);
130 
131  if ( (icomp_cons+ncomp_cons > 1) && (interpolation_type == StateInterpType::Perturbational) )
132  {
133  // Divide (rho theta) by rho to get theta
134  MultiFab::Divide(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
135 
136  // Subtract theta_0 from theta
137  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
138 
139  if (!amrex::almostEqual(time,ctime[1])) {
140  MultiFab::Divide(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
141  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
142  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
143  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
144  }
145  if (!amrex::almostEqual(time,ctime[0])) {
146  MultiFab::Divide(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
147  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
148  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
149  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
150  }
151  }
152 
153  // Subtract rho_0 from rho before we interpolate -- note we only subtract
154  // on valid region of mf since the ghost cells will be filled below
155  if (icomp_cons == 0 && (interpolation_type == StateInterpType::Perturbational))
156  {
157  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{0});
158 
159  if (!amrex::almostEqual(time,ctime[1])) {
160  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
161  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
162  }
163  if (!amrex::almostEqual(time,ctime[0])) {
164  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
165  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
166  }
167  }
168 
169  // Call FillPatchTwoLevels which ASSUMES that all ghost cells have already been filled
170  mapper = &cell_cons_interp;
171  FillPatchTwoLevels(mf, IntVect{ng_cons}, IntVect(0,0,0),
172  time, cmf, ctime, fmf, ftime,
173  icomp_cons, icomp_cons, ncomp_cons, geom[lev-1], geom[lev],
174  refRatio(lev-1), mapper, domain_bcs_type,
175  icomp_cons);
176 
177  if (icomp_cons == 0 && (interpolation_type == StateInterpType::Perturbational))
178  {
179  // Restore the coarse values to what they were
180  if (!amrex::almostEqual(time,ctime[1])) {
181  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
182  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
183  }
184  if (!amrex::almostEqual(time,ctime[0])) {
185  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
186  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
187  }
188 
189  // Set values in the cells outside the domain boundary so that we can do the Add
190  // without worrying about uninitialized values outside the domain -- these
191  // will be filled in the physbcs call
192  mf.setDomainBndry(1.234e20,Rho_comp,1,geom[lev]);
193 
194  // Add rho_0 back to rho after we interpolate -- on all the valid + ghost region
195  MultiFab::Add(mf, base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{ng_cons});
196  }
197 
198  if ( (icomp_cons+ncomp_cons > 1) && (interpolation_type == StateInterpType::Perturbational) )
199  {
200  // Add theta_0 to theta
201  if (!amrex::almostEqual(time,ctime[1])) {
202  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
203  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
204  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
205  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
206  }
207  if (!amrex::almostEqual(time,ctime[0])) {
208  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
209  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
210  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
211  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
212  }
213 
214  // Multiply theta by rho to get (rho theta)
215  MultiFab::Multiply(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
216 
217  // Add theta_0 to theta
218  MultiFab::Add(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
219 
220  // Add theta_0 back to theta
221  MultiFab::Add(mf,base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{ng_cons});
222 
223  // Multiply (theta) by rho to get (rho theta)
224  MultiFab::Multiply(mf,mf,Rho_comp,RhoTheta_comp,1,IntVect{ng_cons});
225  }
226 
227  // Make sure to only copy back the components we worked on
228  MultiFab::Copy(*mfs_vel[Vars::cons],mf,icomp_cons,icomp_cons,ncomp_cons,IntVect{ng_cons});
229 
230  // *****************************************************************************************
231 
232  if (!cons_only)
233  {
234  // ***************************************************************************
235  // We always come in to this call with updated momenta but we need to create updated velocity
236  // in order to impose the rest of the bc's
237  // ***************************************************************************
238  // This only fills VALID region of velocity
239  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
240  *mfs_vel[Vars::cons],
241  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
242  Geom(lev).Domain(), domain_bcs_type);
243 
244  mapper = &face_cons_linear_interp;
245 
246  //
247  // NOTE: All interpolation here happens on velocities not momenta;
248  // note we only do the interpolation and FillBoundary here,
249  // physical bc's are imposed later
250  //
251  // NOTE: This will only fill velocity from coarse grid *outside* the fine grids
252  // unlike the FillSet calls above which filled momenta on the coarse/fine bdy
253  //
254 
255  MultiFab& mfu = *mfs_vel[Vars::xvel];
256 
257  fmf = {&mfu,&mfu};
258  cmf = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
259 
260  // Call FillPatchTwoLevels which ASSUMES that all ghost cells have already been filled
261  FillPatchTwoLevels(mfu, IntVect{ng_vel}, IntVect(0,0,0),
262  time, cmf, ctime, fmf, ftime,
263  0, 0, 1, geom[lev-1], geom[lev],
264  refRatio(lev-1), mapper, domain_bcs_type,
266 
267  // *****************************************************************************************
268 
269  MultiFab& mfv = *mfs_vel[Vars::yvel];
270 
271  fmf = {&mfv,&mfv};
272  cmf = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
273 
274  // Call FillPatchTwoLevels which ASSUMES that all ghost cells have already been filled
275  FillPatchTwoLevels(mfv, IntVect{ng_vel}, IntVect(0,0,0),
276  time, cmf, ctime, fmf, ftime,
277  0, 0, 1, geom[lev-1], geom[lev],
278  refRatio(lev-1), mapper, domain_bcs_type,
280 
281  // *****************************************************************************************
282 
283  MultiFab& mfw = *mfs_vel[Vars::zvel];
284 
285  fmf = {&mfw,&mfw};
286  cmf = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
287 
288  // Call FillPatchTwoLevels which ASSUMES that all ghost cells have already been filled
289  FillPatchTwoLevels(mfw, IntVect{ng_vel}, IntVect(0,0,0),
290  time, cmf, ctime, fmf, ftime,
291  0, 0, 1, geom[lev-1], geom[lev],
292  refRatio(lev-1), mapper, domain_bcs_type,
294  } // !cons_only
295  } // lev > 0
296 
297  // ***************************************************************************
298  // Physical bc's at domain boundary
299  // ***************************************************************************
300  IntVect ngvect_cons = IntVect(ng_cons,ng_cons,ng_cons);
301  IntVect ngvect_vels = IntVect(ng_vel ,ng_vel ,ng_vel);
302 
303  bool do_fb = true;
304 
305 #ifdef ERF_USE_NETCDF
306  // We call this here because it is an ERF routine
307  if (solverChoice.use_real_bcs && (lev==0)) {
308  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
309  do_fb = false;
310  }
311 #endif
312 
313  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
314 
315  // We call this even if use_real_bcs is true because these will fill the vertical bcs
316  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
317  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
318  if (!cons_only) {
319  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
320  ngvect_vels,time,BCVars::xvel_bc, do_fb);
321  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
322  ngvect_vels,time,BCVars::yvel_bc, do_fb);
323  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
324  ngvect_vels,time,BCVars::zvel_bc, do_fb);
325  }
326  // ***************************************************************************
327 
328  // We always come in to this call with momenta so we need to leave with momenta!
329  // We need to make sure we convert back on all ghost cells/faces because this is
330  // how velocity from fine-fine copies (as well as physical and interpolated bcs) will be filled
331  if (!cons_only)
332  {
333  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::xvel]->nGrowVect();
334  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::yvel]->nGrowVect();
335  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : mfs_vel[Vars::zvel]->nGrowVect();
336 
337  VelocityToMomentum(*mfs_vel[Vars::xvel], ngu,
338  *mfs_vel[Vars::yvel], ngv,
339  *mfs_vel[Vars::zvel], ngw,
340  *mfs_vel[Vars::cons],
341  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
342  Geom(lev).Domain(),
344  }
345 
346  // NOTE: There are not FillBoundary calls here for the following reasons:
347  // Removal of the FillBoundary (FB) calls has bee completed for the following reasons:
348  //
349  // 1. physbc_cons is called before VelocityToMomentum and a FB is completed in that functor.
350  // Therefore, the conserved CC vars have their inter-rank ghost cells filled and then their
351  // domain ghost cells filled from the BC operations. We should not call FB on this MF again.
352  //
353  // 2. physbc_u/v/w is also called before VelocityToMomentum and a FB is completed those functors.
354  // Furthermore, VelocityToMomentum operates on a growntilebox so we exit that routine with momentum
355  // filled everywhere---i.e., physbc_u/v/w fills velocity ghost cells (inter-rank and domain)
356  // and then V2M does the conversion to momenta everywhere; so there is again no need to do a FB on momenta.
357 }
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:387
void fill_from_bndryregs(const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
Definition: ERF_BoundaryConditionsBndryReg.cpp:13
void FillIntermediatePatch(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
Definition: ERF_FillIntermediatePatch.cpp:28
@ NumTypes
Definition: ERF_IndexDefines.H:162
static bool use_real_bcs
Definition: ERF_DataStruct.H:752
Here is the call graph for this function:

◆ FillPatch() [1/2]

void ERF::FillPatch ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
bool  cons_only = false 
)
private

◆ FillPatch() [2/2]

void ERF::FillPatch ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
const amrex::MultiFab &  old_base_state,
const amrex::MultiFab &  new_base_state,
bool  fillset = true,
bool  cons_only = false 
)
private

◆ get_eb()

eb_ const& ERF::get_eb ( int  lev) const
inlineprivatenoexcept
1458  {
1459  AMREX_ASSERT(lev >= 0 && lev < eb.size() && eb[lev] != nullptr);
1460  return *eb[lev];
1461  }

◆ get_projection_bc()

Array< LinOpBCType, AMREX_SPACEDIM > ERF::get_projection_bc ( amrex::Orientation::Side  side) const
noexcept
18 {
19  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> r;
20  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
21  if (geom[0].isPeriodic(dir)) {
22  r[dir] = LinOpBCType::Periodic;
23  } else {
24  auto bc_type = domain_bc_type[Orientation(dir,side)];
25  if (bc_type == "Outflow") {
26  r[dir] = LinOpBCType::Dirichlet;
27  } else
28  {
29  r[dir] = LinOpBCType::Neumann;
30  }
31  }
32  }
33  return r;
34 }
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
Definition: ERF.H:865

◆ getAdvFluxReg()

AMREX_FORCE_INLINE amrex::YAFluxRegister* ERF::getAdvFluxReg ( int  lev)
inlineprivate
1247  {
1248  return advflux_reg[lev];
1249  }

◆ getCPUTime()

static amrex::Real ERF::getCPUTime ( )
inlinestaticprivate
1339  {
1340  int numCores = amrex::ParallelDescriptor::NProcs();
1341 #ifdef _OPENMP
1342  numCores = numCores * omp_get_max_threads();
1343 #endif
1344 
1345  amrex::Real T =
1346  numCores * (amrex::ParallelDescriptor::second() - startCPUTime) +
1348 
1349  return T;
1350  }
static amrex::Real previousCPUTimeUsed
Definition: ERF.H:1335
static amrex::Real startCPUTime
Definition: ERF.H:1334
@ T
Definition: ERF_IndexDefines.H:110

◆ GotoNextLine()

void ERF::GotoNextLine ( std::istream &  is)
staticprivate

Utility to skip to next line in Header file input stream.

17 {
18  constexpr std::streamsize bl_ignore_max { 100000 };
19  is.ignore(bl_ignore_max, '\n');
20 }

◆ HurricaneTracker()

void ERF::HurricaneTracker ( int  lev,
const amrex::MultiFab &  U_new,
const amrex::MultiFab &  V_new,
const amrex::MultiFab &  W_new,
const amrex::Real  velmag_threshold,
const bool  is_track_io,
amrex::TagBoxArray *  tags = nullptr 
)
458 {
459  const auto dx = geom[levc].CellSizeArray();
460  const auto prob_lo = geom[levc].ProbLoArray();
461 
462  const int ncomp = AMREX_SPACEDIM; // Number of components (3 for 3D)
463 
464  Gpu::DeviceVector<Real> d_coords(3, 0.0); // Initialize to -1
465  Real* d_coords_ptr = d_coords.data(); // Get pointer to device vector
466  Gpu::DeviceVector<int> d_found(1,0);
467  int* d_found_ptr = d_found.data();
468 
469  MultiFab mf_cc_vel(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
470  average_face_to_cellcenter(mf_cc_vel,0,{AMREX_D_DECL(&U_new,&V_new,&W_new)},0);
471 
472  // Loop through MultiFab using MFIter
473  for (MFIter mfi(mf_cc_vel); mfi.isValid(); ++mfi) {
474  const Box& box = mfi.validbox(); // Get the valid box for the current MFIter
475  const Array4<const Real>& vel_arr = mf_cc_vel.const_array(mfi); // Get the array for this MFIter
476 
477  // ParallelFor loop to check velocity magnitudes on the GPU
478  amrex::ParallelFor(box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
479  // Access velocity components using ncomp
480  Real magnitude = 0.0; // Initialize magnitude
481 
482  for (int comp = 0; comp < ncomp; ++comp) {
483  Real vel = vel_arr(i, j, k, comp); // Access the component for each (i, j, k)
484  magnitude += vel * vel; // Sum the square of the components
485  }
486 
487  magnitude = std::sqrt(magnitude)*3.6; // Calculate magnitude
488  Real x = prob_lo[0] + (i + 0.5) * dx[0];
489  Real y = prob_lo[1] + (j + 0.5) * dx[1];
490  Real z = prob_lo[2] + (k + 0.5) * dx[2];
491 
492  // Check if magnitude exceeds threshold
493  if (z < 2.0e3 && magnitude > velmag_threshold) {
494  // Use atomic operations to set found flag and store coordinates
495  Gpu::Atomic::Add(&d_found_ptr[0], 1); // Mark as found
496 
497  // Store coordinates
498  Gpu::Atomic::Add(&d_coords_ptr[0],x); // Store x index
499  Gpu::Atomic::Add(&d_coords_ptr[1],y); // Store x index
500  Gpu::Atomic::Add(&d_coords_ptr[2],z); // Store x index
501  }
502  });
503  }
504 
505  // Synchronize to ensure all threads complete their execution
506  amrex::Gpu::streamSynchronize(); // Wait for all GPU threads to finish
507 
508  Vector<int> h_found(1,0);
509  Gpu::copy(Gpu::deviceToHost, d_found.begin(), d_found.end(), h_found.begin());
510  ParallelAllReduce::Sum(h_found.data(),
511  h_found.size(),
512  ParallelContext::CommunicatorAll());
513 
514  Real eye_x, eye_y;
515  // Broadcast coordinates if found
516  if (h_found[0] > 0) {
517  Vector<Real> h_coords(3,-1e10);
518  Gpu::copy(Gpu::deviceToHost, d_coords.begin(), d_coords.end(), h_coords.begin());
519 
520  ParallelAllReduce::Sum(h_coords.data(),
521  h_coords.size(),
522  ParallelContext::CommunicatorAll());
523 
524  eye_x = h_coords[0]/h_found[0];
525  eye_y = h_coords[1]/h_found[0];
526 
527  // Data structure to hold the hurricane track for I/O
528  if (amrex::ParallelDescriptor::IOProcessor() and is_track_io) {
529  hurricane_track_xy.push_back({eye_x, eye_y});
530  }
531 
532  if(is_track_io) {
533  return;
534  }
535 
536  Real rad_tag = 3e5*std::pow(2, max_level-1-levc);
537 
538  for (MFIter mfi(*tags); mfi.isValid(); ++mfi) {
539  TagBox& tag = (*tags)[mfi];
540  auto tag_arr = tag.array(); // Get device-accessible array
541 
542  const Box& tile_box = mfi.tilebox(); // The box for this tile
543 
544  ParallelFor(tile_box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
545  // Compute cell center coordinates
546  Real x = prob_lo[0] + (i + 0.5) * dx[0];
547  Real y = prob_lo[1] + (j + 0.5) * dx[1];
548 
549  Real dist = std::sqrt((x - eye_x)*(x - eye_x) + (y - eye_y)*(y - eye_y));
550 
551  if (dist < rad_tag) {
552  tag_arr(i,j,k) = TagBox::SET;
553  }
554  });
555  }
556  }
557 }
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_track_xy
Definition: ERF.H:144

◆ ImposeBCsOnPhi()

void ERF::ImposeBCsOnPhi ( int  lev,
amrex::MultiFab &  phi 
)

Impose bc's on the pressure that comes out of the solve

13 {
14  BL_PROFILE("ERF::ImposeBCsOnPhi()");
15 
16  auto const dom_lo = lbound(geom[lev].Domain());
17  auto const dom_hi = ubound(geom[lev].Domain());
18 
19  phi.FillBoundary(geom[lev].periodicity());
20 
21  // ****************************************************************************
22  // Impose bc's on pprime
23  // ****************************************************************************
24 #ifdef _OPENMP
25 #pragma omp parallel if (Gpu::notInLaunchRegion())
26 #endif
27  for (MFIter mfi(phi,TilingIfNotGPU()); mfi.isValid(); ++mfi)
28  {
29  Array4<Real> const& pp_arr = phi.array(mfi);
30  Box const& bx = mfi.tilebox();
31  auto const bx_lo = lbound(bx);
32  auto const bx_hi = ubound(bx);
33 
34  if (bx_lo.x == dom_lo.x) {
35  auto bc_type = domain_bc_type[Orientation(0,Orientation::low)];
36  if (bc_type == "Outflow" || bc_type == "Open") {
37  ParallelFor(makeSlab(bx,0,dom_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
38  {
39  pp_arr(i-1,j,k) = -pp_arr(i,j,k);
40  });
41  } else {
42  ParallelFor(makeSlab(bx,0,dom_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
43  {
44  pp_arr(i-1,j,k) = pp_arr(i,j,k);
45  });
46  }
47  }
48  if (bx_hi.x == dom_hi.x) {
49  auto bc_type = domain_bc_type[Orientation(0,Orientation::high)];
50  if (bc_type == "Outflow" || bc_type == "Open") {
51  ParallelFor(makeSlab(bx,0,dom_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
52  {
53  pp_arr(i+1,j,k) = -pp_arr(i,j,k);
54  });
55  } else {
56  ParallelFor(makeSlab(bx,0,dom_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
57  {
58  pp_arr(i+1,j,k) = pp_arr(i,j,k);
59  });
60  }
61  }
62 
63  if (bx_lo.y == dom_lo.y) {
64  auto bc_type = domain_bc_type[Orientation(1,Orientation::low)];
65  Box ybx(bx); ybx.grow(0,1); // Grow in x-dir because we have filled that above
66  if (bc_type == "Outflow" || bc_type == "Open") {
67  ParallelFor(makeSlab(ybx,1,dom_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
68  {
69  pp_arr(i,j-1,k) = -pp_arr(i,j,k);
70  });
71  } else {
72  ParallelFor(makeSlab(ybx,1,dom_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
73  {
74  pp_arr(i,j-1,k) = pp_arr(i,j,k);
75  });
76  }
77  }
78 
79  if (bx_hi.y == dom_hi.y) {
80  auto bc_type = domain_bc_type[Orientation(1,Orientation::high)];
81  Box ybx(bx); ybx.grow(0,1); // Grow in x-dir because we have filled that above
82  if (bc_type == "Outflow" || bc_type == "Open") {
83  ParallelFor(makeSlab(ybx,1,dom_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
84  {
85  pp_arr(i,j+1,k) = -pp_arr(i,j,k);
86  });
87  } else {
88  ParallelFor(makeSlab(ybx,1,dom_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
89  {
90  pp_arr(i,j+1,k) = pp_arr(i,j,k);
91  });
92  }
93  }
94 
95  Box zbx(bx); zbx.grow(0,1); zbx.grow(1,1); // Grow in x-dir and y-dir because we have filled that above
96  if (bx_lo.z == dom_lo.z) {
97  ParallelFor(makeSlab(zbx,2,dom_lo.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
98  {
99  pp_arr(i,j,k-1) = pp_arr(i,j,k);
100  });
101  }
102 
103  auto zbc_type = domain_bc_type[Orientation(2,Orientation::high)];
104  if (bx_hi.z == dom_hi.z) {
105  if (zbc_type == "Outflow" || zbc_type == "Open") {
106  ParallelFor(makeSlab(zbx,2,dom_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
107  {
108  pp_arr(i,j,k+1) = -pp_arr(i,j,k);
109  });
110  } else {
111  ParallelFor(makeSlab(zbx,2,dom_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
112  {
113  pp_arr(i,j,k+1) = pp_arr(i,j,k);
114  });
115  }
116  }
117  } // mfi
118 
119  // Now overwrite with periodic fill outside domain and fine-fine fill inside
120  phi.FillBoundary(geom[lev].periodicity());
121 }
const Box ybx
Definition: ERF_DiffSetup.H:22

◆ init1DArrays()

void ERF::init1DArrays ( )
private

◆ init_bcs()

void ERF::init_bcs ( )
private

Initializes data structures in the ERF class that specify which boundary conditions we are implementing on each face of the domain.

This function also maps the selected boundary condition types (e.g. Outflow, Inflow, InflowOutflow, Periodic, Dirichlet, ...) to the specific implementation needed for each variable.

Stores this information in both host and device vectors so it is available for GPU kernels.

21 {
22  bool rho_read = false;
23  bool read_prim_theta = true;
24  Vector<Real> cons_dir_init(NBCVAR_max,0.0);
25  cons_dir_init[BCVars::Rho_bc_comp] = 1.0;
26  cons_dir_init[BCVars::RhoTheta_bc_comp] = -1.0;
27  auto f = [this,&rho_read,&read_prim_theta] (std::string const& bcid, Orientation ori)
28  {
29  // These are simply defaults for Dirichlet faces -- they should be over-written below
31  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = -1.0; // It is important to set this negative
32  // because the sign is tested on below
33  for (int n = BCVars::RhoKE_bc_comp; n < BCVars::xvel_bc; n++) {
34  m_bc_extdir_vals[n][ori] = 0.0;
35  }
36 
37  m_bc_extdir_vals[BCVars::xvel_bc][ori] = 0.0; // default
40 
41  // These are simply defaults for Neumann gradients -- they should be over-written below
44 
53 
57 
58  std::string pp_text = pp_prefix + "." + bcid;
59  ParmParse pp(pp_text);
60 
61  std::string bc_type_in;
62  if (pp.query("type", bc_type_in) <= 0)
63  {
64  pp_text = bcid;
65  pp = ParmParse(pp_text);
66  pp.query("type", bc_type_in);
67  }
68 
69  std::string bc_type = amrex::toLower(bc_type_in);
70 
71  if (bc_type == "symmetry")
72  {
73  // Print() << bcid << " set to symmetry.\n";
75  domain_bc_type[ori] = "Symmetry";
76  }
77  else if (bc_type == "outflow")
78  {
79  // Print() << bcid << " set to outflow.\n";
81  domain_bc_type[ori] = "Outflow";
82  }
83  else if (bc_type == "open")
84  {
85  // Print() << bcid << " set to open.\n";
86  AMREX_ASSERT_WITH_MESSAGE((ori.coordDir() != 2), "Open boundary not valid on zlo or zhi!");
88  domain_bc_type[ori] = "Open";
89  }
90  else if (bc_type == "ho_outflow")
91  {
93  domain_bc_type[ori] = "HO_Outflow";
94  }
95 
96  else if (bc_type == "inflow" || bc_type == "inflow_outflow")
97  {
98  if (bc_type == "inflow") {
99  // Print() << bcid << " set to inflow.\n";
101  domain_bc_type[ori] = "Inflow";
102  } else {
103  // Print() << bcid << " set to inflow_outflow.\n";
105  domain_bc_type[ori] = "InflowOutflow";
106  }
107 
108  std::vector<Real> v;
109  if (input_bndry_planes && m_r2d->ingested_velocity()) {
113  } else {
114  // Test for input data file if at xlo face
115  std::string dirichlet_file;
116  auto file_exists = pp.query("dirichlet_file", dirichlet_file);
117  if (file_exists) {
118  pp.query("read_prim_theta", read_prim_theta);
119  init_Dirichlet_bc_data(dirichlet_file);
120  } else {
121  pp.getarr("velocity", v, 0, AMREX_SPACEDIM);
122  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
123  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
124  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
125  }
126  }
127 
128  Real rho_in = 0.;
129  if (input_bndry_planes && m_r2d->ingested_density()) {
131  } else {
132  if (!pp.query("density", rho_in)) {
133  amrex::Print() << "Using interior values to set conserved vars" << std::endl;
134  }
135  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
136  }
137 
138  bool th_read = (th_bc_data[0].data()!=nullptr);
139  Real theta_in = 0.;
140  if (input_bndry_planes && m_r2d->ingested_theta()) {
142  } else if (!th_read) {
143  if (rho_in > 0) {
144  pp.get("theta", theta_in);
145  }
146  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = rho_in*theta_in;
147  }
148 
149  Real scalar_in = 0.;
150  if (input_bndry_planes && m_r2d->ingested_scalar()) {
152  } else {
153  if (pp.query("scalar", scalar_in))
154  m_bc_extdir_vals[BCVars::RhoScalar_bc_comp][ori] = rho_in*scalar_in;
155  }
156 
157  if (solverChoice.moisture_type != MoistureType::None) {
158  Real qv_in = 0.;
159  if (input_bndry_planes && m_r2d->ingested_q1()) {
161  } else {
162  if (pp.query("qv", qv_in))
163  m_bc_extdir_vals[BCVars::RhoQ1_bc_comp][ori] = rho_in*qv_in;
164  }
165  Real qc_in = 0.;
166  if (input_bndry_planes && m_r2d->ingested_q2()) {
168  } else {
169  if (pp.query("qc", qc_in))
170  m_bc_extdir_vals[BCVars::RhoQ2_bc_comp][ori] = rho_in*qc_in;
171  }
172  }
173 
174  Real KE_in = 0.;
175  if (input_bndry_planes && m_r2d->ingested_KE()) {
177  } else {
178  if (pp.query("KE", KE_in))
179  m_bc_extdir_vals[BCVars::RhoKE_bc_comp][ori] = rho_in*KE_in;
180  }
181  }
182  else if (bc_type == "noslipwall")
183  {
184  // Print() << bcid <<" set to no-slip wall.\n";
186  domain_bc_type[ori] = "NoSlipWall";
187 
188  std::vector<Real> v;
189 
190  // The values of m_bc_extdir_vals default to 0.
191  // But if we find "velocity" in the inputs file, use those values instead.
192  if (pp.queryarr("velocity", v, 0, AMREX_SPACEDIM))
193  {
194  v[ori.coordDir()] = 0.0;
195  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
196  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
197  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
198  }
199 
200  Real rho_in;
201  rho_read = pp.query("density", rho_in);
202  if (rho_read)
203  {
204  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
205  }
206 
207  Real theta_in;
208  if (pp.query("theta", theta_in))
209  {
211  }
212 
213  Real theta_grad_in;
214  if (pp.query("theta_grad", theta_grad_in))
215  {
216  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
217  }
218 
219  Real qv_in;
220  if (pp.query("qv", qv_in))
221  {
223  }
224  }
225  else if (bc_type == "slipwall")
226  {
227  // Print() << bcid <<" set to slip wall.\n";
228 
230  domain_bc_type[ori] = "SlipWall";
231 
232  Real rho_in;
233  rho_read = pp.query("density", rho_in);
234  if (rho_read)
235  {
236  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
237  }
238 
239  Real theta_in;
240  if (pp.query("theta", theta_in))
241  {
243  }
244 
245  Real rho_grad_in;
246  if (pp.query("density_grad", rho_grad_in))
247  {
248  m_bc_neumann_vals[BCVars::Rho_bc_comp][ori] = rho_grad_in;
249  }
250 
251  Real theta_grad_in;
252  if (pp.query("theta_grad", theta_grad_in))
253  {
254  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
255  }
256  }
257  else if (bc_type == "surface_layer")
258  {
260  domain_bc_type[ori] = "surface_layer";
261  }
262  else
263  {
265  }
266 
267  if (geom[0].isPeriodic(ori.coordDir())) {
268  domain_bc_type[ori] = "Periodic";
269  if (phys_bc_type[ori] == ERF_BC::undefined)
270  {
272  } else {
273  Abort("Wrong BC type for periodic boundary");
274  }
275  }
276 
277  if (phys_bc_type[ori] == ERF_BC::undefined)
278  {
279  Print() << "BC Type specified for face " << bcid << " is " << bc_type_in << std::endl;
280  Abort("This BC type is unknown");
281  }
282  };
283 
284  f("xlo", Orientation(Direction::x,Orientation::low));
285  f("xhi", Orientation(Direction::x,Orientation::high));
286  f("ylo", Orientation(Direction::y,Orientation::low));
287  f("yhi", Orientation(Direction::y,Orientation::high));
288  f("zlo", Orientation(Direction::z,Orientation::low));
289  f("zhi", Orientation(Direction::z,Orientation::high));
290 
291  // *****************************************************************************
292  //
293  // Here we translate the physical boundary conditions -- one type per face --
294  // into logical boundary conditions for each velocity component
295  //
296  // *****************************************************************************
297  {
298  domain_bcs_type.resize(AMREX_SPACEDIM+NBCVAR_max);
299  domain_bcs_type_d.resize(AMREX_SPACEDIM+NBCVAR_max);
300 
301  for (OrientationIter oit; oit; ++oit) {
302  Orientation ori = oit();
303  int dir = ori.coordDir();
304  Orientation::Side side = ori.faceDir();
305  auto const bct = phys_bc_type[ori];
306  if ( bct == ERF_BC::symmetry )
307  {
308  if (side == Orientation::low) {
309  for (int i = 0; i < AMREX_SPACEDIM; i++) {
311  }
313  } else {
314  for (int i = 0; i < AMREX_SPACEDIM; i++) {
316  }
318  }
319  }
320  else if (bct == ERF_BC::outflow or bct == ERF_BC::ho_outflow )
321  {
322  if (side == Orientation::low) {
323  for (int i = 0; i < AMREX_SPACEDIM; i++) {
325  }
326  if (!solverChoice.anelastic[0]) {
328  }
329  } else {
330  for (int i = 0; i < AMREX_SPACEDIM; i++) {
332  }
333  if (!solverChoice.anelastic[0]) {
335  }
336  }
337  }
338  else if (bct == ERF_BC::open)
339  {
340  if (side == Orientation::low) {
341  for (int i = 0; i < AMREX_SPACEDIM; i++)
343  } else {
344  for (int i = 0; i < AMREX_SPACEDIM; i++)
346  }
347  }
348  else if (bct == ERF_BC::inflow)
349  {
350  if (side == Orientation::low) {
351  for (int i = 0; i < AMREX_SPACEDIM; i++) {
353  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
355  }
356  }
357  } else {
358  for (int i = 0; i < AMREX_SPACEDIM; i++) {
360  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
362  }
363  }
364  }
365  }
366  else if (bct == ERF_BC::inflow_outflow)
367  {
368  if (side == Orientation::low) {
369  for (int i = 0; i < AMREX_SPACEDIM; i++) {
371  }
372  } else {
373  for (int i = 0; i < AMREX_SPACEDIM; i++) {
375  }
376  }
377  }
378  else if (bct == ERF_BC::no_slip_wall)
379  {
380  if (side == Orientation::low) {
381  for (int i = 0; i < AMREX_SPACEDIM; i++) {
383  }
384  } else {
385  for (int i = 0; i < AMREX_SPACEDIM; i++) {
387  }
388  }
389  }
390  else if (bct == ERF_BC::slip_wall)
391  {
392  if (side == Orientation::low) {
393  for (int i = 0; i < AMREX_SPACEDIM; i++) {
395  }
396  // Only normal direction has ext_dir
398 
399  } else {
400  for (int i = 0; i < AMREX_SPACEDIM; i++) {
402  }
403  // Only normal direction has ext_dir
405  }
406  }
407  else if (bct == ERF_BC::periodic)
408  {
409  if (side == Orientation::low) {
410  for (int i = 0; i < AMREX_SPACEDIM; i++) {
412  }
413  } else {
414  for (int i = 0; i < AMREX_SPACEDIM; i++) {
416  }
417  }
418  }
419  else if ( bct == ERF_BC::surface_layer )
420  {
421  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
425  }
426  }
427  }
428 
429  // *****************************************************************************
430  //
431  // Here we translate the physical boundary conditions -- one type per face --
432  // into logical boundary conditions for each cell-centered variable
433  // (including the base state variables)
434  // NOTE: all "scalars" share the same type of boundary condition
435  //
436  // *****************************************************************************
437  {
438  for (OrientationIter oit; oit; ++oit) {
439  Orientation ori = oit();
440  int dir = ori.coordDir();
441  Orientation::Side side = ori.faceDir();
442  auto const bct = phys_bc_type[ori];
443  if ( bct == ERF_BC::symmetry )
444  {
445  if (side == Orientation::low) {
446  for (int i = 0; i < NBCVAR_max; i++) {
448  }
449  } else {
450  for (int i = 0; i < NBCVAR_max; i++) {
452  }
453  }
454  }
455  else if ( bct == ERF_BC::outflow )
456  {
457  if (side == Orientation::low) {
458  for (int i = 0; i < NBCVAR_max; i++) {
460  }
461  } else {
462  for (int i = 0; i < NBCVAR_max; i++) {
464  }
465  }
466  }
467  else if ( bct == ERF_BC::ho_outflow )
468  {
469  if (side == Orientation::low) {
470  for (int i = 0; i < NBCVAR_max; i++) {
472  }
473  } else {
474  for (int i = 0; i < NBCVAR_max; i++) {
476  }
477  }
478  }
479  else if ( bct == ERF_BC::open )
480  {
481  if (side == Orientation::low) {
482  for (int i = 0; i < NBCVAR_max; i++)
484  } else {
485  for (int i = 0; i < NBCVAR_max; i++)
487  }
488  }
489  else if ( bct == ERF_BC::no_slip_wall )
490  {
491  if (side == Orientation::low) {
492  for (int i = 0; i < NBCVAR_max; i++) {
494  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
495  if (rho_read) {
497  } else {
499  }
500  }
501  }
502  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
504  }
505  } else {
506  for (int i = 0; i < NBCVAR_max; i++) {
508  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
509  if (rho_read) {
511  } else {
513  }
514  }
515  }
516  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
518  }
519  }
520  }
521  else if (bct == ERF_BC::slip_wall)
522  {
523  if (side == Orientation::low) {
524  for (int i = 0; i < NBCVAR_max; i++) {
526  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
527  if (rho_read) {
529  } else {
531  }
532  }
533  }
534  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
536  }
537  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
539  }
540  } else {
541  for (int i = 0; i < NBCVAR_max; i++) {
543  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
544  if (rho_read) {
546  } else {
548  }
549  }
550  }
551  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
553  }
554  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
556  }
557  }
558  }
559  else if (bct == ERF_BC::inflow)
560  {
561  if (side == Orientation::low) {
562  for (int i = 0; i < NBCVAR_max; i++) {
564  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
565  (th_bc_data[0].data() != nullptr))
566  {
567  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setLo(dir, ERFBCType::ext_dir_prim);
568  }
569  else if (input_bndry_planes && dir < 2 && (
570  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
571  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
572  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
573  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
574  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
575  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )) )
576  {
578  }
579  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
581  }
582  }
583  } else {
584  for (int i = 0; i < NBCVAR_max; i++) {
586  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
587  (th_bc_data[0].data() != nullptr))
588  {
589  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setHi(dir, ERFBCType::ext_dir_prim);
590  }
591  else if (input_bndry_planes && dir < 2 && (
592  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
593  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
594  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
595  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
596  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
597  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )
598  ) )
599  {
601  }
602  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
604  }
605  }
606  }
607  }
608  else if (bct == ERF_BC::inflow_outflow )
609  {
610  if (side == Orientation::low) {
611  for (int i = 0; i < NBCVAR_max; i++) {
613  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
615  }
616  }
617  } else {
618  for (int i = 0; i < NBCVAR_max; i++) {
620  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
622  }
623  }
624  }
625  }
626  else if (bct == ERF_BC::periodic)
627  {
628  if (side == Orientation::low) {
629  for (int i = 0; i < NBCVAR_max; i++) {
631  }
632  } else {
633  for (int i = 0; i < NBCVAR_max; i++) {
635  }
636  }
637  }
638  else if ( bct == ERF_BC::surface_layer )
639  {
640  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
641  for (int i = 0; i < NBCVAR_max; i++) {
643  }
644  }
645  }
646  }
647 
648  // NOTE: Gpu:copy is a wrapper to htod_memcpy (GPU) or memcpy (CPU) and is a blocking comm
649  Gpu::copy(Gpu::hostToDevice, domain_bcs_type.begin(), domain_bcs_type.end(), domain_bcs_type_d.begin());
650 }
#define NBCVAR_max
Definition: ERF_IndexDefines.H:29
@ ho_outflow
@ inflow_outflow
void init_Dirichlet_bc_data(const std::string input_file)
Definition: ERF_InitBCs.cpp:652
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_neumann_vals
Definition: ERF.H:871
@ RhoQ6_bc_comp
Definition: ERF_IndexDefines.H:86
@ RhoQ1_bc_comp
Definition: ERF_IndexDefines.H:81
@ RhoQ4_bc_comp
Definition: ERF_IndexDefines.H:84
@ RhoKE_bc_comp
Definition: ERF_IndexDefines.H:79
@ RhoQ3_bc_comp
Definition: ERF_IndexDefines.H:83
@ RhoTheta_bc_comp
Definition: ERF_IndexDefines.H:78
@ RhoQ2_bc_comp
Definition: ERF_IndexDefines.H:82
@ Rho_bc_comp
Definition: ERF_IndexDefines.H:77
@ RhoQ5_bc_comp
Definition: ERF_IndexDefines.H:85
@ neumann
Definition: ERF_IndexDefines.H:213
@ open
Definition: ERF_IndexDefines.H:215
@ reflect_odd
Definition: ERF_IndexDefines.H:205
@ hoextrap
Definition: ERF_IndexDefines.H:216
@ foextrap
Definition: ERF_IndexDefines.H:208
@ ext_dir
Definition: ERF_IndexDefines.H:209
@ ext_dir_prim
Definition: ERF_IndexDefines.H:211
@ ext_dir_upwind
Definition: ERF_IndexDefines.H:217
@ int_dir
Definition: ERF_IndexDefines.H:206
@ neumann_int
Definition: ERF_IndexDefines.H:214
@ reflect_even
Definition: ERF_IndexDefines.H:207
Here is the call graph for this function:

◆ init_coarse_weather_data()

void ERF::init_coarse_weather_data ( )
139 {
140  Vector<Real> xvec_h, yvec_h, zvec_h, rho_h, uvel_h, vvel_h, wvel_h, theta_h, qv_h, qc_h, qr_h;
141 
142  std::string filename;
143  ParmParse pp("erf");
144  pp.query("IC_file", filename);
145 
146  if (filename.empty()) {
147  amrex::Abort("Error: IC_file is not specified in the input file.");
148  }
149 
150  ReadCustomBinaryIC(filename, xvec_h, yvec_h, zvec_h, rho_h,
151  uvel_h, vvel_h, wvel_h,
152  theta_h, qv_h, qc_h, qr_h);
153 
154  const auto prob_lo_erf = geom[0].ProbLoArray();
155  const auto prob_hi_erf = geom[0].ProbHiArray();
156  const auto dx_erf = geom[0].CellSizeArray();
157 
158  if(prob_lo_erf[0] < xvec_h.front() + 4*dx_erf[0]){
159  amrex::Abort("The xlo value of the domain has to be greater than " + std::to_string(xvec_h.front() + 4*dx_erf[0]));
160  }
161  if(prob_hi_erf[0] > xvec_h.back() - 4*dx_erf[0]){
162  amrex::Abort("The xhi value of the domain has to be less than " + std::to_string(xvec_h.back() - 4*dx_erf[0]));
163  }
164  if(prob_lo_erf[1] < yvec_h.front() + 4*dx_erf[1]){
165  amrex::Abort("The ylo value of the domain has to be greater than " + std::to_string(yvec_h.front() + 4*dx_erf[1]));
166  }
167  if(prob_hi_erf[1] > yvec_h.back() - 4*dx_erf[1]){
168  amrex::Abort("The yhi value of the domain has to be less than " + std::to_string(yvec_h.back() - 4*dx_erf[1]));
169  }
170 
171  // Number of cells
172  int nx_cells = xvec_h.size()-1;
173  int ny_cells = yvec_h.size()-1;
174 
175  const amrex::Geometry& geom0 = geom[0]; // or whatever your Geometry vector is called
176  const amrex::Box& domainBox = geom0.Domain();
177  const amrex::IntVect& domainSize = domainBox.size(); // Number of cells in each direction
178  int nz_cells = domainSize[2];
179 
180  IntVect dom_lo(0, 0, 0);
181  IntVect dom_hi(nx_cells-1, ny_cells-1, nz_cells-1);
182  Box domain(dom_lo, dom_hi);
183 
184  const amrex::Real* prob_hi = geom0.ProbHi();
185 
186  // Define the extents of the physical domain box
187  RealBox real_box({xvec_h[0], yvec_h[0], zvec_h[0]}, {xvec_h[nx_cells], yvec_h[ny_cells], prob_hi[2]});
188 
189  int coord = 0; // Cartesian
190  Array<int, AMREX_SPACEDIM> is_periodic{0, 0, 0}; // non-periodic
191 
192  geom_weather.define(domain, real_box, coord, is_periodic);
193 
194  BoxArray ba(domain);
195  ba.maxSize(64);
196  BoxArray nba = amrex::convert(ba, IntVect::TheNodeVector()); // nodal in all directions
197 
198  // Create DistributionMapping
199  DistributionMapping dm(nba);
200 
201  int ncomp = 8;
202  int ngrow = 0;
203 
204  int n_time = 1; // or however many time slices you want
205  weather_forecast_data.resize(n_time);
206  MultiFab& weather_mf = weather_forecast_data[0];
207  weather_mf.define(nba, dm, ncomp, ngrow);
208 
209  fill_weather_data_multifab(weather_mf, geom_weather, nx_cells+1, ny_cells+1, nz_cells+1,
210  zvec_h, rho_h,uvel_h, vvel_h, wvel_h,
211  theta_h, qv_h, qc_h, qr_h);
212 
213 
214  PlotMultiFab(weather_mf, geom_weather, "plt_coarse_weather", MultiFabType::NC);
215 
217 }
void PlotMultiFab(const MultiFab &mf, const Geometry &geom_mf, const std::string plotfilename, MultiFabType mftype)
Definition: ERF_InitForecastData.cpp:93
void fill_weather_data_multifab(MultiFab &mf, const Geometry &geom_weather, const int nx, const int ny, const int nz, const Vector< Real > &zvec_h, const Vector< Real > &rho_h, const Vector< Real > &uvel_h, const Vector< Real > &vvel_h, const Vector< Real > &wvel_h, const Vector< Real > &theta_h, const Vector< Real > &qv_h, const Vector< Real > &qc_h, const Vector< Real > &qr_h)
Definition: ERF_InitForecastData.cpp:10
void ReadCustomBinaryIC(const std::string filename, amrex::Vector< amrex::Real > &xvec_h, amrex::Vector< amrex::Real > &yvec_h, amrex::Vector< amrex::Real > &zvec_h, amrex::Vector< amrex::Real > &rho_h, amrex::Vector< amrex::Real > &uvel_h, amrex::Vector< amrex::Real > &vvel_h, amrex::Vector< amrex::Real > &wvel_h, amrex::Vector< amrex::Real > &theta_h, amrex::Vector< amrex::Real > &qv_h, amrex::Vector< amrex::Real > &qc_h, amrex::Vector< amrex::Real > &qr_h)
Definition: ERF_ReadCustomBinaryIC.H:12
amrex::Vector< amrex::MultiFab > weather_forecast_data
Definition: ERF.H:887
void interp_weather_data_onto_mesh()
Definition: ERF_InitForecastData.cpp:253
amrex::Geometry geom_weather
Definition: ERF.H:888
Here is the call graph for this function:

◆ init_custom()

void ERF::init_custom ( int  lev)
private

Wrapper for custom problem-specific initialization routines that can be defined by the user as they set up a new problem in ERF. This wrapper handles all the overhead of defining the perturbation as well as initializing the random seed if needed.

This wrapper calls a user function to customize initialization on a per-Fab level inside an MFIter loop, so all the MultiFab operations are hidden from the user.

Parameters
levInteger specifying the current level
27 {
28  auto& lev_new = vars_new[lev];
29 
30  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
31  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
32 
33  MultiFab cons_pert(lev_new[Vars::cons].boxArray(), lev_new[Vars::cons].DistributionMap(),
34  lev_new[Vars::cons].nComp() , lev_new[Vars::cons].nGrow());
35  MultiFab xvel_pert(lev_new[Vars::xvel].boxArray(), lev_new[Vars::xvel].DistributionMap(), 1, lev_new[Vars::xvel].nGrowVect());
36  MultiFab yvel_pert(lev_new[Vars::yvel].boxArray(), lev_new[Vars::yvel].DistributionMap(), 1, lev_new[Vars::yvel].nGrowVect());
37  MultiFab zvel_pert(lev_new[Vars::zvel].boxArray(), lev_new[Vars::zvel].DistributionMap(), 1, lev_new[Vars::zvel].nGrowVect());
38 
39  // Default all perturbations to zero
40  cons_pert.setVal(0.);
41  xvel_pert.setVal(0.);
42  yvel_pert.setVal(0.);
43  zvel_pert.setVal(0.);
44 
45 #ifdef _OPENMP
46 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
47 #endif
48  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
49  {
50  const Box &bx = mfi.tilebox();
51  const Box &xbx = mfi.tilebox(IntVect(1,0,0));
52  const Box &ybx = mfi.tilebox(IntVect(0,1,0));
53  const Box &zbx = mfi.tilebox(IntVect(0,0,1));
54 
55  const auto &cons_pert_arr = cons_pert.array(mfi);
56  const auto &xvel_pert_arr = xvel_pert.array(mfi);
57  const auto &yvel_pert_arr = yvel_pert.array(mfi);
58  const auto &zvel_pert_arr = zvel_pert.array(mfi);
59 
60  Array4<Real const> cons_arr = lev_new[Vars::cons].const_array(mfi);
61  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
62  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
63 
64  // Here we arbitrarily choose the x-oriented map factor -- this should be generalized
65  Array4<Real const> mf_m = mapfac[lev][MapFacType::m_x]->const_array(mfi);
66  Array4<Real const> mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
67  Array4<Real const> mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
68 
69  Array4<Real> r_hse_arr = r_hse.array(mfi);
70  Array4<Real> p_hse_arr = p_hse.array(mfi);
71 
72  prob->init_custom_pert(bx, xbx, ybx, zbx, cons_arr, cons_pert_arr,
73  xvel_pert_arr, yvel_pert_arr, zvel_pert_arr,
74  r_hse_arr, p_hse_arr, z_nd_arr, z_cc_arr,
75  geom[lev].data(), mf_m, mf_u, mf_v,
76  solverChoice);
77  } //mfi
78 
79  // Add problem-specific perturbation to background flow if not doing anelastic with fixed-in-time density
81  MultiFab::Add(lev_new[Vars::cons], cons_pert, Rho_comp, Rho_comp, 1, cons_pert.nGrow());
82  }
83  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoTheta_comp, RhoTheta_comp, 1, cons_pert.nGrow());
84  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoScalar_comp,RhoScalar_comp,NSCALARS, cons_pert.nGrow());
85 
86  // RhoKE is relevant if using Deardorff with LES, k-equation for RANS, or MYNN with PBL
87  if (solverChoice.turbChoice[lev].use_tke) {
88  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoKE_comp, RhoKE_comp, 1, cons_pert.nGrow());
89  }
90 
91  if (solverChoice.moisture_type != MoistureType::None) {
92  int qstate_size = micro->Get_Qstate_Size();
93  for (int q_offset(0); q_offset<qstate_size; ++q_offset) {
94  int q_idx = RhoQ1_comp+q_offset;
95  MultiFab::Add(lev_new[Vars::cons], cons_pert, q_idx, q_idx, 1, cons_pert.nGrow());
96  }
97  }
98 
99  MultiFab::Add(lev_new[Vars::xvel], xvel_pert, 0, 0, 1, xvel_pert.nGrowVect());
100  MultiFab::Add(lev_new[Vars::yvel], yvel_pert, 0, 0, 1, yvel_pert.nGrowVect());
101  MultiFab::Add(lev_new[Vars::zvel], zvel_pert, 0, 0, 1, zvel_pert.nGrowVect());
102 }
const Box xbx
Definition: ERF_DiffSetup.H:21
bool fixed_density
Definition: ERF_DataStruct.H:773
Here is the call graph for this function:

◆ init_Dirichlet_bc_data()

void ERF::init_Dirichlet_bc_data ( const std::string  input_file)
private
653 {
654  const bool use_terrain = (solverChoice.terrain_type != TerrainType::None);
655 
656  // Read the dirichlet_input file
657  Print() << "dirichlet_input file location : " << input_file << std::endl;
658  std::ifstream input_reader(input_file);
659  if (!input_reader.is_open()) {
660  amrex::Abort("Error opening the dirichlet_input file.\n");
661  }
662 
663  Print() << "Successfully opened the dirichlet_input file. Now reading... " << std::endl;
664  std::string line;
665 
666  // Size of Ninp (number of z points in input file)
667  Vector<Real> z_inp_tmp, u_inp_tmp, v_inp_tmp, w_inp_tmp, th_inp_tmp;
668 
669  // Top and bot for domain
670  const int klo = geom[0].Domain().smallEnd()[2];
671  const int khi = geom[0].Domain().bigEnd()[2];
672  const Real zbot = (use_terrain) ? zlevels_stag[0][klo] : geom[0].ProbLo(2);
673  const Real ztop = (use_terrain) ? zlevels_stag[0][khi+1] : geom[0].ProbHi(2);
674 
675  // Flag if theta input
676  Real th_init = -300.0;
677  bool th_read{false};
678 
679  // Add surface
680  z_inp_tmp.push_back(zbot); // height above sea level [m]
681  u_inp_tmp.push_back(0.);
682  v_inp_tmp.push_back(0.);
683  w_inp_tmp.push_back(0.);
684  th_inp_tmp.push_back(th_init);
685 
686  // Read the vertical profile at each given height
687  Real z, u, v, w, th;
688  while(std::getline(input_reader, line)) {
689  std::istringstream iss_z(line);
690 
691  Vector<Real> rval_v;
692  Real rval;
693  while (iss_z >> rval) {
694  rval_v.push_back(rval);
695  }
696  z = rval_v[0];
697  u = rval_v[1];
698  v = rval_v[2];
699  w = rval_v[3];
700 
701  // Format without theta
702  if (rval_v.size() == 4) {
703  if (z == zbot) {
704  u_inp_tmp[0] = u;
705  v_inp_tmp[0] = v;
706  w_inp_tmp[0] = w;
707  } else {
708  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
709  z_inp_tmp.push_back(z);
710  u_inp_tmp.push_back(u);
711  v_inp_tmp.push_back(v);
712  w_inp_tmp.push_back(w);
713  if (z >= ztop) break;
714  }
715  } else if (rval_v.size() == 5) {
716  th_read = true;
717  th = rval_v[4];
718  if (z == zbot) {
719  u_inp_tmp[0] = u;
720  v_inp_tmp[0] = v;
721  w_inp_tmp[0] = w;
722  th_inp_tmp[0] = th;
723  } else {
724  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
725  z_inp_tmp.push_back(z);
726  u_inp_tmp.push_back(u);
727  v_inp_tmp.push_back(v);
728  w_inp_tmp.push_back(w);
729  th_inp_tmp.push_back(th);
730  if (z >= ztop) break;
731  }
732  } else {
733  Abort("Unknown inflow file format!");
734  }
735  }
736 
737  // Ensure we set a reasonable theta surface
738  if (th_read) {
739  if (th_inp_tmp[0] == th_init) {
740  Real slope = (th_inp_tmp[2] - th_inp_tmp[1]) / (z_inp_tmp[2] - z_inp_tmp[1]);
741  Real dz = z_inp_tmp[0] - z_inp_tmp[1];
742  th_inp_tmp[0] = slope * dz + th_inp_tmp[1];
743  }
744  }
745 
746  amrex::Print() << "Successfully read and interpolated the dirichlet_input file..." << std::endl;
747  input_reader.close();
748 
749  for (int lev = 0; lev <= max_level; lev++) {
750 
751  const int Nz = geom[lev].Domain().size()[2];
752  const Real dz = geom[lev].CellSize()[2];
753 
754  // Size of Nz (domain grid)
755  Vector<Real> zcc_inp(Nz );
756  Vector<Real> znd_inp(Nz+1);
757  Vector<Real> u_inp(Nz ); xvel_bc_data[lev].resize(Nz ,0.0);
758  Vector<Real> v_inp(Nz ); yvel_bc_data[lev].resize(Nz ,0.0);
759  Vector<Real> w_inp(Nz+1); zvel_bc_data[lev].resize(Nz+1,0.0);
760  Vector<Real> th_inp;
761  if (th_read) {
762  th_inp.resize(Nz);
763  th_bc_data[lev].resize(Nz, 0.0);
764  }
765 
766  // At this point, we have an input from zbot up to
767  // z_inp_tmp[N-1] >= ztop. Now, interpolate to grid level 0 heights
768  const int Ninp = z_inp_tmp.size();
769  for (int k(0); k<Nz; ++k) {
770  zcc_inp[k] = (use_terrain) ? 0.5 * (zlevels_stag[lev][k] + zlevels_stag[lev][k+1])
771  : zbot + (k + 0.5) * dz;
772  znd_inp[k] = (use_terrain) ? zlevels_stag[lev][k+1] : zbot + (k) * dz;
773  u_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), u_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
774  v_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), v_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
775  w_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), znd_inp[k], Ninp);
776  if (th_read) {
777  th_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), th_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
778  }
779  }
780  znd_inp[Nz] = ztop;
781  w_inp[Nz] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), ztop, Ninp);
782 
783  // Copy host data to the device
784  Gpu::copy(Gpu::hostToDevice, u_inp.begin(), u_inp.end(), xvel_bc_data[lev].begin());
785  Gpu::copy(Gpu::hostToDevice, v_inp.begin(), v_inp.end(), yvel_bc_data[lev].begin());
786  Gpu::copy(Gpu::hostToDevice, w_inp.begin(), w_inp.end(), zvel_bc_data[lev].begin());
787  if (th_read) {
788  Gpu::copy(Gpu::hostToDevice, th_inp.begin(), th_inp.end(), th_bc_data[lev].begin());
789  }
790 
791  // NOTE: These device vectors are passed to the PhysBC constructors when that
792  // class is instantiated in ERF_MakeNewArrays.cpp.
793  } // lev
794 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real interpolate_1d(const amrex::Real *alpha, const amrex::Real *beta, const amrex::Real alpha_interp, const int alpha_size)
Definition: ERF_Interpolation_1D.H:12
Here is the call graph for this function:

◆ init_from_hse()

void ERF::init_from_hse ( int  lev)

Initialize the background flow to have the calculated HSE density and rho*theta calculated from the HSE pressure. In general, the hydrostatically balanced density and pressure (r_hse and p_hse from base_state) used here may be calculated through a solver path such as:

ERF::initHSE(lev)

  • call prob->erf_init_dens_hse(...)
    • call Problem::init_isentropic_hse(...), to simultaneously calculate r_hse and p_hse with Newton iteration – assuming constant theta
    • save r_hse
  • call ERF::enforce_hse(...), calculates p_hse from saved r_hse (redundant, but needed because p_hse is not necessarily calculated by the Problem implementation) and pi_hse and th_hse – note: this pressure does not exactly match the p_hse from before because what is calculated by init_isentropic_hse comes from the EOS whereas what is calculated here comes from the hydro- static equation
Parameters
levInteger specifying the current level
33 {
34  auto& lev_new = vars_new[lev];
35 
36  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
37  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
38 
39 #ifdef _OPENMP
40 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
41 #endif
42  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
43  {
44  const Box &gbx = mfi.growntilebox(1);
45  const Array4<Real >& cons_arr = lev_new[Vars::cons].array(mfi);
46  const Array4<Real const>& r_hse_arr = r_hse.const_array(mfi);
47  const Array4<Real const>& p_hse_arr = p_hse.const_array(mfi);
48 
49  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
50  {
51  cons_arr(i,j,k,Rho_comp) = r_hse_arr(i,j,k);
52  cons_arr(i,j,k,RhoTheta_comp) = getRhoThetagivenP(p_hse_arr(i,j,k));
53  });
54  } //mfi
55 }
Here is the call graph for this function:

◆ init_from_input_sounding()

void ERF::init_from_input_sounding ( int  lev)

High level wrapper for initializing scalar and velocity level data from input sounding data.

Parameters
levInteger specifying the current level
53 {
54  // We only want to read the file once -- here we fill one FArrayBox (per variable) that spans the domain
55  if (lev == 0) {
57  Error("input_sounding file name must be provided via input");
58  }
59 
61 
62  // this will interpolate the input profiles to the nominal height levels
63  // (ranging from 0 to the domain top)
64  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
66  }
67 
68  // this will calculate the hydrostatically balanced density and pressure
69  // profiles following WRF ideal.exe
70  if (solverChoice.sounding_type == SoundingType::Ideal) {
72  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
73  solverChoice.sounding_type == SoundingType::DryIsentropic) {
74  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
76  }
77 
78  } else {
79  //
80  // We need to do this interp from coarse level in order to set the values of
81  // the base state inside the domain but outside of the fine region
82  //
83  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
84  //
85  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
86  // have been pre-filled - this includes ghost cells both inside and outside
87  // the domain
88  //
89  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
90  IntVect(0,0,0), // do not fill ghost cells outside the domain
91  base_state[lev-1], 0, 0, base_state[lev].nComp(),
92  geom[lev-1], geom[lev],
93  refRatio(lev-1), &cell_cons_interp,
95 
96  // We need to do this here because the interpolation above may leave corners unfilled
97  // when the corners need to be filled by, for example, reflection of the fine ghost
98  // cell outside the fine region but inide the domain.
99  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
100  }
101 
102  auto& lev_new = vars_new[lev];
103 
104  // updated if sounding is ideal (following WRF) or isentropic
105  const bool l_isentropic = (solverChoice.sounding_type == SoundingType::Isentropic ||
106  solverChoice.sounding_type == SoundingType::DryIsentropic);
107  const bool sounding_ideal_or_isentropic = (solverChoice.sounding_type == SoundingType::Ideal ||
108  l_isentropic);
109  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
110  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
111  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
112  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
113  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
114 
115  const Real l_gravity = solverChoice.gravity;
116  const Real l_rdOcp = solverChoice.rdOcp;
117  const bool l_moist = (solverChoice.moisture_type != MoistureType::None);
118 
119 #ifdef _OPENMP
120 #pragma omp parallel if (Gpu::notInLaunchRegion())
121 #endif
122  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
123  const Box &bx = mfi.tilebox();
124  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
125  const auto &xvel_arr = lev_new[Vars::xvel].array(mfi);
126  const auto &yvel_arr = lev_new[Vars::yvel].array(mfi);
127  const auto &zvel_arr = lev_new[Vars::zvel].array(mfi);
128  Array4<Real> r_hse_arr = r_hse.array(mfi);
129  Array4<Real> p_hse_arr = p_hse.array(mfi);
130  Array4<Real> pi_hse_arr = pi_hse.array(mfi);
131  Array4<Real> th_hse_arr = th_hse.array(mfi);
132  Array4<Real> qv_hse_arr = qv_hse.array(mfi);
133 
134  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
135  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
136 
137  if (sounding_ideal_or_isentropic)
138  {
139  // HSE will be initialized here, interpolated from values previously
140  // calculated by calc_rho_p or calc_rho_p_isentropic
142  bx, cons_arr,
143  r_hse_arr, p_hse_arr, pi_hse_arr, th_hse_arr, qv_hse_arr,
144  geom[lev].data(), z_cc_arr,
145  l_gravity, l_rdOcp, l_moist, input_sounding_data,
146  l_isentropic);
147  }
148  else
149  {
150  // This assumes rho_0 = 1.0
151  // HSE will be calculated later with call to initHSE
153  bx, cons_arr,
154  geom[lev].data(), z_cc_arr,
155  l_moist, input_sounding_data);
156  }
157 
159  bx, xvel_arr, yvel_arr, zvel_arr,
160  geom[lev].data(), z_nd_arr,
162 
163  } //mfi
164 }
void init_bx_scalars_from_input_sounding(const Box &bx, Array4< Real > const &state, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const bool &l_moist, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:176
void init_bx_scalars_from_input_sounding_hse(const Box &bx, Array4< Real > const &state, Array4< Real > const &r_hse_arr, Array4< Real > const &p_hse_arr, Array4< Real > const &pi_hse_arr, Array4< Real > const &th_hse_arr, Array4< Real > const &qv_hse_arr, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const Real &l_gravity, const Real &l_rdOcp, const bool &l_moist, InputSoundingData const &inputSoundingData, const bool &l_isentropic)
Definition: ERF_InitFromInputSounding.cpp:238
void init_bx_velocities_from_input_sounding(const Box &bx, Array4< Real > const &x_vel, Array4< Real > const &y_vel, Array4< Real > const &z_vel, GeometryData const &geomdata, Array4< const Real > const &z_nd_arr, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:374
InputSoundingData input_sounding_data
Definition: ERF.H:667
@ rho0_bc_comp
Definition: ERF_IndexDefines.H:98
@ qv0_comp
Definition: ERF_IndexDefines.H:67
void resize_arrays()
Definition: ERF_InputSoundingData.H:60
int n_sounding_files
Definition: ERF_InputSoundingData.H:398
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag, int itime)
Definition: ERF_InputSoundingData.H:77
amrex::Vector< std::string > input_sounding_file
Definition: ERF_InputSoundingData.H:396
void calc_rho_p(int itime)
Definition: ERF_InputSoundingData.H:176
void calc_rho_p_isentropic(int itime)
Definition: ERF_InputSoundingData.H:262
bool assume_dry
Definition: ERF_InputSoundingData.H:401
static SoundingType sounding_type
Definition: ERF_DataStruct.H:746
Here is the call graph for this function:

◆ init_geo_wind_profile()

void ERF::init_geo_wind_profile ( const std::string  input_file,
amrex::Vector< amrex::Real > &  u_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  u_geos_d,
amrex::Vector< amrex::Real > &  v_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  v_geos_d,
const amrex::Geometry &  lgeom,
const amrex::Vector< amrex::Real > &  zlev_stag 
)
private
17 {
18  const int klo = 0;
19  const int khi = lgeom.Domain().bigEnd()[AMREX_SPACEDIM-1];
20  const amrex::Real dz = lgeom.CellSize()[AMREX_SPACEDIM-1];
21 
22  const bool grid_stretch = (zlev_stag.size() > 0);
23  const Real zbot = (grid_stretch) ? zlev_stag[klo] : lgeom.ProbLo(AMREX_SPACEDIM-1);
24  const Real ztop = (grid_stretch) ? zlev_stag[khi+1] : lgeom.ProbHi(AMREX_SPACEDIM-1);
25 
26  amrex::Print() << "Reading geostrophic wind profile from " << input_file << std::endl;
27  std::ifstream profile_reader(input_file);
28  if(!profile_reader.is_open()) {
29  amrex::Error("Error opening the abl_geo_wind_table\n");
30  }
31 
32  // First, read the input data into temp vectors
33  std::string line;
34  Vector<Real> z_inp, Ug_inp, Vg_inp;
35  Real z, Ug, Vg;
36  amrex::Print() << "z Ug Vg" << std::endl;
37  while(std::getline(profile_reader, line)) {
38  std::istringstream iss(line);
39  iss >> z >> Ug >> Vg;
40  amrex::Print() << z << " " << Ug << " " << Vg << std::endl;
41  z_inp.push_back(z);
42  Ug_inp.push_back(Ug);
43  Vg_inp.push_back(Vg);
44  if (z >= ztop) break;
45  }
46 
47  const int Ninp = z_inp.size();
48  AMREX_ALWAYS_ASSERT(z_inp[0] <= zbot);
49  AMREX_ALWAYS_ASSERT(z_inp[Ninp-1] >= ztop);
50 
51  // Now, interpolate vectors to the cell centers
52  for (int k = 0; k <= khi; k++) {
53  z = (grid_stretch) ? 0.5 * (zlev_stag[k] + zlev_stag[k+1])
54  : zbot + (k + 0.5) * dz;
55  u_geos[k] = interpolate_1d(z_inp.dataPtr(), Ug_inp.dataPtr(), z, Ninp);
56  v_geos[k] = interpolate_1d(z_inp.dataPtr(), Vg_inp.dataPtr(), z, Ninp);
57  }
58 
59  // Copy from host version to device version
60  Gpu::copy(Gpu::hostToDevice, u_geos.begin(), u_geos.end(), u_geos_d.begin());
61  Gpu::copy(Gpu::hostToDevice, v_geos.begin(), v_geos.end(), v_geos_d.begin());
62 
63  profile_reader.close();
64 }
Here is the call graph for this function:

◆ init_only()

void ERF::init_only ( int  lev,
amrex::Real  time 
)
1529 {
1530  t_new[lev] = time;
1531  t_old[lev] = time - 1.e200;
1532 
1533  auto& lev_new = vars_new[lev];
1534  auto& lev_old = vars_old[lev];
1535 
1536  // Loop over grids at this level to initialize our grid data
1537  lev_new[Vars::cons].setVal(0.0); lev_old[Vars::cons].setVal(0.0);
1538  lev_new[Vars::xvel].setVal(0.0); lev_old[Vars::xvel].setVal(0.0);
1539  lev_new[Vars::yvel].setVal(0.0); lev_old[Vars::yvel].setVal(0.0);
1540  lev_new[Vars::zvel].setVal(0.0); lev_old[Vars::zvel].setVal(0.0);
1541 
1542  // Initialize background flow (optional)
1543  if (solverChoice.init_type == InitType::Input_Sounding) {
1544  // The physbc's need the terrain but are needed for initHSE
1545  // We have already made the terrain in the call to init_zphys
1546  // in MakeNewLevelFromScratch
1547  make_physbcs(lev);
1548 
1549  // Now init the base state and the data itself
1551 
1552  // The base state has been initialized by integrating vertically
1553  // through the sounding for ideal (like WRF) or isentropic approaches
1554  if (solverChoice.sounding_type == SoundingType::Ideal ||
1555  solverChoice.sounding_type == SoundingType::Isentropic ||
1556  solverChoice.sounding_type == SoundingType::DryIsentropic) {
1557  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(solverChoice.use_gravity,
1558  "Gravity should be on to be consistent with sounding initialization.");
1559  } else { // SoundingType::ConstantDensity
1560  AMREX_ASSERT_WITH_MESSAGE(!solverChoice.use_gravity,
1561  "Constant density probably doesn't make sense with gravity");
1562  initHSE();
1563  }
1564 
1565 #ifdef ERF_USE_NETCDF
1566  }
1567  else if (solverChoice.init_type == InitType::WRFInput)
1568  {
1569  // The base state is initialized from WRF wrfinput data, output by
1570  // ideal.exe or real.exe
1571  init_from_wrfinput(lev, *mf_C1H[lev], *mf_C2H[lev], *mf_MUB[lev]);
1572  if (lev==0) {
1573  if ((start_time > 0) && (start_time != t_new[lev])) {
1574  Print() << "Ignoring specified start_time="
1575  << std::setprecision(timeprecision) << start_time
1576  << std::endl;
1577  }
1578  start_time = t_new[lev];
1579  }
1580  use_datetime = true;
1581 
1582  // The physbc's need the terrain but are needed for initHSE
1583  if (!solverChoice.use_real_bcs) {
1584  make_physbcs(lev);
1585  }
1586  }
1587  else if (solverChoice.init_type == InitType::NCFile)
1588  {
1589  // The state is initialized by reading from a Netcdf file
1590  init_from_ncfile(lev);
1591 
1592  // The physbc's need the terrain but are needed for initHSE
1593  make_physbcs(lev);
1594  }
1595  else if (solverChoice.init_type == InitType::Metgrid)
1596  {
1597  // The base state is initialized from data output by WPS metgrid;
1598  // we will rebalance after interpolation
1599  init_from_metgrid(lev);
1600 #endif
1601  } else if (solverChoice.init_type == InitType::Uniform) {
1602  // Initialize a uniform background field and base state based on the
1603  // problem-specified reference density and temperature
1604 
1605  // The physbc's need the terrain but are needed for initHSE
1606  make_physbcs(lev);
1607 
1608  init_uniform(lev);
1609  initHSE(lev);
1610  } else {
1611  // No background flow initialization specified, initialize the
1612  // background field to be equal to the base state, calculated from the
1613  // problem-specific erf_init_dens_hse
1614 
1615  // The bc's need the terrain but are needed for initHSE
1616  make_physbcs(lev);
1617 
1618  // We will initialize the state from the background state so must set that first
1619  initHSE(lev);
1620  init_from_hse(lev);
1621  }
1622 
1623  // Add problem-specific flow features
1624  //
1625  // Notes:
1626  // - This calls init_custom_pert that is defined for each problem
1627  // - This may modify the base state
1628  // - The fields set by init_custom_pert are **perturbations** to the
1629  // background flow set based on init_type
1630  if (solverChoice.init_type != InitType::NCFile) {
1631  init_custom(lev);
1632  }
1633 
1634  // Ensure that the face-based data are the same on both sides of a periodic domain.
1635  // The data associated with the lower grid ID is considered the correct value.
1636  lev_new[Vars::xvel].OverrideSync(geom[lev].periodicity());
1637  lev_new[Vars::yvel].OverrideSync(geom[lev].periodicity());
1638  lev_new[Vars::zvel].OverrideSync(geom[lev].periodicity());
1639 
1640  if(solverChoice.spongeChoice.sponge_type == "input_sponge"){
1641  input_sponge(lev);
1642  }
1643 
1644  // Initialize turbulent perturbation
1645  if (solverChoice.pert_type == PerturbationType::Source ||
1646  solverChoice.pert_type == PerturbationType::Direct ||
1647  solverChoice.pert_type == PerturbationType::CPM) {
1648  turbPert_update(lev, 0.);
1649  turbPert_amplitude(lev);
1650  }
1651 }
const int timeprecision
Definition: ERF.H:900
void init_from_input_sounding(int lev)
Definition: ERF_InitFromInputSounding.cpp:52
void init_custom(int lev)
Definition: ERF_InitCustom.cpp:26
void init_from_hse(int lev)
Definition: ERF_InitFromHSE.cpp:32
void initHSE()
Initialize HSE.
Definition: ERF_Init1D.cpp:142
void turbPert_update(const int lev, const amrex::Real dt)
Definition: ERF_InitTurbPert.cpp:12
void input_sponge(int lev)
Definition: ERF_InitSponge.cpp:17
void make_physbcs(int lev)
Definition: ERF_MakeNewArrays.cpp:652
void init_uniform(int lev)
Definition: ERF_InitUniform.cpp:17
void turbPert_amplitude(const int lev)
Definition: ERF_InitTurbPert.cpp:32
bool use_gravity
Definition: ERF_DataStruct.H:783

◆ init_stuff()

void ERF::init_stuff ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm,
amrex::Vector< amrex::MultiFab > &  lev_new,
amrex::Vector< amrex::MultiFab > &  lev_old,
amrex::MultiFab &  tmp_base_state,
std::unique_ptr< amrex::MultiFab > &  tmp_zphys_nd 
)
private
28 {
29  // ********************************************************************************************
30  // Base state holds r_0, pres_0, pi_0, th_0 (in that order)
31  //
32  // Here is where we set 3 ghost cells for the base state!
33  //
34  // ********************************************************************************************
35  tmp_base_state.define(ba,dm,BaseState::num_comps,3);
36  tmp_base_state.setVal(0.);
37 
38  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
39  base_state_new[lev].define(ba,dm,BaseState::num_comps,base_state[lev].nGrowVect());
40  base_state_new[lev].setVal(0.);
41  }
42 
43  // ********************************************************************************************
44  // Allocate terrain arrays
45  // ********************************************************************************************
46 
47  BoxArray ba_nd(ba);
48  ba_nd.surroundingNodes();
49 
50  // NOTE: this is where we actually allocate z_phys_nd -- but here it's called "tmp_zphys_nd"
51  // We need this to be one greater than the ghost cells to handle levels > 0
52 
53  int ngrow = ComputeGhostCells(solverChoice) + 2;
54  tmp_zphys_nd = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
55 
56  z_phys_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
57  init_default_zphys(lev, geom[lev], *tmp_zphys_nd, *z_phys_cc[lev]);
58 
59  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh)
60  {
61  detJ_cc_new[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
62  detJ_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
63 
64  ax_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
65  ay_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
66  az_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
67 
68  z_t_rk[lev] = std::make_unique<MultiFab>( convert(ba, IntVect(0,0,1)), dm, 1, 1 );
69 
70  z_phys_nd_new[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
71  z_phys_nd_src[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
72  z_phys_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
73  }
74  else
75  {
76  z_phys_nd_new[lev] = nullptr;
77  detJ_cc_new[lev] = nullptr;
78 
79  z_phys_nd_src[lev] = nullptr;
80  z_phys_cc_src[lev] = nullptr;
81  detJ_cc_src[lev] = nullptr;
82 
83  z_t_rk[lev] = nullptr;
84  }
85 
86  if (SolverChoice::terrain_type == TerrainType::ImmersedForcing)
87  {
88  terrain_blanking[lev] = std::make_unique<MultiFab>(ba,dm,1,ngrow);
89  terrain_blanking[lev]->setVal(1.0);
90  }
91 
92  // We use these area arrays regardless of terrain, EB or none of the above
93  detJ_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
94  ax[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
95  ay[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
96  az[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
97 
98  detJ_cc[lev]->setVal(1.0);
99  ax[lev]->setVal(1.0);
100  ay[lev]->setVal(1.0);
101  az[lev]->setVal(1.0);
102 
103  // ********************************************************************************************
104  // Create wall distance array for RANS modeling
105  // ********************************************************************************************
106  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
107  walldist[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
108  walldist[lev]->setVal(1e23);
109  } else {
110  walldist[lev] = nullptr;
111  }
112 
113  // ********************************************************************************************
114  // These are the persistent containers for the old and new data
115  // ********************************************************************************************
116  int ncomp;
117  if (lev > 0) {
118  ncomp = vars_new[lev-1][Vars::cons].nComp();
119  } else {
120  int n_qstate = micro->Get_Qstate_Size();
121  ncomp = NDRY + NSCALARS + n_qstate;
122  }
123 
124  // ********************************************************************************************
125  // The number of ghost cells for density must be 1 greater than that for velocity
126  // so that we can go back in forth between velocity and momentum on all faces
127  // ********************************************************************************************
128  int ngrow_state = ComputeGhostCells(solverChoice) + 1;
129  int ngrow_vels = ComputeGhostCells(solverChoice);
130 
131  // ********************************************************************************************
132  // New solution data containers
133  // ********************************************************************************************
134  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state);
135  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state);
136 
137  lev_new[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
138  lev_old[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
139 
140  lev_new[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
141  lev_old[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
142 
143  gradp[lev][GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp[lev][GpVars::gpx].setVal(0.);
144  gradp[lev][GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp[lev][GpVars::gpy].setVal(0.);
145  gradp[lev][GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp[lev][GpVars::gpz].setVal(0.);
146 
147  // Note that we need the ghost cells in the z-direction if we are doing any
148  // kind of domain decomposition in the vertical (at level 0 or above)
149  lev_new[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
150  lev_old[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
151 
153  pp_inc[lev].define(ba, dm, 1, 1);
154  pp_inc[lev].setVal(0.0);
155  }
156 
157  // ********************************************************************************************
158  // These are just used for scratch in the time integrator but we might as well define them here
159  // ********************************************************************************************
160  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
161  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
162 
163  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
164  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
165 
166  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
167  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
168 
169  if (lev > 0) {
170  //xmom_crse_rhs[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, IntVect{0});
171  //ymom_crse_rhs[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, IntVect{0});
172  zmom_crse_rhs[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, IntVect{0});
173  }
174 
175  // We do this here just so they won't be undefined in the initial FillPatch
176  rU_old[lev].setVal(1.2e21);
177  rV_old[lev].setVal(3.4e22);
178  rW_old[lev].setVal(5.6e23);
179  rU_new[lev].setVal(1.2e21);
180  rV_new[lev].setVal(3.4e22);
181  rW_new[lev].setVal(5.6e23);
182 
183  // ********************************************************************************************
184  // These are just time averaged fields for diagnostics
185  // ********************************************************************************************
186 
187  // NOTE: We are not completing a fillpach call on the time averaged data;
188  // which would copy on intersection and interpolate from coarse.
189  // Therefore, we are restarting the averaging when the ba changes,
190  // this may give poor statistics for dynamic mesh refinement.
191  vel_t_avg[lev] = nullptr;
193  vel_t_avg[lev] = std::make_unique<MultiFab>(ba, dm, 4, 0); // Each vel comp and the mag
194  vel_t_avg[lev]->setVal(0.0);
195  t_avg_cnt[lev] = 0.0;
196  }
197 
198  // ********************************************************************************************
199  // Initialize flux registers whenever we create/re-create a level
200  // ********************************************************************************************
201  if (solverChoice.coupling_type == CouplingType::TwoWay) {
202  if (lev == 0) {
203  advflux_reg[0] = nullptr;
204  } else {
205  int ncomp_reflux = vars_new[0][Vars::cons].nComp();
206  advflux_reg[lev] = new YAFluxRegister(ba , grids[lev-1],
207  dm , dmap[lev-1],
208  geom[lev], geom[lev-1],
209  ref_ratio[lev-1], lev, ncomp_reflux);
210  }
211  }
212 
213  // ********************************************************************************************
214  // Define Theta_prim storage if using surface_layer BC
215  // ********************************************************************************************
216  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
217  Theta_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
218  if (solverChoice.moisture_type != MoistureType::None) {
219  Qv_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
220  Qr_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
221  } else {
222  Qv_prim[lev] = nullptr;
223  Qr_prim[lev] = nullptr;
224  }
225  } else {
226  Theta_prim[lev] = nullptr;
227  Qv_prim[lev] = nullptr;
228  Qr_prim[lev] = nullptr;
229  }
230 
231  // ********************************************************************************************
232  // Map factors
233  // ********************************************************************************************
234  BoxList bl2d_mf = ba.boxList();
235  for (auto& b : bl2d_mf) {
236  b.setRange(2,0);
237  }
238  BoxArray ba2d_mf(std::move(bl2d_mf));
239 
240  mapfac[lev].resize(MapFacType::num);
241  mapfac[lev][MapFacType::m_x] = std::make_unique<MultiFab>(ba2d_mf,dm,1,3);
242  mapfac[lev][MapFacType::u_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,3);
243  mapfac[lev][MapFacType::v_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,3);
244 
245 #if 0
246  // For now we comment this out to avoid CI failures but we will need to re-enable
247  // this if using non-conformal mappings
249  mapfac[lev][MapFacType::m_y] = std::make_unique<MultiFab>(ba2d_mf,dm,1,3);
250  }
252  mapfac[lev][MapFacType::u_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,3);
253  }
255  mapfac[lev][MapFacType::v_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,3);
256  }
257 #endif
258 
260  for (int i = 0; i < 3; i++) {
261  mapfac[lev][i]->setVal(0.5);
262  }
263  for (int i = 3; i < mapfac[lev].size(); i++) {
264  mapfac[lev][i]->setVal(0.25);
265  }
266  } else {
267  for (int i = 0; i < mapfac[lev].size(); i++) {
268  mapfac[lev][i]->setVal(1.0);
269  }
270  }
271 
272  // ********************************************************************************************
273  // Build 1D BA and 2D BA
274  // ********************************************************************************************
275  BoxList bl1d = ba.boxList();
276  for (auto& b : bl1d) {
277  b.setRange(0,0);
278  b.setRange(1,0);
279  }
280  ba1d[lev] = BoxArray(std::move(bl1d));
281 
282  // Build 2D BA
283  BoxList bl2d = ba.boxList();
284  for (auto& b : bl2d) {
285  b.setRange(2,0);
286  }
287  ba2d[lev] = BoxArray(std::move(bl2d));
288 
289  IntVect ng = vars_new[lev][Vars::cons].nGrowVect();
290 
291  mf_C1H[lev] = std::make_unique<MultiFab>(ba1d[lev],dm,1,ng);
292  mf_C2H[lev] = std::make_unique<MultiFab>(ba1d[lev],dm,1,ng);
293  mf_MUB[lev] = std::make_unique<MultiFab>(ba2d[lev],dm,1,ng);
294 
295  //*********************************************************
296  // Variables for Fitch model for windfarm parametrization
297  //*********************************************************
298 #if defined(ERF_USE_WINDFARM)
299  if (solverChoice.windfarm_type == WindFarmType::Fitch){
300  vars_windfarm[lev].define(ba, dm, 5, ngrow_state); // V, dVabsdt, dudt, dvdt, dTKEdt
301  }
302  if (solverChoice.windfarm_type == WindFarmType::EWP){
303  vars_windfarm[lev].define(ba, dm, 3, ngrow_state); // dudt, dvdt, dTKEdt
304  }
305  if (solverChoice.windfarm_type == WindFarmType::SimpleAD) {
306  vars_windfarm[lev].define(ba, dm, 2, ngrow_state);// dudt, dvdt
307  }
308  if (solverChoice.windfarm_type == WindFarmType::GeneralAD) {
309  vars_windfarm[lev].define(ba, dm, 3, ngrow_state);// dudt, dvdt, dwdt
310  }
311  Nturb[lev].define(ba, dm, 1, ngrow_state); // Number of turbines in a cell
312  SMark[lev].define(ba, dm, 2, 1); // Free stream velocity/source term
313  // sampling marker in a cell - 2 components
314 #endif
315 
316 
317 #ifdef ERF_USE_WW3_COUPLING
318  // create a new BoxArray and DistributionMapping for a MultiFab with 1 box
319  BoxArray ba_onegrid(geom[lev].Domain());
320  BoxList bl2d_onegrid = ba_onegrid.boxList();
321  for (auto& b : bl2d_onegrid) {
322  b.setRange(2,0);
323  }
324  BoxArray ba2d_onegrid(std::move(bl2d_onegrid));
325  Vector<int> pmap;
326  pmap.resize(1);
327  pmap[0]=0;
328  DistributionMapping dm_onegrid(ba2d_onegrid);
329  dm_onegrid.define(pmap);
330 
331  Hwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
332  Lwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
333 
334  BoxList bl2d_wave = ba.boxList();
335  for (auto& b : bl2d_wave) {
336  b.setRange(2,0);
337  }
338  BoxArray ba2d_wave(std::move(bl2d_wave));
339 
340  Hwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
341  Lwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
342 
343  std::cout<<ba_onegrid<<std::endl;
344  std::cout<<ba2d_onegrid<<std::endl;
345  std::cout<<dm_onegrid<<std::endl;
346 #endif
347 
348 
349  //*********************************************************
350  // Radiation heating source terms
351  //*********************************************************
352  if (solverChoice.rad_type != RadiationType::None || solverChoice.lsm_type != LandSurfaceType::None)
353  {
354  qheating_rates[lev] = std::make_unique<MultiFab>(ba, dm, 2, ngrow_state);
355  qheating_rates[lev]->setVal(0.);
356  }
357 
358  //*********************************************************
359  // Radiation fluxes for coupling to LSM
360  //*********************************************************
361 
362  // NOTE: Finer levels do not need to coincide with the bottom domain boundary
363  // at k=0. We make slabs here with the kmin for a given box. Therefore,
364  // care must be taken before applying these fluxes to an LSM model. For
365 
366  // Radiative fluxes for LSM
367  if (solverChoice.lsm_type != LandSurfaceType::None &&
368  solverChoice.rad_type != RadiationType::None)
369  {
370  BoxList m_bl = ba.boxList();
371  for (auto& b : m_bl) {
372  int kmin = b.smallEnd(2);
373  b.setRange(2,kmin);
374  }
375  BoxArray m_ba(std::move(m_bl));
376 
377  sw_lw_fluxes[lev] = std::make_unique<MultiFab>(m_ba, dm, 5, ngrow_state); // SW direct (2), SW diffuse (2), LW
378  solar_zenith[lev] = std::make_unique<MultiFab>(m_ba, dm, 2, ngrow_state);
379 
380  sw_lw_fluxes[lev]->setVal(0.);
381  solar_zenith[lev]->setVal(0.);
382  }
383 
384  //*********************************************************
385  // Turbulent perturbation region initialization
386  //*********************************************************
387  if (solverChoice.pert_type == PerturbationType::Source ||
388  solverChoice.pert_type == PerturbationType::Direct ||
389  solverChoice.pert_type == PerturbationType::CPM)
390  {
391  amrex::Box bnd_bx = ba.minimalBox();
393  turbPert.init_tpi(lev, bnd_bx.smallEnd(), bnd_bx.bigEnd(), geom[lev].CellSizeArray(),
394  ba, dm, ngrow_state, pp_prefix, refRatio(), max_level);
395  }
396 
397  //
398  // Define the land mask here and set it to all land by default
399  // NOTE: the logic below will BREAK if we have any grids not touching the bottom boundary
400  //
401  {
402  lmask_lev[lev].resize(1);
403  auto ngv = lev_new[Vars::cons].nGrowVect(); ngv[2] = 0;
404  BoxList bl2d_mask = ba.boxList();
405  for (auto& b : bl2d_mask) {
406  b.setRange(2,0);
407  }
408  BoxArray ba2d_mask(std::move(bl2d_mask));
409  lmask_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
410  lmask_lev[lev][0]->setVal(1);
411  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
412  }
413 
414  // Read in tables needed for windfarm simulations
415  // fill in Nturb multifab - number of turbines in each mesh cell
416  // write out the vtk files for wind turbine location and/or
417  // actuator disks
418  #ifdef ERF_USE_WINDFARM
419  //init_windfarm(lev);
420  #endif
421 }
@ num
Definition: ERF_DataStruct.H:22
#define NDRY
Definition: ERF_IndexDefines.H:13
void init_default_zphys(int, const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:15
static AMREX_FORCE_INLINE int ComputeGhostCells(const SolverChoice &sc)
Definition: ERF.H:1188
@ num_comps
Definition: ERF_IndexDefines.H:68
@ gpz
Definition: ERF_IndexDefines.H:152
@ gpy
Definition: ERF_IndexDefines.H:151
@ gpx
Definition: ERF_IndexDefines.H:150
bool test_mapfactor
Definition: ERF_DataStruct.H:778
void init_tpi_type(const PerturbationType &pert_type)
Definition: ERF_TurbPertStruct.H:28
void init_tpi(const int lev, const amrex::IntVect &valid_box_lo, const amrex::IntVect &valid_box_hi, const amrex::GpuArray< amrex::Real, 3 > dx, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, const int ngrow_state, std::string pp_prefix, const amrex::Vector< amrex::IntVect > refRatio, const int max_level)
Definition: ERF_TurbPertStruct.H:45
Here is the call graph for this function:

◆ init_thin_body()

void ERF::init_thin_body ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
690 {
691  //********************************************************************************************
692  // Thin immersed body
693  // *******************************************************************************************
694 #if 0
695  if ((solverChoice.advChoice.zero_xflux.size() > 0) ||
696  (solverChoice.advChoice.zero_yflux.size() > 0) ||
697  (solverChoice.advChoice.zero_zflux.size() > 0))
698  {
699  overset_imask[lev] = std::make_unique<iMultiFab>(ba,dm,1,0);
700  overset_imask[lev]->setVal(1); // == value is unknown (to be solved)
701  }
702 #endif
703 
704  if (solverChoice.advChoice.zero_xflux.size() > 0) {
705  amrex::Print() << "Setting up thin immersed body for "
706  << solverChoice.advChoice.zero_xflux.size() << " xfaces" << std::endl;
707  BoxArray ba_xf(ba);
708  ba_xf.surroundingNodes(0);
709  thin_xforce[lev] = std::make_unique<MultiFab>(ba_xf,dm,1,0);
710  thin_xforce[lev]->setVal(0.0);
711  xflux_imask[lev] = std::make_unique<iMultiFab>(ba_xf,dm,1,0);
712  xflux_imask[lev]->setVal(1);
713  for ( MFIter mfi(*xflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
714  {
715  Array4<int> const& imask_arr = xflux_imask[lev]->array(mfi);
716  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
717  Box xbx = mfi.nodaltilebox(0);
718  for (int iv=0; iv < solverChoice.advChoice.zero_xflux.size(); ++iv) {
719  const auto& faceidx = solverChoice.advChoice.zero_xflux[iv];
720  if ((faceidx[0] >= xbx.smallEnd(0)) && (faceidx[0] <= xbx.bigEnd(0)) &&
721  (faceidx[1] >= xbx.smallEnd(1)) && (faceidx[1] <= xbx.bigEnd(1)) &&
722  (faceidx[2] >= xbx.smallEnd(2)) && (faceidx[2] <= xbx.bigEnd(2)))
723  {
724  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
725  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
726  //imask_cell_arr(faceidx[0]-1,faceidx[1],faceidx[2]) = 0;
727  amrex::AllPrint() << " mask xface at " << faceidx << std::endl;
728  }
729  }
730  }
731  } else {
732  thin_xforce[lev] = nullptr;
733  xflux_imask[lev] = nullptr;
734  }
735 
736  if (solverChoice.advChoice.zero_yflux.size() > 0) {
737  amrex::Print() << "Setting up thin immersed body for "
738  << solverChoice.advChoice.zero_yflux.size() << " yfaces" << std::endl;
739  BoxArray ba_yf(ba);
740  ba_yf.surroundingNodes(1);
741  thin_yforce[lev] = std::make_unique<MultiFab>(ba_yf,dm,1,0);
742  thin_yforce[lev]->setVal(0.0);
743  yflux_imask[lev] = std::make_unique<iMultiFab>(ba_yf,dm,1,0);
744  yflux_imask[lev]->setVal(1);
745  for ( MFIter mfi(*yflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
746  {
747  Array4<int> const& imask_arr = yflux_imask[lev]->array(mfi);
748  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
749  Box ybx = mfi.nodaltilebox(1);
750  for (int iv=0; iv < solverChoice.advChoice.zero_yflux.size(); ++iv) {
751  const auto& faceidx = solverChoice.advChoice.zero_yflux[iv];
752  if ((faceidx[0] >= ybx.smallEnd(0)) && (faceidx[0] <= ybx.bigEnd(0)) &&
753  (faceidx[1] >= ybx.smallEnd(1)) && (faceidx[1] <= ybx.bigEnd(1)) &&
754  (faceidx[2] >= ybx.smallEnd(2)) && (faceidx[2] <= ybx.bigEnd(2)))
755  {
756  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
757  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
758  //imask_cell_arr(faceidx[0],faceidx[1]-1,faceidx[2]) = 0;
759  amrex::AllPrint() << " mask yface at " << faceidx << std::endl;
760  }
761  }
762  }
763  } else {
764  thin_yforce[lev] = nullptr;
765  yflux_imask[lev] = nullptr;
766  }
767 
768  if (solverChoice.advChoice.zero_zflux.size() > 0) {
769  amrex::Print() << "Setting up thin immersed body for "
770  << solverChoice.advChoice.zero_zflux.size() << " zfaces" << std::endl;
771  BoxArray ba_zf(ba);
772  ba_zf.surroundingNodes(2);
773  thin_zforce[lev] = std::make_unique<MultiFab>(ba_zf,dm,1,0);
774  thin_zforce[lev]->setVal(0.0);
775  zflux_imask[lev] = std::make_unique<iMultiFab>(ba_zf,dm,1,0);
776  zflux_imask[lev]->setVal(1);
777  for ( MFIter mfi(*zflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
778  {
779  Array4<int> const& imask_arr = zflux_imask[lev]->array(mfi);
780  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
781  Box zbx = mfi.nodaltilebox(2);
782  for (int iv=0; iv < solverChoice.advChoice.zero_zflux.size(); ++iv) {
783  const auto& faceidx = solverChoice.advChoice.zero_zflux[iv];
784  if ((faceidx[0] >= zbx.smallEnd(0)) && (faceidx[0] <= zbx.bigEnd(0)) &&
785  (faceidx[1] >= zbx.smallEnd(1)) && (faceidx[1] <= zbx.bigEnd(1)) &&
786  (faceidx[2] >= zbx.smallEnd(2)) && (faceidx[2] <= zbx.bigEnd(2)))
787  {
788  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
789  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
790  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]-1) = 0;
791  amrex::AllPrint() << " mask zface at " << faceidx << std::endl;
792  }
793  }
794  }
795  } else {
796  thin_zforce[lev] = nullptr;
797  zflux_imask[lev] = nullptr;
798  }
799 }
amrex::Vector< amrex::IntVect > zero_yflux
Definition: ERF_AdvStruct.H:414
amrex::Vector< amrex::IntVect > zero_xflux
Definition: ERF_AdvStruct.H:413
amrex::Vector< amrex::IntVect > zero_zflux
Definition: ERF_AdvStruct.H:415

◆ init_uniform()

void ERF::init_uniform ( int  lev)
private

Use problem-specific reference density and temperature to set the background state to a uniform value.

Parameters
levInteger specifying the current level
18 {
19  auto& lev_new = vars_new[lev];
20  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
21  const Box &gbx = mfi.growntilebox(1);
22  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
23  prob->init_uniform(gbx, cons_arr);
24  }
25 }

◆ init_zphys()

void ERF::init_zphys ( int  lev,
amrex::Real  time 
)
515 {
516  if (solverChoice.init_type != InitType::WRFInput && solverChoice.init_type != InitType::Metgrid)
517  {
518  if (lev > 0) {
519  //
520  // First interpolate from coarser level if there is one
521  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
522  // have been pre-filled - this includes ghost cells both inside and outside
523  // the domain
524  //
525  InterpFromCoarseLevel(*z_phys_nd[lev], z_phys_nd[lev]->nGrowVect(),
526  IntVect(0,0,0), // do not fill ghost cells outside the domain
527  *z_phys_nd[lev-1], 0, 0, 1,
528  geom[lev-1], geom[lev],
529  refRatio(lev-1), &node_bilinear_interp,
531  }
532 
533  int ngrow = ComputeGhostCells(solverChoice) + 2;
534  Box bx(surroundingNodes(Geom(lev).Domain())); bx.grow(ngrow);
535  FArrayBox terrain_fab(makeSlab(bx,2,0),1);
536 
537  //
538  // If we are using fitted mesh then we use the surface as defined above
539  // If we are not using fitted mesh but are using z_levels, we still need z_phys (for now)
540  // but we need to use a flat terrain for the mesh itself (the EB data has already been made
541  // from the correct terrain)
542  //
543  if (solverChoice.terrain_type != TerrainType::StaticFittedMesh &&
544  solverChoice.terrain_type != TerrainType::MovingFittedMesh) {
545  terrain_fab.template setVal<RunOn::Device>(0.0);
546  } else {
547  //
548  // Fill the values of the terrain height at k=0 only
549  //
550  prob->init_terrain_surface(geom[lev],terrain_fab,time);
551  }
552 
553  for (MFIter mfi(*z_phys_nd[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
554  {
555  Box isect = terrain_fab.box() & (*z_phys_nd[lev])[mfi].box();
556  if (!isect.isEmpty()) {
557  (*z_phys_nd[lev])[mfi].template copy<RunOn::Device>(terrain_fab,isect,0,isect,0,1);
558  }
559  }
560 
562 
563  z_phys_nd[lev]->FillBoundary(geom[lev].periodicity());
564 
565  if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
566  terrain_blanking[lev]->setVal(1.0);
567  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ngrow);
568  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
569  }
570 
571  if (lev == 0) {
572  Real zmax = z_phys_nd[0]->max(0,0,false);
573  Real rel_diff = (zmax - zlevels_stag[0][zlevels_stag[0].size()-1]) / zmax;
574  if (rel_diff < 1.e-8) {
575  amrex::Print() << "max of zphys_nd " << zmax << std::endl;
576  amrex::Print() << "max of zlevels " << zlevels_stag[0][zlevels_stag[0].size()-1] << std::endl;
577  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(rel_diff < 1.e-8, "Terrain is taller than domain top!");
578  }
579  } // lev == 0
580 
581  } // init_type
582 }
void make_terrain_fitted_coords(int lev, const Geometry &geom, MultiFab &z_phys_nd, Vector< Real > const &z_levels_h, GpuArray< ERF_BC, AMREX_SPACEDIM *2 > &phys_bc_type)
Definition: ERF_TerrainMetrics.cpp:46
amrex::EBFArrayBoxFactory const & EBFactory(int lev) const noexcept
Definition: ERF.H:1464
Here is the call graph for this function:

◆ InitData()

void ERF::InitData ( )
720 {
721  BL_PROFILE_VAR("ERF::InitData()", InitData);
722  InitData_pre();
723  InitData_post();
724  BL_PROFILE_VAR_STOP(InitData);
725 }
void InitData_pre()
Definition: ERF.cpp:728
void InitData_post()
Definition: ERF.cpp:799
void InitData()
Definition: ERF.cpp:719

Referenced by main().

Here is the caller graph for this function:

◆ InitData_post()

void ERF::InitData_post ( )
800 {
801  if (restart_chkfile.empty()) {
802  //
803  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
804  //
805  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
806  for (int crse_lev = finest_level-1; crse_lev >= 0; crse_lev--) {
807  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
808  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
809  }
810  }
811 
812  if (solverChoice.coupling_type == CouplingType::TwoWay) {
813  AverageDown();
814  }
815 
817  {
818  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(finest_level == 0,
819  "Thin immersed body with refinement not currently supported.");
820  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
821  amrex::Print() << "NOTE: Thin immersed body with non-constant dz has not been tested." << std::endl;
822  }
823  }
824 
825 #ifdef ERF_USE_PARTICLES
826  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
828  Warning("Tight coupling has not been tested with Lagrangian microphysics");
829  }
830 
831  for (int lev = 0; lev <= finest_level; lev++) {
832  dynamic_cast<LagrangianMicrophysics&>(*micro).initParticles(z_phys_nd[lev]);
833  }
834  }
835 #endif
836 
837  } else { // Restart from a checkpoint
838 
839  restart();
840 
841  // Create the physbc objects for {cons, u, v, w, base state}
842  // We fill the additional base state ghost cells just in case we have read the old format
843  for (int lev(0); lev <= finest_level; ++lev) {
844  make_physbcs(lev);
845  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
846  }
847 
849  for (int lev(0); lev <= finest_level; ++lev) {
850  m_forest_drag[lev]->define_drag_field(grids[lev], dmap[lev], geom[lev],
851  z_phys_cc[lev].get(), z_phys_nd[lev].get());
852  }
853  }
854 
855 #ifdef ERF_USE_NETCDF
856  //
857  // Create the needed bdy_data_xlo etc ... since we don't read it in from checkpoint any more
858  //
860 
861  bdy_time_interval = read_times_from_wrfbdy(nc_bdy_file,
862  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
863  start_bdy_time);
864  Real dT = bdy_time_interval;
865 
866  Real time_since_start_old = t_new[0] - start_bdy_time;
867  int n_time_old = static_cast<int>(time_since_start_old / dT);
868 
869  // I don't think this works if lev > 0 ...?
870  AMREX_ALWAYS_ASSERT(finest_level == 0);
871  int lev = 0;
872  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
873  for (int itime = n_time_old; itime < n_time_old+3; itime++)
874  {
875  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
876  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
877  real_width);
878  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
879  *mf_MUB[lev], *mf_C1H[lev], *mf_C2H[lev],
881  geom[lev], use_moist);
882  } // itime
883  } // use_real_bcs && lev == 0
884 #endif
885  } // end restart
886 
887 #ifdef ERF_USE_PARTICLES
888  /* If using a Lagrangian microphysics model, its particle container has now been
889  constructed and initialized (calls to micro->Init). So, add its pointer to
890  ERF::particleData and remove its name from list of unallocated particle containers. */
891  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
892  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
893  const auto& pc_ptr( dynamic_cast<LagrangianMicrophysics&>(*micro).getParticleContainer() );
894  particleData.pushBack(pc_name, pc_ptr);
895  particleData.getNamesUnalloc().remove(pc_name);
896  }
897 #endif
898 
899  if (input_bndry_planes) {
900  // Read the "time.dat" file to know what data is available
901  m_r2d->read_time_file();
902 
903  // We haven't populated dt yet, set to 0 to ensure assert doesn't crash
904  Real dt_dummy = 0.0;
905  m_r2d->read_input_files(t_new[0],dt_dummy,m_bc_extdir_vals);
906  }
907 
909  {
910  h_rhotheta_src.resize(max_level+1, Vector<Real>(0));
911  d_rhotheta_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
912  for (int lev = 0; lev <= finest_level; lev++) {
913  const int domlen = geom[lev].Domain().length(2);
914  h_rhotheta_src[lev].resize(domlen, 0.0_rt);
915  d_rhotheta_src[lev].resize(domlen, 0.0_rt);
916  prob->update_rhotheta_sources(t_new[0],
917  h_rhotheta_src[lev], d_rhotheta_src[lev],
918  geom[lev], z_phys_cc[lev]);
919  }
920  }
921 
923  {
924  h_u_geos.resize(max_level+1, Vector<Real>(0));
925  d_u_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
926  h_v_geos.resize(max_level+1, Vector<Real>(0));
927  d_v_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
928  for (int lev = 0; lev <= finest_level; lev++) {
929  const int domlen = geom[lev].Domain().length(2);
930  h_u_geos[lev].resize(domlen, 0.0_rt);
931  d_u_geos[lev].resize(domlen, 0.0_rt);
932  h_v_geos[lev].resize(domlen, 0.0_rt);
933  d_v_geos[lev].resize(domlen, 0.0_rt);
935  prob->update_geostrophic_profile(t_new[0],
936  h_u_geos[lev], d_u_geos[lev],
937  h_v_geos[lev], d_v_geos[lev],
938  geom[lev], z_phys_cc[lev]);
939  } else {
940  if (SolverChoice::mesh_type == MeshType::VariableDz) {
941  amrex::Print() << "Note: 1-D geostrophic wind profile input is not defined for real terrain" << std::endl;
942  }
944  h_u_geos[lev], d_u_geos[lev],
945  h_v_geos[lev], d_v_geos[lev],
946  geom[lev],
947  zlevels_stag[0]);
948  }
949  }
950  }
951 
953  {
954  h_rhoqt_src.resize(max_level+1, Vector<Real>(0));
955  d_rhoqt_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
956  for (int lev = 0; lev <= finest_level; lev++) {
957  const int domlen = geom[lev].Domain().length(2);
958  h_rhoqt_src[lev].resize(domlen, 0.0_rt);
959  d_rhoqt_src[lev].resize(domlen, 0.0_rt);
960  prob->update_rhoqt_sources(t_new[0],
961  h_rhoqt_src[lev], d_rhoqt_src[lev],
962  geom[lev], z_phys_cc[lev]);
963  }
964  }
965 
967  {
968  h_w_subsid.resize(max_level+1, Vector<Real>(0));
969  d_w_subsid.resize(max_level+1, Gpu::DeviceVector<Real>(0));
970  for (int lev = 0; lev <= finest_level; lev++) {
971  const int domlen = geom[lev].Domain().length(2) + 1; // lives on z-faces
972  h_w_subsid[lev].resize(domlen, 0.0_rt);
973  d_w_subsid[lev].resize(domlen, 0.0_rt);
974  prob->update_w_subsidence(t_new[0],
975  h_w_subsid[lev], d_w_subsid[lev],
976  geom[lev], z_phys_nd[lev]);
977  }
978  }
979 
982  {
983  initRayleigh();
984  if (solverChoice.init_type == InitType::Input_Sounding)
985  {
986  // Overwrite ubar, vbar, and thetabar with input profiles;
987  // wbar is assumed to be 0. Note: the tau coefficient set by
988  // prob->erf_init_rayleigh() is still used
989  bool restarting = (!restart_chkfile.empty());
990  setRayleighRefFromSounding(restarting);
991  }
992  }
993 
994  // Read in sponge data from input file
995  if(solverChoice.spongeChoice.sponge_type == "input_sponge")
996  {
997  initSponge();
998  bool restarting = (!restart_chkfile.empty());
999  setSpongeRefFromSounding(restarting);
1000  }
1001 
1002  if (solverChoice.pert_type == PerturbationType::Source ||
1003  solverChoice.pert_type == PerturbationType::Direct ||
1004  solverChoice.pert_type == PerturbationType::CPM) {
1005  if (is_it_time_for_action(istep[0], t_new[0], dt[0], pert_interval, -1.)) {
1006  turbPert.debug(t_new[0]);
1007  }
1008  }
1009 
1010  // We only write the file at level 0 for now
1011  if (output_bndry_planes)
1012  {
1013  // Create the WriteBndryPlanes object so we can handle writing of boundary plane data
1014  m_w2d = std::make_unique<WriteBndryPlanes>(grids,geom);
1015 
1016  Real time = 0.;
1017  if (time >= bndry_output_planes_start_time) {
1018  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
1019  m_w2d->write_planes(0, time, vars_new, is_moist);
1020  }
1021  }
1022 
1023  //
1024  // If we are starting from scratch, we have the option to project the initial velocity field
1025  // regardless of how we initialized.
1026  // pp_inc is used as scratch space here; we zero it out after the projection
1027  //
1028  if (restart_chkfile == "")
1029  {
1031  Real dummy_dt = 1.0;
1032  if (verbose > 0) {
1033  amrex::Print() << "Projecting initial velocity field" << std::endl;
1034  }
1035  for (int lev = 0; lev <= finest_level; ++lev)
1036  {
1037  project_velocity(lev, dummy_dt);
1038  pp_inc[lev].setVal(0.);
1039  gradp[lev][GpVars::gpx].setVal(0.);
1040  gradp[lev][GpVars::gpy].setVal(0.);
1041  gradp[lev][GpVars::gpz].setVal(0.);
1042  }
1043  }
1044  }
1045 
1046  // Copy from new into old just in case
1047  for (int lev = 0; lev <= finest_level; ++lev)
1048  {
1049  auto& lev_new = vars_new[lev];
1050  auto& lev_old = vars_old[lev];
1051 
1052  // ***************************************************************************
1053  // Physical bc's at domain boundary
1054  // ***************************************************************************
1055  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
1056  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
1057 
1058  int ncomp_cons = lev_new[Vars::cons].nComp();
1059  bool do_fb = true;
1060 
1061 #ifdef ERF_USE_NETCDF
1062  // We call this here because it is an ERF routine
1063  if (solverChoice.use_real_bcs && (lev==0)) {
1064  int icomp_cons = 0;
1065  bool cons_only = false;
1066  Vector<MultiFab*> mfs_vec = {&lev_new[Vars::cons],&lev_new[Vars::xvel],
1067  &lev_new[Vars::yvel],&lev_new[Vars::zvel]};
1068  fill_from_realbdy(mfs_vec,t_new[lev],cons_only,icomp_cons,
1069  ncomp_cons,ngvect_cons,ngvect_vels);
1070  do_fb = false;
1071  }
1072 #endif
1073 
1074  (*physbcs_cons[lev])(lev_new[Vars::cons],lev_new[Vars::xvel],lev_new[Vars::yvel],0,ncomp_cons,
1075  ngvect_cons,t_new[lev],BCVars::cons_bc,do_fb);
1076  ( *physbcs_u[lev])(lev_new[Vars::xvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1077  ngvect_vels,t_new[lev],BCVars::xvel_bc,do_fb);
1078  ( *physbcs_v[lev])(lev_new[Vars::yvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1079  ngvect_vels,t_new[lev],BCVars::yvel_bc,do_fb);
1080  ( *physbcs_w[lev])(lev_new[Vars::zvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1081  ngvect_vels,t_new[lev],BCVars::zvel_bc,do_fb);
1082 
1083  MultiFab::Copy(lev_old[Vars::cons],lev_new[Vars::cons],0,0,ncomp_cons,lev_new[Vars::cons].nGrowVect());
1084  MultiFab::Copy(lev_old[Vars::xvel],lev_new[Vars::xvel],0,0, 1,lev_new[Vars::xvel].nGrowVect());
1085  MultiFab::Copy(lev_old[Vars::yvel],lev_new[Vars::yvel],0,0, 1,lev_new[Vars::yvel].nGrowVect());
1086  MultiFab::Copy(lev_old[Vars::zvel],lev_new[Vars::zvel],0,0, 1,lev_new[Vars::zvel].nGrowVect());
1087  }
1088 
1089  // Compute the minimum dz in the domain at each level (to be used for setting the timestep)
1090  dz_min.resize(max_level+1);
1091  for (int lev = 0; lev <= finest_level; ++lev)
1092  {
1093  dz_min[lev] = geom[lev].CellSize(2);
1094  if ( SolverChoice::mesh_type != MeshType::ConstantDz ) {
1095  dz_min[lev] *= (*detJ_cc[lev]).min(0);
1096  }
1097  }
1098 
1099  ComputeDt();
1100 
1101  // Check the viscous limit
1105  Real delta = std::min({geom[finest_level].CellSize(0),
1106  geom[finest_level].CellSize(1),
1107  dz_min[finest_level]});
1108  if (dc.dynamic_viscosity == 0) {
1109  Print() << "Note: Molecular diffusion specified but dynamic_viscosity has not been specified" << std::endl;
1110  } else {
1111  Real nu = dc.dynamic_viscosity / dc.rho0_trans;
1112  Real viscous_limit = 0.5 * delta*delta / nu;
1113  Print() << "Viscous CFL is " << dt[finest_level] / viscous_limit << std::endl;
1114  if (fixed_dt[finest_level] >= viscous_limit) {
1115  Warning("Specified fixed_dt is above the viscous limit");
1116  } else if (dt[finest_level] >= viscous_limit) {
1117  Warning("Adaptive dt based on convective CFL only is above the viscous limit");
1118  }
1119  }
1120  }
1121 
1122  // Fill ghost cells/faces
1123  for (int lev = 0; lev <= finest_level; ++lev)
1124  {
1125  if (lev > 0 && cf_width >= 0) {
1127  }
1128 
1129  auto& lev_new = vars_new[lev];
1130 
1131  //
1132  // Fill boundary conditions -- not sure why we need this here
1133  //
1134  bool fillset = false;
1135  if (lev == 0) {
1136  FillPatch(lev, t_new[lev],
1137  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]});
1138  } else {
1139  FillPatch(lev, t_new[lev],
1140  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]},
1141  {&lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
1142  base_state[lev], base_state[lev],
1143  fillset);
1144  }
1145 
1146  //
1147  // We do this here to make sure level (lev-1) boundary conditions are filled
1148  // before we interpolate to level (lev) ghost cells
1149  //
1150  if (lev < finest_level) {
1151  auto& lev_old = vars_old[lev];
1152  MultiFab::Copy(lev_old[Vars::cons],lev_new[Vars::cons],0,0,lev_old[Vars::cons].nComp(),lev_old[Vars::cons].nGrowVect());
1153  MultiFab::Copy(lev_old[Vars::xvel],lev_new[Vars::xvel],0,0,lev_old[Vars::xvel].nComp(),lev_old[Vars::xvel].nGrowVect());
1154  MultiFab::Copy(lev_old[Vars::yvel],lev_new[Vars::yvel],0,0,lev_old[Vars::yvel].nComp(),lev_old[Vars::yvel].nGrowVect());
1155  MultiFab::Copy(lev_old[Vars::zvel],lev_new[Vars::zvel],0,0,lev_old[Vars::zvel].nComp(),lev_old[Vars::zvel].nGrowVect());
1156  }
1157 
1158  //
1159  // We fill the ghost cell values of the base state in case it wasn't done in the initialization
1160  //
1161  base_state[lev].FillBoundary(geom[lev].periodicity());
1162 
1163  // For moving terrain only
1164  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
1165  MultiFab::Copy(base_state_new[lev],base_state[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
1166  base_state_new[lev].FillBoundary(geom[lev].periodicity());
1167  }
1168 
1169  }
1170 
1171  // Allow idealized cases over water, used to set lmask
1172  ParmParse pp("erf");
1173  int is_land;
1174  for (int lev = 0; lev <= finest_level; ++lev)
1175  {
1176  if (pp.query("is_land", is_land, lev)) {
1177  if (is_land == 1) {
1178  amrex::Print() << "Level " << lev << " is land" << std::endl;
1179  } else if (is_land == 0) {
1180  amrex::Print() << "Level " << lev << " is water" << std::endl;
1181  } else {
1182  Error("is_land should be 0 or 1");
1183  }
1184  lmask_lev[lev][0]->setVal(is_land);
1185  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
1186  }
1187  }
1188 
1189 #ifdef ERF_USE_WW3_COUPLING
1190  int my_lev = 0;
1191  amrex::Print() << " About to call send_to_ww3 from ERF.cpp" << std::endl;
1192  send_to_ww3(my_lev);
1193  amrex::Print() << " About to call read_waves from ERF.cpp" << std::endl;
1194  read_waves(my_lev);
1195  // send_to_ww3(my_lev);
1196 #endif
1197 
1198  // Configure SurfaceLayer params if used
1199  // NOTE: we must set up the MOST routine after calling FillPatch
1200  // in order to have lateral ghost cells filled (MOST + terrain interp).
1201  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1202  {
1203  bool rotate = solverChoice.use_rotate_surface_flux;
1204  if (rotate) {
1205  Print() << "Using surface layer model with stress rotations" << std::endl;
1206  }
1207 
1208  //
1209  // This constructor will make the ABLMost object but not allocate the arrays at each level.
1210  //
1211  m_SurfaceLayer = std::make_unique<SurfaceLayer>(geom, rotate, pp_prefix, Qv_prim,
1213 #ifdef ERF_USE_NETCDF
1214  ,start_bdy_time, bdy_time_interval
1215 #endif
1216  );
1217  // This call will allocate the arrays at each level. If we regrid later, either changing
1218  // the number of level sor just the grids at each existing level, we will call an update routine
1219  // to redefine the internal arrays in m_SurfaceLayer.
1220  int nlevs = geom.size();
1221  for (int lev = 0; lev < nlevs; lev++)
1222  {
1223  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
1224  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
1225  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
1226  mfv_old, Theta_prim[lev], Qv_prim[lev],
1227  Qr_prim[lev], z_phys_nd[lev],
1228  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
1229  lsm_data[lev], lsm_flux[lev], sst_lev[lev],
1230  tsk_lev[lev], lmask_lev[lev]);
1231  }
1232 
1233 
1234  if (restart_chkfile != "") {
1235  // Update surface fields if needed (and available)
1237  }
1238 
1239  // We now configure ABLMost params here so that we can print the averages at t=0
1240  // Note we don't fill ghost cells here because this is just for diagnostics
1241  for (int lev = 0; lev <= finest_level; ++lev)
1242  {
1243  Real time = t_new[lev];
1244  IntVect ng = Theta_prim[lev]->nGrowVect();
1245 
1246  MultiFab::Copy( *Theta_prim[lev], vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, ng);
1247  MultiFab::Divide(*Theta_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1248 
1249  if (solverChoice.moisture_type != MoistureType::None) {
1250  ng = Qv_prim[lev]->nGrowVect();
1251 
1252  MultiFab::Copy( *Qv_prim[lev], vars_new[lev][Vars::cons], RhoQ1_comp, 0, 1, ng);
1253  MultiFab::Divide(*Qv_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1254 
1255  int rhoqr_comp = solverChoice.moisture_indices.qr;
1256  if (rhoqr_comp > -1) {
1257  MultiFab::Copy( *Qr_prim[lev], vars_new[lev][Vars::cons], rhoqr_comp, 0, 1, ng);
1258  MultiFab::Divide(*Qr_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1259  } else {
1260  Qr_prim[lev]->setVal(0.0);
1261  }
1262  }
1263  m_SurfaceLayer->update_mac_ptrs(lev, vars_new, Theta_prim, Qv_prim, Qr_prim);
1264 
1265  if (restart_chkfile == "") {
1266  // Only do this if starting from scratch; if restarting, then
1267  // we don't want to call update_fluxes multiple times because
1268  // it will change u* and theta* from their previous values
1269  m_SurfaceLayer->update_pblh(lev, vars_new, z_phys_cc[lev].get(),
1271  m_SurfaceLayer->update_fluxes(lev, time);
1272  }
1273  }
1274  } // end if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1275 
1276  // Update micro vars before first plot file
1277  if (solverChoice.moisture_type != MoistureType::None) {
1278  for (int lev = 0; lev <= finest_level; ++lev) micro->Update_Micro_Vars_Lev(lev, vars_new[lev][Vars::cons]);
1279  }
1280 
1281  // Fill time averaged velocities before first plot file
1282  if (solverChoice.time_avg_vel) {
1283  for (int lev = 0; lev <= finest_level; ++lev) {
1284  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(),
1285  vars_new[lev][Vars::xvel],
1286  vars_new[lev][Vars::yvel],
1287  vars_new[lev][Vars::zvel]);
1288  }
1289  }
1290 
1291  // check for additional plotting variables that are available after particle containers
1292  // are setup.
1293  const std::string& pv1 = "plot_vars_1"; appendPlotVariables(pv1,plot_var_names_1);
1294  const std::string& pv2 = "plot_vars_2"; appendPlotVariables(pv2,plot_var_names_2);
1295 
1296  if ( restart_chkfile.empty() && (m_check_int > 0 || m_check_per > 0.) )
1297  {
1300  }
1301 
1302  if ( (restart_chkfile.empty()) ||
1303  (!restart_chkfile.empty() && plot_file_on_restart) )
1304  {
1305  if (m_plot_int_1 > 0 || m_plot_per_1 > 0.)
1306  {
1309  }
1310  if (m_plot_int_2 > 0 || m_plot_per_2 > 0.)
1311  {
1314  }
1315  if (m_subvol_int > 0 || m_subvol_per > 0.) {
1316  WriteSubvolume();
1317  last_subvol = istep[0];
1318  }
1319  }
1320 
1321  // Set these up here because we need to know which MPI rank "cell" is on...
1322  if (pp.contains("data_log"))
1323  {
1324  int num_datalogs = pp.countval("data_log");
1325  datalog.resize(num_datalogs);
1326  datalogname.resize(num_datalogs);
1327  pp.queryarr("data_log",datalogname,0,num_datalogs);
1328  for (int i = 0; i < num_datalogs; i++) {
1330  }
1331  }
1332 
1333  if (pp.contains("der_data_log"))
1334  {
1335  int num_der_datalogs = pp.countval("der_data_log");
1336  der_datalog.resize(num_der_datalogs);
1337  der_datalogname.resize(num_der_datalogs);
1338  pp.queryarr("der_data_log",der_datalogname,0,num_der_datalogs);
1339  for (int i = 0; i < num_der_datalogs; i++) {
1341  }
1342  }
1343 
1344  if (pp.contains("energy_data_log"))
1345  {
1346  int num_energy_datalogs = pp.countval("energy_data_log");
1347  tot_e_datalog.resize(num_energy_datalogs);
1348  tot_e_datalogname.resize(num_energy_datalogs);
1349  pp.queryarr("energy_data_log",tot_e_datalogname,0,num_energy_datalogs);
1350  for (int i = 0; i < num_energy_datalogs; i++) {
1352  }
1353  }
1354 
1355  if (solverChoice.rad_type != RadiationType::None)
1356  {
1357  // Create data log for radiation model if requested
1358  rad[0]->setupDataLog();
1359  }
1360 
1361 
1362  if (restart_chkfile.empty() && profile_int > 0) {
1363  if (destag_profiles) {
1364  // all variables cell-centered
1366  } else {
1367  // some variables staggered
1369  }
1370  }
1371 
1372  if (pp.contains("sample_point_log") && pp.contains("sample_point"))
1373  {
1374  int lev = 0;
1375 
1376  int num_samplepts = pp.countval("sample_point") / AMREX_SPACEDIM;
1377  if (num_samplepts > 0) {
1378  Vector<int> index; index.resize(num_samplepts*AMREX_SPACEDIM);
1379  samplepoint.resize(num_samplepts);
1380 
1381  pp.queryarr("sample_point",index,0,num_samplepts*AMREX_SPACEDIM);
1382  for (int i = 0; i < num_samplepts; i++) {
1383  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1384  samplepoint[i] = iv;
1385  }
1386  }
1387 
1388  int num_sampleptlogs = pp.countval("sample_point_log");
1389  AMREX_ALWAYS_ASSERT(num_sampleptlogs == num_samplepts);
1390  if (num_sampleptlogs > 0) {
1391  sampleptlog.resize(num_sampleptlogs);
1392  sampleptlogname.resize(num_sampleptlogs);
1393  pp.queryarr("sample_point_log",sampleptlogname,0,num_sampleptlogs);
1394 
1395  for (int i = 0; i < num_sampleptlogs; i++) {
1397  }
1398  }
1399 
1400  }
1401 
1402  if (pp.contains("sample_line_log") && pp.contains("sample_line"))
1403  {
1404  int lev = 0;
1405 
1406  int num_samplelines = pp.countval("sample_line") / AMREX_SPACEDIM;
1407  if (num_samplelines > 0) {
1408  Vector<int> index; index.resize(num_samplelines*AMREX_SPACEDIM);
1409  sampleline.resize(num_samplelines);
1410 
1411  pp.queryarr("sample_line",index,0,num_samplelines*AMREX_SPACEDIM);
1412  for (int i = 0; i < num_samplelines; i++) {
1413  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1414  sampleline[i] = iv;
1415  }
1416  }
1417 
1418  int num_samplelinelogs = pp.countval("sample_line_log");
1419  AMREX_ALWAYS_ASSERT(num_samplelinelogs == num_samplelines);
1420  if (num_samplelinelogs > 0) {
1421  samplelinelog.resize(num_samplelinelogs);
1422  samplelinelogname.resize(num_samplelinelogs);
1423  pp.queryarr("sample_line_log",samplelinelogname,0,num_samplelinelogs);
1424 
1425  for (int i = 0; i < num_samplelinelogs; i++) {
1427  }
1428  }
1429 
1430  }
1431 
1436  }
1437 
1438  // Create object to do line and plane sampling if needed
1439  bool do_line = false; bool do_plane = false;
1440  pp.query("do_line_sampling",do_line); pp.query("do_plane_sampling",do_plane);
1441  if (do_line || do_plane) { data_sampler = std::make_unique<SampleData>(do_line, do_plane); }
1442 
1443  if ( solverChoice.terrain_type == TerrainType::EB ||
1444  solverChoice.terrain_type == TerrainType::ImmersedForcing)
1445  {
1446  bool write_eb_surface = false;
1447  pp.query("write_eb_surface", write_eb_surface);
1448  if (write_eb_surface) WriteMyEBSurface();
1449  }
1450 
1451 }
void initRayleigh()
Initialize Rayleigh damping profiles.
Definition: ERF_InitRayleigh.cpp:14
amrex::Vector< std::string > samplelinelogname
Definition: ERF.H:1442
void setRayleighRefFromSounding(bool restarting)
Set Rayleigh mean profiles from input sounding.
Definition: ERF_InitRayleigh.cpp:55
amrex::Vector< amrex::IntVect > sampleline
Definition: ERF.H:1443
static amrex::Real sum_per
Definition: ERF.H:1052
void setRecordDataInfo(int i, const std::string &filename)
Definition: ERF.H:1352
void WriteMyEBSurface()
Definition: ERF_EBWriteSurface.cpp:5
void write_1D_profiles_stag(amrex::Real time)
Definition: ERF_Write1DProfiles_stag.cpp:25
void sum_energy_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:318
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
Definition: ERF.H:1441
static int sum_interval
Definition: ERF.H:1050
static int pert_interval
Definition: ERF.H:1051
void restart()
Definition: ERF.cpp:1490
void write_1D_profiles(amrex::Real time)
Definition: ERF_Write1DProfiles.cpp:17
int profile_int
Definition: ERF.H:954
bool destag_profiles
Definition: ERF.H:955
void appendPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:184
amrex::Vector< std::string > tot_e_datalogname
Definition: ERF.H:1435
static int output_bndry_planes
Definition: ERF.H:1104
static std::string nc_bdy_file
Definition: ERF.H:1067
void AverageDown()
Definition: ERF_AverageDown.cpp:16
std::unique_ptr< SampleData > data_sampler
Definition: ERF.H:1428
static amrex::Real bndry_output_planes_start_time
Definition: ERF.H:1107
void project_velocity(int lev, amrex::Real dt)
Definition: ERF_PoissonSolve.cpp:10
std::string restart_chkfile
Definition: ERF.H:915
amrex::Vector< std::string > sampleptlogname
Definition: ERF.H:1438
void sum_derived_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:187
void sum_integrated_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:15
void setRecordDerDataInfo(int i, const std::string &filename)
Definition: ERF.H:1365
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
Definition: ERF.H:1437
std::unique_ptr< WriteBndryPlanes > m_w2d
Definition: ERF.H:1166
void init_geo_wind_profile(const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
Definition: ERF_InitGeowind.cpp:10
void initSponge()
Initialize sponge profiles.
Definition: ERF_InitSponge.cpp:35
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
Definition: ERF.H:1432
int real_width
Definition: ERF.H:1068
void setRecordEnergyDataInfo(int i, const std::string &filename)
Definition: ERF.H:1378
static bool is_it_time_for_action(int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
Definition: ERF_WriteScalarProfiles.cpp:758
int plot_file_on_restart
Definition: ERF.H:895
void Construct_ERFFillPatchers(int lev)
Definition: ERF.cpp:2179
void setRecordSampleLineInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1408
void setSpongeRefFromSounding(bool restarting)
Set sponge mean profiles from input sounding.
Definition: ERF_InitSponge.cpp:65
amrex::Vector< amrex::IntVect > samplepoint
Definition: ERF.H:1439
void setRecordSamplePointInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1391
void ReadCheckpointFileSurfaceLayer()
Definition: ERF_Checkpoint.cpp:957
static MoistureModelType modelType(const MoistureType a_moisture_type)
query if a specified moisture model is Eulerian or Lagrangian
Definition: ERF_Microphysics.H:86
bool have_zero_flux_faces
Definition: ERF_AdvStruct.H:416
amrex::Real rho0_trans
Definition: ERF_DiffStruct.H:91
amrex::Real dynamic_viscosity
Definition: ERF_DiffStruct.H:96
bool have_geo_wind_profile
Definition: ERF_DataStruct.H:858
std::string abl_geo_wind_table
Definition: ERF_DataStruct.H:857
bool use_rotate_surface_flux
Definition: ERF_DataStruct.H:832
bool do_forest_drag
Definition: ERF_DataStruct.H:879
void debug(amrex::Real)
Definition: ERF_TurbPertStruct.H:620
Here is the call graph for this function:

◆ InitData_pre()

void ERF::InitData_pre ( )
729 {
730  // Initialize the start time for our CPU-time tracker
731  startCPUTime = ParallelDescriptor::second();
732 
733  // Create the ReadBndryPlanes object so we can read boundary plane data
734  // m_r2d is used by init_bcs so we must instantiate this class before
735  if (input_bndry_planes) {
736  Print() << "Defining r2d for the first time " << std::endl;
737  m_r2d = std::make_unique<ReadBndryPlanes>(geom[0], solverChoice.rdOcp);
738  }
739 
743 
744  if (restart_chkfile.empty()) {
745  // start simulation from the beginning
746 
747  const Real time = start_time;
748  InitFromScratch(time);
749  } else {
750  // For initialization this is done in init_only; it is done here for restart
751  init_bcs();
752  }
753 
754  // Verify solver choices
755  for (int lev(0); lev <= max_level; ++lev) {
756  // BC compatibility
757  if ( ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
758  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ||
759  (solverChoice.turbChoice[lev].pbl_type == PBLType::YSU) ||
760  (solverChoice.turbChoice[lev].pbl_type == PBLType::MRF)
761  ) &&
762  phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::surface_layer ) {
763  Abort("MYNN2.5/MYNNEDMF/YSU/MRF PBL Model requires MOST at lower boundary");
764  }
765  if ( (solverChoice.turbChoice[lev].les_type == LESType::Deardorff) &&
766  (solverChoice.turbChoice[lev].Ce_wall > 0) &&
767  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::surface_layer) &&
768  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::slip_wall) &&
769  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::no_slip_wall) )
770  {
771  Warning("Deardorff LES assumes wall at zlo when applying Ce_wall");
772  }
773 
774  if ( (solverChoice.const_massflux_u != 0) &&
775  (phys_bc_type[Orientation(Direction::x,Orientation::low)] != ERF_BC::periodic ) )
776  {
777  Abort("Constant mass flux (in x) should be used with periodic boundaries");
778  }
779  if ( (solverChoice.const_massflux_v != 0) &&
780  (phys_bc_type[Orientation(Direction::y,Orientation::low)] != ERF_BC::periodic ) )
781  {
782  Abort("Constant mass flux (in y) should be used with periodic boundaries");
783  }
784 
785  // mesoscale diffusion
786  if ((geom[lev].CellSize(0) > 2000.) || (geom[lev].CellSize(1) > 2000.))
787  {
788  if ( (solverChoice.turbChoice[lev].les_type == LESType::Smagorinsky) &&
789  (!solverChoice.turbChoice[lev].smag2d)) {
790  Warning("Should use 2-D Smagorinsky for mesoscale resolution");
791  } else if (solverChoice.turbChoice[lev].les_type == LESType::Deardorff) {
792  Warning("Should not use Deardorff LES for mesoscale resolution");
793  }
794  }
795  }
796 }
void init_bcs()
Definition: ERF_InitBCs.cpp:20

◆ initHSE() [1/2]

void ERF::initHSE ( )
private

Initialize HSE.

143 {
144  for (int lev = 0; lev <= finest_level; lev++)
145  {
146  initHSE(lev);
147  }
148 }

◆ initHSE() [2/2]

void ERF::initHSE ( int  lev)
private

Initialize density and pressure base state in hydrostatic equilibrium.

21 {
22  // This integrates up through column to update p_hse, pi_hse, th_hse;
23  // r_hse is not const b/c FillBoundary is called at the end for r_hse and p_hse
24 
25  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
26  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
27  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
28  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
29  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
30 
31  bool all_boxes_touch_bottom = true;
32  Box domain(geom[lev].Domain());
33 
34  int icomp = 0; int ncomp = BaseState::num_comps;
35 
36  if (lev == 0) {
37  BoxArray ba(base_state[lev].boxArray());
38  for (int i = 0; i < ba.size(); i++) {
39  if (ba[i].smallEnd(2) != domain.smallEnd(2)) {
40  all_boxes_touch_bottom = false;
41  }
42  }
43  }
44  else
45  {
46  //
47  // We need to do this interp from coarse level in order to set the values of
48  // the base state inside the domain but outside of the fine region
49  //
50  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
51  //
52  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
53  // have been pre-filled - this includes ghost cells both inside and outside
54  // the domain
55  //
56  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
57  IntVect(0,0,0), // do not fill ghost cells outside the domain
58  base_state[lev-1], icomp, icomp, ncomp,
59  geom[lev-1], geom[lev],
60  refRatio(lev-1), &cell_cons_interp,
62 
63  // We need to do this here because the interpolation above may leave corners unfilled
64  // when the corners need to be filled by, for example, reflection of the fine ghost
65  // cell outside the fine region but inide the domain.
66  (*physbcs_base[lev])(base_state[lev],icomp,ncomp,base_state[lev].nGrowVect());
67  }
68 
69  if (all_boxes_touch_bottom || lev > 0) {
70 
71  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
73  prob->erf_init_dens_hse_moist(r_hse, z_phys_nd[lev], geom[lev]);
74  } else {
75  prob->erf_init_dens_hse(r_hse, z_phys_nd[lev], z_phys_cc[lev], geom[lev]);
76  }
77 
78  erf_enforce_hse(lev, r_hse, p_hse, pi_hse, th_hse, qv_hse, z_phys_cc[lev]);
79 
80  //
81  // Impose physical bc's on the base state
82  //
83  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
84 
85  } else {
86 
87  BoxArray ba_new(domain);
88 
89  ChopGrids2D(ba_new, domain, ParallelDescriptor::NProcs());
90 
91  DistributionMapping dm_new(ba_new);
92 
93  MultiFab new_base_state(ba_new, dm_new, BaseState::num_comps, base_state[lev].nGrowVect());
94  new_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
95  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
96 
97  MultiFab new_r_hse (new_base_state, make_alias, BaseState::r0_comp, 1);
98  MultiFab new_p_hse (new_base_state, make_alias, BaseState::p0_comp, 1);
99  MultiFab new_pi_hse(new_base_state, make_alias, BaseState::pi0_comp, 1);
100  MultiFab new_th_hse(new_base_state, make_alias, BaseState::th0_comp, 1);
101  MultiFab new_qv_hse(new_base_state, make_alias, BaseState::qv0_comp, 1);
102 
103  std::unique_ptr<MultiFab> new_z_phys_cc;
104  std::unique_ptr<MultiFab> new_z_phys_nd;
105  if (solverChoice.mesh_type != MeshType::ConstantDz) {
106  new_z_phys_cc = std::make_unique<MultiFab>(ba_new,dm_new,1,1);
107  new_z_phys_cc->ParallelCopy(*z_phys_cc[lev],0,0,1,1,1);
108 
109  BoxArray ba_new_nd(ba_new);
110  ba_new_nd.surroundingNodes();
111  new_z_phys_nd = std::make_unique<MultiFab>(ba_new_nd,dm_new,1,1);
112  new_z_phys_nd->ParallelCopy(*z_phys_nd[lev],0,0,1,1,1);
113  }
114 
115  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
117  prob->erf_init_dens_hse_moist(new_r_hse, new_z_phys_nd, geom[lev]);
118  } else {
119  prob->erf_init_dens_hse(new_r_hse, new_z_phys_nd, new_z_phys_cc, geom[lev]);
120  }
121 
122  erf_enforce_hse(lev, new_r_hse, new_p_hse, new_pi_hse, new_th_hse, new_qv_hse, new_z_phys_cc);
123 
124  //
125  // Impose physical bc's on the base state
126  //
127  (*physbcs_base[lev])(new_base_state,0,new_base_state.nComp(),new_base_state.nGrowVect());
128 
129  // Now copy back into the original arrays
130  base_state[lev].ParallelCopy(new_base_state,0,0,base_state[lev].nComp(),
131  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
132  }
133 
134  //
135  // Impose physical bc's on the base state -- the values outside the fine region
136  // but inside the domain have already been filled in the call above to InterpFromCoarseLevel
137  //
138  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
139 }
void ChopGrids2D(BoxArray &ba, const Box &domain, int target_size)
Definition: ERF_ChopGrids.cpp:21
void erf_enforce_hse(int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
Definition: ERF_Init1D.cpp:160
bool use_moist_background
Definition: ERF_DataStruct.H:866
Here is the call graph for this function:

◆ initialize_integrator()

void ERF::initialize_integrator ( int  lev,
amrex::MultiFab &  cons_mf,
amrex::MultiFab &  vel_mf 
)
private
631 {
632  const BoxArray& ba(cons_mf.boxArray());
633  const DistributionMapping& dm(cons_mf.DistributionMap());
634 
635  int ncomp_cons = cons_mf.nComp();
636 
637  // Initialize the integrator memory
638  Vector<MultiFab> int_state; // integration state data structure example
639  int_state.push_back(MultiFab(cons_mf, make_alias, 0, ncomp_cons)); // cons
640  int_state.push_back(MultiFab(convert(ba,IntVect(1,0,0)), dm, 1, vel_mf.nGrow())); // xmom
641  int_state.push_back(MultiFab(convert(ba,IntVect(0,1,0)), dm, 1, vel_mf.nGrow())); // ymom
642  int_state.push_back(MultiFab(convert(ba,IntVect(0,0,1)), dm, 1, vel_mf.nGrow())); // zmom
643 
644  mri_integrator_mem[lev] = std::make_unique<MRISplitIntegrator<Vector<MultiFab> > >(int_state);
645  mri_integrator_mem[lev]->setNoSubstepping((solverChoice.substepping_type[lev] == SubsteppingType::None));
646  mri_integrator_mem[lev]->setAnelastic(solverChoice.anelastic[lev]);
647  mri_integrator_mem[lev]->setNcompCons(ncomp_cons);
648  mri_integrator_mem[lev]->setForceFirstStageSingleSubstep(solverChoice.force_stage1_single_substep);
649 }

◆ InitializeFromFile()

void ERF::InitializeFromFile ( )
private

◆ InitializeLevelFromData()

void ERF::InitializeLevelFromData ( int  lev,
const amrex::MultiFab &  initial_data 
)
private

◆ initializeMicrophysics()

void ERF::initializeMicrophysics ( const int &  a_nlevsmax)
private
Parameters
a_nlevsmaxnumber of AMR levels
1456 {
1457  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Eulerian) {
1458 
1459  micro = std::make_unique<EulerianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1460 
1461  } else if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1462 #ifdef ERF_USE_PARTICLES
1463 
1464  micro = std::make_unique<LagrangianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1465  /* Lagrangian microphysics models will have a particle container; it needs to be added
1466  to ERF::particleData */
1467  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1468  /* The particle container has not yet been constructed and initialized, so just add
1469  its name here for now (so that functions to set plotting variables can see it). */
1470  particleData.addName( pc_name );
1471 
1472 #else
1473  Abort("Lagrangian microphysics can be used when compiled with ERF_USE_PARTICLES");
1474 #endif
1475  }
1476 
1477  qmoist.resize(a_nlevsmax);
1478  return;
1479 }
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
Definition: ERF.H:756
Here is the call graph for this function:

◆ initRayleigh()

void ERF::initRayleigh ( )
private

Initialize Rayleigh damping profiles.

Initialization function for host and device vectors used to store averaged quantities when calculating the effects of Rayleigh Damping.

15 {
16  const int khi = geom[0].Domain().bigEnd(2);
17  solverChoice.rayleigh_ztop = (solverChoice.terrain_type == TerrainType::None) ? geom[0].ProbHi(2) : zlevels_stag[0][khi+1];
18 
19  h_rayleigh_ptrs.resize(max_level+1);
20  d_rayleigh_ptrs.resize(max_level+1);
21 
22  for (int lev = 0; lev <= finest_level; lev++)
23  {
24  // These have 4 components: ubar, vbar, wbar, thetabar
25  h_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
26  d_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
27 
28  const int zlen_rayleigh = geom[lev].Domain().length(2);
29 
30  // Allocate space for these 1D vectors
31  for (int n = 0; n < Rayleigh::nvars; n++) {
32  h_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
33  d_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
34  }
35 
36  // Init the host vectors
37  prob->erf_init_rayleigh(h_rayleigh_ptrs[lev], geom[lev], z_phys_nd[lev], solverChoice.rayleigh_zdamp);
38 
39  // Copy from host vectors to device vectors
40  for (int n = 0; n < Rayleigh::nvars; n++) {
41  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][n].begin(), h_rayleigh_ptrs[lev][n].end(),
42  d_rayleigh_ptrs[lev][n].begin());
43  }
44  }
45 }
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
Definition: ERF.H:1141
amrex::Real rayleigh_zdamp
Definition: ERF_DataStruct.H:792
amrex::Real rayleigh_ztop
Definition: ERF_DataStruct.H:793

◆ initSponge()

void ERF::initSponge ( )
private

Initialize sponge profiles.

Initialization function for host and device vectors used to store the effects of sponge Damping.

36 {
37  h_sponge_ptrs.resize(max_level+1);
38  d_sponge_ptrs.resize(max_level+1);
39 
40  for (int lev = 0; lev <= finest_level; lev++)
41  {
42  // These have 2 components: ubar, vbar
45 
46  const int zlen_sponge = geom[lev].Domain().length(2);
47 
48  // Allocate space for these 1D vectors
49  for (int n = 0; n < Sponge::nvars_sponge; n++) {
50  h_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
51  d_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
52  }
53 
54  }
55 }
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
Definition: ERF.H:1144

◆ input_sponge()

void ERF::input_sponge ( int  lev)

High level wrapper for sponge x and y velocities level data from input sponge data.

Parameters
levInteger specifying the current level
18 {
19  // We only want to read the file once
20  if (lev == 0) {
22  Error("input_sounding file name must be provided via input");
23 
24  // this will interpolate the input profiles to the nominal height levels
25  // (ranging from 0 to the domain top)
27  }
28 }
InputSpongeData input_sponge_data
Definition: ERF.H:670
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag)
Definition: ERF_InputSpongeData.H:28
std::string input_sponge_file
Definition: ERF_InputSpongeData.H:111

◆ interp_weather_data_onto_mesh()

void ERF::interp_weather_data_onto_mesh ( )
254 {
255 
256  ParmParse pp_erf("erf");
257  bool is_lateral_sponges_hurricanes = false;
258  if (pp_erf.query("is_lateral_sponges_hurricanes", is_lateral_sponges_hurricanes)) {
259  initial_state.resize(max_level+1);
260  for (int lev = 0; lev < max_level+1; ++lev) {
261  initial_state[lev].resize(vars_new[lev].size());
262  for (int comp = 0; comp < vars_new[lev].size(); ++comp) {
263  const MultiFab& src = vars_new[lev][comp];
264  initial_state[lev][comp].define(src.boxArray(), src.DistributionMap(),
265  src.nComp(), src.nGrow());
266  }
267  }
268  }
269 
270 
271  MultiFab& weather_mf = weather_forecast_data[0];
272  MultiFab& erf_mf_cons = initial_state[0][Vars::cons];
273  MultiFab& erf_mf_xvel = initial_state[0][Vars::xvel];
274  MultiFab& erf_mf_yvel = initial_state[0][Vars::yvel];
275  MultiFab& erf_mf_zvel = initial_state[0][Vars::zvel];
276 
277  erf_mf_cons.setVal(0.0);
278  erf_mf_xvel.setVal(0.0);
279  erf_mf_yvel.setVal(0.0);
280  erf_mf_zvel.setVal(0.0);
281 
282  BoxList bl_erf = erf_mf_cons.boxArray().boxList();
283  BoxList bl_weather = weather_mf.boxArray().boxList();
284 
285  const auto prob_lo_erf = geom[0].ProbLoArray();
286  const auto dx_erf = geom[0].CellSizeArray();
287 
288  for (auto& b : bl_erf) {
289  // You look at the lo corner of b, and find out the lowest cell in
290  // coarse weather data you need for the interpolation. That gives
291  // you the lo corner of the new b. Similarly, you can find out the
292  // hi corner of the new b. For cells outside the coarse_weath_data's
293  // bounding data, it's up to you. You probably want to use a biased
294  // interpolation stencil.
295 
296  // Get the cell indices of the bottom corner and top corner
297  const IntVect& lo_erf = b.smallEnd(); // Lower corner (inclusive)
298  const IntVect& hi_erf = b.bigEnd(); // Upper corner (inclusive)
299 
300  Real x = prob_lo_erf[0] + lo_erf[0] * dx_erf[0];
301  Real y = prob_lo_erf[1] + lo_erf[1] * dx_erf[1];
302  Real z = prob_lo_erf[2] + lo_erf[2] * dx_erf[2];
303 
304  auto idx_lo = find_bound_idx(x, y, z, bl_weather, geom_weather, BoundType::Lo);
305 
306  x = prob_lo_erf[0] + (hi_erf[0]+1) * dx_erf[0];
307  y = prob_lo_erf[1] + (hi_erf[1]+1) * dx_erf[1];
308  z = prob_lo_erf[2] + (hi_erf[2]+1) * dx_erf[2];
309 
310  auto idx_hi = find_bound_idx(x, y, z, bl_weather, geom_weather, BoundType::Hi);
311 
312  b.setSmall(idx_lo);
313  b.setBig(idx_hi);
314  }
315 
316  BoxArray cba(std::move(bl_erf));
317  cba.convert(IndexType::TheNodeType()); // <-- Make it nodal in all directions
318  MultiFab tmp_coarse_data(cba, erf_mf_cons.DistributionMap(), weather_mf.nComp(), 0);
319  tmp_coarse_data.ParallelCopy(weather_mf);
320 
321  PlotMultiFab(weather_mf, geom_weather, "plt_coarse_weather_par_copy",MultiFabType::NC);
322 
323  const auto prob_lo_weather = geom_weather.ProbLoArray();
324  const auto dx_weather = geom_weather.CellSizeArray();
325 
326  for (MFIter mfi(erf_mf_cons); mfi.isValid(); ++mfi) {
327  const Array4<Real> &fine_cons_arr = erf_mf_cons.array(mfi);
328  const Array4<Real> &fine_xvel_arr = erf_mf_xvel.array(mfi);
329  const Array4<Real> &fine_yvel_arr = erf_mf_yvel.array(mfi);
330  const Array4<Real> &fine_zvel_arr = erf_mf_zvel.array(mfi);
331 
332  const Array4<Real> &crse_arr = tmp_coarse_data.array(mfi);
333 
334  const Box& gbx = mfi.growntilebox(); // validbox + ghost cells
335 
336  const Box &gtbx = mfi.tilebox(IntVect(1,0,0));
337  const Box &gtby = mfi.tilebox(IntVect(0,1,0));
338  const Box &gtbz = mfi.tilebox(IntVect(0,0,1));
339 
340  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
341  // Physical location of the fine node
342  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
343  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
344  Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
345 
346  Real rho = interpolate_from_coarse(crse_arr, 0, x, y, z, prob_lo_weather.data(), dx_weather.data());
347  Real theta = interpolate_from_coarse(crse_arr, 4, x, y, z, prob_lo_weather.data(), dx_weather.data());
348  Real qv = interpolate_from_coarse(crse_arr, 5, x, y, z, prob_lo_weather.data(), dx_weather.data());
349  Real qc = interpolate_from_coarse(crse_arr, 6, x, y, z, prob_lo_weather.data(), dx_weather.data());
350  Real qr = interpolate_from_coarse(crse_arr, 7, x, y, z, prob_lo_weather.data(), dx_weather.data());
351 
352  fine_cons_arr(i,j,k,Rho_comp) = rho;
353  fine_cons_arr(i,j,k,RhoTheta_comp) = rho*theta;
354  fine_cons_arr(i,j,k,RhoQ1_comp) = rho*qv;
355  fine_cons_arr(i,j,k,RhoQ2_comp) = rho*qc;
356  fine_cons_arr(i,j,k,RhoQ3_comp) = rho*qr;
357  });
358 
359  ParallelFor(gtbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
360  // Physical location of the fine node
361  Real x = prob_lo_erf[0] + i * dx_erf[0];
362  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
363  Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
364  fine_xvel_arr(i, j, k, 0) = interpolate_from_coarse(crse_arr, 1, x, y, z, prob_lo_weather.data(), dx_weather.data());
365  });
366 
367  ParallelFor(gtby, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
368  // Physical location of the fine node
369  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
370  Real y = prob_lo_erf[1] + j * dx_erf[1];
371  Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
372  fine_yvel_arr(i, j, k, 0) = interpolate_from_coarse(crse_arr, 2, x, y, z, prob_lo_weather.data(), dx_weather.data());
373  });
374 
375  ParallelFor(gtbz, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
376  // Physical location of the fine node
377  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
378  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
379  Real z = prob_lo_erf[2] + k * dx_erf[2];
380  fine_zvel_arr(i, j, k, 0) = interpolate_from_coarse(crse_arr, 3, x, y, z, prob_lo_weather.data(), dx_weather.data());
381  });
382  }
383 
384  Vector<std::string> varnames = {
385  "rho", "uvel", "vvel", "wvel", "theta", "qv", "qc", "qr"
386  }; // Customize variable names
387 
388  Vector<std::string> varnames_cons = {
389  "rho", "rhotheta", "ke", "sc", "rhoqv", "rhoqc", "rhoqr"
390  }; // Customize variable names
391 
392  Vector<std::string> varnames_plot_mf = {
393  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel"
394  }; // Customize variable names
395 
396 
397  const Real time = 0.0;
398 
399  std::string pltname = "plt_interp";
400 
401  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
402  8, 0);
403 
404  plot_mf.setVal(0.0);
405 
406  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
407  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
408  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
409  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
410  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
411  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
412 
413  const Box& bx = mfi.validbox();
414 
415  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
416  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
417  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
418  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
419  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
420  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
421 
422  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
423  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
424  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
425  });
426  }
427 
428 
429  WriteSingleLevelPlotfile(
430  pltname,
431  plot_mf,
432  varnames_plot_mf,
433  geom[0],
434  time,
435  0 // level
436  );
437 }
IntVect find_bound_idx(const Real &x, const Real &y, const Real &z, const BoxList &bl_weather, const Geometry &geom_weather, BoundType bound_type)
Definition: ERF_InitForecastData.cpp:221
AMREX_GPU_DEVICE amrex::Real interpolate_from_coarse(const amrex::Array4< const amrex::Real > &crse, int n, amrex::Real x, amrex::Real y, amrex::Real z, const amrex::Real *prob_lo_crse, const amrex::Real *dx_crse)
Definition: ERF_Interpolation_Bilinear.H:77
amrex::Vector< amrex::Vector< amrex::MultiFab > > initial_state
Definition: ERF.H:145
Here is the call graph for this function:

◆ is_it_time_for_action()

bool ERF::is_it_time_for_action ( int  nstep,
amrex::Real  time,
amrex::Real  dt,
int  action_interval,
amrex::Real  action_per 
)
static

Helper function which uses the current step number, time, and timestep to determine whether it is time to take an action specified at every interval of timesteps.

Parameters
nstepTimestep number
timeCurrent time
dtlevTimestep for the current level
action_intervalInterval in number of timesteps for taking action
action_perInterval in simulation time for taking action
759 {
760  bool int_test = (action_interval > 0 && nstep % action_interval == 0);
761 
762  bool per_test = false;
763  if (action_per > 0.0) {
764  const int num_per_old = static_cast<int>(amrex::Math::floor((time - dtlev) / action_per));
765  const int num_per_new = static_cast<int>(amrex::Math::floor((time) / action_per));
766 
767  if (num_per_old != num_per_new) {
768  per_test = true;
769  }
770  }
771 
772  return int_test || per_test;
773 }

◆ make_eb_box()

void ERF::make_eb_box ( )

◆ make_eb_regular()

void ERF::make_eb_regular ( )

◆ make_physbcs()

void ERF::make_physbcs ( int  lev)
private
653 {
654  if (SolverChoice::mesh_type == MeshType::VariableDz) {
655  AMREX_ALWAYS_ASSERT(z_phys_nd[lev] != nullptr);
656  }
657 
658  physbcs_cons[lev] = std::make_unique<ERFPhysBCFunct_cons> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
660  z_phys_nd[lev], solverChoice.use_real_bcs, th_bc_data[lev].data());
661  physbcs_u[lev] = std::make_unique<ERFPhysBCFunct_u> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
663  z_phys_nd[lev], solverChoice.use_real_bcs, xvel_bc_data[lev].data());
664  physbcs_v[lev] = std::make_unique<ERFPhysBCFunct_v> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
666  z_phys_nd[lev], solverChoice.use_real_bcs, yvel_bc_data[lev].data());
667  physbcs_w[lev] = std::make_unique<ERFPhysBCFunct_w> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
670  solverChoice.use_real_bcs, zvel_bc_data[lev].data());
671  physbcs_base[lev] = std::make_unique<ERFPhysBCFunct_base> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d, z_phys_nd[lev],
672  (solverChoice.terrain_type == TerrainType::MovingFittedMesh));
673 }

◆ make_subdomains()

void ERF::make_subdomains ( const amrex::BoxList &  ba,
amrex::Vector< amrex::BoxArray > &  bins 
)
7 {
8  Vector<BoxList> bins_bl;
9 
10  // Clear out any old bins
11  bins.clear();
12 
13  // Iterate over boxes
14  for (auto bx : bl)
15  {
16  bool added = false;
17 
18  // Try to add box to existing bin
19  for (int j = 0; j < bins_bl.size(); ++j) {
20  BoxList& bin = bins_bl[j];
21  bool touches = false;
22 
23  for (auto& b : bin)
24  {
25  Box gbx(bx); gbx.grow(1);
26  if (gbx.intersects(b)) {
27  touches = true;
28  break;
29  }
30  }
31 
32  if (touches) {
33  bin.push_back(bx);
34  added = true;
35  break;
36  }
37  }
38 
39  // If box couldn't be added to existing bin, create new bin
40  if (!added) {
41  BoxList new_bin;
42  new_bin.push_back(bx);
43  bins_bl.push_back(new_bin);
44  }
45  }
46 
47  // Convert the BoxLists to BoxArrays
48  for (int i = 0; i < bins_bl.size(); ++i) {
49  bins.push_back(BoxArray(bins_bl[i]));
50  }
51 }

◆ MakeDiagnosticAverage()

void ERF::MakeDiagnosticAverage ( amrex::Vector< amrex::Real > &  h_havg,
amrex::MultiFab &  S,
int  n 
)
2134 {
2135  // Get the number of cells in z at level 0
2136  int dir_z = AMREX_SPACEDIM-1;
2137  auto domain = geom[0].Domain();
2138  int size_z = domain.length(dir_z);
2139  int start_z = domain.smallEnd()[dir_z];
2140  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2141 
2142  // resize the level 0 horizontal average vectors
2143  h_havg.resize(size_z, 0.0_rt);
2144 
2145  // Get the cell centered data and construct sums
2146 #ifdef _OPENMP
2147 #pragma omp parallel if (Gpu::notInLaunchRegion())
2148 #endif
2149  for (MFIter mfi(S); mfi.isValid(); ++mfi) {
2150  const Box& box = mfi.validbox();
2151  const IntVect& se = box.smallEnd();
2152  const IntVect& be = box.bigEnd();
2153 
2154  auto fab_arr = S[mfi].array();
2155 
2156  FArrayBox fab_reduce(box, 1, The_Async_Arena());
2157  auto arr_reduce = fab_reduce.array();
2158 
2159  ParallelFor(box, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2160  arr_reduce(i, j, k, 0) = fab_arr(i,j,k,n);
2161  });
2162 
2163  for (int k=se[dir_z]; k <= be[dir_z]; ++k) {
2164  Box kbox(box); kbox.setSmall(dir_z,k); kbox.setBig(dir_z,k);
2165  h_havg[k-start_z] += fab_reduce.sum<RunOn::Device>(kbox,0);
2166  }
2167  }
2168 
2169  // combine sums from different MPI ranks
2170  ParallelDescriptor::ReduceRealSum(h_havg.dataPtr(), h_havg.size());
2171 
2172  // divide by the total number of cells we are averaging over
2173  for (int k = 0; k < size_z; ++k) {
2174  h_havg[k] /= area_z;
2175  }
2176 }

◆ MakeEBGeometry()

void ERF::MakeEBGeometry ( )

◆ MakeHorizontalAverages()

void ERF::MakeHorizontalAverages ( )
2028 {
2029  int lev = 0;
2030 
2031  // First, average down all levels (if doing two-way coupling)
2032  if (solverChoice.coupling_type == CouplingType::TwoWay) {
2033  AverageDown();
2034  }
2035 
2036  MultiFab mf(grids[lev], dmap[lev], 5, 0);
2037 
2038  int zdir = 2;
2039  auto domain = geom[0].Domain();
2040 
2041  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
2042  bool is_anelastic = (solverChoice.anelastic[lev] == 1);
2043 
2044  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2045  const Box& bx = mfi.validbox();
2046  auto fab_arr = mf.array(mfi);
2047  auto const hse_arr = base_state[lev].const_array(mfi);
2048  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2049  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2050  Real dens = cons_arr(i, j, k, Rho_comp);
2051  fab_arr(i, j, k, 0) = dens;
2052  fab_arr(i, j, k, 1) = cons_arr(i, j, k, RhoTheta_comp) / dens;
2053  if (!use_moisture) {
2054  if (is_anelastic) {
2055  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2056  } else {
2057  fab_arr(i,j,k,2) = getPgivenRTh(cons_arr(i,j,k,RhoTheta_comp));
2058  }
2059  }
2060  });
2061  }
2062 
2063  if (use_moisture)
2064  {
2065  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2066  const Box& bx = mfi.validbox();
2067  auto fab_arr = mf.array(mfi);
2068  auto const hse_arr = base_state[lev].const_array(mfi);
2069  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2070  int ncomp = vars_new[lev][Vars::cons].nComp();
2071 
2072  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2073  Real dens = cons_arr(i, j, k, Rho_comp);
2074  if (is_anelastic) {
2075  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2076  } else {
2077  Real qv = cons_arr(i, j, k, RhoQ1_comp) / dens;
2078  fab_arr(i, j, k, 2) = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
2079  }
2080  fab_arr(i, j, k, 3) = (ncomp > RhoQ1_comp ? cons_arr(i, j, k, RhoQ1_comp) / dens : 0.0);
2081  fab_arr(i, j, k, 4) = (ncomp > RhoQ2_comp ? cons_arr(i, j, k, RhoQ2_comp) / dens : 0.0);
2082  });
2083  }
2084 
2085  Gpu::HostVector<Real> h_avg_qv = sumToLine(mf,3,1,domain,zdir);
2086  Gpu::HostVector<Real> h_avg_qc = sumToLine(mf,4,1,domain,zdir);
2087  }
2088 
2089  // Sum in the horizontal plane
2090  Gpu::HostVector<Real> h_avg_density = sumToLine(mf,0,1,domain,zdir);
2091  Gpu::HostVector<Real> h_avg_temperature = sumToLine(mf,1,1,domain,zdir);
2092  Gpu::HostVector<Real> h_avg_pressure = sumToLine(mf,2,1,domain,zdir);
2093 
2094  // Divide by the total number of cells we are averaging over
2095  int size_z = domain.length(zdir);
2096  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2097  int klen = static_cast<int>(h_avg_density.size());
2098 
2099  for (int k = 0; k < klen; ++k) {
2100  h_havg_density[k] /= area_z;
2101  h_havg_temperature[k] /= area_z;
2102  h_havg_pressure[k] /= area_z;
2103  if (solverChoice.moisture_type != MoistureType::None)
2104  {
2105  h_havg_qc[k] /= area_z;
2106  h_havg_qv[k] /= area_z;
2107  }
2108  } // k
2109 
2110  // resize device vectors
2111  d_havg_density.resize(size_z, 0.0_rt);
2112  d_havg_temperature.resize(size_z, 0.0_rt);
2113  d_havg_pressure.resize(size_z, 0.0_rt);
2114 
2115  // copy host vectors to device vectors
2116  Gpu::copy(Gpu::hostToDevice, h_havg_density.begin(), h_havg_density.end(), d_havg_density.begin());
2117  Gpu::copy(Gpu::hostToDevice, h_havg_temperature.begin(), h_havg_temperature.end(), d_havg_temperature.begin());
2118  Gpu::copy(Gpu::hostToDevice, h_havg_pressure.begin(), h_havg_pressure.end(), d_havg_pressure.begin());
2119 
2120  if (solverChoice.moisture_type != MoistureType::None)
2121  {
2122  d_havg_qv.resize(size_z, 0.0_rt);
2123  d_havg_qc.resize(size_z, 0.0_rt);
2124  Gpu::copy(Gpu::hostToDevice, h_havg_qv.begin(), h_havg_qv.end(), d_havg_qv.begin());
2125  Gpu::copy(Gpu::hostToDevice, h_havg_qc.begin(), h_havg_qc.end(), d_havg_qc.begin());
2126  }
2127 }
amrex::Gpu::DeviceVector< amrex::Real > d_havg_temperature
Definition: ERF.H:1159
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qv
Definition: ERF.H:1161
amrex::Vector< amrex::Real > h_havg_pressure
Definition: ERF.H:1154
amrex::Vector< amrex::Real > h_havg_qc
Definition: ERF.H:1156
amrex::Vector< amrex::Real > h_havg_density
Definition: ERF.H:1152
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qc
Definition: ERF.H:1162
amrex::Gpu::DeviceVector< amrex::Real > d_havg_density
Definition: ERF.H:1158
amrex::Vector< amrex::Real > h_havg_temperature
Definition: ERF.H:1153
amrex::Gpu::DeviceVector< amrex::Real > d_havg_pressure
Definition: ERF.H:1160
amrex::Vector< amrex::Real > h_havg_qv
Definition: ERF.H:1155
Here is the call graph for this function:

◆ MakeNewLevelFromCoarse()

void ERF::MakeNewLevelFromCoarse ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
282 {
283  AMREX_ALWAYS_ASSERT(lev > 0);
284 
285  if (verbose) {
286  amrex::Print() <<" NEW BA FROM COARSE AT LEVEL " << lev << " " << ba << std::endl;
287  }
288 
289  //
290  // Grow the subdomains vector and build the subdomains vector at this level
291  //
292  subdomains.resize(lev+1);
293  //
294  // Create subdomains at each level within the domain such that
295  // 1) all boxes in a given subdomain are "connected"
296  // 2) no boxes in a subdomain touch any boxes in any other subdomain
297  //
299  BoxArray dom(geom[lev].Domain());
300  subdomains[lev].push_back(dom);
301  } else {
302  make_subdomains(ba.simplified_list(), subdomains[lev]);
303  }
304 
305  if (lev == 0) init_bcs();
306 
307  //********************************************************************************************
308  // This allocates all kinds of things, including but not limited to: solution arrays,
309  // terrain arrays, metric terms and base state.
310  // *******************************************************************************************
311  init_stuff(lev, ba, dm, vars_new[lev], vars_old[lev], base_state[lev], z_phys_nd[lev]);
312 
313  t_new[lev] = time;
314  t_old[lev] = time - 1.e200;
315 
316  // ********************************************************************************************
317  // Build the data structures for metric quantities used with terrain-fitted coordinates
318  // ********************************************************************************************
319  if ( solverChoice.terrain_type == TerrainType::EB ||
320  solverChoice.terrain_type == TerrainType::ImmersedForcing)
321  {
322  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
323  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
324  if (solverChoice.terrain_type == TerrainType::EB) {
325  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
326  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
327  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
328  }
329  }
330  init_zphys(lev, time);
332 
333  //
334  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
335  //
336  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
337  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
338  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
339  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
340  }
341  }
342 
343  // ********************************************************************************************
344  // Build the data structures for canopy model (depends upon z_phys)
345  // ********************************************************************************************
347  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
348  }
349 
350  //********************************************************************************************
351  // Microphysics
352  // *******************************************************************************************
353  int q_size = micro->Get_Qmoist_Size(lev);
354  qmoist[lev].resize(q_size);
355  micro->Define(lev, solverChoice);
356  if (solverChoice.moisture_type != MoistureType::None)
357  {
358  micro->Init(lev, vars_new[lev][Vars::cons],
359  grids[lev], Geom(lev), 0.0,
360  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
361  }
362  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
363  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
364  }
365 
366  // *****************************************************************************************************
367  // Initialize the boundary conditions (after initializing the terrain but before calling
368  // initHSE or FillCoarsePatch)
369  // *****************************************************************************************************
370  make_physbcs(lev);
371 
372  // ********************************************************************************************
373  // Update the base state at this level by interpolation from coarser level
374  // ********************************************************************************************
375  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
376  IntVect(0,0,0), // do not fill ghost cells outside the domain
377  base_state[lev-1], 0, 0, base_state[lev].nComp(),
378  geom[lev-1], geom[lev],
379  refRatio(lev-1), &cell_cons_interp,
381 
382  // Impose bc's outside the domain
383  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
384 
385  // ********************************************************************************************
386  // Build the data structures for calculating diffusive/turbulent terms
387  // ********************************************************************************************
388  update_diffusive_arrays(lev, ba, dm);
389 
390  // ********************************************************************************************
391  // Fill data at the new level by interpolation from the coarser level
392  // Note that internal to FillCoarsePatch we will convert velocity to momentum,
393  // then interpolate momentum, then convert momentum back to velocity
394  // Also note that FillCoarsePatch is hard-wired to act only on lev_new at coarse and fine
395  // ********************************************************************************************
396  FillCoarsePatch(lev, time);
397 
398  // ********************************************************************************************
399  // Initialize the integrator class
400  // ********************************************************************************************
401  dt_mri_ratio[lev] = dt_mri_ratio[lev-1];
403 
404  // ********************************************************************************************
405  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
406  // ********************************************************************************************
407  if (lev > 0 && cf_width >= 0) {
410  }
411 
412  // ********************************************************************************************
413  // Create the SurfaceLayer arrays at this (new) level
414  // ********************************************************************************************
415  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
416  int nlevs = finest_level+1;
417  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
418  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
419  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
420  mfv_old, Theta_prim[lev], Qv_prim[lev],
421  Qr_prim[lev], z_phys_nd[lev],
422  Hwave[lev].get(), Lwave[lev].get(), eddyDiffs_lev[lev].get(),
423  lsm_data[lev], lsm_flux[lev], sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
424  }
425 
426 #ifdef ERF_USE_PARTICLES
427  // particleData.Redistribute();
428 #endif
429 }
void update_diffusive_arrays(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewArrays.cpp:424
void initialize_integrator(int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
Definition: ERF_MakeNewArrays.cpp:630
void make_subdomains(const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
Definition: ERF_MakeSubdomains.cpp:6
void update_terrain_arrays(int lev)
Definition: ERF_MakeNewArrays.cpp:619
void init_zphys(int lev, amrex::Real time)
Definition: ERF_MakeNewArrays.cpp:514
void init_stuff(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:24
void Define_ERFFillPatchers(int lev)
Definition: ERF.cpp:2205

◆ MakeNewLevelFromScratch()

void ERF::MakeNewLevelFromScratch ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
27 {
28  BoxArray ba;
29  DistributionMapping dm;
30  Box domain(Geom(0).Domain());
31  if (lev == 0 && restart_chkfile.empty() &&
32  (max_grid_size[0][0] >= domain.length(0)) &&
33  (max_grid_size[0][1] >= domain.length(1)) &&
34  ba_in.size() != ParallelDescriptor::NProcs())
35  {
36  // We only decompose in z if max_grid_size_z indicates we should
37  bool decompose_in_z = (max_grid_size[0][2] < domain.length(2));
38 
39  ba = ERFPostProcessBaseGrids(Geom(0).Domain(),decompose_in_z);
40  dm = DistributionMapping(ba);
41  } else {
42  ba = ba_in;
43  dm = dm_in;
44  }
45 
46  // ********************************************************************************************
47  // Define grids[lev] to be ba
48  // ********************************************************************************************
49  SetBoxArray(lev, ba);
50 
51  // ********************************************************************************************
52  // Define dmap[lev] to be dm
53  // ********************************************************************************************
54  SetDistributionMap(lev, dm);
55 
56  if (verbose) {
57  amrex::Print() << "BA FROM SCRATCH AT LEVEL " << lev << " " << ba << std::endl;
58  amrex::Print() <<" SIMPLIFIED BA FROM SCRATCH AT LEVEL " << lev << " " << ba.simplified_list() << std::endl;
59  }
60 
61  subdomains.resize(lev+1);
62  if ( (lev == 0) || (
64  (solverChoice.init_type != InitType::WRFInput) && (solverChoice.init_type != InitType::Metgrid) ) ) {
65  BoxArray dom(geom[lev].Domain());
66  subdomains[lev].push_back(dom);
67  } else {
68  //
69  // Create subdomains at each level within the domain such that
70  // 1) all boxes in a given subdomain are "connected"
71  // 2) no boxes in a subdomain touch any boxes in any other subdomain
72  //
73  make_subdomains(ba.simplified_list(), subdomains[lev]);
74  }
75 
76  if (lev == 0) init_bcs();
77 
78  if ( solverChoice.terrain_type == TerrainType::EB ||
79  solverChoice.terrain_type == TerrainType::ImmersedForcing)
80  {
81  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
82  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
83  if (solverChoice.terrain_type == TerrainType::EB) {
84  eb[lev]->make_all_factories(lev, geom[lev], grids[lev], dmap[lev], eb_level);
85  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
86  eb[lev]->make_cc_factory(lev, geom[lev], grids[lev], dmap[lev], eb_level);
87  }
88  } else {
89  // m_factory[lev] = std::make_unique<FabFactory<FArrayBox>>();
90  }
91 
92  auto& lev_new = vars_new[lev];
93  auto& lev_old = vars_old[lev];
94 
95  //********************************************************************************************
96  // This allocates all kinds of things, including but not limited to: solution arrays,
97  // terrain arrays, metric terms and base state.
98  // *******************************************************************************************
99  init_stuff(lev, ba, dm, lev_new, lev_old, base_state[lev], z_phys_nd[lev]);
100 
101  //********************************************************************************************
102  // Land Surface Model
103  // *******************************************************************************************
104  int lsm_size = lsm.Get_Data_Size();
105  lsm_data[lev].resize(lsm_size);
106  lsm_flux[lev].resize(lsm_size);
107  lsm.Define(lev, solverChoice);
108  if (solverChoice.lsm_type != LandSurfaceType::None)
109  {
110  lsm.Init(lev, vars_new[lev][Vars::cons], Geom(lev), 0.0); // dummy dt value
111  }
112  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
113  lsm_data[lev][mvar] = lsm.Get_Data_Ptr(lev,mvar);
114  lsm_flux[lev][mvar] = lsm.Get_Flux_Ptr(lev,mvar);
115  }
116 
117  // ********************************************************************************************
118  // Build the data structures for calculating diffusive/turbulent terms
119  // ********************************************************************************************
120  update_diffusive_arrays(lev, ba, dm);
121 
122  // ********************************************************************************************
123  // Build the data structures for holding sea surface temps and skin temps
124  // ********************************************************************************************
125  sst_lev[lev].resize(1); sst_lev[lev][0] = nullptr;
126  tsk_lev[lev].resize(1); tsk_lev[lev][0] = nullptr;
127 
128  // ********************************************************************************************
129  // Thin immersed body
130  // *******************************************************************************************
131  init_thin_body(lev, ba, dm);
132 
133  // ********************************************************************************************
134  // Initialize the integrator class
135  // ********************************************************************************************
136  initialize_integrator(lev, lev_new[Vars::cons],lev_new[Vars::xvel]);
137 
138  // ********************************************************************************************
139  // Initialize the data itself
140  // If (init_type == InitType::WRFInput) then we are initializing terrain and the initial data in
141  // the same call so we must call init_only before update_terrain_arrays
142  // If (init_type != InitType::WRFInput) then we want to initialize the terrain before the initial data
143  // since we may need to use the grid information before constructing
144  // initial idealized data
145  // ********************************************************************************************
146  if (restart_chkfile.empty()) {
147  if ( (solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid) )
148  {
149  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type == TerrainType::StaticFittedMesh);
150  init_only(lev, start_time);
151  init_zphys(lev, time);
153  make_physbcs(lev);
154  } else {
155  init_zphys(lev, time);
157  // Note that for init_type != InitType::WRFInput and != InitType::Metgrid,
158  // make_physbcs is called inside init_only
159  init_only(lev, start_time);
160  }
161  } else {
162  // if restarting and nudging from input sounding, load the input sounding files
163  if (lev == 0 && solverChoice.init_type == InitType::Input_Sounding && solverChoice.nudging_from_input_sounding)
164  {
166  Error("input_sounding file name must be provided via input");
167  }
168 
170 
171  // this will interpolate the input profiles to the nominal height levels
172  // (ranging from 0 to the domain top)
173  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
174  input_sounding_data.read_from_file(geom[lev], zlevels_stag[lev], n);
175  }
176 
177  // this will calculate the hydrostatically balanced density and pressure
178  // profiles following WRF ideal.exe
179  if (solverChoice.sounding_type == SoundingType::Ideal) {
181  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
182  solverChoice.sounding_type == SoundingType::DryIsentropic) {
183  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
185  }
186  }
187 
188  // We re-create terrain_blanking on restart rather than storing it in the checkpoint
189  if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
190  int ngrow = ComputeGhostCells(solverChoice) + 2;
191  terrain_blanking[lev]->setVal(1.0);
192  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ngrow);
193  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
194  }
195  }
196 
197  // Read in tables needed for windfarm simulations
198  // fill in Nturb multifab - number of turbines in each mesh cell
199  // write out the vtk files for wind turbine location and/or
200  // actuator disks
201  #ifdef ERF_USE_WINDFARM
202  init_windfarm(lev);
203  #endif
204 
205  // ********************************************************************************************
206  // Build the data structures for canopy model (depends upon z_phys)
207  // ********************************************************************************************
208  if (restart_chkfile.empty()) {
210  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
211  }
212  }
213 
214  //********************************************************************************************
215  // Create wall distance field for RANS model (depends upon z_phys)
216  // *******************************************************************************************
217  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
218  // Handle bottom boundary
219  poisson_wall_dist(lev);
220 
221  // Correct the wall distance for immersed bodies
227  geom[lev],
228  z_phys_cc[lev]);
229  }
230  }
231 
232  //********************************************************************************************
233  // Microphysics
234  // *******************************************************************************************
235  int q_size = micro->Get_Qmoist_Size(lev);
236  qmoist[lev].resize(q_size);
237  micro->Define(lev, solverChoice);
238  if (solverChoice.moisture_type != MoistureType::None)
239  {
240  micro->Init(lev, vars_new[lev][Vars::cons],
241  grids[lev], Geom(lev), 0.0,
242  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
243  }
244  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
245  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
246  }
247 
248  //********************************************************************************************
249  // Radiation
250  // *******************************************************************************************
251  if (solverChoice.rad_type != RadiationType::None)
252  {
253  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
254  }
255 
256  // ********************************************************************************************
257  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
258  // ********************************************************************************************
259  if (lev > 0 && cf_width >= 0) {
262  }
263 
264 #ifdef ERF_USE_PARTICLES
265  if (restart_chkfile.empty()) {
266  if (lev == 0) {
267  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd);
268  } else {
269  particleData.Redistribute();
270  }
271  }
272 #endif
273 }
BoxArray ERFPostProcessBaseGrids(const Box &domain, bool decompose_in_z)
Definition: ERF_ChopGrids.cpp:6
void thinbody_wall_dist(std::unique_ptr< MultiFab > &wdist, Vector< IntVect > &xfaces, Vector< IntVect > &yfaces, Vector< IntVect > &zfaces, const Geometry &geomdata, std::unique_ptr< MultiFab > &z_phys_cc)
Definition: ERF_ThinBodyWallDist.cpp:12
void init_only(int lev, amrex::Real time)
Definition: ERF.cpp:1528
void poisson_wall_dist(int lev)
Definition: ERF_PoissonWallDist.cpp:20
void init_thin_body(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewLevel.cpp:689
int Get_Data_Size()
Definition: ERF_LandSurface.H:92
amrex::MultiFab * Get_Flux_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:86
void Init(const int &lev, const amrex::MultiFab &cons_in, const amrex::Geometry &geom, const amrex::Real &dt_advance)
Definition: ERF_LandSurface.H:43
void Define(const int &lev, SolverChoice &sc)
Definition: ERF_LandSurface.H:36
amrex::MultiFab * Get_Data_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:83
bool nudging_from_input_sounding
Definition: ERF_DataStruct.H:829
Here is the call graph for this function:

◆ MakeVTKFilename()

std::string ERF::MakeVTKFilename ( int  nstep)
574  {
575  // Ensure output directory exists
576  const std::string dir = "Output_HurricaneTracker";
577  if (!fs::exists(dir)) {
578  fs::create_directory(dir);
579  }
580 
581  // Construct filename with zero-padded step
582  std::ostringstream oss;
583  if(nstep==0){
584  oss << dir << "/hurricane_track_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
585  } else {
586  oss << dir << "/hurricane_track_" << std::setw(7) << std::setfill('0') << nstep+1 << ".vtk";
587  }
588 
589  return oss.str();
590 }

◆ nghost_eb_basic()

static int ERF::nghost_eb_basic ( )
inlinestaticprivate
1469  { return 5; }

◆ nghost_eb_full()

static int ERF::nghost_eb_full ( )
inlinestaticprivate
1476  { return 4; }

◆ nghost_eb_volume()

static int ERF::nghost_eb_volume ( )
inlinestaticprivate
1473  { return 5; }

◆ NumDataLogs()

AMREX_FORCE_INLINE int ERF::NumDataLogs ( )
inlineprivatenoexcept
1268  {
1269  return datalog.size();
1270  }

◆ NumDerDataLogs()

AMREX_FORCE_INLINE int ERF::NumDerDataLogs ( )
inlineprivatenoexcept
1275  {
1276  return der_datalog.size();
1277  }

◆ NumSampleLineLogs()

AMREX_FORCE_INLINE int ERF::NumSampleLineLogs ( )
inlineprivatenoexcept
1304  {
1305  return samplelinelog.size();
1306  }

◆ NumSampleLines()

AMREX_FORCE_INLINE int ERF::NumSampleLines ( )
inlineprivatenoexcept
1330  {
1331  return sampleline.size();
1332  }

◆ NumSamplePointLogs()

AMREX_FORCE_INLINE int ERF::NumSamplePointLogs ( )
inlineprivatenoexcept
1290  {
1291  return sampleptlog.size();
1292  }

◆ NumSamplePoints()

AMREX_FORCE_INLINE int ERF::NumSamplePoints ( )
inlineprivatenoexcept
1317  {
1318  return samplepoint.size();
1319  }

◆ operator=() [1/2]

ERF& ERF::operator= ( const ERF other)
delete

◆ operator=() [2/2]

ERF& ERF::operator= ( ERF &&  other)
deletenoexcept

◆ ParameterSanityChecks()

void ERF::ParameterSanityChecks ( )
private
1961 {
1962  AMREX_ALWAYS_ASSERT(cfl > 0. || fixed_dt[0] > 0.);
1963 
1964  // We don't allow use_real_bcs to be true if init_type is not either InitType::WRFInput or InitType::Metgrid
1965  AMREX_ALWAYS_ASSERT( !solverChoice.use_real_bcs ||
1966  ((solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid)) );
1967 
1968  AMREX_ALWAYS_ASSERT(real_width >= 0);
1969  AMREX_ALWAYS_ASSERT(real_set_width >= 0);
1970  AMREX_ALWAYS_ASSERT(real_width >= real_set_width);
1971 
1972  if (cf_width < 0 || cf_set_width < 0 || cf_width < cf_set_width) {
1973  Abort("You must set cf_width >= cf_set_width >= 0");
1974  }
1975  if (max_level > 0 && cf_set_width > 0) {
1976  for (int lev = 1; lev <= max_level; lev++) {
1977  if (cf_set_width%ref_ratio[lev-1][0] != 0 ||
1978  cf_set_width%ref_ratio[lev-1][1] != 0 ||
1979  cf_set_width%ref_ratio[lev-1][2] != 0 ) {
1980  Abort("You must set cf_width to be a multiple of ref_ratio");
1981  }
1982  }
1983  }
1984 
1985  // If fixed_mri_dt_ratio is set, it must be even
1986  if (fixed_mri_dt_ratio > 0 && (fixed_mri_dt_ratio%2 != 0) )
1987  {
1988  Abort("If you specify fixed_mri_dt_ratio, it must be even");
1989  }
1990 
1991  for (int lev = 0; lev <= max_level; lev++)
1992  {
1993  // We ignore fixed_fast_dt if not substepping
1994  if (solverChoice.substepping_type[lev] == SubsteppingType::None) {
1995  fixed_fast_dt[lev] = -1.0;
1996  }
1997 
1998  // If both fixed_dt and fast_dt are specified, their ratio must be an even integer
1999  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio <= 0)
2000  {
2001  Real eps = 1.e-12;
2002  int ratio = static_cast<int>( ( (1.0+eps) * fixed_dt[lev] ) / fixed_fast_dt[lev] );
2003  if (fixed_dt[lev] / fixed_fast_dt[lev] != ratio)
2004  {
2005  Abort("Ratio of fixed_dt to fixed_fast_dt must be an even integer");
2006  }
2007  }
2008 
2009  // If all three are specified, they must be consistent
2010  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio > 0)
2011  {
2012  if (fixed_dt[lev] / fixed_fast_dt[lev] != fixed_mri_dt_ratio)
2013  {
2014  Abort("Dt is over-specfied");
2015  }
2016  }
2017  } // lev
2018 
2019  if (solverChoice.coupling_type == CouplingType::TwoWay && cf_width > 0) {
2020  Abort("For two-way coupling you must set cf_width = 0");
2021  }
2022 }
int real_set_width
Definition: ERF.H:1069

◆ PlotFileName()

std::string ERF::PlotFileName ( int  lev) const
private

◆ PlotFileVarNames()

Vector< std::string > ERF::PlotFileVarNames ( amrex::Vector< std::string >  plot_var_names)
staticprivate
252 {
253  Vector<std::string> names;
254 
255  names.insert(names.end(), plot_var_names.begin(), plot_var_names.end());
256 
257  return names;
258 
259 }

◆ poisson_wall_dist()

void ERF::poisson_wall_dist ( int  lev)

Calculate wall distances using the Poisson equation

The zlo boundary is assumed to correspond to the land surface. If there are no boundary walls, then the other use case is to calculate wall distances for immersed boundaries (embedded or thin body).

See Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248. https://doi.org/10.1016/S0021-9991(03)00272-9

21 {
22  BL_PROFILE("ERF::poisson_wall_dist()");
23 
24  bool havewall{false};
25  Orientation zlo(Direction::z, Orientation::low);
26  if ( ( phys_bc_type[zlo] == ERF_BC::surface_layer ) ||
27  ( phys_bc_type[zlo] == ERF_BC::no_slip_wall ) )/*||
28  ((phys_bc_type[zlo] == ERF_BC::slip_wall) && (dom_hi.z > dom_lo.z)) )*/
29  {
30  havewall = true;
31  }
32 
33  auto const& geomdata = geom[lev];
34 
35  if (havewall) {
36  if (solverChoice.mesh_type == MeshType::ConstantDz) {
37 // Comment this out to test the wall dist calc in the trivial case:
38 //#if 0
39  Print() << "Directly calculating direct wall distance for constant dz" << std::endl;
40  const Real* prob_lo = geomdata.ProbLo();
41  const Real* dx = geomdata.CellSize();
42  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
43  const Box& bx = mfi.validbox();
44  auto dist_arr = walldist[lev]->array(mfi);
45  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
46  dist_arr(i, j, k) = prob_lo[2] + (k + 0.5) * dx[2];
47  });
48  }
49  return;
50 //#endif
51  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
52  // TODO: Handle this trivial case
53  Error("Wall dist calc not implemented with grid stretching yet");
54  } else {
55  // TODO
56  Error("Wall dist calc not implemented over terrain yet");
57  }
58  }
59 
60  Print() << "Calculating Poisson wall distance" << std::endl;
61 
62  // Make sure the solver only sees the levels over which we are solving
63  BoxArray nba = walldist[lev]->boxArray();
64  nba.surroundingNodes();
65  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
66  Vector<BoxArray> ba_tmp; ba_tmp.push_back(nba);
67  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(walldist[lev]->DistributionMap());
68 
69  Vector<MultiFab> rhs;
70  Vector<MultiFab> phi;
71 
72  if (solverChoice.terrain_type == TerrainType::EB) {
73  amrex::Error("Wall dist calc not implemented for EB");
74  } else {
75  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
76  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
77  }
78 
79  rhs[0].setVal(-1.0);
80 
81  // Define an overset mask to set dirichlet nodes on walls
82  iMultiFab mask(ba_tmp[0], dm_tmp[0], 1, 0);
83  Vector<const iMultiFab*> overset_mask = {&mask};
84 
85  auto const dom_lo = lbound(geom[lev].Domain());
86  auto const dom_hi = ubound(geom[lev].Domain());
87 
88  // ****************************************************************************
89  // Initialize phi
90  // (It is essential that we do this in order to fill the corners; this is
91  // used if we include blanking.)
92  // ****************************************************************************
93  phi[0].setVal(0.0);
94 
95  // ****************************************************************************
96  // Interior boundaries are marked with phi=0
97  // ****************************************************************************
98  // Overset mask is 0/1: 1 means the node is an unknown. 0 means it's known.
99  mask.setVal(1);
101  Warning("Poisson distance is inaccurate for bodies in open domains that are small compared to the domain size, skipping");
102  return;
103 #if 0
104  Gpu::DeviceVector<IntVect> xfacelist, yfacelist, zfacelist;
105 
106  xfacelist.resize(solverChoice.advChoice.zero_xflux.size());
107  yfacelist.resize(solverChoice.advChoice.zero_yflux.size());
108  zfacelist.resize(solverChoice.advChoice.zero_zflux.size());
109 
110  if (xfacelist.size() > 0) {
111  Gpu::copy(amrex::Gpu::hostToDevice,
114  xfacelist.begin());
115  Print() << " masking interior xfaces" << std::endl;
116  }
117  if (yfacelist.size() > 0) {
118  Gpu::copy(amrex::Gpu::hostToDevice,
121  yfacelist.begin());
122  Print() << " masking interior yfaces" << std::endl;
123  }
124  if (zfacelist.size() > 0) {
125  Gpu::copy(amrex::Gpu::hostToDevice,
128  zfacelist.begin());
129  Print() << " masking interior zfaces" << std::endl;
130  }
131 
132  for (MFIter mfi(phi[0]); mfi.isValid(); ++mfi) {
133  const Box& bx = mfi.validbox();
134 
135  auto phi_arr = phi[0].array(mfi);
136  auto mask_arr = mask.array(mfi);
137 
138  if (xfacelist.size() > 0) {
139  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
140  for (int iface=0; iface < xfacelist.size(); ++iface) {
141  if ((i == xfacelist[iface][0]) &&
142  (j == xfacelist[iface][1]) &&
143  (k == xfacelist[iface][2]))
144  {
145  mask_arr(i, j , k ) = 0;
146  mask_arr(i, j , k+1) = 0;
147  mask_arr(i, j+1, k ) = 0;
148  mask_arr(i, j+1, k+1) = 0;
149  }
150  }
151  });
152  }
153 
154  if (yfacelist.size() > 0) {
155  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
156  for (int iface=0; iface < yfacelist.size(); ++iface) {
157  if ((i == yfacelist[iface][0]) &&
158  (j == yfacelist[iface][1]) &&
159  (k == yfacelist[iface][2]))
160  {
161  mask_arr(i , j, k ) = 0;
162  mask_arr(i , j, k+1) = 0;
163  mask_arr(i+1, j, k ) = 0;
164  mask_arr(i+1, j, k+1) = 0;
165  }
166  }
167  });
168  }
169 
170  if (zfacelist.size() > 0) {
171  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
172  for (int iface=0; iface < zfacelist.size(); ++iface) {
173  if ((i == xfacelist[iface][0]) &&
174  (j == xfacelist[iface][1]) &&
175  (k == xfacelist[iface][2]))
176  {
177  mask_arr(i , j , k) = 0;
178  mask_arr(i , j+1, k) = 0;
179  mask_arr(i+1, j , k) = 0;
180  mask_arr(i+1, j+1, k) = 0;
181  }
182  }
183  });
184  }
185  }
186 #endif
187  }
188 
189  // ****************************************************************************
190  // Setup BCs, with solid domain boundaries being dirichlet
191  // ****************************************************************************
192  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> bc3d_lo, bc3d_hi;
193  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
194  if (geom[0].isPeriodic(dir)) {
195  bc3d_lo[dir] = LinOpBCType::Periodic;
196  bc3d_hi[dir] = LinOpBCType::Periodic;
197  } else {
198  bc3d_lo[dir] = LinOpBCType::Neumann;
199  bc3d_hi[dir] = LinOpBCType::Neumann;
200  }
201  }
202  if (havewall) {
203  Print() << " Poisson zlo BC is dirichlet" << std::endl;
204  bc3d_lo[2] = LinOpBCType::Dirichlet;
205  }
206  Print() << " bc lo : " << bc3d_lo << std::endl;
207  Print() << " bc hi : " << bc3d_hi << std::endl;
208 
209  if (!solverChoice.advChoice.have_zero_flux_faces && !havewall) {
210  Error("No solid boundaries in the computational domain");
211  }
212 
213  LPInfo info;
214 /* Nodal solver cannot have hidden dimensions */
215 #if 0
216  // Allow a hidden direction if the domain is one cell wide
217  if (dom_lo.x == dom_hi.x) {
218  info.setHiddenDirection(0);
219  Print() << " domain is 2D in yz" << std::endl;
220  } else if (dom_lo.y == dom_hi.y) {
221  info.setHiddenDirection(1);
222  Print() << " domain is 2D in xz" << std::endl;
223  } else if (dom_lo.z == dom_hi.z) {
224  info.setHiddenDirection(2);
225  Print() << " domain is 2D in xy" << std::endl;
226  }
227 #endif
228 
229  // ****************************************************************************
230  // Solve nodal masked Poisson problem with MLMG
231  // TODO: different solver for terrain?
232  // ****************************************************************************
233  const Real reltol = solverChoice.poisson_reltol;
234  const Real abstol = solverChoice.poisson_abstol;
235 
236  Real sigma = 1.0;
237  Vector<EBFArrayBoxFactory const*> factory_vec = { &EBFactory(lev) };
238  MLNodeLaplacian mlpoisson(geom_tmp, ba_tmp, dm_tmp, info, factory_vec, sigma);
239 
240  mlpoisson.setDomainBC(bc3d_lo, bc3d_hi);
241 
242  if (lev > 0) {
243  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
244  }
245 
246  mlpoisson.setLevelBC(0, nullptr);
247 
248  mlpoisson.setOversetMask(0, mask);
249 
250  // Solve
251  MLMG mlmg(mlpoisson);
252  int max_iter = 100;
253  mlmg.setMaxIter(max_iter);
254 
255  mlmg.setVerbose(mg_verbose);
256  mlmg.setBottomVerbose(0);
257 
258  mlmg.solve(GetVecOfPtrs(phi),
259  GetVecOfConstPtrs(rhs),
260  reltol, abstol);
261 
262  // Now overwrite with periodic fill outside domain and fine-fine fill inside
263  phi[0].FillBoundary(geom[lev].periodicity());
264 
265  // ****************************************************************************
266  // Compute grad(phi) to get distances
267  // - Note that phi is nodal and walldist is cell-centered
268  // - TODO: include terrain metrics for dphi/dz
269  // ****************************************************************************
270  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
271  const Box& bx = mfi.validbox();
272 
273  const auto invCellSize = geomdata.InvCellSizeArray();
274 
275  auto const& phi_arr = phi[0].const_array(mfi);
276  auto dist_arr = walldist[lev]->array(mfi);
277 
278  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
279  Real dpdx{0}, dpdy{0}, dpdz{0};
280 
281  // dphi/dx
282  if (dom_lo.x != dom_hi.x) {
283  dpdx = 0.25 * invCellSize[0] * (
284  (phi_arr(i+1, j , k ) - phi_arr(i, j , k ))
285  + (phi_arr(i+1, j , k+1) - phi_arr(i, j , k+1))
286  + (phi_arr(i+1, j+1, k ) - phi_arr(i, j+1, k ))
287  + (phi_arr(i+1, j+1, k+1) - phi_arr(i, j+1, k+1)) );
288  }
289 
290  // dphi/dy
291  if (dom_lo.y != dom_hi.y) {
292  dpdy = 0.25 * invCellSize[1] * (
293  (phi_arr(i , j+1, k ) - phi_arr(i , j, k ))
294  + (phi_arr(i , j+1, k+1) - phi_arr(i , j, k+1))
295  + (phi_arr(i+1, j+1, k ) - phi_arr(i+1, j, k ))
296  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j, k+1)) );
297  }
298 
299  // dphi/dz
300  if (dom_lo.z != dom_hi.z) {
301  dpdz = 0.25 * invCellSize[2] * (
302  (phi_arr(i , j , k+1) - phi_arr(i , j , k))
303  + (phi_arr(i , j+1, k+1) - phi_arr(i , j+1, k))
304  + (phi_arr(i+1, j , k+1) - phi_arr(i+1, j , k))
305  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j+1, k)) );
306  }
307 
308  Real dp_dot_dp = dpdx*dpdx + dpdy*dpdy + dpdz*dpdz;
309  Real phi_avg = 0.125 * (
310  phi_arr(i , j , k ) + phi_arr(i , j , k+1) + phi_arr(i , j+1, k ) + phi_arr(i , j+1, k+1)
311  + phi_arr(i+1, j , k ) + phi_arr(i+1, j , k+1) + phi_arr(i+1, j+1, k ) + phi_arr(i+1, j+1, k+1) );
312  dist_arr(i, j, k) = -std::sqrt(dp_dot_dp) + std::sqrt(dp_dot_dp + 2*phi_avg);
313 
314  // DEBUG: output phi instead
315  //dist_arr(i, j, k) = phi_arr(i, j, k);
316  });
317  }
318 }
if(l_use_mynn &&start_comp<=RhoKE_comp &&end_comp >=RhoKE_comp)
Definition: ERF_DiffQKEAdjustment.H:2
static int mg_verbose
Definition: ERF.H:1046
amrex::Real poisson_reltol
Definition: ERF_DataStruct.H:776
amrex::Real poisson_abstol
Definition: ERF_DataStruct.H:775
Here is the call graph for this function:

◆ post_timestep()

void ERF::post_timestep ( int  nstep,
amrex::Real  time,
amrex::Real  dt_lev 
)
535 {
536  BL_PROFILE("ERF::post_timestep()");
537 
538 #ifdef ERF_USE_PARTICLES
539  particleData.Redistribute();
540 #endif
541 
542  if (solverChoice.coupling_type == CouplingType::TwoWay)
543  {
544  int ncomp = vars_new[0][Vars::cons].nComp();
545  for (int lev = finest_level-1; lev >= 0; lev--)
546  {
547  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
548  // m is the map scale factor at cell centers
549  // Here we pre-divide (rho S) by m^2 before refluxing
550  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
551  const Box& bx = mfi.tilebox();
552  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
553  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
554  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
555  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
556  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
557  {
558  cons_arr(i,j,k,n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
559  });
560  } else {
561  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
562  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
563  {
564  cons_arr(i,j,k,n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
565  });
566  }
567  } // mfi
568 
569  // This call refluxes all "slow" cell-centered variables
570  // (i.e. not density or (rho theta) or velocities) from the lev/lev+1 interface onto lev
571  getAdvFluxReg(lev+1)->Reflux(vars_new[lev][Vars::cons], 2, 2, ncomp-2);
572 
573  // Here we multiply (rho S) by m^2 after refluxing
574  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
575  const Box& bx = mfi.tilebox();
576  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
577  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
578  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
579  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
580  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
581  {
582  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
583  });
584  } else {
585  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
586  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
587  {
588  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
589  });
590  }
591  } // mfi
592 
593  // We need to do this before anything else because refluxing changes the
594  // values of coarse cells underneath fine grids with the assumption they'll
595  // be over-written by averaging down
596  int src_comp;
597  if (solverChoice.anelastic[lev]) {
598  src_comp = 1;
599  } else {
600  src_comp = 0;
601  }
602  int num_comp = ncomp - src_comp;
603  AverageDownTo(lev,src_comp,num_comp);
604  }
605  }
606 
607  if (is_it_time_for_action(nstep, time, dt_lev0, sum_interval, sum_per)) {
610  sum_energy_quantities(time);
611  }
612 
613  if (solverChoice.pert_type == PerturbationType::Source ||
614  solverChoice.pert_type == PerturbationType::Direct ||
615  solverChoice.pert_type == PerturbationType::CPM) {
616  if (is_it_time_for_action(nstep, time, dt_lev0, pert_interval, -1.)) {
617  turbPert.debug(time);
618  }
619  }
620 
621  if (profile_int > 0 && (nstep+1) % profile_int == 0) {
622  if (destag_profiles) {
623  // all variables cell-centered
624  write_1D_profiles(time);
625  } else {
626  // some variables staggered
628  }
629  }
630 
631  if (solverChoice.rad_type != RadiationType::None)
632  {
633  if (rad_datalog_int > 0 && (nstep+1) % rad_datalog_int == 0) {
634  if (rad[0]->hasDatalog()) {
635  rad[0]->WriteDataLog(time);
636  }
637  }
638  }
639 
640  if (output_1d_column) {
641 #ifdef ERF_USE_NETCDF
642  if (is_it_time_for_action(nstep, time, dt_lev0, column_interval, column_per))
643  {
644  int lev_column = 0;
645  for (int lev = finest_level; lev >= 0; lev--)
646  {
647  Real dx_lev = geom[lev].CellSize(0);
648  Real dy_lev = geom[lev].CellSize(1);
649  int i_lev = static_cast<int>(std::floor(column_loc_x / dx_lev));
650  int j_lev = static_cast<int>(std::floor(column_loc_y / dy_lev));
651  if (grids[lev].contains(IntVect(i_lev,j_lev,0))) lev_column = lev;
652  }
653  writeToNCColumnFile(lev_column, column_file_name, column_loc_x, column_loc_y, time);
654  }
655 #else
656  Abort("To output 1D column files ERF must be compiled with NetCDF");
657 #endif
658  }
659 
661  {
664  {
665  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
666  m_w2d->write_planes(istep[0], time, vars_new, is_moist);
667  }
668  }
669 
670  // Write plane/line sampler data
671  if (is_it_time_for_action(nstep+1, time, dt_lev0, sampler_interval, sampler_per) && (data_sampler) ) {
672  data_sampler->get_sample_data(geom, vars_new);
673  data_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
674  }
675 
676  // Moving terrain
677  if ( solverChoice.terrain_type == TerrainType::MovingFittedMesh )
678  {
679  for (int lev = finest_level; lev >= 0; lev--)
680  {
681  // Copy z_phs_nd and detJ_cc at end of timestep
682  MultiFab::Copy(*z_phys_nd[lev], *z_phys_nd_new[lev], 0, 0, 1, z_phys_nd[lev]->nGrowVect());
683  MultiFab::Copy( *detJ_cc[lev], *detJ_cc_new[lev], 0, 0, 1, detJ_cc[lev]->nGrowVect());
684  MultiFab::Copy(base_state[lev],base_state_new[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
685 
686  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
687  }
688  }
689 
690  bool is_hurricane_tracker_io=false;
691  ParmParse pp("erf");
692  pp.query("is_hurricane_tracker_io", is_hurricane_tracker_io);
693 
694  if(is_hurricane_tracker_io) {
695  if(nstep == 0 or (nstep+1)%m_plot_int_1 == 0){
696  std::string filename = MakeVTKFilename(nstep);
697  Real velmag_threshold = 1e10;
698  pp.query("hurr_track_io_velmag_greater_than", velmag_threshold);
699  if(velmag_threshold==1e10) {
700  Abort("As hurricane tracking IO is active using erf.is_hurricane_tracker_io = true"
701  " there needs to be an input erf.hurr_track_io_velmag_greater_than which specifies the"
702  " magnitude of velocity above which cells will be tagged for refinement.");
703  }
704  int levc=finest_level;
705  MultiFab& U_new = vars_new[levc][Vars::xvel];
706  MultiFab& V_new = vars_new[levc][Vars::yvel];
707  MultiFab& W_new = vars_new[levc][Vars::zvel];
708 
709  HurricaneTracker(levc, U_new, V_new, W_new, velmag_threshold, true);
710  if (ParallelDescriptor::IOProcessor()) {
712  }
713  }
714  }
715 } // post_timestep
void make_zcc(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:623
static amrex::Real column_loc_y
Definition: ERF.H:1100
static std::string column_file_name
Definition: ERF.H:1101
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg(int lev)
Definition: ERF.H:1246
static amrex::Real bndry_output_planes_per
Definition: ERF.H:1106
std::string MakeVTKFilename(int nstep)
Definition: ERF_Write1DProfiles.cpp:574
static amrex::Real column_per
Definition: ERF.H:1098
amrex::Real sampler_per
Definition: ERF.H:1427
static amrex::Real column_loc_x
Definition: ERF.H:1099
static int bndry_output_planes_interval
Definition: ERF.H:1105
int sampler_interval
Definition: ERF.H:1426
static int output_1d_column
Definition: ERF.H:1096
void WriteVTKPolyline(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_Write1DProfiles.cpp:593
static int column_interval
Definition: ERF.H:1097
Here is the call graph for this function:

◆ post_update()

void ERF::post_update ( amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ print_banner()

void ERF::print_banner ( MPI_Comm  comm,
std::ostream &  out 
)
static
65  : " << msg << std::endl;
66 }
67 
68 void ERF::print_banner (MPI_Comm comm, std::ostream& out)
69 {
70 #ifdef AMREX_USE_MPI
71  int irank = 0;
72  int num_ranks = 1;
73  MPI_Comm_size(comm, &num_ranks);
74  MPI_Comm_rank(comm, &irank);
75 
76  // Only root process does the printing
77  if (irank != 0) return;
78 #else
79  amrex::ignore_unused(comm);
80 #endif
81 
82  auto etime = std::chrono::system_clock::now();
83  auto etimet = std::chrono::system_clock::to_time_t(etime);
84 #ifndef _WIN32
85  char time_buf[64];
86  ctime_r(&etimet, time_buf);
87  const std::string tstamp(time_buf);
88 #else
89  char* time_buf = new char[64];
90  ctime_s(time_buf, 64, &etimet);
91  const std::string tstamp(time_buf);
92 #endif
93 
94  const char* githash1 = amrex::buildInfoGetGitHash(1);
95  const char* githash2 = amrex::buildInfoGetGitHash(2);
96 
97  // clang-format off
98  out << dbl_line
99  << " ERF (https://github.com/erf-model/ERF)"
100  << std::endl << std::endl
101  << " ERF Git SHA :: " << githash1 << std::endl
102  << " AMReX Git SHA :: " << githash2 << std::endl
103  << " AMReX version :: " << amrex::Version() << std::endl << std::endl
104  << " Exec. time :: " << tstamp
105  << " Build time :: " << amrex::buildInfoGetBuildDate() << std::endl
106  << " C++ compiler :: " << amrex::buildInfoGetComp()
107  << " " << amrex::buildInfoGetCompVersion() << std::endl << std::endl
108  << " MPI :: "
109 #ifdef AMREX_USE_MPI
110  << "ON (Num. ranks = " << num_ranks << ")" << std::endl
111 #else
112  << "OFF " << std::endl
113 #endif
114  << " GPU :: "
115 #ifdef AMREX_USE_GPU
116  << "ON "
117 #if defined(AMREX_USE_CUDA)
118  << "(Backend: CUDA)"
119 #elif defined(AMREX_USE_HIP)
120  << "(Backend: HIP)"
121 #elif defined(AMREX_USE_SYCL)
122  << "(Backend: SYCL)"
123 #endif
124  << std::endl
125 #else
126  << "OFF" << std::endl
127 #endif
128  << " OpenMP :: "
129 #ifdef AMREX_USE_OMP
130  << "ON (Num. threads = " << omp_get_max_threads() << ")" << std::endl
131 #else
132  << "OFF" << std::endl
133 #endif
134  << std::endl;
135 
ERF()
Definition: ERF.cpp:89
const char * buildInfoGetBuildDate()
const char * buildInfoGetComp()
const char * buildInfoGetCompVersion()

Referenced by main().

Here is the caller graph for this function:

◆ print_error()

void ERF::print_error ( MPI_Comm  comm,
const std::string &  msg 
)
static
43  :
44  input_file : Input file with simulation settings
45 
46 Optional:
47  param=value : Overrides for parameters during runtime
48 )doc" << std::endl;
49 }
50 
51 void ERF::print_error (MPI_Comm comm, const std::string& msg)
52 {
53 #ifdef AMREX_USE_MPI
54  int irank = 0;
55  int num_ranks = 1;
56  MPI_Comm_size(comm, &num_ranks);
57  MPI_Comm_rank(comm, &irank);
58 

Referenced by main().

Here is the caller graph for this function:

◆ print_summary()

static void ERF::print_summary ( std::ostream &  )
static

◆ print_tpls()

void ERF::print_tpls ( std::ostream &  out)
static
140  ://github.com/erf-model/ERF/blob/development/LICENSE for details. "
141  << dash_line << std::endl;
142  // clang-format on
143 }
144 
145 void ERF::print_tpls (std::ostream& out)
146 {
147  amrex::Vector<std::string> tpls;
148 
149 #ifdef ERF_USE_NETCDF
150  tpls.push_back(std::string("NetCDF ") + NC_VERSION);
151 #endif
152 #ifdef AMREX_USE_SUNDIALS
153  tpls.push_back(std::string("SUNDIALS ") + SUNDIALS_VERSION);
154 #endif
155 
156  if (!tpls.empty()) {
157  out << " Enabled third-party libraries: ";
158  for (const auto& val : tpls) {
static void print_tpls(std::ostream &)
Definition: ERF_ConsoleIO.cpp:137

◆ print_usage()

void ERF::print_usage ( MPI_Comm  comm,
std::ostream &  out 
)
static
27 {
28 #ifdef AMREX_USE_MPI
29  int irank = 0;
30  int num_ranks = 1;
31  MPI_Comm_size(comm, &num_ranks);
32  MPI_Comm_rank(comm, &irank);
33 
34  // Only root process does the printing
35  if (irank != 0) return;
36 #else
37  amrex::ignore_unused(comm);
38 #endif
39 
40  out << R"doc(Usage:
41  ERF3d.*.ex <input_file> [param=value] [param=value] ...

Referenced by main().

Here is the caller graph for this function:

◆ project_momenta()

void ERF::project_momenta ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level momenta to enforce the anelastic constraint Note that the level may or may not be level 0.

42 {
43  BL_PROFILE("ERF::project_momenta()");
44 
45  // Make sure the solver only sees the levels over which we are solving
46  Vector<BoxArray> ba_tmp; ba_tmp.push_back(mom_mf[Vars::cons].boxArray());
47  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(mom_mf[Vars::cons].DistributionMap());
48  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
49 
50  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
51 
52  Vector<MultiFab> rhs;
53  Vector<MultiFab> phi;
54 
55  if (solverChoice.terrain_type == TerrainType::EB)
56  {
57  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
58  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1, MFInfo(), EBFactory(lev));
59  } else {
60  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
61  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
62  }
63 
64  MultiFab rhs_lev(rhs[0], make_alias, 0, 1);
65 
66  auto dxInv = geom[lev].InvCellSizeArray();
67 
68  // Inflow on an x-face -- note only the normal velocity is used in the projection
69  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow") {
71  IntVect{1,0,0},t_new[lev],BCVars::xvel_bc,false);
72  }
73 
74  // Inflow on a y-face -- note only the normal velocity is used in the projection
75  if (domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
77  IntVect{0,1,0},t_new[lev],BCVars::yvel_bc,false);
78  }
79 
80  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow" ||
81  domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
82  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
83  vars_new[lev][Vars::yvel], IntVect{0},
84  vars_new[lev][Vars::zvel], IntVect{0},
85  vars_new[lev][Vars::cons],
86  mom_mf[IntVars::xmom],
87  mom_mf[IntVars::ymom],
88  mom_mf[IntVars::zmom],
89  Geom(lev).Domain(),
91  }
92 
93  // If !fixed_density, we must convert (rho u) which came in
94  // to (rho0 u) which is what we will project
96  ConvertForProjection(mom_mf[Vars::cons], r_hse,
97  mom_mf[IntVars::xmom],
98  mom_mf[IntVars::ymom],
99  mom_mf[IntVars::zmom],
100  Geom(lev).Domain(),
102  }
103 
104  //
105  // ****************************************************************************
106  // Now convert the rho0w MultiFab to hold Omega rather than rhow
107  // ****************************************************************************
108  //
109  if (solverChoice.mesh_type == MeshType::VariableDz)
110  {
111  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
112  {
113  const Array4<Real const>& rho0u_arr = mom_mf[IntVars::xmom].const_array(mfi);
114  const Array4<Real const>& rho0v_arr = mom_mf[IntVars::ymom].const_array(mfi);
115  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
116 
117  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
118  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
119  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
120 
121  //
122  // Define Omega from (rho0 W) but store it in the same array
123  //
124  Box tbz = mfi.nodaltilebox(2);
125  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
126  if (k == 0) {
127  rho0w_arr(i,j,k) = Real(0.0);
128  } else {
129  Real rho0w = rho0w_arr(i,j,k);
130  rho0w_arr(i,j,k) = OmegaFromW(i,j,k,rho0w,
131  rho0u_arr,rho0v_arr,
132  mf_u,mf_v,z_nd,dxInv);
133  }
134  });
135  } // mfi
136  }
137 
138  // ****************************************************************************
139  // Compute divergence which will form RHS
140  // Note that we replace "rho0w" with the contravariant momentum, Omega
141  // ****************************************************************************
142  Array<MultiFab const*, AMREX_SPACEDIM> rho0_u_const;
143  rho0_u_const[0] = &mom_mf[IntVars::xmom];
144  rho0_u_const[1] = &mom_mf[IntVars::ymom];
145  rho0_u_const[2] = &mom_mf[IntVars::zmom];
146 
147  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
148 
149  if (solverChoice.mesh_type == MeshType::VariableDz) {
150  MultiFab::Multiply(rhs_lev, *detJ_cc[lev], 0, 0, 1, 0);
151  }
152 
153  // Max norm over the entire MultiFab
154  Real rhsnorm = rhs_lev.norm0();
155 
156  if (mg_verbose > 0) {
157  Print() << "Max/L2 norm of divergence before solve at level " << lev << " : " << rhsnorm << " " <<
158  rhs_lev.norm2() << " and sum " << rhs_lev.sum() << std::endl;
159  }
160 
161  amrex::Print() << " There are " << subdomains[lev].size() << " bins " << std::endl;
162 
163  if (lev > 0)
164  {
165  Vector<Real> sum; sum.resize(subdomains[lev].size(),Real(0.));
166 
167  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
168  {
169  Box bx = mfi.validbox();
170  for (int i = 0; i < subdomains[lev].size(); ++i) {
171  if (subdomains[lev][i].intersects(bx)) {
172  sum[i] += rhs_lev[mfi.index()].template sum<RunOn::Device>(0);
173  }
174  }
175  }
176  ParallelDescriptor::ReduceRealSum(sum.data(), sum.size());
177 
178  for (int i = 0; i < subdomains[lev].size(); ++i) {
179  sum[i] /= static_cast<Real>(subdomains[lev][i].numPts());
180  }
181 
182  for ( MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
183  {
184  Box bx = mfi.validbox();
185  for (int i = 0; i < subdomains[lev].size(); ++i) {
186  if (subdomains[lev][i].intersects(bx)) {
187  rhs_lev[mfi.index()].template minus<RunOn::Device>(sum[i]);
188  if (mg_verbose > 0) {
189  amrex::Print() << " Subtracting " << sum[i] << " in BoxArray " << subdomains[lev][i] << std::endl;
190  }
191  }
192  }
193  }
194  }
195 
196  // ****************************************************************************
197  //
198  // No need to build the solver if RHS == 0
199  //
200  if (rhsnorm <= solverChoice.poisson_abstol) return;
201  // ****************************************************************************
202 
203  // ****************************************************************************
204  // Initialize phi to 0
205  // (It is essential that we do this in order to fill the corners; these are never
206  // used but the Saxpy requires the values to be initialized.)
207  // ****************************************************************************
208  phi[0].setVal(0.0);
209 
210  Real start_step = static_cast<Real>(ParallelDescriptor::second());
211 
212  // ****************************************************************************
213  // Allocate fluxes
214  // ****************************************************************************
215  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
216  fluxes.resize(1);
217  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
218  if (solverChoice.terrain_type == TerrainType::EB) {
219  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
220  } else {
221  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
222  }
223  }
224 
225  // ****************************************************************************
226  // Choose the solver and solve
227  // ****************************************************************************
228 
229  // ****************************************************************************
230  // EB
231  // ****************************************************************************
232  if (solverChoice.terrain_type == TerrainType::EB) {
233  solve_with_EB_mlmg(lev, rhs, phi, fluxes);
234  } else {
235 
236 #ifdef ERF_USE_FFT
237  Box my_region(ba_tmp[0].minimalBox());
238  bool boxes_make_rectangle = (my_region.numPts() == ba_tmp[0].numPts());
239 #endif
240 
241  // ****************************************************************************
242  // No terrain or grid stretching
243  // ****************************************************************************
244  if (solverChoice.mesh_type == MeshType::ConstantDz) {
245 #ifdef ERF_USE_FFT
246  if (use_fft) {
247  if (boxes_make_rectangle) {
248  solve_with_fft(lev, rhs_lev, phi[0], fluxes[0]);
249  } else {
250  amrex::Warning("FFT won't work unless the union of boxes is rectangular: defaulting to MLMG");
251  solve_with_mlmg(lev, rhs, phi, fluxes);
252  }
253  } else {
254  solve_with_mlmg(lev, rhs, phi, fluxes);
255  }
256 #else
257  if (use_fft) {
258  amrex::Warning("You set use_fft=true but didn't build with USE_FFT = TRUE; defaulting to MLMG");
259  }
260  solve_with_mlmg(lev, rhs, phi, fluxes);
261 #endif
262  } // No terrain or grid stretching
263 
264  // ****************************************************************************
265  // Grid stretching (flat terrain)
266  // ****************************************************************************
267  else if (solverChoice.mesh_type == MeshType::StretchedDz) {
268 #ifndef ERF_USE_FFT
269  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT solver");
270 #else
271  if (!boxes_make_rectangle) {
272  amrex::Abort("FFT won't work unless the union of boxes is rectangular");
273  } else {
274  if (!use_fft) {
275  amrex::Warning("Using FFT even though you didn't set use_fft to true; it's the best choice");
276  }
277  solve_with_fft(lev, rhs_lev, phi[0], fluxes[0]);
278  }
279 #endif
280  } // grid stretching
281 
282  // ****************************************************************************
283  // General terrain
284  // ****************************************************************************
285  else if (solverChoice.mesh_type == MeshType::VariableDz) {
286 #ifdef ERF_USE_FFT
287  if (!boxes_make_rectangle) {
288  amrex::Abort("FFT preconditioner for GMRES won't work unless the union of boxes is rectangular");
289  } else {
290  solve_with_gmres(lev, rhs, phi, fluxes);
291  }
292 #else
293  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT preconditioner for GMRES");
294 #endif
295  } // general terrain
296 
297  } // not EB
298 
299  // ****************************************************************************
300  // Print time in solve
301  // ****************************************************************************
302  Real end_step = static_cast<Real>(ParallelDescriptor::second());
303  if (mg_verbose > 0) {
304  amrex::Print() << "Time in solve " << end_step - start_step << std::endl;
305  }
306 
307  // ****************************************************************************
308  // Subtract dt grad(phi) from the momenta (rho0u, rho0v, Omega)
309  // ****************************************************************************
310  MultiFab::Add(mom_mf[IntVars::xmom],fluxes[0][0],0,0,1,0);
311  MultiFab::Add(mom_mf[IntVars::ymom],fluxes[0][1],0,0,1,0);
312  MultiFab::Add(mom_mf[IntVars::zmom],fluxes[0][2],0,0,1,0);
313 
314  // ****************************************************************************
315  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
316  // ****************************************************************************
317  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
318  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
319  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
320 
321  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
322  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
323  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
324 
325  //
326  // This call is only to verify the divergence after the solve
327  // It is important we do this before computing the rho0w_arr from Omega back to rho0w
328  //
329  // ****************************************************************************
330  // THIS IS SIMPLY VERIFYING THE DIVERGENCE AFTER THE SOLVE
331  // ****************************************************************************
332  //
333  if (mg_verbose > 0)
334  {
335  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
336 
337  if (solverChoice.mesh_type == MeshType::VariableDz) {
338  MultiFab::Multiply(rhs_lev, *detJ_cc[lev], 0, 0, 1, 0);
339  }
340 
341  Print() << "Max/L2 norm of divergence after solve at level " << lev << " : " << rhs_lev.norm0() << " " <<
342  rhs_lev.norm2() << " and sum " << rhs_lev.sum() << std::endl;
343 
344 #if 0
345  // FOR DEBUGGING ONLY
346  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
347  {
348  const Array4<Real const>& rhs_arr = rhs_lev.const_array(mfi);
349  Box bx = mfi.validbox();
350  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
351  if (std::abs(rhs_arr(i,j,k)) > 1.e-10) {
352  amrex::AllPrint() << "RHS AFTER SOLVE AT " <<
353  IntVect(i,j,k) << " " << rhs_arr(i,j,k) << std::endl;
354  }
355  });
356  } // mfi
357 #endif
358 
359  } // mg_verbose
360 
361  //
362  // ****************************************************************************
363  // Now convert the rho0w MultiFab back to holding (rho0w) rather than Omega
364  // ****************************************************************************
365  //
366  if (solverChoice.mesh_type == MeshType::VariableDz)
367  {
368  for (MFIter mfi(mom_mf[Vars::cons],TilingIfNotGPU()); mfi.isValid(); ++mfi)
369  {
370  Box tbz = mfi.nodaltilebox(2);
371  const Array4<Real >& rho0u_arr = mom_mf[IntVars::xmom].array(mfi);
372  const Array4<Real >& rho0v_arr = mom_mf[IntVars::ymom].array(mfi);
373  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
374  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
375  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
376  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
377  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
378  Real omega = rho0w_arr(i,j,k);
379  rho0w_arr(i,j,k) = WFromOmega(i,j,k,omega,
380  rho0u_arr,rho0v_arr,
381  mf_u,mf_v,z_nd,dxInv);
382  });
383  } // mfi
384  }
385 
386  // If !fixed_density, we must convert (rho0 u) back
387  // to (rho0 u) which is what we will pass back out
389  ConvertForProjection(r_hse, mom_mf[Vars::cons],
390  mom_mf[IntVars::xmom],
391  mom_mf[IntVars::ymom],
392  mom_mf[IntVars::zmom],
393  Geom(lev).Domain(),
395  }
396 
397  // ****************************************************************************
398  // Update pressure variable with phi -- note that phi is dt * change in pressure
399  // ****************************************************************************
400  MultiFab::Saxpy(pp_inc[lev], 1.0/l_dt, phi[0],0,0,1,1);
401 }
void ConvertForProjection(const MultiFab &den_div, const MultiFab &den_mlt, MultiFab &xmom, MultiFab &ymom, MultiFab &zmom, const Box &domain, const Vector< BCRec > &domain_bcs_type_h)
Definition: ERF_ConvertForProjection.cpp:25
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real OmegaFromW(int &i, int &j, int &k, amrex::Real w, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:415
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real WFromOmega(int &i, int &j, int &k, amrex::Real omega, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:465
static bool use_fft
Definition: ERF.H:1047
void compute_divergence(int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
Definition: ERF_ComputeDivergence.cpp:10
void solve_with_mlmg(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithMLMG.cpp:40
void solve_with_gmres(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithGMRES.cpp:12
void solve_with_EB_mlmg(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithEBMLMG.cpp:19
@ omega
Definition: ERF_Morrison.H:53
Here is the call graph for this function:

◆ project_velocity()

void ERF::project_velocity ( int  lev,
amrex::Real  dt 
)

Project the single-level velocity field to enforce the anelastic constraint Note that the level may or may not be level 0.

11 {
12  BL_PROFILE("ERF::project_velocity()");
13  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
14  vars_new[lev][Vars::yvel], IntVect{0},
15  vars_new[lev][Vars::zvel], IntVect{0},
16  vars_new[lev][Vars::cons],
17  rU_new[lev], rV_new[lev], rW_new[lev],
18  Geom(lev).Domain(), domain_bcs_type);
19 
20  Vector<MultiFab> tmp_mom;
21 
22  tmp_mom.push_back(MultiFab(vars_new[lev][Vars::cons],make_alias,0,1));
23  tmp_mom.push_back(MultiFab(rU_new[lev],make_alias,0,1));
24  tmp_mom.push_back(MultiFab(rV_new[lev],make_alias,0,1));
25  tmp_mom.push_back(MultiFab(rW_new[lev],make_alias,0,1));
26 
27  project_momenta(lev, l_dt, tmp_mom);
28 
30  vars_new[lev][Vars::yvel],
31  vars_new[lev][Vars::zvel],
32  vars_new[lev][Vars::cons],
33  rU_new[lev], rV_new[lev], rW_new[lev],
34  Geom(lev).Domain(), domain_bcs_type);
35  }
void project_momenta(int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
Definition: ERF_PoissonSolve.cpp:41
Here is the call graph for this function:

◆ project_velocity_tb()

void ERF::project_velocity_tb ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level velocity field to enforce incompressibility with a thin body

21 {
22  BL_PROFILE("ERF::project_velocity_tb()");
23  AMREX_ALWAYS_ASSERT(solverChoice.mesh_type == MeshType::ConstantDz);
24 
25  // Make sure the solver only sees the levels over which we are solving
26  Vector<BoxArray> ba_tmp; ba_tmp.push_back(vmf[Vars::cons].boxArray());
27  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(vmf[Vars::cons].DistributionMap());
28  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
29 
30  // Use the default settings
31  LPInfo info;
32  std::unique_ptr<MLPoisson> p_mlpoisson;
33 #if 0
34  if (overset_imask[0]) {
35  // Add overset mask around thin body
36  p_mlpoisson = std::make_unique<MLPoisson>(geom, grids, dmap, GetVecOfConstPtrs(overset_imask), info);
37  }
38  else
39 #endif
40  {
41  // Use the default settings
42  p_mlpoisson = std::make_unique<MLPoisson>(geom_tmp, ba_tmp, dm_tmp, info);
43  }
44 
45  auto bclo = get_projection_bc(Orientation::low);
46  auto bchi = get_projection_bc(Orientation::high);
47  bool need_adjust_rhs = (projection_has_dirichlet(bclo) || projection_has_dirichlet(bchi)) ? false : true;
48  p_mlpoisson->setDomainBC(bclo, bchi);
49 
50  if (lev > 0) {
51  p_mlpoisson->setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
52  }
53 
54  p_mlpoisson->setLevelBC(0, nullptr);
55 
56  Vector<MultiFab> rhs;
57  Vector<MultiFab> phi;
58  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
59  Vector<Array<MultiFab,AMREX_SPACEDIM> > deltaf; // f^* - f^{n-1}
60  Vector<Array<MultiFab,AMREX_SPACEDIM> > u_plus_dtdf; // u + dt*deltaf
61 
62  // Used to pass array of const MFs to ComputeDivergence
63  Array<MultiFab const*, AMREX_SPACEDIM> u;
64 
65  rhs.resize(1);
66  phi.resize(1);
67  fluxes.resize(1);
68  deltaf.resize(1);
69  u_plus_dtdf.resize(1);
70 
71  rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
72  phi[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
73  rhs[0].setVal(0.0);
74  phi[0].setVal(0.0);
75 
76  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
77  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
78  u_plus_dtdf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
79 
80  deltaf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
81  deltaf[0][idim].setVal(0.0); // start with f^* == f^{n-1}
82  }
83 
84 #if 0
85  // DEBUG
86  u[0] = &(vmf[Vars::xvel]);
87  u[1] = &(vmf[Vars::yvel]);
88  u[2] = &(vmf[Vars::zvel]);
89  computeDivergence(rhs[0], u, geom[0]);
90  Print() << "Max norm of divergence before solve at level 0 : " << rhs[0].norm0() << std::endl;
91 #endif
92 
93  for (int itp = 0; itp < solverChoice.ncorr; ++itp)
94  {
95  // Calculate u + dt*deltaf
96  for (int idim = 0; idim < 3; ++idim) {
97  MultiFab::Copy(u_plus_dtdf[0][idim], deltaf[0][idim], 0, 0, 1, 0);
98  u_plus_dtdf[0][0].mult(-l_dt,0,1,0);
99  }
100  MultiFab::Add(u_plus_dtdf[0][0], vmf[Vars::xvel], 0, 0, 1, 0);
101  MultiFab::Add(u_plus_dtdf[0][1], vmf[Vars::yvel], 0, 0, 1, 0);
102  MultiFab::Add(u_plus_dtdf[0][2], vmf[Vars::zvel], 0, 0, 1, 0);
103 
104  u[0] = &(u_plus_dtdf[0][0]);
105  u[1] = &(u_plus_dtdf[0][1]);
106  u[2] = &(u_plus_dtdf[0][2]);
107  computeDivergence(rhs[0], u, geom_tmp[0]);
108 
109 #if 0
110  // DEBUG
111  if (itp==0) {
112  for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
113  {
114  const Box& bx = mfi.tilebox();
115  const Array4<Real const>& divU = rhs[0].const_array(mfi);
116  const Array4<Real const>& uarr = vmf[Vars::xvel].const_array(mfi);
117  const Array4<Real const>& varr = vmf[Vars::yvel].const_array(mfi);
118  const Array4<Real const>& warr = vmf[Vars::zvel].const_array(mfi);
119  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
120  {
121  if ((i>=120) && (i<=139) && (j==0) && ((k>=127)&&(k<=128))) {
122  amrex::AllPrint() << "before project div"<<IntVect(i,j,k)<<" = "<< divU(i,j,k)
123  << " u: " << uarr(i,j,k) << " " << uarr(i+1,j,k)
124  << " v: " << varr(i,j,k) << " " << varr(i,j+1,k)
125  << " w: " << warr(i,j,k) << " " << warr(i,j,k+1)
126  << std::endl;
127  }
128  });
129  }
130  }
131 #endif
132 
133  // If all Neumann BCs, adjust RHS to make sure we can converge
134  if (need_adjust_rhs) {
135  Real offset = volWgtSumMF(lev, rhs[0], 0, false);
136  // amrex::Print() << "Poisson solvability offset = " << offset << std::endl;
137  rhs[0].plus(-offset, 0, 1);
138  }
139 
140  // Initialize phi to 0
141  phi[0].setVal(0.0);
142 
143  MLMG mlmg(*p_mlpoisson);
144  int max_iter = 100;
145  mlmg.setMaxIter(max_iter);
146 
147  mlmg.setVerbose(mg_verbose);
148  //mlmg.setBottomVerbose(mg_verbose);
149 
150  // solve for dt*p
151  mlmg.solve(GetVecOfPtrs(phi),
152  GetVecOfConstPtrs(rhs),
155 
156  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
157 
158  // Calculate new intermediate body force with updated gradp
159  if (thin_xforce[lev]) {
160  MultiFab::Copy( deltaf[0][0], fluxes[0][0], 0, 0, 1, 0);
161  ApplyInvertedMask(deltaf[0][0], *xflux_imask[0]);
162  }
163  if (thin_yforce[lev]) {
164  MultiFab::Copy( deltaf[0][1], fluxes[0][1], 0, 0, 1, 0);
165  ApplyInvertedMask(deltaf[0][1], *yflux_imask[0]);
166  }
167  if (thin_zforce[lev]) {
168  MultiFab::Copy( deltaf[0][2], fluxes[0][2], 0, 0, 1, 0);
169  ApplyInvertedMask(deltaf[0][2], *zflux_imask[0]);
170  }
171 
172  // DEBUG
173  // for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
174  // {
175  // const Box& bx = mfi.tilebox();
176  // const Array4<Real const>& dfz_arr = deltaf[0][2].const_array(mfi);
177  // ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
178  // {
179  // if ((i>=120) && (i<=139) && (j==0) && (k==128)) {
180  // amrex::AllPrint()
181  // << " piter" << itp
182  // << " dfz"<<IntVect(i,j,k)<<" = "<< dfz_arr(i,j,k)
183  // << std::endl;
184  // }
185  // });
186  // }
187 
188  // Update pressure variable with phi -- note that phi is change in pressure, not the full pressure
189  MultiFab::Saxpy(pp_inc[lev], 1.0, phi[0],0,0,1,0);
190 
191  // Subtract grad(phi) from the velocity components
192  Real beta = 1.0;
193  MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
194  MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
195  MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
196  if (thin_xforce[lev]) {
197  ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
198  }
199  if (thin_yforce[lev]) {
200  ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
201  }
202  if (thin_zforce[lev]) {
203  ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
204  }
205  } // itp: pressure-force iterations
206 
207  // ****************************************************************************
208  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
209  // ****************************************************************************
210  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
211  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
212  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
213 
214  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
215  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
216  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
217 
218  // Subtract grad(phi) from the velocity components
219 // Real beta = 1.0;
220 // for (int ilev = lev_min; ilev <= lev_max; ++ilev) {
221 // MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
222 // MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
223 // MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
224 // if (thin_xforce[lev]) {
225 // ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
226 // }
227 // if (thin_yforce[lev]) {
228 // ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
229 // }
230 // if (thin_zforce[lev]) {
231 // ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
232 // }
233 // }
234 
235 #if 0
236  // Confirm that the velocity is now divergence free
237  u[0] = &(vmf[Vars::xvel]);
238  u[1] = &(vmf[Vars::yvel]);
239  u[2] = &(vmf[Vars::zvel]);
240  computeDivergence(rhs[0], u, geom_tmp[0]);
241  Print() << "Max norm of divergence after solve at level " << lev << " : " << rhs[0].norm0() << std::endl;
242 
243 #endif
244 }
AMREX_FORCE_INLINE IntVect offset(const int face_dir, const int normal)
Definition: ERF_ReadBndryPlanes.cpp:28
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyInvertedMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:409
amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > get_projection_bc(amrex::Orientation::Side side) const noexcept
Definition: ERF_SolveWithMLMG.cpp:17
bool projection_has_dirichlet(amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > bcs) const
Definition: ERF_PoissonSolve_tb.cpp:8
amrex::Real volWgtSumMF(int lev, const amrex::MultiFab &mf, int comp, bool finemask)
Definition: ERF_WriteScalarProfiles.cpp:651
int ncorr
Definition: ERF_DataStruct.H:774
Here is the call graph for this function:

◆ projection_has_dirichlet()

bool ERF::projection_has_dirichlet ( amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM >  bcs) const
9 {
10  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
11  if (bcs[dir] == LinOpBCType::Dirichlet) return true;
12  }
13  return false;
14 }

◆ ReadCheckpointFile()

void ERF::ReadCheckpointFile ( )

ERF function for reading data from a checkpoint file during restart.

420 {
421  Print() << "Restart from native checkpoint " << restart_chkfile << "\n";
422 
423  // Header
424  std::string File(restart_chkfile + "/Header");
425 
426  VisMF::IO_Buffer io_buffer(VisMF::GetIOBufferSize());
427 
428  Vector<char> fileCharPtr;
429  ParallelDescriptor::ReadAndBcastFile(File, fileCharPtr);
430  std::string fileCharPtrString(fileCharPtr.dataPtr());
431  std::istringstream is(fileCharPtrString, std::istringstream::in);
432 
433  std::string line, word;
434 
435  int chk_ncomp_cons, chk_ncomp;
436 
437  // read in title line
438  std::getline(is, line);
439 
440  // read in finest_level
441  is >> finest_level;
442  GotoNextLine(is);
443 
444  // read the number of components
445  // for each variable we store
446 
447  // conservative, cell-centered vars
448  is >> chk_ncomp_cons;
449  GotoNextLine(is);
450 
451  // x-velocity on faces
452  is >> chk_ncomp;
453  GotoNextLine(is);
454  AMREX_ASSERT(chk_ncomp == 1);
455 
456  // y-velocity on faces
457  is >> chk_ncomp;
458  GotoNextLine(is);
459  AMREX_ASSERT(chk_ncomp == 1);
460 
461  // z-velocity on faces
462  is >> chk_ncomp;
463  GotoNextLine(is);
464  AMREX_ASSERT(chk_ncomp == 1);
465 
466  // read in array of istep
467  std::getline(is, line);
468  {
469  std::istringstream lis(line);
470  int i = 0;
471  while (lis >> word) {
472  istep[i++] = std::stoi(word);
473  }
474  }
475 
476  // read in array of dt
477  std::getline(is, line);
478  {
479  std::istringstream lis(line);
480  int i = 0;
481  while (lis >> word) {
482  dt[i++] = std::stod(word);
483  }
484  }
485 
486  // read in array of t_new
487  std::getline(is, line);
488  {
489  std::istringstream lis(line);
490  int i = 0;
491  while (lis >> word) {
492  t_new[i++] = std::stod(word);
493  }
494  }
495 
496  for (int lev = 0; lev <= finest_level; ++lev) {
497  // read in level 'lev' BoxArray from Header
498  BoxArray ba;
499  ba.readFrom(is);
500  GotoNextLine(is);
501 
502  // create a distribution mapping
503  DistributionMapping dm { ba, ParallelDescriptor::NProcs() };
504 
505  MakeNewLevelFromScratch (lev, t_new[lev], ba, dm);
506  }
507 
508  // ncomp is only valid after we MakeNewLevelFromScratch (asks micro how many vars)
509  // NOTE: Data is written over ncomp, so check that we match the header file
510  int ncomp_cons = vars_new[0][Vars::cons].nComp();
511 
512  // NOTE: QKE was removed so this is for backward compatibility
513  AMREX_ASSERT((chk_ncomp_cons==ncomp_cons) || ((chk_ncomp_cons-1)==ncomp_cons));
514  //
515  // See if we have a written separate file that tells how many components and how many ghost cells
516  // we have of the base state
517  //
518  // If we can't find the file, then set the number of components to the original number = 3
519  //
520  int ncomp_base_to_read = 3;
521  IntVect ng_base = IntVect{1};
522  {
523  std::string BaseStateFile(restart_chkfile + "/num_base_state_comps");
524 
525  if (amrex::FileExists(BaseStateFile))
526  {
527  Vector<char> BaseStatefileCharPtr;
528  ParallelDescriptor::ReadAndBcastFile(BaseStateFile, BaseStatefileCharPtr);
529  std::string BaseStatefileCharPtrString(BaseStatefileCharPtr.dataPtr());
530 
531  // We set this to the default value of 3 but allow it be larger if th0 and qv0 were written
532  std::istringstream isb(BaseStatefileCharPtrString, std::istringstream::in);
533  isb >> ncomp_base_to_read;
534  isb >> ng_base;
535  }
536  }
537 
538  // read in the MultiFab data
539  for (int lev = 0; lev <= finest_level; ++lev)
540  {
541  // NOTE: For backward compatibility (chk file has QKE)
542  if ((chk_ncomp_cons-1)==ncomp_cons) {
543  MultiFab cons(grids[lev],dmap[lev],chk_ncomp_cons,0);
544  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
545 
546  // Copy up to RhoKE_comp
547  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,(RhoKE_comp+1),0);
548 
549  // Only if we have a PBL model do we need to copy QKE is src to KE in dst
550  if ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
551  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ) {
552  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+1),RhoKE_comp,1,0);
553  vars_new[lev][Vars::cons].mult(0.5,RhoKE_comp,1,0);
554  }
555 
556  // Copy other components
557  int ncomp_remainder = ncomp_cons - (RhoKE_comp + 1);
558  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+2),(RhoKE_comp+1),ncomp_remainder,0);
559 
560  vars_new[lev][Vars::cons].setBndry(1.0e34);
561  } else {
562  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
563  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
564  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,ncomp_cons,0);
565  vars_new[lev][Vars::cons].setBndry(1.0e34);
566  }
567 
568  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
569  VisMF::Read(xvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "XFace"));
570  MultiFab::Copy(vars_new[lev][Vars::xvel],xvel,0,0,1,0);
571  vars_new[lev][Vars::xvel].setBndry(1.0e34);
572 
573  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
574  VisMF::Read(yvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "YFace"));
575  MultiFab::Copy(vars_new[lev][Vars::yvel],yvel,0,0,1,0);
576  vars_new[lev][Vars::yvel].setBndry(1.0e34);
577 
578  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
579  VisMF::Read(zvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "ZFace"));
580  MultiFab::Copy(vars_new[lev][Vars::zvel],zvel,0,0,1,0);
581  vars_new[lev][Vars::zvel].setBndry(1.0e34);
582 
583  // Note that we read the ghost cells of the base state (unlike above)
584 
585  // The original base state only had 3 components and 1 ghost cell -- we read this
586  // here to be consistent with the old style
587  MultiFab base(grids[lev],dmap[lev],ncomp_base_to_read,ng_base);
588  VisMF::Read(base, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "BaseState"));
589 
590  MultiFab::Copy(base_state[lev],base,0,0,ncomp_base_to_read,ng_base);
591 
592  // Create theta0 from p0, rh0
593  if (ncomp_base_to_read < 4) {
594  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
595  {
596  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
597  const Box& bx = mfi.tilebox();
598  Array4<Real> const& fab = base_state[lev].array(mfi);
599  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
600  {
602  / fab(i,j,k,BaseState::r0_comp);
603  });
604  }
605  }
606  // Default theta0 to 0
607  if (ncomp_base_to_read < 5) {
608  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
609  {
610  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
611  const Box& bx = mfi.tilebox();
612  Array4<Real> const& fab = base_state[lev].array(mfi);
613  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
614  {
615  fab(i,j,k,BaseState::qv0_comp) = 0.0;
616  });
617  }
618  }
619  base_state[lev].FillBoundary(geom[lev].periodicity());
620 
621  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
622  // Note that we also read the ghost cells of z_phys_nd
623  IntVect ng = z_phys_nd[lev]->nGrowVect();
624  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
625  VisMF::Read(z_height, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z_Phys_nd"));
626  MultiFab::Copy(*z_phys_nd[lev],z_height,0,0,1,ng);
628  }
629 
630  // Read in the moisture model restart variables
631  std::vector<int> qmoist_indices;
632  std::vector<std::string> qmoist_names;
633  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
634  int qmoist_nvar = qmoist_indices.size();
635  for (int var = 0; var < qmoist_nvar; var++) {
636  const int ncomp = 1;
637  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
638  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
639  VisMF::Read(moist_vars, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", qmoist_names[var]));
640  MultiFab::Copy(*(qmoist[lev][qmoist_indices[var]]),moist_vars,0,0,ncomp,ng_moist);
641  }
642 
643 #if defined(ERF_USE_WINDFARM)
644  if(solverChoice.windfarm_type == WindFarmType::Fitch or
645  solverChoice.windfarm_type == WindFarmType::EWP or
646  solverChoice.windfarm_type == WindFarmType::SimpleAD){
647  IntVect ng = Nturb[lev].nGrowVect();
648  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng);
649  VisMF::Read(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "NumTurb"));
650  MultiFab::Copy(Nturb[lev],mf_Nturb,0,0,1,ng);
651  }
652 #endif
653 
654  if (solverChoice.lsm_type != LandSurfaceType::None) {
655  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
656  BoxArray ba = lsm_data[lev][mvar]->boxArray();
657  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
658  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
659  int nvar = lsm_data[lev][mvar]->nComp();
660  MultiFab lsm_vars(ba,dm,nvar,ng);
661  VisMF::Read(lsm_vars, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LsmVars"));
662  MultiFab::Copy(*(lsm_data[lev][mvar]),lsm_vars,0,0,nvar,ng);
663  }
664  }
665 
666 
667  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
668  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
669 
670  std::string MapFacMFileName(restart_chkfile + "/Level_0/MapFactor_mx_H");
671  if (amrex::FileExists(MapFacMFileName)) {
672  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_mx"));
673  } else {
674  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_m"));
675  }
676  MultiFab::Copy(*mapfac[lev][MapFacType::m_x],mf_m,0,0,1,ng);
677 
678 #if 0
680  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_my"));
681  MultiFab::Copy(*mapfac[lev][MapFacType::m_y],mf_m,0,0,1,ng);
682  }
683 #endif
684 
685  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
686  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
687 
688  std::string MapFacUFileName(restart_chkfile + "/Level_0/MapFactor_ux_H");
689  if (amrex::FileExists(MapFacUFileName)) {
690  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_ux"));
691  } else {
692  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_u"));
693  }
694  MultiFab::Copy(*mapfac[lev][MapFacType::u_x],mf_u,0,0,1,ng);
695 
696 #if 0
698  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_uy"));
699  MultiFab::Copy(*mapfac[lev][MapFacType::u_y],mf_u,0,0,1,ng);
700  }
701 #endif
702 
703  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
704  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
705 
706  std::string MapFacVFileName(restart_chkfile + "/Level_0/MapFactor_vx_H");
707  if (amrex::FileExists(MapFacVFileName)) {
708  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vx"));
709  } else {
710  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_v"));
711  }
712  MultiFab::Copy(*mapfac[lev][MapFacType::v_x],mf_v,0,0,1,ng);
713 
714 #if 0
716  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vy"));
717  MultiFab::Copy(*mapfac[lev][MapFacType::v_y],mf_v,0,0,1,ng);
718  }
719 #endif
720 
721 
722  // NOTE: We read MOST data in ReadCheckpointFileMOST (see below)!
723 
724  // See if we wrote out SST data
725  std::string FirstSSTFileName(restart_chkfile + "/Level_0/SST_0_H");
726  if (amrex::FileExists(FirstSSTFileName))
727  {
728  amrex::Print() << "Reading SST data" << std::endl;
729  int ntimes = 1;
730  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
731  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
732  sst_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
733  for (int nt(0); nt<ntimes; ++nt) {
734  VisMF::Read(sst_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
735  "SST_" + std::to_string(nt)));
736  MultiFab::Copy(*sst_lev[lev][nt],sst_at_t,0,0,1,ng);
737  }
738  }
739 
740  // See if we wrote out TSK data
741  std::string FirstTSKFileName(restart_chkfile + "/Level_0/TSK_0_H");
742  if (amrex::FileExists(FirstTSKFileName))
743  {
744  amrex::Print() << "Reading TSK data" << std::endl;
745  int ntimes = 1;
746  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
747  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
748  tsk_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
749  for (int nt(0); nt<ntimes; ++nt) {
750  VisMF::Read(tsk_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
751  "TSK_" + std::to_string(nt)));
752  MultiFab::Copy(*tsk_lev[lev][nt],tsk_at_t,0,0,1,ng);
753  }
754  }
755 
756  std::string LMaskFileName(restart_chkfile + "/Level_0/LMASK_0_H");
757  if (amrex::FileExists(LMaskFileName))
758  {
759  amrex::Print() << "Reading LMASK data" << std::endl;
760  int ntimes = 1;
761  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
762  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
763  for (int nt(0); nt<ntimes; ++nt) {
764  VisMF::Read(lmask_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
765  "LMASK_" + std::to_string(nt)));
766  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
767  const Box& bx = mfi.growntilebox();
768  Array4<int> const& dst_arr = lmask_lev[lev][nt]->array(mfi);
769  Array4<Real> const& src_arr = lmask_at_t.array(mfi);
770  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
771  {
772  dst_arr(i,j,k) = int(src_arr(i,j,k));
773  });
774  }
775  }
776  } else {
777  // Allow idealized cases over water, used to set lmask
778  ParmParse pp("erf");
779  int is_land;
780  if (pp.query("is_land", is_land, lev)) {
781  if (is_land == 1) {
782  amrex::Print() << "Level " << lev << " is land" << std::endl;
783  } else if (is_land == 0) {
784  amrex::Print() << "Level " << lev << " is water" << std::endl;
785  } else {
786  Error("is_land should be 0 or 1");
787  }
788  lmask_lev[lev][0]->setVal(is_land);
789  } else {
790  // Default to land everywhere if not specified
791  lmask_lev[lev][0]->setVal(1);
792  }
793  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
794  }
795 
796 #ifdef ERF_USE_NETCDF
797  IntVect ngv = ng; ngv[2] = 0;
798 
799  // Read lat/lon if it exists
801  amrex::Print() << "Reading Lat/Lon variables" << std::endl;
802  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
803  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
804  VisMF::Read(lat, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LAT"));
805  VisMF::Read(lon, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LON"));
806  lat_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
807  lon_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
808  MultiFab::Copy(*lat_m[lev],lat,0,0,1,ngv);
809  MultiFab::Copy(*lon_m[lev],lon,0,0,1,ngv);
810  }
811 
812  // Read sinPhi and cosPhi if it exists
814  amrex::Print() << "Reading Coriolis factors" << std::endl;
815  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
816  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
817  VisMF::Read(sphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "SinPhi"));
818  VisMF::Read(cphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "CosPhi"));
819  sinPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
820  cosPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
821  MultiFab::Copy(*sinPhi_m[lev],sphi,0,0,1,ngv);
822  MultiFab::Copy(*cosPhi_m[lev],cphi,0,0,1,ngv);
823  }
824 
825  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
826  MultiFab tmp1d(ba1d[lev],dmap[lev],1,ngv);
827  MultiFab tmp2d(ba2d[lev],dmap[lev],1,ngv);
828 
829  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C1H"));
830  MultiFab::Copy(*mf_C1H[lev],tmp1d,0,0,1,ngv);
831 
832  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C2H"));
833  MultiFab::Copy(*mf_C2H[lev],tmp1d,0,0,1,ngv);
834 
835  VisMF::Read(tmp2d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MUB"));
836  MultiFab::Copy(*mf_MUB[lev],tmp2d,0,0,1,ngv);
837  }
838 #endif
839 
840  } // for lev
841 
842 #ifdef ERF_USE_PARTICLES
843  restartTracers((ParGDBBase*)GetParGDB(),restart_chkfile);
844  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
845  dynamic_cast<LagrangianMicrophysics&>(*micro).restartParticles((ParGDBBase*)GetParGDB(),restart_chkfile);
846  }
847 #endif
848 
849 #if 0
850 #ifdef ERF_USE_NETCDF
851  // Read bdy_data files
852  if ( ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
854  {
855  int ioproc = ParallelDescriptor::IOProcessorNumber(); // I/O rank
856  int num_time;
857  int num_var;
858  Vector<Box> bx_v;
859  if (ParallelDescriptor::IOProcessor()) {
860  // Open header file and read from it
861  std::ifstream bdy_h_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_H"));
862  bdy_h_file >> num_time;
863  bdy_h_file >> num_var;
864  bdy_h_file >> start_bdy_time;
865  bdy_h_file >> bdy_time_interval;
866  bdy_h_file >> real_width;
867  bx_v.resize(4*num_var);
868  for (int ivar(0); ivar<num_var; ++ivar) {
869  bdy_h_file >> bx_v[4*ivar ];
870  bdy_h_file >> bx_v[4*ivar+1];
871  bdy_h_file >> bx_v[4*ivar+2];
872  bdy_h_file >> bx_v[4*ivar+3];
873  }
874 
875  // IO size the FABs
876  bdy_data_xlo.resize(num_time);
877  bdy_data_xhi.resize(num_time);
878  bdy_data_ylo.resize(num_time);
879  bdy_data_yhi.resize(num_time);
880  for (int itime(0); itime<num_time; ++itime) {
881  bdy_data_xlo[itime].resize(num_var);
882  bdy_data_xhi[itime].resize(num_var);
883  bdy_data_ylo[itime].resize(num_var);
884  bdy_data_yhi[itime].resize(num_var);
885  for (int ivar(0); ivar<num_var; ++ivar) {
886  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
887  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
888  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
889  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
890  }
891  }
892 
893  // Open data file and read from it
894  std::ifstream bdy_d_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_D"));
895  for (int itime(0); itime<num_time; ++itime) {
896  for (int ivar(0); ivar<num_var; ++ivar) {
897  bdy_data_xlo[itime][ivar].readFrom(bdy_d_file);
898  bdy_data_xhi[itime][ivar].readFrom(bdy_d_file);
899  bdy_data_ylo[itime][ivar].readFrom(bdy_d_file);
900  bdy_data_yhi[itime][ivar].readFrom(bdy_d_file);
901  }
902  }
903  } // IO
904 
905  // Broadcast the data
906  ParallelDescriptor::Barrier();
907  ParallelDescriptor::Bcast(&start_bdy_time,1,ioproc);
908  ParallelDescriptor::Bcast(&bdy_time_interval,1,ioproc);
909  ParallelDescriptor::Bcast(&real_width,1,ioproc);
910  ParallelDescriptor::Bcast(&num_time,1,ioproc);
911  ParallelDescriptor::Bcast(&num_var,1,ioproc);
912 
913  // Everyone size their boxes
914  bx_v.resize(4*num_var);
915 
916  ParallelDescriptor::Bcast(bx_v.dataPtr(),bx_v.size(),ioproc);
917 
918  // Everyone but IO size their FABs
919  if (!ParallelDescriptor::IOProcessor()) {
920  bdy_data_xlo.resize(num_time);
921  bdy_data_xhi.resize(num_time);
922  bdy_data_ylo.resize(num_time);
923  bdy_data_yhi.resize(num_time);
924  for (int itime(0); itime<num_time; ++itime) {
925  bdy_data_xlo[itime].resize(num_var);
926  bdy_data_xhi[itime].resize(num_var);
927  bdy_data_ylo[itime].resize(num_var);
928  bdy_data_yhi[itime].resize(num_var);
929  for (int ivar(0); ivar<num_var; ++ivar) {
930  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
931  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
932  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
933  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
934  }
935  }
936  }
937 
938  for (int itime(0); itime<num_time; ++itime) {
939  for (int ivar(0); ivar<num_var; ++ivar) {
940  ParallelDescriptor::Bcast(bdy_data_xlo[itime][ivar].dataPtr(),bdy_data_xlo[itime][ivar].box().numPts(),ioproc);
941  ParallelDescriptor::Bcast(bdy_data_xhi[itime][ivar].dataPtr(),bdy_data_xhi[itime][ivar].box().numPts(),ioproc);
942  ParallelDescriptor::Bcast(bdy_data_ylo[itime][ivar].dataPtr(),bdy_data_ylo[itime][ivar].box().numPts(),ioproc);
943  ParallelDescriptor::Bcast(bdy_data_yhi[itime][ivar].dataPtr(),bdy_data_yhi[itime][ivar].box().numPts(),ioproc);
944  }
945  }
946  } // init_type == WRFInput or Metgrid
947 #endif
948 #endif
949 }
static void GotoNextLine(std::istream &is)
Definition: ERF_Checkpoint.cpp:16
void MakeNewLevelFromScratch(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:25
bool variable_coriolis
Definition: ERF_DataStruct.H:861
bool has_lat_lon
Definition: ERF_DataStruct.H:860
Here is the call graph for this function:

◆ ReadCheckpointFileSurfaceLayer()

void ERF::ReadCheckpointFileSurfaceLayer ( )

ERF function for reading additional data for MOST from a checkpoint file during restart.

This is called after the ABLMost object is instantiated.

958 {
959  for (int lev = 0; lev <= finest_level; ++lev)
960  {
961  amrex::Print() << "Reading MOST variables" << std::endl;
962 
963  IntVect ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
964  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
965  MultiFab* dst = nullptr;
966 
967  // U*
968  std::string UstarFileName(restart_chkfile + "/Level_0/Ustar_H");
969  if (amrex::FileExists(UstarFileName)) {
970  dst = m_SurfaceLayer->get_u_star(lev);
971  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Ustar"));
972  MultiFab::Copy(*dst,m_var,0,0,1,ng);
973  }
974 
975  // W*
976  std::string WstarFileName(restart_chkfile + "/Level_0/Wstar_H");
977  if (amrex::FileExists(WstarFileName)) {
978  dst = m_SurfaceLayer->get_w_star(lev);
979  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Wstar"));
980  MultiFab::Copy(*dst,m_var,0,0,1,ng);
981  }
982 
983  // T*
984  std::string TstarFileName(restart_chkfile + "/Level_0/Tstar_H");
985  if (amrex::FileExists(TstarFileName)) {
986  dst = m_SurfaceLayer->get_t_star(lev);
987  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Tstar"));
988  MultiFab::Copy(*dst,m_var,0,0,1,ng);
989  }
990 
991  // Q*
992  std::string QstarFileName(restart_chkfile + "/Level_0/Qstar_H");
993  if (amrex::FileExists(QstarFileName)) {
994  dst = m_SurfaceLayer->get_q_star(lev);
995  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qstar"));
996  MultiFab::Copy(*dst,m_var,0,0,1,ng);
997  }
998 
999  // Olen
1000  std::string OlenFileName(restart_chkfile + "/Level_0/Olen_H");
1001  if (amrex::FileExists(OlenFileName)) {
1002  dst = m_SurfaceLayer->get_olen(lev);
1003  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Olen"));
1004  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1005  }
1006 
1007  // PBLH
1008  std::string PBLHFileName(restart_chkfile + "/Level_0/PBLH_H");
1009  if (amrex::FileExists(PBLHFileName)) {
1010  dst = m_SurfaceLayer->get_pblh(lev);
1011  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PBLH"));
1012  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1013  }
1014 
1015  // Z0
1016  std::string Z0FileName(restart_chkfile + "/Level_0/Z0_H");
1017  if (amrex::FileExists(Z0FileName)) {
1018  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z0"));
1019  for (amrex::MFIter mfi(m_var); mfi.isValid(); ++mfi) {
1020  const Box& bx = mfi.growntilebox();
1021  FArrayBox* most_z0 = (m_SurfaceLayer->get_z0(lev));
1022  most_z0->copy<RunOn::Device>(m_var[mfi], bx);
1023  }
1024  }
1025  }
1026 }

◆ ReadParameters()

void ERF::ReadParameters ( )
private
1656 {
1657  {
1658  ParmParse pp; // Traditionally, max_step and stop_time do not have prefix.
1659  pp.query("max_step", max_step);
1660 
1661  std::string start_datetime, stop_datetime;
1662  if (pp.query("start_datetime", start_datetime)) {
1663  start_time = getEpochTime(start_datetime, datetime_format);
1664  if (start_time == -1.0) {
1665  amrex::Abort("Invalid start_datetime string!");
1666  }
1667  if (pp.query("stop_datetime", stop_datetime)) {
1668  stop_time = getEpochTime(stop_datetime, datetime_format);
1669  if (stop_time == -1.0) {
1670  amrex::Abort("Invalid stop_datetime string!");
1671  }
1672  }
1673  use_datetime = true;
1674  } else {
1675  pp.query("stop_time", stop_time);
1676  pp.query("start_time", start_time); // This is optional, it defaults to 0
1677  }
1678  }
1679 
1680  ParmParse pp(pp_prefix);
1681  ParmParse pp_amr("amr");
1682  {
1683  pp.query("regrid_level_0_on_restart", regrid_level_0_on_restart);
1684  pp.query("regrid_int", regrid_int);
1685  pp.query("check_file", check_file);
1686 
1687  // The regression tests use "amr.restart" and "amr.m_check_int" so we allow
1688  // for those or "erf.restart" / "erf.m_check_int" with the former taking
1689  // precedence if both are specified
1690  pp.query("check_int", m_check_int);
1691  pp.query("check_per", m_check_per);
1692  pp_amr.query("check_int", m_check_int);
1693  pp_amr.query("check_per", m_check_per);
1694 
1695  pp.query("restart", restart_chkfile);
1696  pp_amr.query("restart", restart_chkfile);
1697 
1698  // Verbosity
1699  pp.query("v", verbose);
1700  pp.query("mg_v", mg_verbose);
1701  pp.query("use_fft", use_fft);
1702 #ifndef ERF_USE_FFT
1703  if (use_fft) {
1704  amrex::Abort("You must build with USE_FFT in order to set use_fft = true in your inputs file");
1705  }
1706 #endif
1707 
1708  // Frequency of diagnostic output
1709  pp.query("sum_interval", sum_interval);
1710  pp.query("sum_period" , sum_per);
1711 
1712  pp.query("pert_interval", pert_interval);
1713 
1714  // Time step controls
1715  pp.query("cfl", cfl);
1716  pp.query("substepping_cfl", sub_cfl);
1717  pp.query("init_shrink", init_shrink);
1718  pp.query("change_max", change_max);
1719  pp.query("dt_max_initial", dt_max_initial);
1720  pp.query("dt_max", dt_max);
1721 
1722  fixed_dt.resize(max_level+1,-1.);
1723  fixed_fast_dt.resize(max_level+1,-1.);
1724 
1725  pp.query("fixed_dt", fixed_dt[0]);
1726  pp.query("fixed_fast_dt", fixed_fast_dt[0]);
1727 
1728  for (int lev = 1; lev <= max_level; lev++)
1729  {
1730  fixed_dt[lev] = fixed_dt[lev-1] / static_cast<Real>(MaxRefRatio(lev-1));
1731  fixed_fast_dt[lev] = fixed_fast_dt[lev-1] / static_cast<Real>(MaxRefRatio(lev-1));
1732  }
1733 
1734  pp.query("fixed_mri_dt_ratio", fixed_mri_dt_ratio);
1735 
1736  // We use this to keep track of how many boxes we read in from WRF initialization
1737  num_files_at_level.resize(max_level+1,0);
1738 
1739  // We use this to keep track of how many boxes are specified thru the refinement indicators
1740  num_boxes_at_level.resize(max_level+1,0);
1741  boxes_at_level.resize(max_level+1);
1742 
1743  // We always have exactly one file at level 0
1744  num_boxes_at_level[0] = 1;
1745  boxes_at_level[0].resize(1);
1746  boxes_at_level[0][0] = geom[0].Domain();
1747 
1748 #ifdef ERF_USE_NETCDF
1749  nc_init_file.resize(max_level+1);
1750 
1751  // NetCDF wrfinput initialization files -- possibly multiple files at each of multiple levels
1752  // but we always have exactly one file at level 0
1753  for (int lev = 0; lev <= max_level; lev++) {
1754  const std::string nc_file_names = Concatenate("nc_init_file_",lev,1);
1755  if (pp.contains(nc_file_names.c_str())) {
1756  int num_files = pp.countval(nc_file_names.c_str());
1757  num_files_at_level[lev] = num_files;
1758  nc_init_file[lev].resize(num_files);
1759  pp.queryarr(nc_file_names.c_str(), nc_init_file[lev],0,num_files);
1760  for (int j = 0; j < num_files; j++) {
1761  Print() << "Reading NC init file names at level " << lev << " and index " << j << " : " << nc_init_file[lev][j] << std::endl;
1762  } // j
1763  } // if pp.contains
1764  } // lev
1765 
1766  // NetCDF wrfbdy lateral boundary file
1767  if (pp.query("nc_bdy_file", nc_bdy_file)) {
1768  Print() << "Reading NC bdy file name " << nc_bdy_file << std::endl;
1769  }
1770 
1771  // NetCDF wrflow lateral boundary file
1772  if (pp.query("nc_low_file", nc_low_file)) {
1773  Print() << "Reading NC low file name " << nc_low_file << std::endl;
1774  }
1775 
1776 #endif
1777 
1778  // Options for vertical interpolation of met_em*.nc data.
1779  pp.query("metgrid_debug_quiescent", metgrid_debug_quiescent);
1780  pp.query("metgrid_debug_isothermal", metgrid_debug_isothermal);
1781  pp.query("metgrid_debug_dry", metgrid_debug_dry);
1782  pp.query("metgrid_debug_psfc", metgrid_debug_psfc);
1783  pp.query("metgrid_debug_msf", metgrid_debug_msf);
1784  pp.query("metgrid_interp_theta", metgrid_interp_theta);
1785  pp.query("metgrid_basic_linear", metgrid_basic_linear);
1786  pp.query("metgrid_use_below_sfc", metgrid_use_below_sfc);
1787  pp.query("metgrid_use_sfc", metgrid_use_sfc);
1788  pp.query("metgrid_retain_sfc", metgrid_retain_sfc);
1789  pp.query("metgrid_proximity", metgrid_proximity);
1790  pp.query("metgrid_order", metgrid_order);
1791  pp.query("metgrid_force_sfc_k", metgrid_force_sfc_k);
1792 
1793  // Set default to FullState for now ... later we will try Perturbation
1794  interpolation_type = StateInterpType::FullState;
1795  pp.query_enum_case_insensitive("interpolation_type" ,interpolation_type);
1796 
1797  PlotFileType plotfile_type_temp = PlotFileType::None;
1798  pp.query_enum_case_insensitive("plotfile_type" ,plotfile_type_temp);
1799  pp.query_enum_case_insensitive("plotfile_type_1",plotfile_type_1);
1800  pp.query_enum_case_insensitive("plotfile_type_2",plotfile_type_2);
1801  //
1802  // This option is for backward consistency -- if only plotfile_type is set,
1803  // then it will be used for both 1 and 2 if and only if they are not set
1804  //
1805  // Default is native amrex if no type is specified
1806  //
1807  if (plotfile_type_temp == PlotFileType::None) {
1808  if (plotfile_type_1 == PlotFileType::None) {
1809  plotfile_type_1 = PlotFileType::Amrex;
1810  }
1811  if (plotfile_type_2 == PlotFileType::None) {
1812  plotfile_type_2 = PlotFileType::Amrex;
1813  }
1814  } else {
1815  if (plotfile_type_1 == PlotFileType::None) {
1816  plotfile_type_1 = plotfile_type_temp;
1817  } else {
1818  amrex::Abort("You must set either plotfile_type or plotfile_type_1, not both");
1819  }
1820  if (plotfile_type_2 == PlotFileType::None) {
1821  plotfile_type_2 = plotfile_type_temp;
1822  } else {
1823  amrex::Abort("You must set either plotfile_type or plotfile_type_2, not both");
1824  }
1825  }
1826 #ifndef ERF_USE_NETCDF
1827  if (plotfile_type_1 == PlotFileType::Netcdf ||
1828  plotfile_type_2 == PlotFileType::Netcdf) {
1829  amrex::Abort("Plotfile type = Netcdf is not allowed without USE_NETCDF = TRUE");
1830  }
1831 #endif
1832 
1833  pp.query("plot_file_1", plot_file_1);
1834  pp.query("plot_file_2", plot_file_2);
1835  pp.query("plot_int_1" , m_plot_int_1);
1836  pp.query("plot_int_2" , m_plot_int_2);
1837  pp.query("plot_per_1", m_plot_per_1);
1838  pp.query("plot_per_2", m_plot_per_2);
1839 
1840  pp.query("subvol_file", subvol_file);
1841  pp.query("subvol_int" , m_subvol_int);
1842  pp.query("subvol_per" , m_subvol_per);
1843 
1844  pp.query("expand_plotvars_to_unif_rr",m_expand_plotvars_to_unif_rr);
1845 
1846  pp.query("plot_face_vels",m_plot_face_vels);
1847 
1848  if ( (m_plot_int_1 > 0 && m_plot_per_1 > 0) ||
1849  (m_plot_int_2 > 0 && m_plot_per_2 > 0.) ) {
1850  Abort("Must choose only one of plot_int or plot_per");
1851  }
1852 
1853  pp.query("profile_int", profile_int);
1854  pp.query("destag_profiles", destag_profiles);
1855 
1856  pp.query("plot_lsm", plot_lsm);
1857 #ifdef ERF_USE_RRTMGP
1858  pp.query("plot_rad", plot_rad);
1859 #endif
1860  pp.query("profile_rad_int", rad_datalog_int);
1861 
1862  pp.query("output_1d_column", output_1d_column);
1863  pp.query("column_per", column_per);
1864  pp.query("column_interval", column_interval);
1865  pp.query("column_loc_x", column_loc_x);
1866  pp.query("column_loc_y", column_loc_y);
1867  pp.query("column_file_name", column_file_name);
1868 
1869  // Sampler output frequency
1870  pp.query("sampler_per", sampler_per);
1871  pp.query("sampler_interval", sampler_interval);
1872 
1873  // Specify information about outputting planes of data
1874  pp.query("output_bndry_planes", output_bndry_planes);
1875  pp.query("bndry_output_planes_interval", bndry_output_planes_interval);
1876  pp.query("bndry_output_planes_per", bndry_output_planes_per);
1877  pp.query("bndry_output_start_time", bndry_output_planes_start_time);
1878 
1879  // Specify whether ingest boundary planes of data
1880  pp.query("input_bndry_planes", input_bndry_planes);
1881 
1882  // Query the set and total widths for wrfbdy interior ghost cells
1883  pp.query("real_width", real_width);
1884  pp.query("real_set_width", real_set_width);
1885 
1886  // Query the set and total widths for crse-fine interior ghost cells
1887  pp.query("cf_width", cf_width);
1888  pp.query("cf_set_width", cf_set_width);
1889 
1890  // AmrMesh iterate on grids?
1891  bool iterate(true);
1892  pp_amr.query("iterate_grids",iterate);
1893  if (!iterate) SetIterateToFalse();
1894  }
1895 
1896 #ifdef ERF_USE_PARTICLES
1897  readTracersParams();
1898 #endif
1899 
1900  solverChoice.init_params(max_level,pp_prefix);
1901 
1902 #ifndef ERF_USE_NETCDF
1903  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(( (solverChoice.init_type != InitType::WRFInput) &&
1904  (solverChoice.init_type != InitType::Metgrid ) &&
1905  (solverChoice.init_type != InitType::NCFile ) ),
1906  "init_type cannot be 'WRFInput', 'MetGrid' or 'NCFile' if we don't build with netcdf!");
1907 #endif
1908 
1909  // Query the canopy model file name
1910  std::string forestfile;
1911  solverChoice.do_forest_drag = pp.query("forest_file", forestfile);
1913  for (int lev = 0; lev <= max_level; ++lev) {
1914  m_forest_drag[lev] = std::make_unique<ForestDrag>(forestfile);
1915  }
1916  }
1917 
1918  // If init from WRFInput or Metgrid make sure a valid file name is present
1919  if ((solverChoice.init_type == InitType::WRFInput) ||
1920  (solverChoice.init_type == InitType::Metgrid) ||
1921  (solverChoice.init_type == InitType::NCFile) ) {
1922  for (int lev = 0; lev <= max_level; lev++) {
1923  int num_files = nc_init_file[lev].size();
1924  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(num_files>0, "A file name must be present for init type WRFInput, Metgrid or NCFile.");
1925  for (int j = 0; j < num_files; j++) {
1926  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!nc_init_file[lev][j].empty(), "Valid file name must be present for init type WRFInput, Metgrid or NCFile.");
1927  } //j
1928  } // lev
1929  } // InitType
1930 
1931  // What type of land surface model to use
1932  // NOTE: Must be checked after init_params
1933  if (solverChoice.lsm_type == LandSurfaceType::SLM) {
1934  lsm.SetModel<SLM>();
1935  Print() << "SLM land surface model!\n";
1936  } else if (solverChoice.lsm_type == LandSurfaceType::MM5) {
1937  lsm.SetModel<MM5>();
1938  Print() << "MM5 land surface model!\n";
1939 #ifdef ERF_USE_NOAH
1940  } else if (solverChoice.lsm_type == LandSurfaceType::NOAH) {
1941  lsm.SetModel<NOAH>();
1942  Print() << "NOAH land surface model!\n";
1943 #endif
1944  } else if (solverChoice.lsm_type == LandSurfaceType::None) {
1945  lsm.SetModel<NullSurf>();
1946  Print() << "Null land surface model!\n";
1947  } else {
1948  Abort("Dont know this LandSurfaceType!") ;
1949  }
1950 
1951  if (verbose > 0) {
1952  solverChoice.display(max_level,pp_prefix);
1953  }
1954 
1956 }
AMREX_FORCE_INLINE std::time_t getEpochTime(const std::string &dateTime, const std::string &dateTimeFormat)
Definition: ERF_EpochTime.H:14
bool metgrid_basic_linear
Definition: ERF.H:1081
bool metgrid_debug_msf
Definition: ERF.H:1079
std::string plot_file_2
Definition: ERF.H:940
bool plot_rad
Definition: ERF.H:782
bool m_plot_face_vels
Definition: ERF.H:949
int regrid_int
Definition: ERF.H:932
bool metgrid_retain_sfc
Definition: ERF.H:1084
bool metgrid_use_sfc
Definition: ERF.H:1083
amrex::Vector< int > num_files_at_level
Definition: ERF.H:702
bool metgrid_debug_quiescent
Definition: ERF.H:1075
bool metgrid_interp_theta
Definition: ERF.H:1080
bool regrid_level_0_on_restart
Definition: ERF.H:936
int metgrid_force_sfc_k
Definition: ERF.H:1087
bool metgrid_use_below_sfc
Definition: ERF.H:1082
std::string subvol_file
Definition: ERF.H:941
amrex::Real metgrid_proximity
Definition: ERF.H:1085
std::string plot_file_1
Definition: ERF.H:939
bool metgrid_debug_dry
Definition: ERF.H:1077
bool metgrid_debug_isothermal
Definition: ERF.H:1076
bool metgrid_debug_psfc
Definition: ERF.H:1078
static std::string nc_low_file
Definition: ERF.H:1072
void ParameterSanityChecks()
Definition: ERF.cpp:1960
bool m_expand_plotvars_to_unif_rr
Definition: ERF.H:942
std::string check_file
Definition: ERF.H:958
int metgrid_order
Definition: ERF.H:1086
bool plot_lsm
Definition: ERF.H:951
void SetModel()
Definition: ERF_LandSurface.H:28
Definition: ERF_MM5.H:26
Definition: ERF_NOAH.H:30
Definition: ERF_NullSurf.H:8
Definition: ERF_SLM.H:26
void display(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:584
void init_params(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:125
Here is the call graph for this function:

◆ refinement_criteria_setup()

void ERF::refinement_criteria_setup ( )
private

Function to define the refinement criteria based on user input

224 {
225  if (max_level > 0)
226  {
227  ParmParse pp(pp_prefix);
228  Vector<std::string> refinement_indicators;
229  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
230 
231  for (int i=0; i<refinement_indicators.size(); ++i)
232  {
233  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
234 
235  ParmParse ppr(ref_prefix);
236  RealBox realbox;
237  int lev_for_box;
238 
239  int num_real_lo = ppr.countval("in_box_lo");
240  int num_indx_lo = ppr.countval("in_box_lo_indices");
241  int num_real_hi = ppr.countval("in_box_hi");
242  int num_indx_hi = ppr.countval("in_box_hi_indices");
243 
244  AMREX_ALWAYS_ASSERT(num_real_lo == num_real_hi);
245  AMREX_ALWAYS_ASSERT(num_indx_lo == num_indx_hi);
246 
247  if ( !((num_real_lo >= AMREX_SPACEDIM-1 && num_indx_lo == 0) ||
248  (num_indx_lo >= AMREX_SPACEDIM-1 && num_real_lo == 0) ||
249  (num_indx_lo == 0 && num_real_lo == 0)) )
250  {
251  amrex::Abort("Must only specify box for refinement using real OR index space");
252  }
253 
254  if (num_real_lo > 0) {
255  std::vector<Real> rbox_lo(3), rbox_hi(3);
256  ppr.get("max_level",lev_for_box);
257  if (lev_for_box <= max_level)
258  {
259  if (n_error_buf[0] != IntVect::TheZeroVector()) {
260  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
261  }
262 
263  const Real* plo = geom[lev_for_box].ProbLo();
264  const Real* phi = geom[lev_for_box].ProbHi();
265 
266  ppr.getarr("in_box_lo",rbox_lo,0,num_real_lo);
267  ppr.getarr("in_box_hi",rbox_hi,0,num_real_hi);
268 
269  if (rbox_lo[0] < plo[0]) rbox_lo[0] = plo[0];
270  if (rbox_lo[1] < plo[1]) rbox_lo[1] = plo[1];
271  if (rbox_hi[0] > phi[0]) rbox_hi[0] = phi[0];
272  if (rbox_hi[1] > phi[1]) rbox_hi[1] = phi[1];
273  if (num_real_lo < AMREX_SPACEDIM) {
274  rbox_lo[2] = plo[2];
275  rbox_hi[2] = phi[2];
276  }
277 
278  realbox = RealBox(&(rbox_lo[0]),&(rbox_hi[0]));
279 
280  Print() << "Realbox read in and intersected laterally with domain is " << realbox << std::endl;
281 
282  num_boxes_at_level[lev_for_box] += 1;
283 
284  int ilo, jlo, klo;
285  int ihi, jhi, khi;
286  const auto* dx = geom[lev_for_box].CellSize();
287  ilo = static_cast<int>((rbox_lo[0] - plo[0])/dx[0]);
288  jlo = static_cast<int>((rbox_lo[1] - plo[1])/dx[1]);
289  ihi = static_cast<int>((rbox_hi[0] - plo[0])/dx[0]-1);
290  jhi = static_cast<int>((rbox_hi[1] - plo[1])/dx[1]-1);
291  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
292  // Search for k indices corresponding to nominal grid
293  // AGL heights
294  const Box& domain = geom[lev_for_box].Domain();
295  klo = domain.smallEnd(2) - 1;
296  khi = domain.smallEnd(2) - 1;
297 
298  if (rbox_lo[2] <= zlevels_stag[lev_for_box][domain.smallEnd(2)])
299  {
300  klo = domain.smallEnd(2);
301  }
302  else
303  {
304  for (int k=domain.smallEnd(2); k<=domain.bigEnd(2)+1; ++k) {
305  if (zlevels_stag[lev_for_box][k] > rbox_lo[2]) {
306  klo = k-1;
307  break;
308  }
309  }
310  }
311  AMREX_ASSERT(klo >= domain.smallEnd(2));
312 
313  if (rbox_hi[2] >= zlevels_stag[lev_for_box][domain.bigEnd(2)+1])
314  {
315  khi = domain.bigEnd(2);
316  }
317  else
318  {
319  for (int k=klo+1; k<=domain.bigEnd(2)+1; ++k) {
320  if (zlevels_stag[lev_for_box][k] > rbox_hi[2]) {
321  khi = k-1;
322  break;
323  }
324  }
325  }
326  AMREX_ASSERT((khi <= domain.bigEnd(2)) && (khi > klo));
327 
328  // Need to update realbox because tagging is based on
329  // the initial _un_deformed grid
330  realbox = RealBox(plo[0]+ ilo *dx[0], plo[1]+ jlo *dx[1], plo[2]+ klo *dx[2],
331  plo[0]+(ihi+1)*dx[0], plo[1]+(jhi+1)*dx[1], plo[2]+(khi+1)*dx[2]);
332  } else {
333  klo = static_cast<int>((rbox_lo[2] - plo[2])/dx[2]);
334  khi = static_cast<int>((rbox_hi[2] - plo[2])/dx[2]-1);
335  }
336 
337  Box bx(IntVect(ilo,jlo,klo),IntVect(ihi,jhi,khi));
338  if ( (ilo%ref_ratio[lev_for_box-1][0] != 0) || ((ihi+1)%ref_ratio[lev_for_box-1][0] != 0) ||
339  (jlo%ref_ratio[lev_for_box-1][1] != 0) || ((jhi+1)%ref_ratio[lev_for_box-1][1] != 0) ||
340  (klo%ref_ratio[lev_for_box-1][2] != 0) || ((khi+1)%ref_ratio[lev_for_box-1][2] != 0) )
341  {
342  amrex::Print() << "Box : " << bx << std::endl;
343  amrex::Print() << "RealBox : " << realbox << std::endl;
344  amrex::Print() << "ilo, ihi+1, jlo, jhi+1, klo, khi+1 by ref_ratio : "
345  << ilo%ref_ratio[lev_for_box-1][0] << " " << (ihi+1)%ref_ratio[lev_for_box-1][0] << " "
346  << jlo%ref_ratio[lev_for_box-1][1] << " " << (jhi+1)%ref_ratio[lev_for_box-1][1] << " "
347  << klo%ref_ratio[lev_for_box-1][2] << " " << (khi+1)%ref_ratio[lev_for_box-1][2] << std::endl;
348  amrex::Error("Fine box is not legit with this ref_ratio");
349  }
350  boxes_at_level[lev_for_box].push_back(bx);
351  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
352  } // lev
353 
354  if (solverChoice.init_type == InitType::WRFInput) {
355  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
356  amrex::Error("Number of boxes doesn't match number of input files");
357 
358  }
359  }
360 
361  } else if (num_indx_lo > 0) {
362 
363  std::vector<int> box_lo(3), box_hi(3);
364  ppr.get("max_level",lev_for_box);
365  if (lev_for_box <= max_level)
366  {
367  if (n_error_buf[0] != IntVect::TheZeroVector()) {
368  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
369  }
370 
371  ppr.getarr("in_box_lo_indices",box_lo,0,AMREX_SPACEDIM);
372  ppr.getarr("in_box_hi_indices",box_hi,0,AMREX_SPACEDIM);
373 
374  Box bx(IntVect(box_lo[0],box_lo[1],box_lo[2]),IntVect(box_hi[0],box_hi[1],box_hi[2]));
375  amrex::Print() << "BOX " << bx << std::endl;
376 
377  const auto* dx = geom[lev_for_box].CellSize();
378  const Real* plo = geom[lev_for_box].ProbLo();
379  realbox = RealBox(plo[0]+ box_lo[0] *dx[0], plo[1]+ box_lo[1] *dx[1], plo[2]+ box_lo[2] *dx[2],
380  plo[0]+(box_hi[0]+1)*dx[0], plo[1]+(box_hi[1]+1)*dx[1], plo[2]+(box_hi[2]+1)*dx[2]);
381 
382  Print() << "Reading " << bx << " at level " << lev_for_box << std::endl;
383  num_boxes_at_level[lev_for_box] += 1;
384 
385  if ( (box_lo[0]%ref_ratio[lev_for_box-1][0] != 0) || ((box_hi[0]+1)%ref_ratio[lev_for_box-1][0] != 0) ||
386  (box_lo[1]%ref_ratio[lev_for_box-1][1] != 0) || ((box_hi[1]+1)%ref_ratio[lev_for_box-1][1] != 0) ||
387  (box_lo[2]%ref_ratio[lev_for_box-1][2] != 0) || ((box_hi[2]+1)%ref_ratio[lev_for_box-1][2] != 0) )
388  amrex::Error("Fine box is not legit with this ref_ratio");
389  boxes_at_level[lev_for_box].push_back(bx);
390  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
391  } // lev
392 
393  if (solverChoice.init_type == InitType::WRFInput) {
394  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
395  amrex::Error("Number of boxes doesn't match number of input files");
396 
397  }
398  }
399  }
400 
401  AMRErrorTagInfo info;
402 
403  if (realbox.ok()) {
404  info.SetRealBox(realbox);
405  }
406  if (ppr.countval("start_time") > 0) {
407  Real ref_min_time; ppr.get("start_time",ref_min_time);
408  info.SetMinTime(ref_min_time);
409  }
410  if (ppr.countval("end_time") > 0) {
411  Real ref_max_time; ppr.get("end_time",ref_max_time);
412  info.SetMaxTime(ref_max_time);
413  }
414  if (ppr.countval("max_level") > 0) {
415  int ref_max_level; ppr.get("max_level",ref_max_level);
416  info.SetMaxLevel(ref_max_level);
417  }
418 
419  if (ppr.countval("value_greater")) {
420  int num_val = ppr.countval("value_greater");
421  Vector<Real> value(num_val);
422  ppr.getarr("value_greater",value,0,num_val);
423  std::string field; ppr.get("field_name",field);
424  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GREATER,field,info));
425  }
426  else if (ppr.countval("value_less")) {
427  int num_val = ppr.countval("value_less");
428  Vector<Real> value(num_val);
429  ppr.getarr("value_less",value,0,num_val);
430  std::string field; ppr.get("field_name",field);
431  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::LESS,field,info));
432  }
433  else if (ppr.countval("adjacent_difference_greater")) {
434  int num_val = ppr.countval("adjacent_difference_greater");
435  Vector<Real> value(num_val);
436  ppr.getarr("adjacent_difference_greater",value,0,num_val);
437  std::string field; ppr.get("field_name",field);
438  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GRAD,field,info));
439  }
440  else if (realbox.ok())
441  {
442  ref_tags.push_back(AMRErrorTag(info));
443  } else {
444  Abort(std::string("Unrecognized refinement indicator for " + refinement_indicators[i]).c_str());
445  }
446  } // loop over criteria
447  } // if max_level > 0
448 }
Here is the call graph for this function:

◆ remake_zphys()

void ERF::remake_zphys ( int  lev,
amrex::Real  time,
std::unique_ptr< amrex::MultiFab > &  temp_zphys_nd 
)
586 {
587  if (lev > 0)
588  {
589  //
590  // First interpolate from coarser level
591  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
592  // have been pre-filled - this includes ghost cells both inside and outside
593  // the domain
594  //
595  InterpFromCoarseLevel(*temp_zphys_nd, z_phys_nd[lev]->nGrowVect(),
596  IntVect(0,0,0), // do not fill ghost cells outside the domain
597  *z_phys_nd[lev-1], 0, 0, 1,
598  geom[lev-1], geom[lev],
599  refRatio(lev-1), &node_bilinear_interp,
601 
602  // This recomputes the fine values using the bottom terrain at the fine resolution,
603  // and also fills values of z_phys_nd outside the domain
604  make_terrain_fitted_coords(lev,geom[lev],*temp_zphys_nd,zlevels_stag[lev],phys_bc_type);
605 
606  std::swap(temp_zphys_nd, z_phys_nd[lev]);
607 
608  } // lev > 0
609 
610  if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
611  //
612  // This assumes we have already remade the EBGeometry
613  //
614  terrain_blanking[lev]->setVal(1.0);
615  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, z_phys_nd[lev]->nGrowVect());
616  }
617 }
Here is the call graph for this function:

◆ RemakeLevel()

void ERF::RemakeLevel ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
437 {
438  if (verbose) {
439  amrex::Print() <<" REMAKING WITH NEW BA AT LEVEL " << lev << " " << ba << std::endl;
440  }
441 
442  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::MovingFittedMesh);
443 
444  BoxArray ba_old(vars_new[lev][Vars::cons].boxArray());
445  DistributionMapping dm_old(vars_new[lev][Vars::cons].DistributionMap());
446 
447  if (verbose) {
448  amrex::Print() <<" OLD BA AT LEVEL " << lev << " " << ba_old << std::endl;
449  }
450 
451  //
452  // Re-define subdomain at this level within the domain such that
453  // 1) all boxes in a given subdomain are "connected"
454  // 2) no boxes in a subdomain touch any boxes in any other subdomain
455  //
456  if (solverChoice.anelastic[lev] == 1) {
457  make_subdomains(ba.simplified_list(), subdomains[lev]);
458  }
459 
460  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
461  IntVect ngrow_state = vars_new[lev][Vars::cons].nGrowVect();
462 
463  int ngrow_vels = ComputeGhostCells(solverChoice);
464 
465  Vector<MultiFab> temp_lev_new(Vars::NumTypes);
466  Vector<MultiFab> temp_lev_old(Vars::NumTypes);
467  MultiFab temp_base_state;
468 
469  std::unique_ptr<MultiFab> temp_zphys_nd;
470 
471  //********************************************************************************************
472  // This allocates all kinds of things, including but not limited to: solution arrays,
473  // terrain arrays and metrics, and base state.
474  // *******************************************************************************************
475  init_stuff(lev, ba, dm, temp_lev_new, temp_lev_old, temp_base_state, temp_zphys_nd);
476 
477  // ********************************************************************************************
478  // Build the data structures for terrain-related quantities
479  // ********************************************************************************************
480  if ( solverChoice.terrain_type == TerrainType::EB ||
481  solverChoice.terrain_type == TerrainType::ImmersedForcing)
482  {
483  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
484  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
485  if (solverChoice.terrain_type == TerrainType::EB) {
486  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
487  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
488  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
489  }
490  }
491  remake_zphys(lev, time, temp_zphys_nd);
493 
494  // ********************************************************************************************
495  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
496  // ********************************************************************************************
497  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
498  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
499  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
500  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
501  }
502  }
503 
504  // ********************************************************************************************
505  // Build the data structures for canopy model (depends upon z_phys)
506  // ********************************************************************************************
508  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
509  }
510 
511  // *****************************************************************************************************
512  // Create the physbcs objects (after initializing the terrain but before calling FillCoarsePatch
513  // *****************************************************************************************************
514  make_physbcs(lev);
515 
516  // ********************************************************************************************
517  // Update the base state at this level by interpolation from coarser level AND copy
518  // from previous (pre-regrid) base_state array
519  // ********************************************************************************************
520  if (lev > 0) {
521  Interpolater* mapper = &cell_cons_interp;
522 
523  Vector<MultiFab*> fmf = {&base_state[lev ], &base_state[lev ]};
524  Vector<MultiFab*> cmf = {&base_state[lev-1], &base_state[lev-1]};
525  Vector<Real> ftime = {time, time};
526  Vector<Real> ctime = {time, time};
527 
528  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
529  FillPatchTwoLevels(temp_base_state, temp_base_state.nGrowVect(), IntVect(0,0,0),
530  time, cmf, ctime, fmf, ftime,
531  0, 0, temp_base_state.nComp(), geom[lev-1], geom[lev],
532  refRatio(lev-1), mapper, domain_bcs_type,
534 
535  // Impose bc's outside the domain
536  (*physbcs_base[lev])(temp_base_state,0,temp_base_state.nComp(),base_state[lev].nGrowVect());
537 
538  // *************************************************************************************************
539  // This will fill the temporary MultiFabs with data from vars_new
540  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
541  // NOTE: we must create the new base state before calling FillPatch because we will
542  // interpolate perturbational quantities
543  // *************************************************************************************************
544  FillPatch(lev, time, {&temp_lev_new[Vars::cons],&temp_lev_new[Vars::xvel],
545  &temp_lev_new[Vars::yvel],&temp_lev_new[Vars::zvel]},
546  {&temp_lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
547  base_state[lev], temp_base_state, false);
548  } else {
549  temp_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
550  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
551  temp_lev_new[Vars::cons].ParallelCopy(vars_new[lev][Vars::cons],0,0,ncomp_cons,ngrow_state,ngrow_state);
552  temp_lev_new[Vars::xvel].ParallelCopy(vars_new[lev][Vars::xvel],0,0, 1,ngrow_vels,ngrow_vels);
553  temp_lev_new[Vars::yvel].ParallelCopy(vars_new[lev][Vars::yvel],0,0, 1,ngrow_vels,ngrow_vels);
554 
555  temp_lev_new[Vars::zvel].setVal(0.);
556  temp_lev_new[Vars::zvel].ParallelCopy(vars_new[lev][Vars::zvel],0,0, 1,
557  IntVect(ngrow_vels,ngrow_vels,0),IntVect(ngrow_vels,ngrow_vels,0));
558  }
559 
560  // Now swap the pointers since we needed both old and new in the FillPatch
561  std::swap(temp_base_state, base_state[lev]);
562 
563  // ********************************************************************************************
564  // Copy from new into old just in case
565  // ********************************************************************************************
566  MultiFab::Copy(temp_lev_old[Vars::cons],temp_lev_new[Vars::cons],0,0,ncomp_cons,ngrow_state);
567  MultiFab::Copy(temp_lev_old[Vars::xvel],temp_lev_new[Vars::xvel],0,0, 1,ngrow_vels);
568  MultiFab::Copy(temp_lev_old[Vars::yvel],temp_lev_new[Vars::yvel],0,0, 1,ngrow_vels);
569  MultiFab::Copy(temp_lev_old[Vars::zvel],temp_lev_new[Vars::zvel],0,0, 1,IntVect(ngrow_vels,ngrow_vels,0));
570 
571  // ********************************************************************************************
572  // Now swap the pointers
573  // ********************************************************************************************
574  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
575  std::swap(temp_lev_new[var_idx], vars_new[lev][var_idx]);
576  std::swap(temp_lev_old[var_idx], vars_old[lev][var_idx]);
577  }
578 
579  t_new[lev] = time;
580  t_old[lev] = time - 1.e200;
581 
582  // ********************************************************************************************
583  // Build the data structures for calculating diffusive/turbulent terms
584  // ********************************************************************************************
585  update_diffusive_arrays(lev, ba, dm);
586 
587  //********************************************************************************************
588  // Microphysics
589  // *******************************************************************************************
590  int q_size = micro->Get_Qmoist_Size(lev);
591  qmoist[lev].resize(q_size);
592  micro->Define(lev, solverChoice);
593  if (solverChoice.moisture_type != MoistureType::None)
594  {
595  micro->Init(lev, vars_new[lev][Vars::cons],
596  grids[lev], Geom(lev), 0.0,
597  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
598  }
599  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
600  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
601  }
602 
603  // ********************************************************************************************
604  // Initialize the integrator class
605  // ********************************************************************************************
607 
608  // We need to re-define the FillPatcher if the grids have changed
609  if (lev > 0 && cf_width >= 0) {
610  bool ba_changed = (ba != ba_old);
611  bool dm_changed = (dm != dm_old);
612  if (ba_changed || dm_changed) {
614  }
615  }
616 
617  // ********************************************************************************************
618  // Update the SurfaceLayer arrays at this level
619  // ********************************************************************************************
620  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
621  int nlevs = finest_level+1;
622  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
623  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
624  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
625  mfv_old, Theta_prim[lev], Qv_prim[lev],
626  Qr_prim[lev], z_phys_nd[lev],
627  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
628  lsm_data[lev], lsm_flux[lev], sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
629  }
630 
631  // These calls are done in AmrCore::regrid if this is a regrid at lev > 0
632  // For a level 0 regrid we must explicitly do them here
633  if (lev == 0) {
634  // Define grids[lev] to be ba
635  SetBoxArray(lev, ba);
636 
637  // Define dmap[lev] to be dm
638  SetDistributionMap(lev, dm);
639  }
640 
641 #ifdef ERF_USE_PARTICLES
642  particleData.Redistribute();
643 #endif
644 }
void remake_zphys(int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:585

◆ restart()

void ERF::restart ( )
1491 {
1493 
1494  // We set this here so that we don't over-write the checkpoint file we just started from
1496 
1498  //
1499  // Coarsening before we split the grids ensures that each resulting
1500  // grid will have an even number of cells in each direction.
1501  //
1502  BoxArray new_ba(amrex::coarsen(Geom(0).Domain(),2));
1503  //
1504  // Now split up into list of grids within max_grid_size[0] limit.
1505  //
1506  new_ba.maxSize(max_grid_size[0]/2);
1507  //
1508  // Now refine these boxes back to level 0.
1509  //
1510  new_ba.refine(2);
1511 
1512  if (refine_grid_layout) {
1513  ChopGrids(0, new_ba, ParallelDescriptor::NProcs());
1514  }
1515 
1516  if (new_ba != grids[0]) {
1517  DistributionMapping new_dm(new_ba);
1518  RemakeLevel(0,t_new[0],new_ba,new_dm);
1519  }
1520  }
1521 }
void RemakeLevel(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:436
void ReadCheckpointFile()
Definition: ERF_Checkpoint.cpp:419

◆ sample_lines()

void ERF::sample_lines ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling data along a line along the z-dimension at the (x,y) indices specified and writes it to an output file.

Parameters
levCurrent level
timeCurrent time
cellIntVect containing the x,y-dimension indices to sample along z
mfMultiFab from which we sample the data
564 {
565  int ifile = 0;
566 
567  const int ncomp = mf.nComp(); // cell-centered state vars
568 
569  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
570  average_face_to_cellcenter(mf_vels, 0,
571  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
572 
573  //
574  // Sample the data at a line (in direction "dir") in space
575  // In this case we sample in the vertical direction so dir = 2
576  // The "k" value of "cell" is ignored
577  //
578  int dir = 2;
579  MultiFab my_line = get_line_data(mf, dir, cell);
580  MultiFab my_line_vels = get_line_data(mf_vels, dir, cell);
581  MultiFab my_line_tau11 = get_line_data(*Tau[lev][TauType::tau11], dir, cell);
582  MultiFab my_line_tau12 = get_line_data(*Tau[lev][TauType::tau12], dir, cell);
583  MultiFab my_line_tau13 = get_line_data(*Tau[lev][TauType::tau13], dir, cell);
584  MultiFab my_line_tau22 = get_line_data(*Tau[lev][TauType::tau22], dir, cell);
585  MultiFab my_line_tau23 = get_line_data(*Tau[lev][TauType::tau23], dir, cell);
586  MultiFab my_line_tau33 = get_line_data(*Tau[lev][TauType::tau33], dir, cell);
587 
588  for (MFIter mfi(my_line, false); mfi.isValid(); ++mfi)
589  {
590  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
591 
592  std::ostream& sample_log = SampleLineLog(ifile);
593  if (sample_log.good()) {
594  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << time;
595  const auto& my_line_arr = my_line[0].const_array();
596  const auto& my_line_vels_arr = my_line_vels[0].const_array();
597  const auto& my_line_tau11_arr = my_line_tau11[0].const_array();
598  const auto& my_line_tau12_arr = my_line_tau12[0].const_array();
599  const auto& my_line_tau13_arr = my_line_tau13[0].const_array();
600  const auto& my_line_tau22_arr = my_line_tau22[0].const_array();
601  const auto& my_line_tau23_arr = my_line_tau23[0].const_array();
602  const auto& my_line_tau33_arr = my_line_tau33[0].const_array();
603  const Box& my_box = my_line[0].box();
604  const int klo = my_box.smallEnd(2);
605  const int khi = my_box.bigEnd(2);
606  int i = cell[0];
607  int j = cell[1];
608  for (int n = 0; n < ncomp; n++) {
609  for (int k = klo; k <= khi; k++) {
610  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_arr(i,j,k,n);
611  }
612  }
613  for (int n = 0; n < AMREX_SPACEDIM; n++) {
614  for (int k = klo; k <= khi; k++) {
615  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_vels_arr(i,j,k,n);
616  }
617  }
618  for (int k = klo; k <= khi; k++) {
619  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau11_arr(i,j,k);
620  }
621  for (int k = klo; k <= khi; k++) {
622  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau12_arr(i,j,k);
623  }
624  for (int k = klo; k <= khi; k++) {
625  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau13_arr(i,j,k);
626  }
627  for (int k = klo; k <= khi; k++) {
628  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau22_arr(i,j,k);
629  }
630  for (int k = klo; k <= khi; k++) {
631  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau23_arr(i,j,k);
632  }
633  for (int k = klo; k <= khi; k++) {
634  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau33_arr(i,j,k);
635  }
636  sample_log << std::endl;
637  } // if good
638  } // mfi
639 }
const int datwidth
Definition: ERF.H:898
AMREX_FORCE_INLINE std::ostream & SampleLineLog(int i)
Definition: ERF.H:1296
const int datprecision
Definition: ERF.H:899

◆ sample_points()

void ERF::sample_points ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling MultiFab data at a specified cell index.

Parameters
levLevel for the associated MultiFab data
timeCurrent time
cellIntVect containing the indexes for the cell where we want to sample
mfMultiFab from which we wish to sample data
528 {
529  int ifile = 0;
530 
531  //
532  // Sample the data at a single point in space
533  //
534  int ncomp = mf.nComp();
535  Vector<Real> my_point = get_cell_data(mf, cell);
536 
537  if (!my_point.empty()) {
538 
539  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
540 
541  std::ostream& sample_log = SamplePointLog(ifile);
542  if (sample_log.good()) {
543  sample_log << std::setw(datwidth) << time;
544  for (int i = 0; i < ncomp; ++i)
545  {
546  sample_log << std::setw(datwidth) << my_point[i];
547  }
548  sample_log << std::endl;
549  } // if good
550  } // only write from processor that holds the cell
551 }
AMREX_FORCE_INLINE std::ostream & SamplePointLog(int i)
Definition: ERF.H:1282

◆ SampleLine()

amrex::IntVect& ERF::SampleLine ( int  i)
inlineprivate
1323  {
1324  return sampleline[i];
1325  }

◆ SampleLineLog()

AMREX_FORCE_INLINE std::ostream& ERF::SampleLineLog ( int  i)
inlineprivate
1297  {
1298  return *samplelinelog[i];
1299  }

◆ SampleLineLogName()

std::string ERF::SampleLineLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith samplelinelog file.

1453 { return samplelinelogname[i]; }

◆ SamplePoint()

amrex::IntVect& ERF::SamplePoint ( int  i)
inlineprivate
1310  {
1311  return samplepoint[i];
1312  }

◆ SamplePointLog()

AMREX_FORCE_INLINE std::ostream& ERF::SamplePointLog ( int  i)
inlineprivate
1283  {
1284  return *sampleptlog[i];
1285  }

◆ SamplePointLogName()

std::string ERF::SamplePointLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith sampleptlog file.

1450 { return sampleptlogname[i]; }

◆ setPlotVariables()

void ERF::setPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
23 {
24  ParmParse pp(pp_prefix);
25 
26  if (pp.contains(pp_plot_var_names.c_str()))
27  {
28  std::string nm;
29 
30  int nPltVars = pp.countval(pp_plot_var_names.c_str());
31 
32  for (int i = 0; i < nPltVars; i++)
33  {
34  pp.get(pp_plot_var_names.c_str(), nm, i);
35 
36  // Add the named variable to our list of plot variables
37  // if it is not already in the list
38  if (!containerHasElement(plot_var_names, nm)) {
39  plot_var_names.push_back(nm);
40  }
41  }
42  } else {
43  //
44  // The default is to add none of the variables to the list
45  //
46  plot_var_names.clear();
47  }
48 
49  // Get state variables in the same order as we define them,
50  // since they may be in any order in the input list
51  Vector<std::string> tmp_plot_names;
52 
53  for (int i = 0; i < cons_names.size(); ++i) {
54  if ( containerHasElement(plot_var_names, cons_names[i]) ) {
55  if (solverChoice.moisture_type == MoistureType::None) {
56  if (cons_names[i] != "rhoQ1" && cons_names[i] != "rhoQ2" && cons_names[i] != "rhoQ3" &&
57  cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
58  {
59  tmp_plot_names.push_back(cons_names[i]);
60  }
61  } else if (solverChoice.moisture_type == MoistureType::Kessler) { // allow rhoQ1, rhoQ2, rhoQ3
62  if (cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
63  {
64  tmp_plot_names.push_back(cons_names[i]);
65  }
66  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
67  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
68  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow rhoQ1, rhoQ2
69  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ4" &&
70  cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
71  {
72  tmp_plot_names.push_back(cons_names[i]);
73  }
74  } else if ( (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
75  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow rhoQ1, rhoQ2, rhoQ4
76  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
77  {
78  tmp_plot_names.push_back(cons_names[i]);
79  }
80  } else
81  {
82  // For moisture_type SAM and Morrison we have all six variables
83  tmp_plot_names.push_back(cons_names[i]);
84  }
85  }
86  }
87 
88  // check for velocity since it's not in cons_names
89  // if we are asked for any velocity component, we will need them all
90  if (containerHasElement(plot_var_names, "x_velocity") ||
91  containerHasElement(plot_var_names, "y_velocity") ||
92  containerHasElement(plot_var_names, "z_velocity")) {
93  tmp_plot_names.push_back("x_velocity");
94  tmp_plot_names.push_back("y_velocity");
95  tmp_plot_names.push_back("z_velocity");
96  }
97 
98  //
99  // If the model we are running doesn't have the variable listed in the inputs file,
100  // just ignore it rather than aborting
101  //
102  for (int i = 0; i < derived_names.size(); ++i) {
103  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
104  bool ok_to_add = ( (solverChoice.terrain_type == TerrainType::ImmersedForcing) ||
105  (derived_names[i] != "terrain_IB_mask") );
106  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
107  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
108  (derived_names[i] != "detJ") );
109  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
110  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
111  (derived_names[i] != "z_phys") );
112 #ifndef ERF_USE_WINDFARM
113  ok_to_add &= (derived_names[i] != "SMark0" && derived_names[i] != "SMark1");
114 #endif
115  if (ok_to_add)
116  {
117  if (solverChoice.moisture_type == MoistureType::None) { // no moist quantities allowed
118  if (derived_names[i] != "qv" && derived_names[i] != "qc" && derived_names[i] != "qrain" &&
119  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
120  derived_names[i] != "qt" && derived_names[i] != "qn" && derived_names[i] != "qp" &&
121  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
122  {
123  tmp_plot_names.push_back(derived_names[i]);
124  }
125  } else if ( (solverChoice.moisture_type == MoistureType::Kessler ) ||
126  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
127  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow qv, qc, qrain
128  if (derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
129  derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
130  {
131  tmp_plot_names.push_back(derived_names[i]);
132  }
133  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
134  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
135  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow qv, qc
136  if (derived_names[i] != "qrain" &&
137  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
138  derived_names[i] != "qp" &&
139  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
140  {
141  tmp_plot_names.push_back(derived_names[i]);
142  }
143  } else
144  {
145  // For moisture_type SAM and Morrison we have all moist quantities
146  tmp_plot_names.push_back(derived_names[i]);
147  }
148  } // use_terrain?
149  } // hasElement
150  }
151 
152 #ifdef ERF_USE_WINDFARM
153  for (int i = 0; i < derived_names.size(); ++i) {
154  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
155  if(solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP) {
156  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0") {
157  tmp_plot_names.push_back(derived_names[i]);
158  }
159  }
160  if( solverChoice.windfarm_type == WindFarmType::SimpleAD or
161  solverChoice.windfarm_type == WindFarmType::GeneralAD ) {
162  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0" or derived_names[i] == "SMark1") {
163  tmp_plot_names.push_back(derived_names[i]);
164  }
165  }
166  }
167  }
168 #endif
169 
170 #ifdef ERF_USE_PARTICLES
171  const auto& particles_namelist( particleData.getNamesUnalloc() );
172  for (auto it = particles_namelist.cbegin(); it != particles_namelist.cend(); ++it) {
173  std::string tmp( (*it)+"_count" );
174  if (containerHasElement(plot_var_names, tmp) ) {
175  tmp_plot_names.push_back(tmp);
176  }
177  }
178 #endif
179 
180  plot_var_names = tmp_plot_names;
181 }
const amrex::Vector< std::string > derived_names
Definition: ERF.H:971
const amrex::Vector< std::string > cons_names
Definition: ERF.H:964
Here is the call graph for this function:

◆ setRayleighRefFromSounding()

void ERF::setRayleighRefFromSounding ( bool  restarting)
private

Set Rayleigh mean profiles from input sounding.

Sets the Rayleigh Damping averaged quantities from an externally supplied input sounding data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
56 {
57  // If we are restarting then we haven't read the input_sounding file yet
58  // so we need to read it here
59  // TODO: should we store this information in the checkpoint file instead?
60  if (restarting) {
62  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
64  }
65  }
66 
67  const Real* z_inp_sound = input_sounding_data.z_inp_sound[0].dataPtr();
68  const Real* U_inp_sound = input_sounding_data.U_inp_sound[0].dataPtr();
69  const Real* V_inp_sound = input_sounding_data.V_inp_sound[0].dataPtr();
70  const Real* theta_inp_sound = input_sounding_data.theta_inp_sound[0].dataPtr();
71  const int inp_sound_size = input_sounding_data.size(0);
72 
73  int refine_fac{1};
74  for (int lev = 0; lev <= finest_level; lev++)
75  {
76  const int klo = geom[lev].Domain().smallEnd(2);
77  const int khi = geom[lev].Domain().bigEnd(2);
78  const int Nz = khi - klo + 1;
79 
80  Vector<Real> zcc(Nz);
81  Vector<Real> zlevels_sub(zlevels_stag[0].begin()+klo/refine_fac,
82  zlevels_stag[0].begin()+khi/refine_fac+2);
83  expand_and_interpolate_1d(zcc, zlevels_sub, refine_fac, true);
84 #if 0
85  amrex::AllPrint() << "lev="<<lev<<" : (refine_fac="<<refine_fac<<",klo="<<klo<<",khi="<<khi<<") ";
86  for (int k = 0; k < zlevels_sub.size(); k++) { amrex::AllPrint() << zlevels_sub[k] << " "; }
87  amrex::AllPrint() << " --> ";
88  for (int k = 0; k < Nz; k++) { amrex::AllPrint() << zcc[k] << " "; }
89  amrex::AllPrint() << std::endl;
90 #endif
91 
92  for (int k = 0; k < Nz; k++)
93  {
94  h_rayleigh_ptrs[lev][Rayleigh::ubar][k] = interpolate_1d(z_inp_sound, U_inp_sound, zcc[k], inp_sound_size);
95  h_rayleigh_ptrs[lev][Rayleigh::vbar][k] = interpolate_1d(z_inp_sound, V_inp_sound, zcc[k], inp_sound_size);
96  h_rayleigh_ptrs[lev][Rayleigh::wbar][k] = Real(0.0);
97  h_rayleigh_ptrs[lev][Rayleigh::thetabar][k] = interpolate_1d(z_inp_sound, theta_inp_sound, zcc[k], inp_sound_size);
98  }
99 
100  // Copy from host version to device version
101  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::ubar].begin(), h_rayleigh_ptrs[lev][Rayleigh::ubar].end(),
102  d_rayleigh_ptrs[lev][Rayleigh::ubar].begin());
103  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::vbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::vbar].end(),
104  d_rayleigh_ptrs[lev][Rayleigh::vbar].begin());
105  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::wbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::wbar].end(),
106  d_rayleigh_ptrs[lev][Rayleigh::wbar].begin());
107  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::thetabar].begin(), h_rayleigh_ptrs[lev][Rayleigh::thetabar].end(),
108  d_rayleigh_ptrs[lev][Rayleigh::thetabar].begin());
109 
110  refine_fac *= ref_ratio[lev][2];
111  }
112 }
AMREX_FORCE_INLINE void expand_and_interpolate_1d(amrex::Vector< amrex::Real > &znew, const amrex::Vector< amrex::Real > &zorig, int refine_fac, bool destag=false)
Definition: ERF_Interpolation_1D.H:85
amrex::Vector< amrex::Vector< amrex::Real > > theta_inp_sound
Definition: ERF_InputSoundingData.H:407
amrex::Vector< amrex::Vector< amrex::Real > > z_inp_sound
Definition: ERF_InputSoundingData.H:407
amrex::Vector< amrex::Vector< amrex::Real > > U_inp_sound
Definition: ERF_InputSoundingData.H:407
amrex::Vector< amrex::Vector< amrex::Real > > V_inp_sound
Definition: ERF_InputSoundingData.H:407
int size(int itime) const
Definition: ERF_InputSoundingData.H:382
Here is the call graph for this function:

◆ setRecordDataInfo()

void ERF::setRecordDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1353  {
1354  if (amrex::ParallelDescriptor::IOProcessor())
1355  {
1356  datalog[i] = std::make_unique<std::fstream>();
1357  datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1358  if (!datalog[i]->good()) {
1359  amrex::FileOpenFailed(filename);
1360  }
1361  }
1362  amrex::ParallelDescriptor::Barrier("ERF::setRecordDataInfo");
1363  }

◆ setRecordDerDataInfo()

void ERF::setRecordDerDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1366  {
1367  if (amrex::ParallelDescriptor::IOProcessor())
1368  {
1369  der_datalog[i] = std::make_unique<std::fstream>();
1370  der_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1371  if (!der_datalog[i]->good()) {
1372  amrex::FileOpenFailed(filename);
1373  }
1374  }
1375  amrex::ParallelDescriptor::Barrier("ERF::setRecordDerDataInfo");
1376  }

◆ setRecordEnergyDataInfo()

void ERF::setRecordEnergyDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1379  {
1380  if (amrex::ParallelDescriptor::IOProcessor())
1381  {
1382  tot_e_datalog[i] = std::make_unique<std::fstream>();
1383  tot_e_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1384  if (!tot_e_datalog[i]->good()) {
1385  amrex::FileOpenFailed(filename);
1386  }
1387  }
1388  amrex::ParallelDescriptor::Barrier("ERF::setRecordEnergyDataInfo");
1389  }

◆ setRecordSampleLineInfo()

void ERF::setRecordSampleLineInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1409  {
1410  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1411  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1412  {
1413  const amrex::Box& bx = mfi.validbox();
1414  if (bx.contains(cell)) {
1415  samplelinelog[i] = std::make_unique<std::fstream>();
1416  samplelinelog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1417  if (!samplelinelog[i]->good()) {
1418  amrex::FileOpenFailed(filename);
1419  }
1420  }
1421  }
1422  amrex::ParallelDescriptor::Barrier("ERF::setRecordSampleLineInfo");
1423  }

◆ setRecordSamplePointInfo()

void ERF::setRecordSamplePointInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1392  {
1393  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1394  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1395  {
1396  const amrex::Box& bx = mfi.validbox();
1397  if (bx.contains(cell)) {
1398  sampleptlog[i] = std::make_unique<std::fstream>();
1399  sampleptlog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1400  if (!sampleptlog[i]->good()) {
1401  amrex::FileOpenFailed(filename);
1402  }
1403  }
1404  }
1405  amrex::ParallelDescriptor::Barrier("ERF::setRecordSamplePointInfo");
1406  }

◆ setSpongeRefFromSounding()

void ERF::setSpongeRefFromSounding ( bool  restarting)
private

Set sponge mean profiles from input sounding.

Sets the sponge damping averaged quantities from an externally supplied input sponge data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
66 {
67  // If we are restarting then we haven't read the input_sponge file yet
68  // so we need to read it here
69  // TODO: should we store this information in the checkpoint file instead?
70  if (restarting) {
72  }
73 
74  const Real* z_inp_sponge = input_sponge_data.z_inp_sponge.dataPtr();
75  const Real* U_inp_sponge = input_sponge_data.U_inp_sponge.dataPtr();
76  const Real* V_inp_sponge = input_sponge_data.V_inp_sponge.dataPtr();
77  const int inp_sponge_size = input_sponge_data.size();
78 
79  for (int lev = 0; lev <= finest_level; lev++)
80  {
81  const int khi = geom[lev].Domain().bigEnd()[2];
82  Vector<Real> zcc(khi+1);
83 
84  if (z_phys_cc[lev]) {
85  // use_terrain=1
86  // calculate the damping strength based on the max height at each k
88  } else {
89  const auto *const prob_lo = geom[lev].ProbLo();
90  const auto *const dx = geom[lev].CellSize();
91  for (int k = 0; k <= khi; k++)
92  {
93  zcc[k] = prob_lo[2] + (k+0.5) * dx[2];
94  }
95  }
96 
97  for (int k = 0; k <= khi; k++)
98  {
99  h_sponge_ptrs[lev][Sponge::ubar_sponge][k] = interpolate_1d(z_inp_sponge, U_inp_sponge, zcc[k], inp_sponge_size);
100  h_sponge_ptrs[lev][Sponge::vbar_sponge][k] = interpolate_1d(z_inp_sponge, V_inp_sponge, zcc[k], inp_sponge_size);
101  }
102 
103  // Copy from host version to device version
104  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::ubar_sponge].begin(), h_sponge_ptrs[lev][Sponge::ubar_sponge].end(),
105  d_sponge_ptrs[lev][Sponge::ubar_sponge].begin());
106  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::vbar_sponge].begin(), h_sponge_ptrs[lev][Sponge::vbar_sponge].end(),
107  d_sponge_ptrs[lev][Sponge::vbar_sponge].begin());
108  }
109 }
AMREX_FORCE_INLINE void reduce_to_max_per_height(amrex::Vector< amrex::Real > &v, std::unique_ptr< amrex::MultiFab > &mf)
Definition: ERF_ParFunctions.H:8
amrex::Vector< amrex::Real > V_inp_sponge
Definition: ERF_InputSpongeData.H:114
amrex::Vector< amrex::Real > z_inp_sponge
Definition: ERF_InputSpongeData.H:114
amrex::Vector< amrex::Real > U_inp_sponge
Definition: ERF_InputSpongeData.H:114
int size() const
Definition: ERF_InputSpongeData.H:102
Here is the call graph for this function:

◆ solve_with_EB_mlmg()

void ERF::solve_with_EB_mlmg ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using EB_enabled MLMG Note that the level may or may not be level 0.

20 {
21  BL_PROFILE("ERF::solve_with_EB_mlmg()");
22 
23  auto const dom_lo = lbound(geom[lev].Domain());
24  auto const dom_hi = ubound(geom[lev].Domain());
25 
26  LPInfo info;
27  // Allow a hidden direction if the domain is one cell wide in any lateral direction
28  if (dom_lo.x == dom_hi.x) {
29  info.setHiddenDirection(0);
30  } else if (dom_lo.y == dom_hi.y) {
31  info.setHiddenDirection(1);
32  }
33 
34  // Make sure the solver only sees the levels over which we are solving
35  Vector<BoxArray> ba_tmp; ba_tmp.push_back(rhs[0].boxArray());
36  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(rhs[0].DistributionMap());
37  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
38 
39  auto bclo = get_projection_bc(Orientation::low);
40  auto bchi = get_projection_bc(Orientation::high);
41 
42  // amrex::Print() << "BCLO " << bclo[0] << " " << bclo[1] << " " << bclo[2] << std::endl;
43  // amrex::Print() << "BCHI " << bchi[0] << " " << bchi[1] << " " << bchi[2] << std::endl;
44 
45  Real reltol = solverChoice.poisson_reltol;
46  Real abstol = solverChoice.poisson_abstol;
47 
48  // ****************************************************************************
49  // Multigrid solve
50  // ****************************************************************************
51 
52  MLEBABecLap mleb (geom_tmp, ba_tmp, dm_tmp, info, {&EBFactory(lev)});
53 
54  mleb.setMaxOrder(2);
55  mleb.setDomainBC(bclo, bchi);
56  mleb.setLevelBC(0, nullptr);
57 
58  //
59  // This sets A = 0, B = 1 so that
60  // the operator A alpha - b del dot beta grad to b
61  // becomes - del dot beta grad
62  //
63  mleb.setScalars(0.0, 1.0);
64 
65  Array<MultiFab,AMREX_SPACEDIM> bcoef;
66  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
67  bcoef[idim].define(convert(ba_tmp[0],IntVect::TheDimensionVector(idim)),
68  dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
69  bcoef[idim].setVal(-1.0);
70  }
71  mleb.setBCoeffs(0, amrex::GetArrOfConstPtrs(bcoef));
72 
73  MLMG mlmg(mleb);
74 
75  int max_iter = 100;
76  mlmg.setMaxIter(max_iter);
77  mlmg.setVerbose(mg_verbose);
78  mlmg.setBottomVerbose(0);
79 
80  mlmg.solve(GetVecOfPtrs(phi), GetVecOfConstPtrs(rhs), reltol, abstol);
81 
82  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
83 
84  ImposeBCsOnPhi(lev,phi[0]);
85 
86  //
87  // This arises because we solve MINUS del dot beta grad phi = div (rho u)
88  //
89  fluxes[0][0].mult(-1.);
90  fluxes[0][1].mult(-1.);
91  fluxes[0][2].mult(-1.);
92 }
void ImposeBCsOnPhi(int lev, amrex::MultiFab &phi)
Definition: ERF_ImposeBCsOnPhi.cpp:12

◆ solve_with_gmres()

void ERF::solve_with_gmres ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using FFT-preconditioned GMRES

14 {
15 #ifdef ERF_USE_FFT
16  BL_PROFILE("ERF::solve_with_gmres()");
17 
18  Real reltol = solverChoice.poisson_reltol;
19  Real abstol = solverChoice.poisson_abstol;
20 
21  amrex::GMRES<MultiFab, TerrainPoisson> gmsolver;
22 
23  TerrainPoisson tp(geom[lev], rhs[0].boxArray(), rhs[0].DistributionMap(), domain_bc_type,
24  stretched_dz_d[lev], *ax[lev], *ay[lev], z_phys_nd[lev].get());
25 
26  gmsolver.define(tp);
27 
28  gmsolver.setVerbose(mg_verbose);
29 
30  gmsolver.setRestartLength(50);
31 
32  tp.usePrecond(true);
33 
34  gmsolver.solve(phi[0], rhs[0], reltol, abstol);
35 
36  tp.getFluxes(phi[0], fluxes[0]);
37 #else
38  amrex::ignore_unused(lev, rhs, phi, fluxes);
39 #endif
40 
41  // ****************************************************************************
42  // Impose bc's on pprime
43  // ****************************************************************************
44  ImposeBCsOnPhi(lev, phi[0]);
45 }

◆ solve_with_mlmg()

void ERF::solve_with_mlmg ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using MLMG Note that the level may or may not be level 0.

41 {
42  BL_PROFILE("ERF::solve_with_mlmg()");
43 
44  auto const dom_lo = lbound(geom[lev].Domain());
45  auto const dom_hi = ubound(geom[lev].Domain());
46 
47  LPInfo info;
48  // Allow a hidden direction if the domain is one cell wide in any lateral direction
49  if (dom_lo.x == dom_hi.x) {
50  info.setHiddenDirection(0);
51  } else if (dom_lo.y == dom_hi.y) {
52  info.setHiddenDirection(1);
53  }
54 
55  // Make sure the solver only sees the levels over which we are solving
56  Vector<BoxArray> ba_tmp; ba_tmp.push_back(rhs[0].boxArray());
57  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(rhs[0].DistributionMap());
58  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
59 
60  auto bclo = get_projection_bc(Orientation::low);
61  auto bchi = get_projection_bc(Orientation::high);
62 
63  // amrex::Print() << "BCLO " << bclo[0] << " " << bclo[1] << " " << bclo[2] << std::endl;
64  // amrex::Print() << "BCHI " << bchi[0] << " " << bchi[1] << " " << bchi[2] << std::endl;
65 
66  Real reltol = solverChoice.poisson_reltol;
67  Real abstol = solverChoice.poisson_abstol;
68 
69  // ****************************************************************************
70  // Multigrid solve
71  // ****************************************************************************
72 
73  MLPoisson mlpoisson(geom_tmp, ba_tmp, dm_tmp, info);
74  mlpoisson.setDomainBC(bclo, bchi);
75  if (lev > 0) {
76  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
77  }
78  mlpoisson.setLevelBC(0, nullptr);
79 
80  // Use low order for outflow at physical boundaries
81  mlpoisson.setMaxOrder(2);
82 
83  MLMG mlmg(mlpoisson);
84  int max_iter = 100;
85  mlmg.setMaxIter(max_iter);
86 
87  mlmg.setVerbose(mg_verbose);
88  mlmg.setBottomVerbose(0);
89 
90  mlmg.solve(GetVecOfPtrs(phi),
91  GetVecOfConstPtrs(rhs),
92  reltol, abstol);
93  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
94 
95  // ****************************************************************************
96  // Impose bc's on pprime
97  // ****************************************************************************
98  ImposeBCsOnPhi(lev, phi[0]);
99 }

◆ sum_derived_quantities()

void ERF::sum_derived_quantities ( amrex::Real  time)
188 {
189  if (verbose <= 0 || NumDerDataLogs() <= 0) return;
190 
191  int lev = 0;
192 
193  AMREX_ALWAYS_ASSERT(lev == 0);
194 
195  // ************************************************************************
196  // WARNING: we are not filling ghost cells other than periodic outside the domain
197  // ************************************************************************
198 
199  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
200  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
201 
202  // Average all three components of velocity (on faces) to the cell center
203  average_face_to_cellcenter(mf_cc_vel,0,
204  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
205  &vars_new[lev][Vars::yvel],
206  &vars_new[lev][Vars::zvel]});
207  mf_cc_vel.FillBoundary(geom[lev].periodicity());
208 
209  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
210  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
211  }
212 
213  MultiFab r_wted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
214  MultiFab unwted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
215  MultiFab enstrophysq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
216  MultiFab theta_mf(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
217 
218 #ifdef _OPENMP
219 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
220 #endif
221  for (MFIter mfi(unwted_magvelsq, TilingIfNotGPU()); mfi.isValid(); ++mfi)
222  {
223  const Box& bx = mfi.tilebox();
224  auto& src_fab = mf_cc_vel[mfi];
225 
226  auto& dest1_fab = unwted_magvelsq[mfi];
227  derived::erf_dermagvelsq(bx, dest1_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
228 
229  auto& dest2_fab = enstrophysq[mfi];
230  derived::erf_derenstrophysq(bx, dest2_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
231  }
232 
233  // Copy the MF holding 1/2(u^2 + v^2 + w^2) into the MF that will hold 1/2 rho (u^2 + v^2 + w^2)d
234  MultiFab::Copy(r_wted_magvelsq, unwted_magvelsq, 0, 0, 1, 0);
235 
236  // Multiply the MF holding 1/2(u^2 + v^2 + w^2) by rho to get 1/2 rho (u^2 + v^2 + w^2)
237  MultiFab::Multiply(r_wted_magvelsq, vars_new[lev][Vars::cons], 0, 0, 1, 0);
238 
239  // Copy the MF holding (rho theta) into "theta_mf"
240  MultiFab::Copy(theta_mf, vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, 0);
241 
242  // Divide (rho theta) by rho to get theta in the MF "theta_mf"
243  MultiFab::Divide(theta_mf, vars_new[lev][Vars::cons], Rho_comp, 0, 1, 0);
244 
245  Real unwted_avg = volWgtSumMF(lev, unwted_magvelsq, 0, false);
246  Real r_wted_avg = volWgtSumMF(lev, r_wted_magvelsq, 0, false);
247  Real enstrsq_avg = volWgtSumMF(lev, enstrophysq, 0, false);
248  Real theta_avg = volWgtSumMF(lev, theta_mf, 0, false);
249 
250  // Get volume including terrain (consistent with volWgtSumMF routine)
251  MultiFab volume(grids[lev], dmap[lev], 1, 0);
252  auto const& dx = geom[lev].CellSizeArray();
253  Real cell_vol = dx[0]*dx[1]*dx[2];
254  volume.setVal(cell_vol);
255  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
256  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
257  }
258 #ifdef _OPENMP
259 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
260 #endif
261  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
262  {
263  const Box& tbx = mfi.tilebox();
264  auto dst = volume.array(mfi);
265  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
266  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
267  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
268  {
269  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
270  });
271  }
272  Real vol = volume.sum();
273 
274  unwted_avg /= vol;
275  r_wted_avg /= vol;
276  enstrsq_avg /= vol;
277  theta_avg /= vol;
278 
279  const int nfoo = 4;
280  Real foo[nfoo] = {unwted_avg,r_wted_avg,enstrsq_avg,theta_avg};
281 #ifdef AMREX_LAZY
282  Lazy::QueueReduction([=]() mutable {
283 #endif
284  ParallelDescriptor::ReduceRealSum(
285  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
286 
287  if (ParallelDescriptor::IOProcessor()) {
288  int i = 0;
289  unwted_avg = foo[i++];
290  r_wted_avg = foo[i++];
291  enstrsq_avg = foo[i++];
292  theta_avg = foo[i++];
293 
294  std::ostream& data_log_der = DerDataLog(0);
295 
296  if (time == 0.0) {
297  data_log_der << std::setw(datwidth) << " time";
298  data_log_der << std::setw(datwidth) << " ke_den";
299  data_log_der << std::setw(datwidth) << " velsq";
300  data_log_der << std::setw(datwidth) << " enstrophy";
301  data_log_der << std::setw(datwidth) << " int_energy";
302  data_log_der << std::endl;
303  }
304  data_log_der << std::setw(datwidth) << std::setprecision(timeprecision) << time;
305  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << unwted_avg;
306  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << r_wted_avg;
307  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << enstrsq_avg;
308  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << theta_avg;
309  data_log_der << std::endl;
310 
311  } // if IOProcessor
312 #ifdef AMREX_LAZY
313  }
314 #endif
315 }
AMREX_FORCE_INLINE std::ostream & DerDataLog(int i)
Definition: ERF.H:1260
AMREX_FORCE_INLINE int NumDerDataLogs() noexcept
Definition: ERF.H:1274
void erf_dermagvelsq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:346
void erf_derenstrophysq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:284
Here is the call graph for this function:

◆ sum_energy_quantities()

void ERF::sum_energy_quantities ( amrex::Real  time)
319 {
320  if ( (verbose <= 0) || (tot_e_datalog.size() < 1) ) { return; }
321 
322  int lev = 0;
323 
324  AMREX_ALWAYS_ASSERT(lev == 0);
325 
326  // ************************************************************************
327  // WARNING: we are not filling ghost cells other than periodic outside the domain
328  // ************************************************************************
329 
330  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
331  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
332 
333  // Average all three components of velocity (on faces) to the cell center
334  average_face_to_cellcenter(mf_cc_vel,0,
335  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
336  &vars_new[lev][Vars::yvel],
337  &vars_new[lev][Vars::zvel]});
338  mf_cc_vel.FillBoundary(geom[lev].periodicity());
339 
340  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
341  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
342  }
343 
344  MultiFab tot_mass (grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
345  MultiFab tot_energy(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
346 
347  auto const& dx = geom[lev].CellSizeArray();
348  bool is_moist = (solverChoice.moisture_type != MoistureType::None);
349 
350 #ifdef _OPENMP
351 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
352 #endif
353  for (MFIter mfi(tot_mass, TilingIfNotGPU()); mfi.isValid(); ++mfi)
354  {
355  const Box& bx = mfi.tilebox();
356 
357  const Array4<Real>& cc_vel_arr = mf_cc_vel.array(mfi);
358  const Array4<Real>& tot_mass_arr = tot_mass.array(mfi);
359  const Array4<Real>& tot_energy_arr = tot_energy.array(mfi);
360  const Array4<const Real>& cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
361  const Array4<const Real>& z_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) :
362  Array4<const Real>{};
363  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
364  {
365  Real Qv = (is_moist) ? cons_arr(i,j,k,RhoQ1_comp) : 0.0;
366  Real Qc = (is_moist) ? cons_arr(i,j,k,RhoQ2_comp) : 0.0;
367  Real Qt = Qv + Qc;
368  Real Rhod = cons_arr(i,j,k,Rho_comp);
369  Real Rhot = Rhod * (1.0 + Qt);
370  Real Temp = getTgivenRandRTh(Rhod, cons_arr(i,j,k,RhoTheta_comp), Qv);
371  Real TKE = 0.5 * ( cc_vel_arr(i,j,k,0)*cc_vel_arr(i,j,k,0)
372  + cc_vel_arr(i,j,k,1)*cc_vel_arr(i,j,k,1)
373  + cc_vel_arr(i,j,k,2)*cc_vel_arr(i,j,k,2) );
374  Real zval = (z_arr) ? z_arr(i,j,k) : Real(k)*dx[2];
375 
376  Real Cv = Cp_d - R_d;
377  Real Cvv = Cp_v - R_v;
378  Real Cpv = Cp_v;
379 
380  tot_mass_arr(i,j,k) = Rhot;
381  tot_energy_arr(i,j,k) = Rhod * ( (Cv + Cvv*Qv + Cpv*Qc)*Temp - L_v*Qc
382  + (1.0 + Qt)*TKE + (1.0 + Qt)*CONST_GRAV*zval );
383 
384  });
385 
386  }
387 
388  Real tot_mass_avg = volWgtSumMF(lev, tot_mass , 0, false);
389  Real tot_energy_avg = volWgtSumMF(lev, tot_energy, 0, false);
390 
391  // Get volume including terrain (consistent with volWgtSumMF routine)
392  MultiFab volume(grids[lev], dmap[lev], 1, 0);
393  Real cell_vol = dx[0]*dx[1]*dx[2];
394  volume.setVal(cell_vol);
395  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
396  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
397  }
398 #ifdef _OPENMP
399 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
400 #endif
401  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
402  {
403  const Box& tbx = mfi.tilebox();
404  auto dst = volume.array(mfi);
405  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
406  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
407  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
408  {
409  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
410  });
411  }
412  Real vol = volume.sum();
413 
414  // Divide by the volume
415  tot_mass_avg /= vol;
416  tot_energy_avg /= vol;
417 
418  const int nfoo = 2;
419  Real foo[nfoo] = {tot_mass_avg,tot_energy_avg};
420 #ifdef AMREX_LAZY
421  Lazy::QueueReduction([=]() mutable {
422 #endif
423  ParallelDescriptor::ReduceRealSum(
424  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
425 
426  if (ParallelDescriptor::IOProcessor()) {
427  int i = 0;
428  tot_mass_avg = foo[i++];
429  tot_energy_avg = foo[i++];
430 
431  std::ostream& data_log_energy = *tot_e_datalog[0];
432 
433  if (time == 0.0) {
434  data_log_energy << std::setw(datwidth) << " time";
435  data_log_energy << std::setw(datwidth) << " tot_mass";
436  data_log_energy << std::setw(datwidth) << " tot_energy";
437  data_log_energy << std::endl;
438  }
439  data_log_energy << std::setw(datwidth) << std::setprecision(timeprecision) << time;
440  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_mass_avg;
441  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_energy_avg;
442  data_log_energy << std::endl;
443 
444  } // if IOProcessor
445 #ifdef AMREX_LAZY
446  }
447 #endif
448 }
constexpr amrex::Real R_v
Definition: ERF_Constants.H:11
constexpr amrex::Real Cp_d
Definition: ERF_Constants.H:12
constexpr amrex::Real CONST_GRAV
Definition: ERF_Constants.H:21
constexpr amrex::Real Cp_v
Definition: ERF_Constants.H:13
constexpr amrex::Real R_d
Definition: ERF_Constants.H:10
constexpr amrex::Real L_v
Definition: ERF_Constants.H:16
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getTgivenRandRTh(const amrex::Real rho, const amrex::Real rhotheta, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:46
Here is the call graph for this function:

◆ sum_integrated_quantities()

void ERF::sum_integrated_quantities ( amrex::Real  time)

Computes the integrated quantities on the grid such as the total scalar and total mass quantities. Prints and writes to output file.

Parameters
timeCurrent time
16 {
17  BL_PROFILE("ERF::sum_integrated_quantities()");
18 
19  if (verbose <= 0)
20  return;
21 
22  // Single level sum
23  Real mass_sl;
24 
25  // Multilevel sums
26  Real mass_ml = 0.0;
27  Real rhth_ml = 0.0;
28  Real scal_ml = 0.0;
29  Real mois_ml = 0.0;
30 
31 #if 1
32  mass_sl = volWgtSumMF(0,vars_new[0][Vars::cons],Rho_comp,false);
33  for (int lev = 0; lev <= finest_level; lev++) {
34  mass_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],Rho_comp,true);
35  }
36 #else
37  for (int lev = 0; lev <= finest_level; lev++) {
38  MultiFab pert_dens(vars_new[lev][Vars::cons].boxArray(),
39  vars_new[lev][Vars::cons].DistributionMap(),
40  1,0);
41  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
42  for ( MFIter mfi(pert_dens,TilingIfNotGPU()); mfi.isValid(); ++mfi)
43  {
44  const Box& bx = mfi.tilebox();
45  const Array4<Real >& pert_dens_arr = pert_dens.array(mfi);
46  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
47  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
48  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
49  pert_dens_arr(i, j, k, 0) = S_arr(i,j,k,Rho_comp) - r0_arr(i,j,k);
50  });
51  }
52  if (lev == 0) {
53  mass_sl = volWgtSumMF(0,pert_dens,0,false);
54  }
55  mass_ml += volWgtSumMF(lev,pert_dens,0,true);
56  } // lev
57 #endif
58 
59  Real rhth_sl = volWgtSumMF(0,vars_new[0][Vars::cons], RhoTheta_comp,false);
60  Real scal_sl = volWgtSumMF(0,vars_new[0][Vars::cons],RhoScalar_comp,false);
61  Real mois_sl = 0.0;
62  if (solverChoice.moisture_type != MoistureType::None) {
63  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
64  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
65  mois_sl += volWgtSumMF(0,vars_new[0][Vars::cons],RhoQ1_comp+qoff,false);
66  }
67  }
68 
69  for (int lev = 0; lev <= finest_level; lev++) {
70  rhth_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons], RhoTheta_comp,true);
71  scal_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoScalar_comp,true);
72  if (solverChoice.moisture_type != MoistureType::None) {
73  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
74  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
75  mois_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoQ1_comp+qoff,false);
76  }
77  }
78  }
79 
80  Gpu::HostVector<Real> h_avg_ustar; h_avg_ustar.resize(1);
81  Gpu::HostVector<Real> h_avg_tstar; h_avg_tstar.resize(1);
82  Gpu::HostVector<Real> h_avg_olen; h_avg_olen.resize(1);
83  if ((m_SurfaceLayer != nullptr) && (NumDataLogs() > 0)) {
84  Box domain = geom[0].Domain();
85  int zdir = 2;
86  h_avg_ustar = sumToLine(*m_SurfaceLayer->get_u_star(0),0,1,domain,zdir);
87  h_avg_tstar = sumToLine(*m_SurfaceLayer->get_t_star(0),0,1,domain,zdir);
88  h_avg_olen = sumToLine(*m_SurfaceLayer->get_olen(0) ,0,1,domain,zdir);
89 
90  // Divide by the total number of cells we are averaging over
91  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
92  h_avg_ustar[0] /= area_z;
93  h_avg_tstar[0] /= area_z;
94  h_avg_olen[0] /= area_z;
95 
96  } else {
97  h_avg_ustar[0] = 0.;
98  h_avg_tstar[0] = 0.;
99  h_avg_olen[0] = 0.;
100  }
101 
102  const int nfoo = 8;
103  Real foo[nfoo] = {mass_sl,rhth_sl,scal_sl,mois_sl,mass_ml,rhth_ml,scal_ml,mois_ml};
104 #ifdef AMREX_LAZY
105  Lazy::QueueReduction([=]() mutable {
106 #endif
107  ParallelDescriptor::ReduceRealSum(
108  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
109 
110  if (ParallelDescriptor::IOProcessor()) {
111  int i = 0;
112  mass_sl = foo[i++];
113  rhth_sl = foo[i++];
114  scal_sl = foo[i++];
115  mois_sl = foo[i++];
116  mass_ml = foo[i++];
117  rhth_ml = foo[i++];
118  scal_ml = foo[i++];
119  mois_ml = foo[i++];
120 
121  Print() << '\n';
122  Print() << "TIME= " << std::setw(datwidth) << std::setprecision(timeprecision) << std::left << time << '\n';
123  if (finest_level == 0) {
124 #if 1
125  Print() << " MASS = " << mass_sl << '\n';
126 #else
127  Print() << " PERT MASS = " << mass_sl << '\n';
128 #endif
129  Print() << " RHO THETA = " << rhth_sl << '\n';
130  Print() << " RHO SCALAR = " << scal_sl << '\n';
131  Print() << " RHO QTOTAL = " << mois_sl << '\n';
132  } else {
133 #if 1
134  Print() << " MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
135 #else
136  Print() << " PERT MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
137 #endif
138  Print() << " RHO THETA SL/ML = " << rhth_sl << " " << rhth_ml << '\n';
139  Print() << " RHO SCALAR SL/ML = " << scal_sl << " " << scal_ml << '\n';
140  Print() << " RHO QTOTAL SL/ML = " << mois_sl << " " << mois_ml << '\n';
141  }
142 
143  // The first data log only holds scalars
144  if (NumDataLogs() > 0)
145  {
146  int n_d = 0;
147  std::ostream& data_log1 = DataLog(n_d);
148  if (data_log1.good()) {
149  if (time == 0.0) {
150  data_log1 << std::setw(datwidth) << " time";
151  data_log1 << std::setw(datwidth) << " u_star";
152  data_log1 << std::setw(datwidth) << " t_star";
153  data_log1 << std::setw(datwidth) << " olen";
154  data_log1 << std::endl;
155  } // time = 0
156 
157  // Write the quantities at this time
158  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time;
159  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_ustar[0];
160  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_tstar[0];
161  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_olen[0];
162  data_log1 << std::endl;
163  } // if good
164  } // loop over i
165  } // if IOProcessor
166 #ifdef AMREX_LAZY
167  });
168 #endif
169 
170  // This is just an alias for convenience
171  int lev = 0;
172  if (NumSamplePointLogs() > 0 && NumSamplePoints() > 0) {
173  for (int i = 0; i < NumSamplePoints(); ++i)
174  {
175  sample_points(lev, time, SamplePoint(i), vars_new[lev][Vars::cons]);
176  }
177  }
178  if (NumSampleLineLogs() > 0 && NumSampleLines() > 0) {
179  for (int i = 0; i < NumSampleLines(); ++i)
180  {
181  sample_lines(lev, time, SampleLine(i), vars_new[lev][Vars::cons]);
182  }
183  }
184 }
AMREX_FORCE_INLINE int NumSampleLineLogs() noexcept
Definition: ERF.H:1303
AMREX_FORCE_INLINE int NumSamplePointLogs() noexcept
Definition: ERF.H:1289
amrex::IntVect & SampleLine(int i)
Definition: ERF.H:1322
AMREX_FORCE_INLINE int NumSamplePoints() noexcept
Definition: ERF.H:1316
AMREX_FORCE_INLINE int NumSampleLines() noexcept
Definition: ERF.H:1329
amrex::IntVect & SamplePoint(int i)
Definition: ERF.H:1309
void sample_points(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:527
AMREX_FORCE_INLINE std::ostream & DataLog(int i)
Definition: ERF.H:1253
AMREX_FORCE_INLINE int NumDataLogs() noexcept
Definition: ERF.H:1267
void sample_lines(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:563

◆ timeStep()

void ERF::timeStep ( int  lev,
amrex::Real  time,
int  iteration 
)
private

Function that coordinates the evolution across levels – this calls Advance to do the actual advance at this level, then recursively calls itself at finer levels

Parameters
[in]levlevel of refinement (coarsest level is 0)
[in]timestart time for time advance
[in]iterationtime step counter
18 {
19  //
20  // We need to FillPatch the coarse level before assessing whether to regrid
21  // We have not done the swap yet so we fill the "new" which will become the "old"
22  //
23  MultiFab& S_new = vars_new[lev][Vars::cons];
24  MultiFab& U_new = vars_new[lev][Vars::xvel];
25  MultiFab& V_new = vars_new[lev][Vars::yvel];
26  MultiFab& W_new = vars_new[lev][Vars::zvel];
27 
28 #ifdef ERF_USE_NETCDF
29  //
30  // Since we now only read in a subset of the time slices in wrfbdy we need to check
31  // whether it's time to read in more
32  //
33  if (solverChoice.use_real_bcs && (lev==0)) {
34  Real dT = bdy_time_interval;
35 
36  Real time_since_start_old = time - start_bdy_time;
37  int n_time_old = static_cast<int>( time_since_start_old / dT);
38 
39  Real time_since_start_new = time + dt[lev] - start_bdy_time;
40  int n_time_new = static_cast<int>( time_since_start_new / dT);
41 
42  int ntimes = bdy_data_xlo.size();
43  for (int itime = 0; itime < ntimes; itime++)
44  {
45  //if (bdy_data_xlo[itime].size() > 0) {
46  // amrex::Print() << "HAVE DATA AT TIME " << itime << std::endl;
47  //} else {
48  // amrex::Print() << " NO DATA AT TIME " << itime << std::endl;
49  //}
50 
51  bool clear_itime = (itime < n_time_old);
52 
53  if (clear_itime && bdy_data_xlo[itime].size() > 0) {
54  bdy_data_xlo[itime].clear();
55  //amrex::Print() << "CLEAR DATA AT TIME " << itime << std::endl;
56  }
57 
58  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
59  //if (need_itime) amrex::Print() << "NEED DATA AT TIME " << itime << std::endl;
60 
61  if (bdy_data_xlo[itime].size() == 0 && need_itime) {
62  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
63  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
64  real_width);
65 
66  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
67  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
68  *mf_MUB[lev], *mf_C1H[lev], *mf_C2H[lev],
70  geom[lev], use_moist);
71  }
72  } // itime
73  } // use_real_bcs && lev == 0
74 #endif
75 
76  //
77  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
78  //
79  if (lev == 0) {
80  FillPatch(lev, time, {&S_new, &U_new, &V_new, &W_new});
81  } else if (lev < finest_level) {
82  FillPatch(lev, time, {&S_new, &U_new, &V_new, &W_new},
83  {&S_new, &rU_new[lev], &rV_new[lev], &rW_new[lev]},
84  base_state[lev], base_state[lev]);
85  }
86 
87  if (regrid_int > 0) // We may need to regrid
88  {
89  // help keep track of whether a level was already regridded
90  // from a coarser level call to regrid
91  static Vector<int> last_regrid_step(max_level+1, 0);
92 
93  // regrid changes level "lev+1" so we don't regrid on max_level
94  // also make sure we don't regrid fine levels again if
95  // it was taken care of during a coarser regrid
96  if (lev < max_level)
97  {
98  if ( (istep[lev] % regrid_int == 0) && (istep[lev] > last_regrid_step[lev]) )
99  {
100  // regrid could add newly refine levels (if finest_level < max_level)
101  // so we save the previous finest level index
102  int old_finest = finest_level;
103 
104  regrid(lev, time);
105 
106 #ifdef ERF_USE_PARTICLES
107  if (finest_level != old_finest) {
108  particleData.Redistribute();
109  }
110 #endif
111 
112  // mark that we have regridded this level already
113  for (int k = lev; k <= finest_level; ++k) {
114  last_regrid_step[k] = istep[k];
115  }
116 
117  // if there are newly created levels, set the time step
118  for (int k = old_finest+1; k <= finest_level; ++k) {
119  dt[k] = dt[k-1] / MaxRefRatio(k-1);
120  }
121  } // if
122  } // lev
123  }
124 
125  // Update what we call "old" and "new" time
126  t_old[lev] = t_new[lev];
127  t_new[lev] += dt[lev];
128 
129  if (Verbose()) {
130  amrex::Print() << "[Level " << lev << " step " << istep[lev]+1 << "] ";
131  amrex::Print() << std::setprecision(timeprecision)
132  << "ADVANCE from time = " << t_old[lev] << " to " << t_new[lev]
133  << " with dt = " << dt[lev] << std::endl;
134  }
135 
136 #ifdef ERF_USE_WW3_COUPLING
137  amrex::Print() << " About to call send_to_ww3 from ERF_Timestep" << std::endl;
138  send_to_ww3(lev);
139  amrex::Print() << " About to call read_waves from ERF_Timestep" << std::endl;
140  read_waves(lev);
141  //send_to_ww3(lev);
142  //read_waves(lev);
143  //send_to_ww3(lev);
144 #endif
145 
146  // Advance a single level for a single time step
147  Advance(lev, time, dt[lev], istep[lev], nsubsteps[lev]);
148 
149  ++istep[lev];
150 
151  if (Verbose()) {
152  amrex::Print() << "[Level " << lev << " step " << istep[lev] << "] ";
153  amrex::Print() << "Advanced " << CountCells(lev) << " cells" << std::endl;
154  }
155 
156  if (lev < finest_level)
157  {
158  // recursive call for next-finer level
159  for (int i = 1; i <= nsubsteps[lev+1]; ++i)
160  {
161  Real strt_time_for_fine = time + (i-1)*dt[lev+1];
162  timeStep(lev+1, strt_time_for_fine, i);
163  }
164  }
165 
166  if (verbose && lev == 0 && solverChoice.moisture_type != MoistureType::None) {
167  amrex::Print() << "Cloud fraction " << time << " " << cloud_fraction(time) << std::endl;
168  }
169 }
amrex::Real cloud_fraction(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:451
void Advance(int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
Definition: ERF_Advance.cpp:23

◆ turbPert_amplitude()

void ERF::turbPert_amplitude ( const int  lev)
private
33 {
34  // Accessing data
35  auto& lev_new = vars_new[lev];
36 
37  // Creating local data
38  int ncons = lev_new[Vars::cons].nComp();
39  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
40 
41  // Defining BoxArray type
42  auto m_ixtype = cons_data.boxArray().ixType();
43 
44 #ifdef _OPENMP
45 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
46 #endif
47  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi) {
48  const Box &bx = mfi.validbox();
49  const auto &cons_pert_arr = cons_data.array(mfi); // Address of perturbation array
50  const amrex::Array4<const amrex::Real> &pert_cell = turbPert.pb_cell[lev].array(mfi); // per-cell perturbation stored in structure
51 
52  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cons_pert_arr, pert_cell);
53  } // mfi
54 }
Here is the call graph for this function:

◆ turbPert_update()

void ERF::turbPert_update ( const int  lev,
const amrex::Real  dt 
)
private
13 {
14  // Accessing data
15  auto& lev_new = vars_new[lev];
16 
17  // Create aliases to state data to pass to calc_tpi_update
18  int ncons = lev_new[Vars::cons].nComp();
19  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
20  MultiFab xvel_data(lev_new[Vars::xvel], make_alias, 0, 1);
21  MultiFab yvel_data(lev_new[Vars::yvel], make_alias, 0, 1);
22 
23  // Computing perturbation update time
24  turbPert.calc_tpi_update(lev, local_dt, xvel_data, yvel_data, cons_data);
25 
26  Print() << "Successfully initialized turbulent perturbation update time and amplitude with type: "<< turbPert.pt_type <<"\n";
27 }
int pt_type
Definition: ERF_TurbPertStruct.H:638

◆ update_diffusive_arrays()

void ERF::update_diffusive_arrays ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
private
425 {
426  // ********************************************************************************************
427  // Diffusive terms
428  // ********************************************************************************************
429  bool l_use_terrain = (SolverChoice::terrain_type != TerrainType::None);
430  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
431  bool l_use_diff = ( (solverChoice.diffChoice.molec_diff_type != MolecDiffType::None) ||
432  l_use_kturb );
433  bool l_need_SmnSmn = solverChoice.turbChoice[lev].use_keqn;
434  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
435  bool l_rotate = ( solverChoice.use_rotate_surface_flux );
436 
437  BoxArray ba12 = convert(ba, IntVect(1,1,0));
438  BoxArray ba13 = convert(ba, IntVect(1,0,1));
439  BoxArray ba23 = convert(ba, IntVect(0,1,1));
440 
441  Tau[lev].resize(9);
442 
443  if (l_use_diff) {
444  //
445  // NOTE: We require ghost cells in the vertical when allowing grids that don't
446  // cover the entire vertical extent of the domain at this level
447  //
448  for (int i = 0; i < 3; i++) {
449  Tau[lev][i] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
450  }
451  Tau[lev][TauType::tau12] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
452  Tau[lev][TauType::tau13] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
453  Tau[lev][TauType::tau23] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
454  if (l_use_terrain) {
455  Tau[lev][TauType::tau21] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
456  Tau[lev][TauType::tau31] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
457  Tau[lev][TauType::tau32] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
458  } else {
459  Tau[lev][TauType::tau21] = nullptr;
460  Tau[lev][TauType::tau31] = nullptr;
461  Tau[lev][TauType::tau32] = nullptr;
462  }
463  SFS_hfx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
464  SFS_hfx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
465  SFS_hfx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
466  SFS_diss_lev[lev] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
467  SFS_hfx1_lev[lev]->setVal(0.);
468  SFS_hfx2_lev[lev]->setVal(0.);
469  SFS_hfx3_lev[lev]->setVal(0.);
470  SFS_diss_lev[lev]->setVal(0.);
471  if (l_use_moist) {
472  SFS_q1fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
473  SFS_q2fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
474  SFS_q1fx3_lev[lev]->setVal(0.0);
475  SFS_q2fx3_lev[lev]->setVal(0.0);
476  if (l_rotate) {
477  SFS_q1fx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
478  SFS_q1fx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
479  SFS_q1fx1_lev[lev]->setVal(0.0);
480  SFS_q1fx2_lev[lev]->setVal(0.0);
481  } else {
482  SFS_q1fx1_lev[lev] = nullptr;
483  SFS_q1fx2_lev[lev] = nullptr;
484  }
485  } else {
486  SFS_q1fx1_lev[lev] = nullptr;
487  SFS_q1fx2_lev[lev] = nullptr;
488  SFS_q1fx3_lev[lev] = nullptr;
489  SFS_q2fx3_lev[lev] = nullptr;
490  }
491  } else {
492  for (int i = 0; i < 9; i++) {
493  Tau[lev][i] = nullptr;
494  }
495  SFS_hfx1_lev[lev] = nullptr; SFS_hfx2_lev[lev] = nullptr; SFS_hfx3_lev[lev] = nullptr;
496  SFS_diss_lev[lev] = nullptr;
497  }
498 
499  if (l_use_kturb) {
500  eddyDiffs_lev[lev] = std::make_unique<MultiFab>(ba, dm, EddyDiff::NumDiffs, 2);
501  eddyDiffs_lev[lev]->setVal(0.0);
502  if(l_need_SmnSmn) {
503  SmnSmn_lev[lev] = std::make_unique<MultiFab>( ba, dm, 1, 0 );
504  } else {
505  SmnSmn_lev[lev] = nullptr;
506  }
507  } else {
508  eddyDiffs_lev[lev] = nullptr;
509  SmnSmn_lev[lev] = nullptr;
510  }
511 }
@ NumDiffs
Definition: ERF_IndexDefines.H:181

◆ update_terrain_arrays()

void ERF::update_terrain_arrays ( int  lev)
620 {
621  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
622  SolverChoice::mesh_type == MeshType::VariableDz) {
623  make_J(geom[lev],*z_phys_nd[lev],*detJ_cc[lev]);
624  make_areas(geom[lev],*z_phys_nd[lev],*ax[lev],*ay[lev],*az[lev]);
625  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
626  }
627 }
void make_areas(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &ax, MultiFab &ay, MultiFab &az)
Definition: ERF_TerrainMetrics.cpp:558
void make_J(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &detJ_cc)
Definition: ERF_TerrainMetrics.cpp:520
Here is the call graph for this function:

◆ volWgtSumMF()

Real ERF::volWgtSumMF ( int  lev,
const amrex::MultiFab &  mf,
int  comp,
bool  finemask 
)

Utility function for computing a volume weighted sum of MultiFab data for a single component

Parameters
levCurrent level
mfMultiFab on which we do the volume weighted sum
compIndex of the component we want to sum
localBoolean sets whether or not to reduce the sum over the domain (false) or compute sums local to each MPI rank (true)
finemaskIf a finer level is available, determines whether we mask fine data
655 {
656  BL_PROFILE("ERF::volWgtSumMF()");
657 
658  Real sum = 0.0;
659  MultiFab tmp(grids[lev], dmap[lev], 1, 0);
660  MultiFab::Copy(tmp, mf, comp, 0, 1, 0);
661 
662  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
663  // m is the map scale factor at cell centers
664  for (MFIter mfi(tmp, TilingIfNotGPU()); mfi.isValid(); ++mfi) {
665  const Box& bx = mfi.tilebox();
666  const auto dst = tmp.array(mfi);
667  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
668  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
669  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
670  {
671  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
672  });
673  } // mfi
674 
675  if (lev < finest_level && finemask) {
676  const MultiFab& mask = build_fine_mask(lev+1);
677  MultiFab::Multiply(tmp, mask, 0, 0, 1, 0);
678  }
679 
680  // Get volume including terrain (consistent with volWgtSumMF routine)
681  MultiFab volume(grids[lev], dmap[lev], 1, 0);
682  auto const& dx = geom[lev].CellSizeArray();
683  Real cell_vol = dx[0]*dx[1]*dx[2];
684  volume.setVal(cell_vol);
685  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
686  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
687  }
688 #ifdef _OPENMP
689 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
690 #endif
691  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
692  {
693  const Box& tbx = mfi.tilebox();
694  auto dst = volume.array(mfi);
695  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
696  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
697  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
698  {
699  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
700  });
701  }
702 
703  //
704  // Note that when we send in local = true, NO ParallelAllReduce::Sum
705  // is called inside the Dot product -- we will do that before we print
706  //
707  bool local = true;
708  sum = MultiFab::Dot(tmp, 0, volume, 0, 1, 0, local);
709 
710  return sum;
711 }
amrex::MultiFab & build_fine_mask(int lev)
Definition: ERF_WriteScalarProfiles.cpp:721

◆ write_1D_profiles()

void ERF::write_1D_profiles ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Parameters
timeCurrent time
18 {
19  BL_PROFILE("ERF::write_1D_profiles()");
20 
21  if (NumDataLogs() > 1)
22  {
23  // Define the 1d arrays we will need
24  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
25  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
26  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
27  Gpu::HostVector<Real> h_avg_wthv;
28  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
29  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
30  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
31  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
32  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
33  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
34 
35  if (NumDataLogs() > 1) {
37  h_avg_u, h_avg_v, h_avg_w,
38  h_avg_rho, h_avg_th, h_avg_ksgs,
39  h_avg_Kmv, h_avg_Khv,
40  h_avg_qv, h_avg_qc, h_avg_qr,
41  h_avg_wqv, h_avg_wqc, h_avg_wqr,
42  h_avg_qi, h_avg_qs, h_avg_qg,
43  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
44  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
45  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
46  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
47  h_avg_wthv);
48  }
49 
50  if (NumDataLogs() > 3 && time > 0.) {
51  derive_stress_profiles(h_avg_tau11, h_avg_tau12, h_avg_tau13,
52  h_avg_tau22, h_avg_tau23, h_avg_tau33,
53  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
54  h_avg_sgsdiss);
55  }
56 
57  int hu_size = h_avg_u.size();
58 
59  auto const& dx = geom[0].CellSizeArray();
60  if (ParallelDescriptor::IOProcessor()) {
61  if (NumDataLogs() > 1) {
62  std::ostream& data_log1 = DataLog(1);
63  if (data_log1.good()) {
64  // Write the quantities at this time
65  for (int k = 0; k < hu_size; k++) {
66  Real z;
67  if (zlevels_stag[0].size() > 1) {
68  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
69  } else {
70  z = (k + 0.5)* dx[2];
71  }
72  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
73  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
74  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
75  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
76  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
77  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
78  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
79  << std::endl;
80  } // loop over z
81  } // if good
82  } // NumDataLogs
83 
84  if (NumDataLogs() > 2) {
85  std::ostream& data_log2 = DataLog(2);
86  if (data_log2.good()) {
87  // Write the perturbational quantities at this time
88  for (int k = 0; k < hu_size; k++) {
89  Real z;
90  if (zlevels_stag[0].size() > 1) {
91  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
92  } else {
93  z = (k + 0.5)* dx[2];
94  }
95  Real thv = h_avg_th[k] * (1 + 0.61*h_avg_qv[k] - h_avg_qc[k] - h_avg_qr[k]);
96  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
97  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
98  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " "
99  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " "
100  << h_avg_uw[k] - h_avg_u[k]*h_avg_w[k] << " "
101  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " "
102  << h_avg_vw[k] - h_avg_v[k]*h_avg_w[k] << " "
103  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " "
104  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " "
105  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " "
106  << h_avg_wth[k] - h_avg_w[k]*h_avg_th[k] << " "
107  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " "
108  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
109  // - <u_i u_i> * <u_j>
110  // - 2*<u_i> * <u_i u_j>
111  // + 2*<u_i>*<u_i> * <u_j>
112  << h_avg_uiuiu[k]
113  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_u[k]
114  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + h_avg_w[k]*h_avg_uw[k])
115  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_u[k]
116  << " " // (u'_i u'_i)u'
117  << h_avg_uiuiv[k]
118  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_v[k]
119  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + h_avg_w[k]*h_avg_vw[k])
120  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_v[k]
121  << " " // (u'_i u'_i)v'
122  << h_avg_uiuiw[k]
123  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_w[k]
124  - 2*(h_avg_u[k]*h_avg_uw[k] + h_avg_v[k]*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
125  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
126  << " " // (u'_i u'_i)w'
127  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " "
128  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " "
129  << h_avg_pw[k] - h_avg_p[k]*h_avg_w[k] << " "
130  << h_avg_wqv[k] - h_avg_qv[k]*h_avg_w[k] << " "
131  << h_avg_wqc[k] - h_avg_qc[k]*h_avg_w[k] << " "
132  << h_avg_wqr[k] - h_avg_qr[k]*h_avg_w[k] << " "
133  << h_avg_wthv[k] - h_avg_w[k]*thv
134  << std::endl;
135  } // loop over z
136  } // if good
137  } // NumDataLogs
138 
139  if (NumDataLogs() > 3 && time > 0.) {
140  std::ostream& data_log3 = DataLog(3);
141  if (data_log3.good()) {
142  // Write the average stresses
143  for (int k = 0; k < hu_size; k++) {
144  Real z;
145  if (zlevels_stag[0].size() > 1) {
146  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
147  } else {
148  z = (k + 0.5)* dx[2];
149  }
150  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
151  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
152  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
153  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
154  << h_avg_sgshfx[k] << " "
155  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
156  << h_avg_sgsdiss[k]
157  << std::endl;
158  } // loop over z
159  } // if good
160  } // if (NumDataLogs() > 3)
161  } // if IOProcessor
162  } // if (NumDataLogs() > 1)
163 }
void derive_diag_profiles(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles.cpp:190
void derive_stress_profiles(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles.cpp:475

◆ write_1D_profiles_stag()

void ERF::write_1D_profiles_stag ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Quantities are output at their native grid locations. Therefore, w and associated flux quantities <(•)'w'>, tau13, and tau23 (where '•' includes u, v, p, theta, ...) will be output at staggered heights (i.e., coincident with z faces) rather than cell-center heights to avoid performing additional averaging. Unstaggered (i.e., cell-centered) quantities are output alongside staggered quantities at the lower cell faces in the log file; these quantities will have a zero value at the big end, corresponding to k=Nz+1.

The structure of file should follow ERF_Write1DProfiles.cpp

Parameters
timeCurrent time
26 {
27  BL_PROFILE("ERF::write_1D_profiles()");
28 
29  if (NumDataLogs() > 1)
30  {
31  // Define the 1d arrays we will need
32  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
33  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
34  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
35  Gpu::HostVector<Real> h_avg_wthv;
36  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
37  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
38  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
39  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
40  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
41  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
42 
43  if (NumDataLogs() > 1) {
45  h_avg_u, h_avg_v, h_avg_w,
46  h_avg_rho, h_avg_th, h_avg_ksgs,
47  h_avg_Kmv, h_avg_Khv,
48  h_avg_qv, h_avg_qc, h_avg_qr,
49  h_avg_wqv, h_avg_wqc, h_avg_wqr,
50  h_avg_qi, h_avg_qs, h_avg_qg,
51  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
52  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
53  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
54  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
55  h_avg_wthv);
56  }
57 
58  if (NumDataLogs() > 3 && time > 0.) {
59  derive_stress_profiles_stag(h_avg_tau11, h_avg_tau12, h_avg_tau13,
60  h_avg_tau22, h_avg_tau23, h_avg_tau33,
61  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
62  h_avg_sgsdiss);
63  }
64 
65  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
66 
67  auto const& dx = geom[0].CellSizeArray();
68  if (ParallelDescriptor::IOProcessor()) {
69  if (NumDataLogs() > 1) {
70  std::ostream& data_log1 = DataLog(1);
71  if (data_log1.good()) {
72  // Write the quantities at this time
73  for (int k = 0; k < unstag_size; k++) {
74  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
75  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
76  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
77  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
78  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
79  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
80  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
81  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
82  << std::endl;
83  } // loop over z
84  // Write top face values
85  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
86  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
87  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
88  << 0 << " " << 0 << " " << h_avg_w[unstag_size] << " "
89  << 0 << " " << 0 << " " << 0 << " " // rho, theta, ksgs
90  << 0 << " " << 0 << " " // Kmv, Khv
91  << 0 << " " << 0 << " " << 0 << " " // qv, qc, qr
92  << 0 << " " << 0 << " " << 0 // qi, qs, qg
93  << std::endl;
94  } // if good
95  } // NumDataLogs
96 
97  if (NumDataLogs() > 2) {
98  std::ostream& data_log2 = DataLog(2);
99  if (data_log2.good()) {
100  // Write the perturbational quantities at this time
101  // For surface values (k=0), assume w = uw = vw = ww = 0
102  Real w_cc = h_avg_w[1] / 2; // w at first cell center
103  Real uw_cc = h_avg_uw[1] / 2; // u*w at first cell center
104  Real vw_cc = h_avg_vw[1] / 2; // v*w at first cell center
105  Real ww_cc = h_avg_ww[1] / 2; // w*w at first cell center
106  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
107  << std::setw(datwidth) << std::setprecision(datprecision) << 0 << " "
108  << h_avg_uu[0] - h_avg_u[0]*h_avg_u[0] << " " // u'u'
109  << h_avg_uv[0] - h_avg_u[0]*h_avg_v[0] << " " // u'v'
110  << 0 << " " // u'w'
111  << h_avg_vv[0] - h_avg_v[0]*h_avg_v[0] << " " // v'v'
112  << 0 << " " // v'w'
113  << 0 << " " // w'w'
114  << h_avg_uth[0] - h_avg_u[0]*h_avg_th[0] << " " // u'th'
115  << h_avg_vth[0] - h_avg_v[0]*h_avg_th[0] << " " // v'th'
116  << 0 << " " // w'th'
117  << h_avg_thth[0] - h_avg_th[0]*h_avg_th[0] << " " // th'th'
118  << h_avg_uiuiu[0]
119  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_u[0]
120  - 2*(h_avg_u[0]*h_avg_uu[0] + h_avg_v[0]*h_avg_uv[0] + w_cc*uw_cc)
121  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_u[0]
122  << " " // (u'_i u'_i)u'
123  << h_avg_uiuiv[0]
124  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_v[0]
125  - 2*(h_avg_u[0]*h_avg_uv[0] + h_avg_v[0]*h_avg_vv[0] + w_cc*vw_cc)
126  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_v[0]
127  << " " // (u'_i u'_i)v'
128  << 0 << " " // (u'_i u'_i)w'
129  << h_avg_pu[0] - h_avg_p[0]*h_avg_u[0] << " " // p'u'
130  << h_avg_pv[0] - h_avg_p[0]*h_avg_v[0] << " " // p'v'
131  << 0 << " " // p'w'
132  << 0 << " " // qv'w'
133  << 0 << " " // qc'w'
134  << 0 << " " // qr'w'
135  << 0 // thv'w'
136  << std::endl;
137 
138  // For internal values, interpolate scalar quantities to faces
139  for (int k = 1; k < unstag_size; k++) {
140  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
141  Real uface = 0.5*(h_avg_u[k] + h_avg_u[k-1]);
142  Real vface = 0.5*(h_avg_v[k] + h_avg_v[k-1]);
143  Real thface = 0.5*(h_avg_th[k] + h_avg_th[k-1]);
144  Real pface = 0.5*(h_avg_p[k] + h_avg_p[k-1]);
145  Real qvface = 0.5*(h_avg_qv[k] + h_avg_qv[k-1]);
146  Real qcface = 0.5*(h_avg_qc[k] + h_avg_qc[k-1]);
147  Real qrface = 0.5*(h_avg_qr[k] + h_avg_qr[k-1]);
148  Real uuface = 0.5*(h_avg_uu[k] + h_avg_uu[k-1]);
149  Real vvface = 0.5*(h_avg_vv[k] + h_avg_vv[k-1]);
150  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
151  w_cc = 0.5*(h_avg_w[k-1] + h_avg_w[k]);
152  uw_cc = 0.5*(h_avg_uw[k-1] + h_avg_uw[k]);
153  vw_cc = 0.5*(h_avg_vw[k-1] + h_avg_vw[k]);
154  ww_cc = 0.5*(h_avg_ww[k-1] + h_avg_ww[k]);
155  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
156  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
157  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " " // u'u'
158  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " " // u'v'
159  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
160  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " " // v'v'
161  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
162  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
163  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " " // u'th'
164  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " " // v'th'
165  << h_avg_wth[k] - h_avg_w[k]*thface << " " // w'th'
166  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " " // th'th'
167  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
168  // - <u_i u_i> * <u_j>
169  // - 2*<u_i> * <u_i u_j>
170  // + 2*<u_i>*<u_i> * <u_j>
171  << h_avg_uiuiu[k]
172  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_u[k]
173  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + w_cc*uw_cc)
174  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_u[k]
175  << " " // cell-centered (u'_i u'_i)u'
176  << h_avg_uiuiv[k]
177  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_v[k]
178  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + w_cc*vw_cc)
179  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_v[k]
180  << " " // cell-centered (u'_i u'_i)v'
181  << h_avg_uiuiw[k]
182  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
183  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
184  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
185  << " " // face-centered (u'_i u'_i)w'
186  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " " // cell-centered p'u'
187  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " " // cell-centered p'v'
188  << h_avg_pw[k] - pface*h_avg_w[k] << " " // face-centered p'w'
189  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
190  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
191  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
192  << h_avg_wthv[k] - thvface*h_avg_w[k]
193  << std::endl;
194  } // loop over z
195 
196  // Write top face values, extrapolating scalar quantities
197  const int k = unstag_size;
198  Real uface = 1.5*h_avg_u[k-1] - 0.5*h_avg_u[k-2];
199  Real vface = 1.5*h_avg_v[k-1] - 0.5*h_avg_v[k-2];
200  Real thface = 1.5*h_avg_th[k-1] - 0.5*h_avg_th[k-2];
201  Real pface = 1.5*h_avg_p[k-1] - 0.5*h_avg_p[k-2];
202  Real qvface = 1.5*h_avg_qv[k-1] - 0.5*h_avg_qv[k-2];
203  Real qcface = 1.5*h_avg_qc[k-1] - 0.5*h_avg_qc[k-2];
204  Real qrface = 1.5*h_avg_qr[k-1] - 0.5*h_avg_qr[k-2];
205  Real uuface = 1.5*h_avg_uu[k-1] - 0.5*h_avg_uu[k-2];
206  Real vvface = 1.5*h_avg_vv[k-1] - 0.5*h_avg_vv[k-2];
207  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
208  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
209  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
210  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
211  << 0 << " " // u'u'
212  << 0 << " " // u'v'
213  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
214  << 0 << " " // v'v'
215  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
216  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
217  << 0 << " " // u'th'
218  << 0 << " " // v'th'
219  << h_avg_wth[k] - thface*h_avg_w[k] << " " // w'th'
220  << 0 << " " // th'th'
221  << 0 << " " // (u'_i u'_i)u'
222  << 0 << " " // (u'_i u'_i)v'
223  << h_avg_uiuiw[k]
224  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
225  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
226  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
227  << " " // (u'_i u'_i)w'
228  << 0 << " " // pu'
229  << 0 << " " // pv'
230  << h_avg_pw[k] - pface*h_avg_w[k] << " " // pw'
231  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
232  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
233  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
234  << h_avg_wthv[k] - thvface*h_avg_w[k]
235  << std::endl;
236  } // if good
237  } // NumDataLogs
238 
239  if (NumDataLogs() > 3 && time > 0.) {
240  std::ostream& data_log3 = DataLog(3);
241  if (data_log3.good()) {
242  // Write the average stresses
243  for (int k = 0; k < unstag_size; k++) {
244  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
245  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
246  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
247  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
248  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
249  << h_avg_sgshfx[k] << " "
250  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
251  << h_avg_sgsdiss[k]
252  << std::endl;
253  } // loop over z
254  // Write top face values
255  Real NANval = 0.0;
256  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
257  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
258  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
259  << NANval << " " << NANval << " " << h_avg_tau13[unstag_size] << " "
260  << NANval << " " << h_avg_tau23[unstag_size] << " " << NANval << " "
261  << h_avg_sgshfx[unstag_size] << " "
262  << h_avg_sgsq1fx[unstag_size] << " " << h_avg_sgsq2fx[unstag_size] << " "
263  << NANval
264  << std::endl;
265  } // if good
266  } // if (NumDataLogs() > 3)
267  } // if IOProcessor
268  } // if (NumDataLogs() > 1)
269 }
void derive_diag_profiles_stag(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles_stag.cpp:296
void derive_stress_profiles_stag(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles_stag.cpp:605

◆ writeBuildInfo()

void ERF::writeBuildInfo ( std::ostream &  os)
static
138 {
139  std::string PrettyLine = std::string(78, '=') + "\n";
140  std::string OtherLine = std::string(78, '-') + "\n";
141  std::string SkipSpace = std::string(8, ' ');
142 
143  // build information
144  os << PrettyLine;
145  os << " ERF Build Information\n";
146  os << PrettyLine;
147 
148  os << "build date: " << buildInfoGetBuildDate() << "\n";
149  os << "build machine: " << buildInfoGetBuildMachine() << "\n";
150  os << "build dir: " << buildInfoGetBuildDir() << "\n";
151  os << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
152 
153  os << "\n";
154 
155  os << "COMP: " << buildInfoGetComp() << "\n";
156  os << "COMP version: " << buildInfoGetCompVersion() << "\n";
157 
158  os << "C++ compiler: " << buildInfoGetCXXName() << "\n";
159  os << "C++ flags: " << buildInfoGetCXXFlags() << "\n";
160 
161  os << "\n";
162 
163  os << "Link flags: " << buildInfoGetLinkFlags() << "\n";
164  os << "Libraries: " << buildInfoGetLibraries() << "\n";
165 
166  os << "\n";
167 
168  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
169  os << buildInfoGetModuleName(n) << ": "
170  << buildInfoGetModuleVal(n) << "\n";
171  }
172 
173  os << "\n";
174  const char* githash1 = buildInfoGetGitHash(1);
175  const char* githash2 = buildInfoGetGitHash(2);
176  if (strlen(githash1) > 0) {
177  os << "ERF git hash: " << githash1 << "\n";
178  }
179  if (strlen(githash2) > 0) {
180  os << "AMReX git hash: " << githash2 << "\n";
181  }
182 
183  const char* buildgithash = buildInfoGetBuildGitHash();
184  const char* buildgitname = buildInfoGetBuildGitName();
185  if (strlen(buildgithash) > 0) {
186  os << buildgitname << " git hash: " << buildgithash << "\n";
187  }
188 
189  os << "\n";
190  os << " ERF Compile time variables: \n";
191 
192  os << "\n";
193  os << " ERF Defines: \n";
194 #ifdef _OPENMP
195  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "ON"
196  << std::endl;
197 #else
198  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "OFF"
199  << std::endl;
200 #endif
201 
202 #ifdef MPI_VERSION
203  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
204  << MPI_VERSION << std::endl;
205 #else
206  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
207  << "UNDEFINED" << std::endl;
208 #endif
209 
210 #ifdef MPI_SUBVERSION
211  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
212  << MPI_SUBVERSION << std::endl;
213 #else
214  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
215  << "UNDEFINED" << std::endl;
216 #endif
217 
218  os << "\n\n";
219 }

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ WriteCheckpointFile()

void ERF::WriteCheckpointFile ( ) const

ERF function for writing a checkpoint file.

27 {
28  // chk00010 write a checkpoint file with this root directory
29  // chk00010/Header this contains information you need to save (e.g., finest_level, t_new, etc.) and also
30  // the BoxArrays at each level
31  // chk00010/Level_0/
32  // chk00010/Level_1/
33  // etc. these subdirectories will hold the MultiFab data at each level of refinement
34 
35  // checkpoint file name, e.g., chk00010
36  const std::string& checkpointname = Concatenate(check_file,istep[0],5);
37 
38  Print() << "Writing native checkpoint " << checkpointname << "\n";
39 
40  const int nlevels = finest_level+1;
41 
42  // ---- prebuild a hierarchy of directories
43  // ---- dirName is built first. if dirName exists, it is renamed. then build
44  // ---- dirName/subDirPrefix_0 .. dirName/subDirPrefix_nlevels-1
45  // ---- if callBarrier is true, call ParallelDescriptor::Barrier()
46  // ---- after all directories are built
47  // ---- ParallelDescriptor::IOProcessor() creates the directories
48  PreBuildDirectorHierarchy(checkpointname, "Level_", nlevels, true);
49 
50  int ncomp_cons = vars_new[0][Vars::cons].nComp();
51 
52  // write Header file
53  if (ParallelDescriptor::IOProcessor()) {
54 
55  std::string HeaderFileName(checkpointname + "/Header");
56  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
57  std::ofstream HeaderFile;
58  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
59  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
60  std::ofstream::trunc |
61  std::ofstream::binary);
62  if(! HeaderFile.good()) {
63  FileOpenFailed(HeaderFileName);
64  }
65 
66  HeaderFile.precision(17);
67 
68  // write out title line
69  HeaderFile << "Checkpoint file for ERF\n";
70 
71  // write out finest_level
72  HeaderFile << finest_level << "\n";
73 
74  // write the number of components
75  // for each variable we store
76 
77  // conservative, cell-centered vars
78  HeaderFile << ncomp_cons << "\n";
79 
80  // x-velocity on faces
81  HeaderFile << 1 << "\n";
82 
83  // y-velocity on faces
84  HeaderFile << 1 << "\n";
85 
86  // z-velocity on faces
87  HeaderFile << 1 << "\n";
88 
89  // write out array of istep
90  for (int i = 0; i < istep.size(); ++i) {
91  HeaderFile << istep[i] << " ";
92  }
93  HeaderFile << "\n";
94 
95  // write out array of dt
96  for (int i = 0; i < dt.size(); ++i) {
97  HeaderFile << dt[i] << " ";
98  }
99  HeaderFile << "\n";
100 
101  // write out array of t_new
102  for (int i = 0; i < t_new.size(); ++i) {
103  HeaderFile << t_new[i] << " ";
104  }
105  HeaderFile << "\n";
106 
107  // write the BoxArray at each level
108  for (int lev = 0; lev <= finest_level; ++lev) {
109  boxArray(lev).writeOn(HeaderFile);
110  HeaderFile << '\n';
111  }
112 
113  // Write separate file that tells how many components we have of the base state
114  std::string BaseStateFileName(checkpointname + "/num_base_state_comps");
115  std::ofstream BaseStateFile;
116  BaseStateFile.open(BaseStateFileName.c_str(), std::ofstream::out |
117  std::ofstream::trunc |
118  std::ofstream::binary);
119  if(! BaseStateFile.good()) {
120  FileOpenFailed(BaseStateFileName);
121  } else {
122  // write out number of components in base state
123  BaseStateFile << BaseState::num_comps << "\n";
124  BaseStateFile << base_state[0].nGrowVect() << "\n";
125  }
126  }
127 
128  // write the MultiFab data to, e.g., chk00010/Level_0/
129  // Here we make copies of the MultiFab with no ghost cells
130  for (int lev = 0; lev <= finest_level; ++lev)
131  {
132  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
133  MultiFab::Copy(cons,vars_new[lev][Vars::cons],0,0,ncomp_cons,0);
134  VisMF::Write(cons, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Cell"));
135 
136  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
137  MultiFab::Copy(xvel,vars_new[lev][Vars::xvel],0,0,1,0);
138  VisMF::Write(xvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "XFace"));
139 
140  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
141  MultiFab::Copy(yvel,vars_new[lev][Vars::yvel],0,0,1,0);
142  VisMF::Write(yvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "YFace"));
143 
144  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
145  MultiFab::Copy(zvel,vars_new[lev][Vars::zvel],0,0,1,0);
146  VisMF::Write(zvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "ZFace"));
147 
148  // Note that we write the ghost cells of the base state (unlike above)
149  IntVect ng_base = base_state[lev].nGrowVect();
150  int ncomp_base = base_state[lev].nComp();
151  MultiFab base(grids[lev],dmap[lev],ncomp_base,ng_base);
152  MultiFab::Copy(base,base_state[lev],0,0,ncomp_base,ng_base);
153  VisMF::Write(base, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "BaseState"));
154 
155  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
156  // Note that we also write the ghost cells of z_phys_nd
157  IntVect ng = z_phys_nd[lev]->nGrowVect();
158  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
159  MultiFab::Copy(z_height,*z_phys_nd[lev],0,0,1,ng);
160  VisMF::Write(z_height, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z_Phys_nd"));
161  }
162 
163  // We must read and write qmoist with ghost cells because we don't directly impose BCs on these vars
164  // Write the moisture model restart variables
165  std::vector<int> qmoist_indices;
166  std::vector<std::string> qmoist_names;
167  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
168  int qmoist_nvar = qmoist_indices.size();
169  for (int var = 0; var < qmoist_nvar; var++) {
170  const int ncomp = 1;
171  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
172  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
173  MultiFab::Copy(moist_vars,*(qmoist[lev][qmoist_indices[var]]),0,0,ncomp,ng_moist);
174  VisMF::Write(moist_vars, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", qmoist_names[var]));
175  }
176 
177 #if defined(ERF_USE_WINDFARM)
178  if(solverChoice.windfarm_type == WindFarmType::Fitch or
179  solverChoice.windfarm_type == WindFarmType::EWP or
180  solverChoice.windfarm_type == WindFarmType::SimpleAD){
181  IntVect ng_turb = Nturb[lev].nGrowVect();
182  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng_turb);
183  MultiFab::Copy(mf_Nturb,Nturb[lev],0,0,1,ng_turb);
184  VisMF::Write(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", "NumTurb"));
185  }
186 #endif
187 
188  if (solverChoice.lsm_type != LandSurfaceType::None) {
189  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
190  BoxArray ba = lsm_data[lev][mvar]->boxArray();
191  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
192  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
193  int nvar = lsm_data[lev][mvar]->nComp();
194  MultiFab lsm_vars(ba,dm,nvar,ng);
195  MultiFab::Copy(lsm_vars,*(lsm_data[lev][mvar]),0,0,nvar,ng);
196  VisMF::Write(lsm_vars, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LsmVars"));
197  }
198  }
199 
200  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
201  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
202  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_x],0,0,1,ng);
203  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_mx"));
204 
205 #if 0
207  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_y],0,0,1,ng);
208  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_my"));
209  }
210 #endif
211 
212  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
213  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
214  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_x],0,0,1,ng);
215  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_ux"));
216 
217 #if 0
219  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_y],0,0,1,ng);
220  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_uy"));
221  }
222 #endif
223 
224  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
225  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
226  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_x],0,0,1,ng);
227  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vx"));
228 
229 #if 0
231  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_y],0,0,1,ng);
232  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vy"));
233  }
234 #endif
235 
236  if (m_SurfaceLayer) {
237  amrex::Print() << "Writing SurfaceLayer variables" << std::endl;
238  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
239  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
240  MultiFab* src = nullptr;
241 
242  // U*
243  src = m_SurfaceLayer->get_u_star(lev);
244  MultiFab::Copy(m_var,*src,0,0,1,ng);
245  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Ustar"));
246 
247  // W*
248  src = m_SurfaceLayer->get_w_star(lev);
249  MultiFab::Copy(m_var,*src,0,0,1,ng);
250  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Wstar"));
251 
252  // T*
253  src = m_SurfaceLayer->get_t_star(lev);
254  MultiFab::Copy(m_var,*src,0,0,1,ng);
255  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Tstar"));
256 
257  // Q*
258  src = m_SurfaceLayer->get_q_star(lev);
259  MultiFab::Copy(m_var,*src,0,0,1,ng);
260  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qstar"));
261 
262  // Olen
263  src = m_SurfaceLayer->get_olen(lev);
264  MultiFab::Copy(m_var,*src,0,0,1,ng);
265  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Olen"));
266 
267  // PBLH
268  src = m_SurfaceLayer->get_pblh(lev);
269  MultiFab::Copy(m_var,*src,0,0,1,ng);
270  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PBLH"));
271 
272  // Z0
273  for (MFIter mfi(m_var); mfi.isValid(); ++mfi) {
274  const Box& bx = mfi.growntilebox();
275  Array4<const Real> const& fab_arr = m_SurfaceLayer->get_z0(lev)->const_array();
276  Array4< Real> const& mv_arr = m_var.array(mfi);
277  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
278  mv_arr(i,j,k) = fab_arr(i,j,k);
279  });
280  }
281  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z0"));
282  }
283 
284  if (sst_lev[lev][0]) {
285  int ntimes = 1;
286  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
287  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
288  for (int nt(0); nt<ntimes; ++nt) {
289  MultiFab::Copy(sst_at_t,*sst_lev[lev][nt],0,0,1,ng);
290  VisMF::Write(sst_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
291  "SST_" + std::to_string(nt)));
292  }
293  }
294 
295  if (tsk_lev[lev][0]) {
296  int ntimes = 1;
297  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
298  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
299  for (int nt(0); nt<ntimes; ++nt) {
300  MultiFab::Copy(tsk_at_t,*tsk_lev[lev][nt],0,0,1,ng);
301  VisMF::Write(tsk_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
302  "TSK_" + std::to_string(nt)));
303  }
304  }
305 
306  {
307  int ntimes = 1;
308  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
309  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
310  for (int nt(0); nt<ntimes; ++nt) {
311  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
312  const Box& bx = mfi.growntilebox();
313  Array4<int> const& src_arr = lmask_lev[lev][nt]->array(mfi);
314  Array4<Real> const& dst_arr = lmask_at_t.array(mfi);
315  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
316  {
317  dst_arr(i,j,k) = Real(src_arr(i,j,k));
318  });
319  }
320  VisMF::Write(lmask_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
321  "LMASK_" + std::to_string(nt)));
322  }
323  }
324 
325 #ifdef ERF_USE_NETCDF
326  IntVect ngv = ng; ngv[2] = 0;
327 
328  // Write lat/lon if it exists
329  if (lat_m[lev] && lon_m[lev] && solverChoice.has_lat_lon) {
330  amrex::Print() << "Writing Lat/Lon variables" << std::endl;
331  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
332  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
333  MultiFab::Copy(lat,*lat_m[lev],0,0,1,ngv);
334  MultiFab::Copy(lon,*lon_m[lev],0,0,1,ngv);
335  VisMF::Write(lat, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LAT"));
336  VisMF::Write(lon, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LON"));
337  }
338 
339  // Write sinPhi and cosPhi if it exists
340  if (cosPhi_m[lev] && sinPhi_m[lev] && solverChoice.variable_coriolis) {
341  amrex::Print() << "Writing Coriolis factors" << std::endl;
342  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
343  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
344  MultiFab::Copy(sphi,*sinPhi_m[lev],0,0,1,ngv);
345  MultiFab::Copy(cphi,*cosPhi_m[lev],0,0,1,ngv);
346  VisMF::Write(sphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "SinPhi"));
347  VisMF::Write(cphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "CosPhi"));
348  }
349 
350  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
351  MultiFab tmp1d(ba1d[lev],dmap[lev],1,ngv);
352  MultiFab tmp2d(ba2d[lev],dmap[lev],1,ngv);
353 
354  MultiFab::Copy(tmp1d,*mf_C1H[lev],0,0,1,ngv);
355  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C1H"));
356 
357  MultiFab::Copy(tmp1d,*mf_C2H[lev],0,0,1,ngv);
358  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C2H"));
359 
360  MultiFab::Copy(tmp2d,*mf_MUB[lev],0,0,1,ngv);
361  VisMF::Write(tmp2d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MUB"));
362  }
363 #endif
364 
365  } // for lev
366 
367 #ifdef ERF_USE_PARTICLES
368  particleData.Checkpoint(checkpointname);
369 #endif
370 
371 #if 0
372 #ifdef ERF_USE_NETCDF
373  // Write bdy_data files
374  if ( ParallelDescriptor::IOProcessor() &&
375  ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
377  {
378  // Vector dimensions
379  int num_time = bdy_data_xlo.size();
380  int num_var = bdy_data_xlo[0].size();
381 
382  // Open header file and write to it
383  std::ofstream bdy_h_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_H"));
384  bdy_h_file << std::setprecision(1) << std::fixed;
385  bdy_h_file << num_time << "\n";
386  bdy_h_file << num_var << "\n";
387  bdy_h_file << start_bdy_time << "\n";
388  bdy_h_file << bdy_time_interval << "\n";
389  bdy_h_file << real_width << "\n";
390  for (int ivar(0); ivar<num_var; ++ivar) {
391  bdy_h_file << bdy_data_xlo[0][ivar].box() << "\n";
392  bdy_h_file << bdy_data_xhi[0][ivar].box() << "\n";
393  bdy_h_file << bdy_data_ylo[0][ivar].box() << "\n";
394  bdy_h_file << bdy_data_yhi[0][ivar].box() << "\n";
395  }
396 
397  // Open data file and write to it
398  std::ofstream bdy_d_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_D"));
399  for (int itime(0); itime<num_time; ++itime) {
400  if (bdy_data_xlo[itime].size() > 0) {
401  for (int ivar(0); ivar<num_var; ++ivar) {
402  bdy_data_xlo[itime][ivar].writeOn(bdy_d_file,0,1);
403  bdy_data_xhi[itime][ivar].writeOn(bdy_d_file,0,1);
404  bdy_data_ylo[itime][ivar].writeOn(bdy_d_file,0,1);
405  bdy_data_yhi[itime][ivar].writeOn(bdy_d_file,0,1);
406  }
407  }
408  }
409  }
410 #endif
411 #endif
412 
413 }

◆ WriteGenericPlotfileHeaderWithTerrain()

void ERF::WriteGenericPlotfileHeaderWithTerrain ( std::ostream &  HeaderFile,
int  nlevels,
const amrex::Vector< amrex::BoxArray > &  bArray,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName,
const std::string &  levelPrefix,
const std::string &  mfPrefix 
) const
1695 {
1696  AMREX_ALWAYS_ASSERT(nlevels <= bArray.size());
1697  AMREX_ALWAYS_ASSERT(nlevels <= my_ref_ratio.size()+1);
1698  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1699 
1700  HeaderFile.precision(17);
1701 
1702  // ---- this is the generic plot file type name
1703  HeaderFile << versionName << '\n';
1704 
1705  HeaderFile << varnames.size() << '\n';
1706 
1707  for (int ivar = 0; ivar < varnames.size(); ++ivar) {
1708  HeaderFile << varnames[ivar] << "\n";
1709  }
1710  HeaderFile << AMREX_SPACEDIM << '\n';
1711  HeaderFile << my_time << '\n';
1712  HeaderFile << finest_level << '\n';
1713  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1714  HeaderFile << my_geom[0].ProbLo(i) << ' ';
1715  }
1716  HeaderFile << '\n';
1717  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1718  HeaderFile << my_geom[0].ProbHi(i) << ' ';
1719  }
1720  HeaderFile << '\n';
1721  for (int i = 0; i < finest_level; ++i) {
1722  HeaderFile << my_ref_ratio[i][0] << ' ';
1723  }
1724  HeaderFile << '\n';
1725  for (int i = 0; i <= finest_level; ++i) {
1726  HeaderFile << my_geom[i].Domain() << ' ';
1727  }
1728  HeaderFile << '\n';
1729  for (int i = 0; i <= finest_level; ++i) {
1730  HeaderFile << level_steps[i] << ' ';
1731  }
1732  HeaderFile << '\n';
1733  for (int i = 0; i <= finest_level; ++i) {
1734  for (int k = 0; k < AMREX_SPACEDIM; ++k) {
1735  HeaderFile << my_geom[i].CellSize()[k] << ' ';
1736  }
1737  HeaderFile << '\n';
1738  }
1739  HeaderFile << (int) my_geom[0].Coord() << '\n';
1740  HeaderFile << "0\n";
1741 
1742  for (int level = 0; level <= finest_level; ++level) {
1743  HeaderFile << level << ' ' << bArray[level].size() << ' ' << my_time << '\n';
1744  HeaderFile << level_steps[level] << '\n';
1745 
1746  const IntVect& domain_lo = my_geom[level].Domain().smallEnd();
1747  for (int i = 0; i < bArray[level].size(); ++i)
1748  {
1749  // Need to shift because the RealBox ctor we call takes the
1750  // physical location of index (0,0,0). This does not affect
1751  // the usual cases where the domain index starts with 0.
1752  const Box& b = shift(bArray[level][i], -domain_lo);
1753  RealBox loc = RealBox(b, my_geom[level].CellSize(), my_geom[level].ProbLo());
1754  for (int n = 0; n < AMREX_SPACEDIM; ++n) {
1755  HeaderFile << loc.lo(n) << ' ' << loc.hi(n) << '\n';
1756  }
1757  }
1758 
1759  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mfPrefix) << '\n';
1760  }
1761  HeaderFile << "1" << "\n";
1762  HeaderFile << "3" << "\n";
1763  HeaderFile << "amrexvec_nu_x" << "\n";
1764  HeaderFile << "amrexvec_nu_y" << "\n";
1765  HeaderFile << "amrexvec_nu_z" << "\n";
1766  std::string mf_nodal_prefix = "Nu_nd";
1767  for (int level = 0; level <= finest_level; ++level) {
1768  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mf_nodal_prefix) << '\n';
1769  }
1770 }
Coord
Definition: ERF_DataStruct.H:85

◆ writeJobInfo()

void ERF::writeJobInfo ( const std::string &  dir) const
10 {
11  // job_info file with details about the run
12  std::ofstream jobInfoFile;
13  std::string FullPathJobInfoFile = dir;
14  FullPathJobInfoFile += "/job_info";
15  jobInfoFile.open(FullPathJobInfoFile.c_str(), std::ios::out);
16 
17  std::string PrettyLine = "==================================================="
18  "============================\n";
19  std::string OtherLine = "----------------------------------------------------"
20  "----------------------------\n";
21  std::string SkipSpace = " ";
22 
23  // job information
24  jobInfoFile << PrettyLine;
25  jobInfoFile << " ERF Job Information\n";
26  jobInfoFile << PrettyLine;
27 
28  jobInfoFile << "inputs file: " << inputs_name << "\n\n";
29 
30  jobInfoFile << "number of MPI processes: "
31  << ParallelDescriptor::NProcs() << "\n";
32 #ifdef _OPENMP
33  jobInfoFile << "number of threads: " << omp_get_max_threads() << "\n";
34 #endif
35 
36  jobInfoFile << "\n";
37  jobInfoFile << "CPU time used since start of simulation (CPU-hours): "
38  << getCPUTime() / 3600.0;
39 
40  jobInfoFile << "\n\n";
41 
42  // plotfile information
43  jobInfoFile << PrettyLine;
44  jobInfoFile << " Plotfile Information\n";
45  jobInfoFile << PrettyLine;
46 
47  time_t now = time(nullptr);
48 
49  // Convert now to tm struct for local timezone
50  tm* localtm = localtime(&now);
51  jobInfoFile << "output data / time: " << asctime(localtm);
52 
53  std::string currentDir = FileSystem::CurrentPath();
54  jobInfoFile << "output dir: " << currentDir << "\n";
55 
56  jobInfoFile << "\n\n";
57 
58  // build information
59  jobInfoFile << PrettyLine;
60  jobInfoFile << " Build Information\n";
61  jobInfoFile << PrettyLine;
62 
63  jobInfoFile << "build date: " << buildInfoGetBuildDate() << "\n";
64  jobInfoFile << "build machine: " << buildInfoGetBuildMachine() << "\n";
65  jobInfoFile << "build dir: " << buildInfoGetBuildDir() << "\n";
66  jobInfoFile << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
67 
68  jobInfoFile << "\n";
69 
70  jobInfoFile << "COMP: " << buildInfoGetComp() << "\n";
71  jobInfoFile << "COMP version: " << buildInfoGetCompVersion() << "\n";
72 
73  jobInfoFile << "\n";
74 
75  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
76  jobInfoFile << buildInfoGetModuleName(n) << ": "
77  << buildInfoGetModuleVal(n) << "\n";
78  }
79 
80  jobInfoFile << "\n";
81 
82  const char* githash1 = buildInfoGetGitHash(1);
83  const char* githash2 = buildInfoGetGitHash(2);
84  if (strlen(githash1) > 0) {
85  jobInfoFile << "ERF git hash: " << githash1 << "\n";
86  }
87  if (strlen(githash2) > 0) {
88  jobInfoFile << "AMReX git hash: " << githash2 << "\n";
89  }
90 
91  const char* buildgithash = buildInfoGetBuildGitHash();
92  const char* buildgitname = buildInfoGetBuildGitName();
93  if (strlen(buildgithash) > 0) {
94  jobInfoFile << buildgitname << " git hash: " << buildgithash << "\n";
95  }
96 
97  jobInfoFile << "\n\n";
98 
99  // grid information
100  jobInfoFile << PrettyLine;
101  jobInfoFile << " Grid Information\n";
102  jobInfoFile << PrettyLine;
103 
104  int f_lev = finest_level;
105 
106  for (int i = 0; i <= f_lev; i++) {
107  jobInfoFile << " level: " << i << "\n";
108  jobInfoFile << " number of boxes = " << grids[i].size() << "\n";
109  jobInfoFile << " maximum zones = ";
110  for (int n = 0; n < AMREX_SPACEDIM; n++) {
111  jobInfoFile << geom[i].Domain().length(n) << " ";
112  }
113  jobInfoFile << "\n\n";
114  }
115 
116  jobInfoFile << " Boundary conditions\n";
117 
118  jobInfoFile << " -x: " << domain_bc_type[0] << "\n";
119  jobInfoFile << " +x: " << domain_bc_type[3] << "\n";
120  jobInfoFile << " -y: " << domain_bc_type[1] << "\n";
121  jobInfoFile << " +y: " << domain_bc_type[4] << "\n";
122  jobInfoFile << " -z: " << domain_bc_type[2] << "\n";
123  jobInfoFile << " +z: " << domain_bc_type[5] << "\n";
124 
125  jobInfoFile << "\n\n";
126 
127  // runtime parameters
128  jobInfoFile << PrettyLine;
129  jobInfoFile << " Inputs File Parameters\n";
130  jobInfoFile << PrettyLine;
131 
132  ParmParse::dumpTable(jobInfoFile, true);
133  jobInfoFile.close();
134 }
std::string inputs_name
Definition: main.cpp:14
static amrex::Real getCPUTime()
Definition: ERF.H:1338
Here is the call graph for this function:

◆ WriteMultiLevelPlotfileWithTerrain()

void ERF::WriteMultiLevelPlotfileWithTerrain ( const std::string &  plotfilename,
int  nlevels,
const amrex::Vector< const amrex::MultiFab * > &  mf,
const amrex::Vector< const amrex::MultiFab * > &  mf_nd,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName = "HyperCLaw-V1.1",
const std::string &  levelPrefix = "Level_",
const std::string &  mfPrefix = "Cell",
const amrex::Vector< std::string > &  extra_dirs = amrex::Vector<std::string>() 
) const
1609 {
1610  BL_PROFILE("WriteMultiLevelPlotfileWithTerrain()");
1611 
1612  AMREX_ALWAYS_ASSERT(nlevels <= mf.size());
1613  AMREX_ALWAYS_ASSERT(nlevels <= rr.size()+1);
1614  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1615  AMREX_ALWAYS_ASSERT(mf[0]->nComp() == varnames.size());
1616 
1617  bool callBarrier(false);
1618  PreBuildDirectorHierarchy(plotfilename, levelPrefix, nlevels, callBarrier);
1619  if (!extra_dirs.empty()) {
1620  for (const auto& d : extra_dirs) {
1621  const std::string ed = plotfilename+"/"+d;
1622  PreBuildDirectorHierarchy(ed, levelPrefix, nlevels, callBarrier);
1623  }
1624  }
1625  ParallelDescriptor::Barrier();
1626 
1627  if (ParallelDescriptor::MyProc() == ParallelDescriptor::NProcs()-1) {
1628  Vector<BoxArray> boxArrays(nlevels);
1629  for(int level(0); level < boxArrays.size(); ++level) {
1630  boxArrays[level] = mf[level]->boxArray();
1631  }
1632 
1633  auto f = [=]() {
1634  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
1635  std::string HeaderFileName(plotfilename + "/Header");
1636  std::ofstream HeaderFile;
1637  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
1638  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
1639  std::ofstream::trunc |
1640  std::ofstream::binary);
1641  if( ! HeaderFile.good()) FileOpenFailed(HeaderFileName);
1642  WriteGenericPlotfileHeaderWithTerrain(HeaderFile, nlevels, boxArrays, varnames,
1643  my_geom, time, level_steps, rr, versionName,
1644  levelPrefix, mfPrefix);
1645  };
1646 
1647  if (AsyncOut::UseAsyncOut()) {
1648  AsyncOut::Submit(std::move(f));
1649  } else {
1650  f();
1651  }
1652  }
1653 
1654  std::string mf_nodal_prefix = "Nu_nd";
1655  for (int level = 0; level <= finest_level; ++level)
1656  {
1657  if (AsyncOut::UseAsyncOut()) {
1658  VisMF::AsyncWrite(*mf[level],
1659  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix),
1660  true);
1661  VisMF::AsyncWrite(*mf_nd[level],
1662  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix),
1663  true);
1664  } else {
1665  const MultiFab* data;
1666  std::unique_ptr<MultiFab> mf_tmp;
1667  if (mf[level]->nGrowVect() != 0) {
1668  mf_tmp = std::make_unique<MultiFab>(mf[level]->boxArray(),
1669  mf[level]->DistributionMap(),
1670  mf[level]->nComp(), 0, MFInfo(),
1671  mf[level]->Factory());
1672  MultiFab::Copy(*mf_tmp, *mf[level], 0, 0, mf[level]->nComp(), 0);
1673  data = mf_tmp.get();
1674  } else {
1675  data = mf[level];
1676  }
1677  VisMF::Write(*data , MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix));
1678  VisMF::Write(*mf_nd[level], MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix));
1679  }
1680  }
1681 }
void WriteGenericPlotfileHeaderWithTerrain(std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
Definition: ERF_Plotfile.cpp:1684

◆ WriteMyEBSurface()

void ERF::WriteMyEBSurface ( )
6 {
7  using namespace amrex;
8 
9  amrex::Print() << "Writing the geometry to a vtp file.\n" << std::endl;
10 
11  // Only write at the finest level!
12  int lev = finest_level;
13 
14  BoxArray & ba = grids[lev];
15  DistributionMapping & dm = dmap[lev];
16 
17  const EBFArrayBoxFactory* ebfact = &EBFactory(lev);
18 
19  WriteEBSurface(ba,dm,Geom(lev),ebfact);
20 }
Definition: ERF_ConsoleIO.cpp:12
Here is the call graph for this function:

◆ writeNow()

bool ERF::writeNow ( const amrex::Real  cur_time,
const amrex::Real  dt,
const int  nstep,
const int  plot_int,
const amrex::Real  plot_per 
)
2257 {
2258  bool write_now = false;
2259 
2260  if ( plot_int > 0 && (nstep % plot_int == 0) ) {
2261  write_now = true;
2262 
2263  } else if (plot_per > 0.0) {
2264 
2265  // Check to see if we've crossed a plot_per interval by comparing
2266  // the number of intervals that have elapsed for both the current
2267  // time and the time at the beginning of this timestep.
2268 
2269  const Real eps = std::numeric_limits<Real>::epsilon() * Real(10.0) * std::abs(cur_time);
2270 
2271  int num_per_old = static_cast<int>(std::floor((cur_time-eps-dt_lev) / plot_per));
2272  int num_per_new = static_cast<int>(std::floor((cur_time-eps ) / plot_per));
2273 
2274  // Before using these, however, we must test for the case where we're
2275  // within machine epsilon of the next interval. In that case, increment
2276  // the counter, because we have indeed reached the next plot_per interval
2277  // at this point.
2278 
2279  const Real next_plot_time = (num_per_old + 1) * plot_per;
2280 
2281  if ((num_per_new == num_per_old) && std::abs(cur_time - next_plot_time) <= eps)
2282  {
2283  num_per_new += 1;
2284  }
2285 
2286  // Similarly, we have to account for the case where the old time is within
2287  // machine epsilon of the beginning of this interval, so that we don't double
2288  // count that time threshold -- we already plotted at that time on the last timestep.
2289 
2290  if ((num_per_new != num_per_old) && std::abs((cur_time - dt_lev) - next_plot_time) <= eps)
2291  num_per_old += 1;
2292 
2293  if (num_per_old != num_per_new)
2294  write_now = true;
2295  }
2296  return write_now;
2297 }
real(c_double), parameter epsilon
Definition: ERF_module_model_constants.F90:12

◆ WritePlotFile()

void ERF::WritePlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
264 {
265  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
266  const int ncomp_mf = varnames.size();
267 
268  int ncomp_cons = vars_new[0][Vars::cons].nComp();
269 
270  if (ncomp_mf == 0) return;
271 
272  // We Fillpatch here because some of the derived quantities require derivatives
273  // which require ghost cells to be filled. We do not need to call FillPatcher
274  // because we don't need to set interior fine points.
275  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
276 
277  // Level 0 FilLPatch
279  &vars_new[0][Vars::yvel], &vars_new[0][Vars::zvel]});
280 
281  for (int lev = 1; lev <= finest_level; ++lev) {
282  bool fillset = false;
283  FillPatch(lev, t_new[lev], {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::xvel],
284  &vars_new[lev][Vars::yvel], &vars_new[lev][Vars::zvel]},
285  {&vars_new[lev][Vars::cons],
286  &rU_new[lev], &rV_new[lev], &rW_new[lev]},
287  base_state[lev], base_state[lev], fillset);
288  }
289 
290  // Get qmoist pointers if using moisture
291  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
292  for (int lev = 0; lev <= finest_level; ++lev) {
293  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
294  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
295  }
296  }
297 
298  // Vector of MultiFabs for cell-centered data
299  Vector<MultiFab> mf(finest_level+1);
300  for (int lev = 0; lev <= finest_level; ++lev) {
301  mf[lev].define(grids[lev], dmap[lev], ncomp_mf, 0);
302  }
303 
304  // Vector of MultiFabs for nodal data
305  Vector<MultiFab> mf_nd(finest_level+1);
306  if ( SolverChoice::mesh_type != MeshType::ConstantDz) {
307  for (int lev = 0; lev <= finest_level; ++lev) {
308  BoxArray nodal_grids(grids[lev]); nodal_grids.surroundingNodes();
309  mf_nd[lev].define(nodal_grids, dmap[lev], 3, 0);
310  mf_nd[lev].setVal(0.);
311  }
312  }
313 
314  // Vector of MultiFabs for face-centered velocity
315  Vector<MultiFab> mf_u(finest_level+1);
316  Vector<MultiFab> mf_v(finest_level+1);
317  Vector<MultiFab> mf_w(finest_level+1);
318  if (m_plot_face_vels) {
319  for (int lev = 0; lev <= finest_level; ++lev) {
320  BoxArray grid_stag_u(grids[lev]); grid_stag_u.surroundingNodes(0);
321  BoxArray grid_stag_v(grids[lev]); grid_stag_v.surroundingNodes(1);
322  BoxArray grid_stag_w(grids[lev]); grid_stag_w.surroundingNodes(2);
323  mf_u[lev].define(grid_stag_u, dmap[lev], 1, 0);
324  mf_v[lev].define(grid_stag_v, dmap[lev], 1, 0);
325  mf_w[lev].define(grid_stag_w, dmap[lev], 1, 0);
326  MultiFab::Copy(mf_u[lev],vars_new[lev][Vars::xvel],0,0,1,0);
327  MultiFab::Copy(mf_v[lev],vars_new[lev][Vars::yvel],0,0,1,0);
328  MultiFab::Copy(mf_w[lev],vars_new[lev][Vars::zvel],0,0,1,0);
329  }
330  }
331 
332  // Array of MultiFabs for cell-centered velocity
333  Vector<MultiFab> mf_cc_vel(finest_level+1);
334 
335  if (containerHasElement(plot_var_names, "x_velocity" ) ||
336  containerHasElement(plot_var_names, "y_velocity" ) ||
337  containerHasElement(plot_var_names, "z_velocity" ) ||
338  containerHasElement(plot_var_names, "magvel" ) ||
339  containerHasElement(plot_var_names, "vorticity_x") ||
340  containerHasElement(plot_var_names, "vorticity_y") ||
341  containerHasElement(plot_var_names, "vorticity_z") ) {
342 
343  for (int lev = 0; lev <= finest_level; ++lev) {
344  mf_cc_vel[lev].define(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
345  mf_cc_vel[lev].setVal(-1.e20);
346  average_face_to_cellcenter(mf_cc_vel[lev],0,
347  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
348  &vars_new[lev][Vars::yvel],
349  &vars_new[lev][Vars::zvel]});
350  } // lev
351  } // if (vel or vort)
352 
353  // We need ghost cells if computing vorticity
354  if ( containerHasElement(plot_var_names, "vorticity_x")||
355  containerHasElement(plot_var_names, "vorticity_y") ||
356  containerHasElement(plot_var_names, "vorticity_z") )
357  {
358  amrex::Interpolater* mapper = &cell_cons_interp;
359  for (int lev = 1; lev <= finest_level; ++lev)
360  {
361  Vector<MultiFab*> fmf = {&(mf_cc_vel[lev]), &(mf_cc_vel[lev])};
362  Vector<Real> ftime = {t_new[lev], t_new[lev]};
363  Vector<MultiFab*> cmf = {&mf_cc_vel[lev-1], &mf_cc_vel[lev-1]};
364  Vector<Real> ctime = {t_new[lev], t_new[lev]};
365 
366  FillBdyCCVels(mf_cc_vel,lev-1);
367 
368  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
369  FillPatchTwoLevels(mf_cc_vel[lev], mf_cc_vel[lev].nGrowVect(), IntVect(0,0,0),
370  t_new[lev], cmf, ctime, fmf, ftime,
371  0, 0, mf_cc_vel[lev].nComp(), geom[lev-1], geom[lev],
372  refRatio(lev-1), mapper, domain_bcs_type,
374  } // lev
375  FillBdyCCVels(mf_cc_vel);
376  } // if (vort)
377 
378 
379  for (int lev = 0; lev <= finest_level; ++lev)
380  {
381  int mf_comp = 0;
382 
383  BoxArray ba(vars_new[lev][Vars::cons].boxArray());
384  DistributionMapping dm = vars_new[lev][Vars::cons].DistributionMap();
385 
386  // First, copy any of the conserved state variables into the output plotfile
387  for (int i = 0; i < cons_names.size(); ++i) {
388  if (containerHasElement(plot_var_names, cons_names[i])) {
389  MultiFab::Copy(mf[lev],vars_new[lev][Vars::cons],i,mf_comp,1,0);
390  mf_comp++;
391  }
392  }
393 
394  // Next, check for velocities
395  if (containerHasElement(plot_var_names, "x_velocity")) {
396  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 0, mf_comp, 1, 0);
397  mf_comp += 1;
398  }
399  if (containerHasElement(plot_var_names, "y_velocity")) {
400  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 1, mf_comp, 1, 0);
401  mf_comp += 1;
402  }
403  if (containerHasElement(plot_var_names, "z_velocity")) {
404  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 2, mf_comp, 1, 0);
405  mf_comp += 1;
406  }
407 
408  // Create multifabs for HSE and pressure fields used to derive other quantities
409  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp , 1);
410  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp , 1);
411  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
412 
413  MultiFab pressure;
414 
415  if (solverChoice.anelastic[lev] == 0) {
416  if (containerHasElement(plot_var_names, "pressure") ||
417  containerHasElement(plot_var_names, "pert_pres") ||
418  containerHasElement(plot_var_names, "dpdx") ||
419  containerHasElement(plot_var_names, "dpdy") ||
420  containerHasElement(plot_var_names, "dpdz") ||
421  containerHasElement(plot_var_names, "eq_pot_temp") ||
422  containerHasElement(plot_var_names, "qsat"))
423  {
424  int ng = (containerHasElement(plot_var_names, "dpdx") || containerHasElement(plot_var_names, "dpdy") ||
425  containerHasElement(plot_var_names, "dpdz")) ? 1 : 0;
426 
427  // Allocate space for pressure
428  pressure.define(ba,dm,1,ng);
429 
430  if (ng > 0) {
431  // Default to p_hse as a way of filling ghost cells at domain boundaries
432  MultiFab::Copy(pressure,p_hse,0,0,1,1);
433  }
434 #ifdef _OPENMP
435 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
436 #endif
437  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
438  {
439  const Box& gbx = mfi.growntilebox(IntVect(ng,ng,0));
440 
441  const Array4<Real >& p_arr = pressure.array(mfi);
442  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
443  const int ncomp = vars_new[lev][Vars::cons].nComp();
444 
445  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
446  {
447  Real qv_for_p = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0;
448  const Real rhotheta = S_arr(i,j,k,RhoTheta_comp);
449  p_arr(i, j, k) = getPgivenRTh(rhotheta,qv_for_p);
450  });
451  } // mfi
452  pressure.FillBoundary(geom[lev].periodicity());
453  } // compute compressible pressure
454  } // not anelastic
455  else {
456  if (containerHasElement(plot_var_names, "dpdx") ||
457  containerHasElement(plot_var_names, "dpdy") ||
458  containerHasElement(plot_var_names, "dpdz") ||
459  containerHasElement(plot_var_names, "eq_pot_temp") ||
460  containerHasElement(plot_var_names, "qsat"))
461  {
462  // Copy p_hse into pressure if using anelastic
463  pressure.define(ba,dm,1,0);
464  MultiFab::Copy(pressure,p_hse,0,0,1,0);
465  }
466  }
467 
468  // Finally, check for any derived quantities and compute them, inserting
469  // them into our output multifab
470  auto calculate_derived = [&](const std::string& der_name,
471  MultiFab& src_mf,
472  decltype(derived::erf_dernull)& der_function)
473  {
474  if (containerHasElement(plot_var_names, der_name)) {
475  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
476 #ifdef _OPENMP
477 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
478 #endif
479  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
480  {
481  const Box& bx = mfi.tilebox();
482  auto& dfab = dmf[mfi];
483  auto& sfab = src_mf[mfi];
484  der_function(bx, dfab, 0, 1, sfab, Geom(lev), t_new[0], nullptr, lev);
485  }
486 
487  mf_comp++;
488  }
489  };
490 
491  // *****************************************************************************************
492  // NOTE: All derived variables computed below **MUST MATCH THE ORDER** of "derived_names"
493  // defined in ERF.H
494  // *****************************************************************************************
495 
496  calculate_derived("soundspeed", vars_new[lev][Vars::cons], derived::erf_dersoundspeed);
497  if (use_moisture) {
498  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dermoisttemp);
499  } else {
500  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dertemp);
501  }
502  calculate_derived("theta", vars_new[lev][Vars::cons], derived::erf_dertheta);
503  calculate_derived("KE", vars_new[lev][Vars::cons], derived::erf_derKE);
504  calculate_derived("scalar", vars_new[lev][Vars::cons], derived::erf_derscalar);
505  calculate_derived("vorticity_x", mf_cc_vel[lev] , derived::erf_dervortx);
506  calculate_derived("vorticity_y", mf_cc_vel[lev] , derived::erf_dervorty);
507  calculate_derived("vorticity_z", mf_cc_vel[lev] , derived::erf_dervortz);
508  calculate_derived("magvel" , mf_cc_vel[lev] , derived::erf_dermagvel);
509 
510  if (containerHasElement(plot_var_names, "divU"))
511  {
512  // TODO TODO TODO -- we need to convert w to omega here!!
513  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
514  Array<MultiFab const*, AMREX_SPACEDIM> u;
515  u[0] = &(vars_new[lev][Vars::xvel]);
516  u[1] = &(vars_new[lev][Vars::yvel]);
517  u[2] = &(vars_new[lev][Vars::zvel]);
518  compute_divergence (lev, dmf, u, geom[lev]);
519  mf_comp += 1;
520  }
521 
522  if (containerHasElement(plot_var_names, "pres_hse"))
523  {
524  MultiFab::Copy(mf[lev],p_hse,0,mf_comp,1,0);
525  mf_comp += 1;
526  }
527  if (containerHasElement(plot_var_names, "dens_hse"))
528  {
529  MultiFab::Copy(mf[lev],r_hse,0,mf_comp,1,0);
530  mf_comp += 1;
531  }
532  if (containerHasElement(plot_var_names, "theta_hse"))
533  {
534  MultiFab::Copy(mf[lev],th_hse,0,mf_comp,1,0);
535  mf_comp += 1;
536  }
537 
538  if (containerHasElement(plot_var_names, "pressure"))
539  {
540  if (solverChoice.anelastic[lev] == 1) {
541  MultiFab::Copy(mf[lev], p_hse, 0, mf_comp, 1, 0);
542  } else {
543  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
544  }
545 
546  mf_comp += 1;
547  }
548 
549  if (containerHasElement(plot_var_names, "pert_pres"))
550  {
551  if (solverChoice.anelastic[lev] == 1) {
552  MultiFab::Copy(mf[lev], pp_inc[lev], 0, mf_comp, 1, 0);
553  } else {
554  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
555  MultiFab::Subtract(mf[lev],p_hse,0,mf_comp,1,IntVect{0});
556  }
557  mf_comp += 1;
558  }
559 
560  if (containerHasElement(plot_var_names, "pert_dens"))
561  {
562 #ifdef _OPENMP
563 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
564 #endif
565  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
566  {
567  const Box& bx = mfi.tilebox();
568  const Array4<Real>& derdat = mf[lev].array(mfi);
569  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
570  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
571  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
572  derdat(i, j, k, mf_comp) = S_arr(i,j,k,Rho_comp) - r0_arr(i,j,k);
573  });
574  }
575  mf_comp ++;
576  }
577 
578  if (containerHasElement(plot_var_names, "eq_pot_temp"))
579  {
580 #ifdef _OPENMP
581 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
582 #endif
583  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
584  {
585  const Box& bx = mfi.tilebox();
586  const Array4<Real>& derdat = mf[lev].array(mfi);
587  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
588  const Array4<Real const>& p_arr = pressure.const_array(mfi);
589  const int ncomp = vars_new[lev][Vars::cons].nComp();
590  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
591  Real qv = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
592  Real qc = (use_moisture && (ncomp > RhoQ2_comp)) ? S_arr(i,j,k,RhoQ2_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
593  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
594  Real fac = Cp_d + Cp_l*(qv + qc);
595  Real pv = erf_esatw(T)*100.0;
596 
597  derdat(i, j, k, mf_comp) = T*std::pow((p_arr(i,j,k) - pv)/p_0, -R_d/fac)*std::exp(L_v*qv/(fac*T)) ;
598  });
599  }
600  mf_comp ++;
601  }
602 
603 #ifdef ERF_USE_WINDFARM
604  if ( containerHasElement(plot_var_names, "num_turb") and
605  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
606  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
607  {
608  MultiFab::Copy(mf[lev],Nturb[lev],0,mf_comp,1,0);
609  mf_comp ++;
610  }
611 
612  if ( containerHasElement(plot_var_names, "SMark0") and
613  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
614  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
615  {
616  MultiFab::Copy(mf[lev],SMark[lev],0,mf_comp,1,0);
617  mf_comp ++;
618  }
619 
620  if (containerHasElement(plot_var_names, "SMark1") and
621  (solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD))
622  {
623  MultiFab::Copy(mf[lev],SMark[lev],1,mf_comp,1,0);
624  mf_comp ++;
625  }
626 #endif
627 
628  // **********************************************************************************************
629  // Allocate space if we are computing any pressure gradients
630  // **********************************************************************************************
631 
632  Vector<MultiFab> gradp_temp; gradp_temp.resize(AMREX_SPACEDIM);
633  if (containerHasElement(plot_var_names, "dpdx") ||
634  containerHasElement(plot_var_names, "dpdy") ||
635  containerHasElement(plot_var_names, "dpdz") ||
636  containerHasElement(plot_var_names, "pres_hse_x") ||
637  containerHasElement(plot_var_names, "pres_hse_y"))
638  {
639  gradp_temp[GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp_temp[GpVars::gpx].setVal(0.);
640  gradp_temp[GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp_temp[GpVars::gpy].setVal(0.);
641  gradp_temp[GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp_temp[GpVars::gpz].setVal(0.);
642  }
643 
644  // **********************************************************************************************
645  // These are based on computing gradient of full pressure
646  // **********************************************************************************************
647 
648  if (solverChoice.anelastic[lev] == 0) {
649  if ( (containerHasElement(plot_var_names, "dpdx")) ||
650  (containerHasElement(plot_var_names, "dpdy")) ||
651  (containerHasElement(plot_var_names, "dpdz")) ) {
652  compute_gradp(pressure, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), get_eb(lev), gradp_temp, solverChoice);
653  }
654  }
655 
656  if (containerHasElement(plot_var_names, "dpdx"))
657  {
658  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
659  {
660  const Box& bx = mfi.tilebox();
661  const Array4<Real >& derdat = mf[lev].array(mfi);
662  const Array4<Real const>& gpx_arr = (solverChoice.anelastic[lev] == 1) ?
663  gradp[lev][GpVars::gpx].array(mfi) : gradp_temp[GpVars::gpx].array(mfi);
664  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
665  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
666  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
667  });
668  }
669  mf_comp ++;
670  } // dpdx
671  if (containerHasElement(plot_var_names, "dpdy"))
672  {
673  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
674  {
675  const Box& bx = mfi.tilebox();
676  const Array4<Real >& derdat = mf[lev].array(mfi);
677  const Array4<Real const>& gpy_arr = (solverChoice.anelastic[lev] == 1) ?
678  gradp[lev][GpVars::gpy].array(mfi) : gradp_temp[GpVars::gpy].array(mfi);
679  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
680  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
681  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
682  });
683  }
684  mf_comp ++;
685  } // dpdy
686  if (containerHasElement(plot_var_names, "dpdz"))
687  {
688  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
689  {
690  const Box& bx = mfi.tilebox();
691  const Array4<Real >& derdat = mf[lev].array(mfi);
692  const Array4<Real const>& gpz_arr = (solverChoice.anelastic[lev] == 1) ?
693  gradp[lev][GpVars::gpz].array(mfi) : gradp_temp[GpVars::gpz].array(mfi);
694  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
695  derdat(i ,j ,k, mf_comp) = 0.5 * (gpz_arr(i,j,k+1) + gpz_arr(i,j,k));
696  });
697  }
698  mf_comp ++;
699  } // dpdz
700 
701  // **********************************************************************************************
702  // These are based on computing gradient of basestate pressure
703  // **********************************************************************************************
704 
705  if ( (containerHasElement(plot_var_names, "pres_hse_x")) ||
706  (containerHasElement(plot_var_names, "pres_hse_y")) ) {
707  compute_gradp(p_hse, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), get_eb(lev), gradp_temp, solverChoice);
708  }
709 
710  if (containerHasElement(plot_var_names, "pres_hse_x"))
711  {
712  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
713  {
714  const Box& bx = mfi.tilebox();
715  const Array4<Real >& derdat = mf[lev].array(mfi);
716  const Array4<Real const>& gpx_arr = gradp_temp[0].array(mfi);
717  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
718  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
719  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
720  });
721  }
722  mf_comp += 1;
723  } // pres_hse_x
724 
725  if (containerHasElement(plot_var_names, "pres_hse_y"))
726  {
727  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
728  {
729  const Box& bx = mfi.tilebox();
730  const Array4<Real >& derdat = mf[lev].array(mfi);
731  const Array4<Real const>& gpy_arr = gradp_temp[1].array(mfi);
732  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
733  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
734  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
735  });
736  }
737  mf_comp += 1;
738  } // pres_hse_y
739 
740  // **********************************************************************************************
741  // Metric terms
742  // **********************************************************************************************
743 
744  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
745  if (containerHasElement(plot_var_names, "z_phys"))
746  {
747  MultiFab::Copy(mf[lev],*z_phys_cc[lev],0,mf_comp,1,0);
748  mf_comp ++;
749  }
750 
751  if (containerHasElement(plot_var_names, "detJ"))
752  {
753  MultiFab::Copy(mf[lev],*detJ_cc[lev],0,mf_comp,1,0);
754  mf_comp ++;
755  }
756  } // use_terrain
757 
758  if (containerHasElement(plot_var_names, "mapfac")) {
759 #ifdef _OPENMP
760 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
761 #endif
762  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
763  {
764  const Box& bx = mfi.tilebox();
765  const Array4<Real>& derdat = mf[lev].array(mfi);
766  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
767  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
768  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
769  });
770  }
771  mf_comp ++;
772  }
773 
774 #ifdef ERF_USE_NETCDF
776  if (containerHasElement(plot_var_names, "lat_m")) {
777 #ifdef _OPENMP
778 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
779 #endif
780  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
781  {
782  const Box& bx = mfi.tilebox();
783  const Array4<Real>& derdat = mf[lev].array(mfi);
784  const Array4<Real>& data = lat_m[lev]->array(mfi);
785  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
786  derdat(i, j, k, mf_comp) = data(i,j,0);
787  });
788  }
789  mf_comp ++;
790  } // lat_m
791 
792  if (containerHasElement(plot_var_names, "lon_m")) {
793 #ifdef _OPENMP
794 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
795 #endif
796  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
797  {
798  const Box& bx = mfi.tilebox();
799  const Array4<Real>& derdat = mf[lev].array(mfi);
800  const Array4<Real>& data = lon_m[lev]->array(mfi);
801  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
802  derdat(i, j, k, mf_comp) = data(i,j,0);
803  });
804  }
805  mf_comp ++;
806  } // lon_m
807  } // use_real_bcs
808 #endif
809 
810 
812  if (containerHasElement(plot_var_names, "u_t_avg")) {
813 #ifdef _OPENMP
814 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
815 #endif
816  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
817  {
818  const Box& bx = mfi.tilebox();
819  const Array4<Real>& derdat = mf[lev].array(mfi);
820  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
821  const Real norm = t_avg_cnt[lev];
822  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
823  {
824  derdat(i ,j ,k, mf_comp) = data(i,j,k,0) / norm;
825  });
826  }
827  mf_comp ++;
828  }
829 
830  if (containerHasElement(plot_var_names, "v_t_avg")) {
831 #ifdef _OPENMP
832 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
833 #endif
834  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
835  {
836  const Box& bx = mfi.tilebox();
837  const Array4<Real>& derdat = mf[lev].array(mfi);
838  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
839  const Real norm = t_avg_cnt[lev];
840  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
841  {
842  derdat(i ,j ,k, mf_comp) = data(i,j,k,1) / norm;
843  });
844  }
845  mf_comp ++;
846  }
847 
848  if (containerHasElement(plot_var_names, "w_t_avg")) {
849 #ifdef _OPENMP
850 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
851 #endif
852  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
853  {
854  const Box& bx = mfi.tilebox();
855  const Array4<Real>& derdat = mf[lev].array(mfi);
856  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
857  const Real norm = t_avg_cnt[lev];
858  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
859  {
860  derdat(i ,j ,k, mf_comp) = data(i,j,k,2) / norm;
861  });
862  }
863  mf_comp ++;
864  }
865 
866  if (containerHasElement(plot_var_names, "umag_t_avg")) {
867 #ifdef _OPENMP
868 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
869 #endif
870  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
871  {
872  const Box& bx = mfi.tilebox();
873  const Array4<Real>& derdat = mf[lev].array(mfi);
874  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
875  const Real norm = t_avg_cnt[lev];
876  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
877  {
878  derdat(i ,j ,k, mf_comp) = data(i,j,k,3) / norm;
879  });
880  }
881  mf_comp ++;
882  }
883  }
884 
885  if (containerHasElement(plot_var_names, "nut")) {
886  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
887  MultiFab cmf(vars_new[lev][Vars::cons], make_alias, 0, 1); // to provide rho only
888 #ifdef _OPENMP
889 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
890 #endif
891  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
892  {
893  const Box& bx = mfi.tilebox();
894  auto prim = dmf[mfi].array();
895  auto const cons = cmf[mfi].const_array();
896  auto const diff = (*eddyDiffs_lev[lev])[mfi].const_array();
897  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
898  {
899  const Real rho = cons(i, j, k, Rho_comp);
900  const Real Kmv = diff(i, j, k, EddyDiff::Mom_v);
901  prim(i,j,k) = Kmv / rho;
902  });
903  }
904 
905  mf_comp++;
906  }
907 
908  if (containerHasElement(plot_var_names, "Kmv")) {
909  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_v,mf_comp,1,0);
910  mf_comp ++;
911  }
912  if (containerHasElement(plot_var_names, "Kmh")) {
913  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_h,mf_comp,1,0);
914  mf_comp ++;
915  }
916  if (containerHasElement(plot_var_names, "Khv")) {
917  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_v,mf_comp,1,0);
918  mf_comp ++;
919  }
920  if (containerHasElement(plot_var_names, "Khh")) {
921  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_h,mf_comp,1,0);
922  mf_comp ++;
923  }
924  if (containerHasElement(plot_var_names, "Lturb")) {
925  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Turb_lengthscale,mf_comp,1,0);
926  mf_comp ++;
927  }
928  if (containerHasElement(plot_var_names, "walldist")) {
929  MultiFab::Copy(mf[lev],*walldist[lev],0,mf_comp,1,0);
930  mf_comp ++;
931  }
932  if (containerHasElement(plot_var_names, "diss")) {
933  MultiFab::Copy(mf[lev],*SFS_diss_lev[lev],0,mf_comp,1,0);
934  mf_comp ++;
935  }
936 
937  // TODO: The size of the q variables can vary with different
938  // moisture models. Therefore, certain components may
939  // reside at different indices. For example, Kessler is
940  // warm but precipitating. This puts qp at index 3.
941  // However, SAM is cold and precipitating so qp is index 4.
942  // Need to built an external enum struct or a better pathway.
943 
944  // NOTE: Protect against accessing non-existent data
945  if (use_moisture) {
946  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
947 
948  // Moist density
949  if(containerHasElement(plot_var_names, "moist_density"))
950  {
951  int n_start = RhoQ1_comp; // qv
952  int n_end = RhoQ2_comp; // qc
953  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
954  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
955  for (int n_comp(n_start); n_comp <= n_end; ++n_comp) {
956  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
957  }
958  mf_comp += 1;
959  }
960 
961  if(containerHasElement(plot_var_names, "qv") && (n_qstate_moist >= 1))
962  {
963  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ1_comp, mf_comp, 1, 0);
964  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
965  mf_comp += 1;
966  }
967 
968  if(containerHasElement(plot_var_names, "qc") && (n_qstate_moist >= 2))
969  {
970  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ2_comp, mf_comp, 1, 0);
971  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
972  mf_comp += 1;
973  }
974 
975  if(containerHasElement(plot_var_names, "qi") && (n_qstate_moist >= 4))
976  {
977  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ3_comp, mf_comp, 1, 0);
978  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
979  mf_comp += 1;
980  }
981 
982  if(containerHasElement(plot_var_names, "qrain") && (n_qstate_moist >= 3))
983  {
984  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
985  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start , mf_comp, 1, 0);
986  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
987  mf_comp += 1;
988  }
989 
990  if(containerHasElement(plot_var_names, "qsnow") && (n_qstate_moist >= 5))
991  {
992  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ5_comp, mf_comp, 1, 0);
993  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
994  mf_comp += 1;
995  }
996 
997  if(containerHasElement(plot_var_names, "qgraup") && (n_qstate_moist >= 6))
998  {
999  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ6_comp, mf_comp, 1, 0);
1000  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1001  mf_comp += 1;
1002  }
1003 
1004  // Precipitating + non-precipitating components
1005  //--------------------------------------------------------------------------
1006  if(containerHasElement(plot_var_names, "qt"))
1007  {
1008  int n_start = RhoQ1_comp; // qv
1009  int n_end = n_start + n_qstate_moist;
1010  MultiFab::Copy(mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1011  for (int n_comp(n_start+1); n_comp < n_end; ++n_comp) {
1012  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1013  }
1014  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1015  mf_comp += 1;
1016  }
1017 
1018  // Non-precipitating components
1019  //--------------------------------------------------------------------------
1020  if (containerHasElement(plot_var_names, "qn"))
1021  {
1022  int n_start = RhoQ1_comp; // qv
1023  int n_end = RhoQ2_comp; // qc
1024  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1025  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1026  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1027  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1028  }
1029  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1030  mf_comp += 1;
1031  }
1032 
1033  // Precipitating components
1034  //--------------------------------------------------------------------------
1035  if(containerHasElement(plot_var_names, "qp") && (n_qstate_moist >= 3))
1036  {
1037  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1038  int n_end = ncomp_cons - 1;
1039  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1040  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1041  MultiFab::Add( mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1042  }
1043  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1044  mf_comp += 1;
1045  }
1046 
1047  if (containerHasElement(plot_var_names, "qsat"))
1048  {
1049 #ifdef _OPENMP
1050 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1051 #endif
1052  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1053  {
1054  const Box& bx = mfi.tilebox();
1055  const Array4<Real>& derdat = mf[lev].array(mfi);
1056  const Array4<Real const>& p_arr = pressure.array(mfi);
1057  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1058  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1059  {
1060  Real qv = S_arr(i,j,k,RhoQ1_comp) / S_arr(i,j,k,Rho_comp);
1061  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
1062  Real p = p_arr(i,j,k) * Real(0.01);
1063  erf_qsatw(T, p, derdat(i,j,k,mf_comp));
1064  });
1065  }
1066  mf_comp ++;
1067  }
1068 
1069  if ( (solverChoice.moisture_type == MoistureType::Kessler) ||
1070  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
1071  (solverChoice.moisture_type == MoistureType::SAM_NoIce) )
1072  {
1073  int offset = (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ? 5 : 0;
1074  if (containerHasElement(plot_var_names, "rain_accum"))
1075  {
1076  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1077  mf_comp += 1;
1078  }
1079  }
1080  else if ( (solverChoice.moisture_type == MoistureType::SAM) ||
1081  (solverChoice.moisture_type == MoistureType::Morrison) )
1082  {
1083  int offset = (solverChoice.moisture_type == MoistureType::Morrison) ? 5 : 0;
1084  if (containerHasElement(plot_var_names, "rain_accum"))
1085  {
1086  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1087  mf_comp += 1;
1088  }
1089  if (containerHasElement(plot_var_names, "snow_accum"))
1090  {
1091  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+1]),0,mf_comp,1,0);
1092  mf_comp += 1;
1093  }
1094  if (containerHasElement(plot_var_names, "graup_accum"))
1095  {
1096  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+2]),0,mf_comp,1,0);
1097  mf_comp += 1;
1098  }
1099  }
1100  } // use_moisture
1101 
1102  if (containerHasElement(plot_var_names, "terrain_IB_mask"))
1103  {
1104  MultiFab* terrain_blank = terrain_blanking[lev].get();
1105  MultiFab::Copy(mf[lev],*terrain_blank,0,mf_comp,1,0);
1106  mf_comp ++;
1107  }
1108 
1109  if (containerHasElement(plot_var_names, "volfrac")) {
1110  if ( solverChoice.terrain_type == TerrainType::EB ||
1111  solverChoice.terrain_type == TerrainType::ImmersedForcing)
1112  {
1113  MultiFab::Copy(mf[lev], EBFactory(lev).getVolFrac(), 0, mf_comp, 1, 0);
1114  } else {
1115  mf[lev].setVal(1.0, mf_comp, 1, 0);
1116  }
1117  mf_comp += 1;
1118  }
1119 
1120 #ifdef ERF_COMPUTE_ERROR
1121  // Next, check for error in velocities and if desired, output them -- note we output none or all, not just some
1122  if (containerHasElement(plot_var_names, "xvel_err") ||
1123  containerHasElement(plot_var_names, "yvel_err") ||
1124  containerHasElement(plot_var_names, "zvel_err"))
1125  {
1126  //
1127  // Moving terrain ANALYTICAL
1128  //
1129  Real H = geom[lev].ProbHi()[2];
1130  Real Ampl = 0.16;
1131  Real wavelength = 100.;
1132  Real kp = 2. * PI / wavelength;
1133  Real g = CONST_GRAV;
1134  Real omega = std::sqrt(g * kp);
1135  Real omega_t = omega * t_new[lev];
1136 
1137  const auto dx = geom[lev].CellSizeArray();
1138 
1139 #ifdef _OPENMP
1140 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1141 #endif
1142  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1143  {
1144  const Box& bx = mfi.validbox();
1145  Box xbx(bx); xbx.surroundingNodes(0);
1146  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1147  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1148 
1149  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1150 
1151  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1152  {
1153  Real x = i * dx[0];
1154  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1155 
1156  Real z_base = Ampl * std::sin(kp * x - omega_t);
1157  z -= z_base;
1158 
1159  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1160 
1161  xvel_arr(i,j,k) -= -Ampl * omega * fac * std::sin(kp * x - omega_t);
1162  });
1163 
1164  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1165  {
1166  Real x = (i + 0.5) * dx[0];
1167  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1168 
1169  Real z_base = Ampl * std::sin(kp * x - omega_t);
1170  z -= z_base;
1171 
1172  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1173 
1174  zvel_arr(i,j,k) -= Ampl * omega * fac * std::cos(kp * x - omega_t);
1175  });
1176  }
1177 
1178  MultiFab temp_mf(mf[lev].boxArray(), mf[lev].DistributionMap(), AMREX_SPACEDIM, 0);
1179  average_face_to_cellcenter(temp_mf,0,
1180  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
1181 
1182  if (containerHasElement(plot_var_names, "xvel_err")) {
1183  MultiFab::Copy(mf[lev],temp_mf,0,mf_comp,1,0);
1184  mf_comp += 1;
1185  }
1186  if (containerHasElement(plot_var_names, "yvel_err")) {
1187  MultiFab::Copy(mf[lev],temp_mf,1,mf_comp,1,0);
1188  mf_comp += 1;
1189  }
1190  if (containerHasElement(plot_var_names, "zvel_err")) {
1191  MultiFab::Copy(mf[lev],temp_mf,2,mf_comp,1,0);
1192  mf_comp += 1;
1193  }
1194 
1195  // Now restore the velocities to what they were
1196 #ifdef _OPENMP
1197 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1198 #endif
1199  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1200  {
1201  const Box& bx = mfi.validbox();
1202  Box xbx(bx); xbx.surroundingNodes(0);
1203 
1204  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1205  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1206 
1207  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1208 
1209  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1210  {
1211  Real x = i * dx[0];
1212  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1213  Real z_base = Ampl * std::sin(kp * x - omega_t);
1214 
1215  z -= z_base;
1216 
1217  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1218  xvel_arr(i,j,k) += -Ampl * omega * fac * std::sin(kp * x - omega_t);
1219  });
1220  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1221  {
1222  Real x = (i + 0.5) * dx[0];
1223  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1224  Real z_base = Ampl * std::sin(kp * x - omega_t);
1225 
1226  z -= z_base;
1227  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1228 
1229  zvel_arr(i,j,k) += Ampl * omega * fac * std::cos(kp * x - omega_t);
1230  });
1231  }
1232  } // end xvel_err, yvel_err, zvel_err
1233 
1234  if (containerHasElement(plot_var_names, "pp_err"))
1235  {
1236  // Moving terrain ANALYTICAL
1237 #ifdef _OPENMP
1238 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1239 #endif
1240  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1241  {
1242  const Box& bx = mfi.tilebox();
1243  const Array4<Real>& derdat = mf[lev].array(mfi);
1244  const Array4<Real const>& p0_arr = p_hse.const_array(mfi);
1245  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1246 
1247  const auto dx = geom[lev].CellSizeArray();
1248  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1249  const Array4<Real const>& p_arr = pressure.const_array(mfi);
1250  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
1251 
1252  Real H = geom[lev].ProbHi()[2];
1253  Real Ampl = 0.16;
1254  Real wavelength = 100.;
1255  Real kp = 2. * PI / wavelength;
1256  Real g = CONST_GRAV;
1257  Real omega = std::sqrt(g * kp);
1258  Real omega_t = omega * t_new[lev];
1259 
1260  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1261  {
1262  derdat(i, j, k, mf_comp) = p_arr(i,j,k) - p0_arr(i,j,k);
1263 
1264  Real rho_hse = r0_arr(i,j,k);
1265 
1266  Real x = (i + 0.5) * dx[0];
1267  Real z = 0.125 * ( z_nd(i,j,k ) + z_nd(i+1,j,k ) + z_nd(i,j+1,k ) + z_nd(i+1,j+1,k )
1268  +z_nd(i,j,k+1) + z_nd(i+1,j,k+1) + z_nd(i,j+1,k+1) + z_nd(i+1,j+1,k+1) );
1269  Real z_base = Ampl * std::sin(kp * x - omega_t);
1270 
1271  z -= z_base;
1272  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1273  Real pprime_exact = -(Ampl * omega * omega / kp) * fac *
1274  std::sin(kp * x - omega_t) * r0_arr(i,j,k);
1275 
1276  derdat(i,j,k,mf_comp) -= pprime_exact;
1277  });
1278  }
1279  mf_comp += 1;
1280  }
1281 #endif
1282 
1283  if (solverChoice.rad_type != RadiationType::None) {
1284  if (containerHasElement(plot_var_names, "qsrc_sw")) {
1285  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 0, mf_comp, 1, 0);
1286  mf_comp += 1;
1287  }
1288  if (containerHasElement(plot_var_names, "qsrc_lw")) {
1289  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 1, mf_comp, 1, 0);
1290  mf_comp += 1;
1291  }
1292  }
1293 
1294  // *****************************************************************************************
1295  // End of derived variables corresponding to "derived_names" in ERF.H
1296  //
1297  // Particles and microphysics can provide additional outputs, which are handled below.
1298  // *****************************************************************************************
1299 
1300 #ifdef ERF_USE_PARTICLES
1301  const auto& particles_namelist( particleData.getNames() );
1302  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++) {
1303  if (containerHasElement(plot_var_names, std::string(particles_namelist[i]+"_count"))) {
1304  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1305  temp_dat.setVal(0);
1306  particleData[particles_namelist[i]]->Increment(temp_dat, lev);
1307  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1308  mf_comp += 1;
1309  }
1310  }
1311 
1312  Vector<std::string> particle_mesh_plot_names(0);
1313  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
1314  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
1315  std::string plot_var_name(particle_mesh_plot_names[i]);
1316  if (containerHasElement(plot_var_names, plot_var_name) ) {
1317  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1318  temp_dat.setVal(0);
1319  particleData.GetMeshPlotVar(plot_var_name, temp_dat, lev);
1320  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1321  mf_comp += 1;
1322  }
1323  }
1324 #endif
1325 
1326  {
1327  Vector<std::string> microphysics_plot_names;
1328  micro->GetPlotVarNames(microphysics_plot_names);
1329  for (auto& plot_name : microphysics_plot_names) {
1330  if (containerHasElement(plot_var_names, plot_name)) {
1331  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1332  temp_dat.setVal(0);
1333  micro->GetPlotVar(plot_name, temp_dat, lev);
1334  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1335  mf_comp += 1;
1336  }
1337  }
1338  }
1339 
1340 
1341  }
1342 
1343  if (solverChoice.terrain_type == TerrainType::EB)
1344  {
1345  for (int lev = 0; lev <= finest_level; ++lev) {
1346  EB_set_covered(mf[lev], 0.0);
1347  }
1348  }
1349 
1350  // Fill terrain distortion MF (nu_nd)
1351  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1352  for (int lev(0); lev <= finest_level; ++lev) {
1353  MultiFab::Copy(mf_nd[lev],*z_phys_nd[lev],0,2,1,0);
1354  Real dz = Geom()[lev].CellSizeArray()[2];
1355  for (MFIter mfi(mf_nd[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1356  const Box& bx = mfi.tilebox();
1357  Array4<Real> mf_arr = mf_nd[lev].array(mfi);
1358  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1359  {
1360  mf_arr(i,j,k,2) -= k * dz;
1361  });
1362  }
1363  }
1364  }
1365 
1366  std::string plotfilename;
1367  std::string plotfilenameU;
1368  std::string plotfilenameV;
1369  std::string plotfilenameW;
1370  if (which == 1) {
1371  plotfilename = Concatenate(plot_file_1, istep[0], 5);
1372  plotfilenameU = Concatenate(plot_file_1+"U", istep[0], 5);
1373  plotfilenameV = Concatenate(plot_file_1+"V", istep[0], 5);
1374  plotfilenameW = Concatenate(plot_file_1+"W", istep[0], 5);
1375  } else if (which == 2) {
1376  plotfilename = Concatenate(plot_file_2, istep[0], 5);
1377  plotfilenameU = Concatenate(plot_file_2+"U", istep[0], 5);
1378  plotfilenameV = Concatenate(plot_file_2+"V", istep[0], 5);
1379  plotfilenameW = Concatenate(plot_file_2+"W", istep[0], 5);
1380  }
1381 
1382  // LSM writes it's own data
1383  if (which==1 && plot_lsm) {
1384  lsm.Plot_Lsm_Data(t_new[0], istep, refRatio());
1385  }
1386 
1387 #ifdef ERF_USE_RRTMGP
1388  /*
1389  // write additional RRTMGP data
1390  // TODO: currently single level only
1391  if (which==1 && plot_rad) {
1392  rad[0]->writePlotfile(plot_file_1, t_new[0], istep[0]);
1393  }
1394  */
1395 #endif
1396 
1397  // Single level
1398  if (finest_level == 0)
1399  {
1400  if (plotfile_type == PlotFileType::Amrex)
1401  {
1402  Print() << "Writing native plotfile " << plotfilename << "\n";
1403  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1404  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1405  GetVecOfConstPtrs(mf),
1406  GetVecOfConstPtrs(mf_nd),
1407  varnames,
1408  Geom(), t_new[0], istep, refRatio());
1409  } else {
1410  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1411  GetVecOfConstPtrs(mf),
1412  varnames,
1413  Geom(), t_new[0], istep, refRatio());
1414  }
1415  writeJobInfo(plotfilename);
1416 
1417  if (m_plot_face_vels) {
1418  Print() << "Writing face velocities" << std::endl;
1419  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1420  GetVecOfConstPtrs(mf_u),
1421  {"x_velocity_stag"},
1422  Geom(), t_new[0], istep, refRatio());
1423  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1424  GetVecOfConstPtrs(mf_v),
1425  {"y_velocity_stag"},
1426  Geom(), t_new[0], istep, refRatio());
1427  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1428  GetVecOfConstPtrs(mf_w),
1429  {"z_velocity_stag"},
1430  Geom(), t_new[0], istep, refRatio());
1431  }
1432 
1433 #ifdef ERF_USE_PARTICLES
1434  particleData.writePlotFile(plotfilename);
1435 #endif
1436 #ifdef ERF_USE_NETCDF
1437  } else if (plotfile_type == PlotFileType::Netcdf) {
1438  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1439  int lev = 0;
1440  int l_which = 0;
1441  const Real* p_lo = geom[lev].ProbLo();
1442  const Real* p_hi = geom[lev].ProbHi();
1443  const auto dx = geom[lev].CellSize();
1444  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1445  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1446  geom[lev].Domain(), t_new[0], start_bdy_time);
1447 #endif
1448  } else {
1449  // Here we assume the plotfile_type is PlotFileType::None
1450  Print() << "Writing no plotfile since plotfile_type is none" << std::endl;
1451  }
1452 
1453  } else { // Multilevel
1454 
1455  if (plotfile_type == PlotFileType::Amrex) {
1456 
1457  int lev0 = 0;
1458  int desired_ratio = std::max(std::max(ref_ratio[lev0][0],ref_ratio[lev0][1]),ref_ratio[lev0][2]);
1459  bool any_ratio_one = ( ( (ref_ratio[lev0][0] == 1) || (ref_ratio[lev0][1] == 1) ) ||
1460  (ref_ratio[lev0][2] == 1) );
1461  for (int lev = 1; lev < finest_level; lev++) {
1462  any_ratio_one = any_ratio_one ||
1463  ( ( (ref_ratio[lev][0] == 1) || (ref_ratio[lev][1] == 1) ) ||
1464  (ref_ratio[lev][2] == 1) );
1465  }
1466 
1467  if (any_ratio_one && m_expand_plotvars_to_unif_rr)
1468  {
1469  Vector<IntVect> r2(finest_level);
1470  Vector<Geometry> g2(finest_level+1);
1471  Vector<MultiFab> mf2(finest_level+1);
1472 
1473  mf2[0].define(grids[0], dmap[0], ncomp_mf, 0);
1474 
1475  // Copy level 0 as is
1476  MultiFab::Copy(mf2[0],mf[0],0,0,mf[0].nComp(),0);
1477 
1478  // Define a new multi-level array of Geometry's so that we pass the new "domain" at lev > 0
1479  Array<int,AMREX_SPACEDIM> periodicity =
1480  {Geom()[lev0].isPeriodic(0),Geom()[lev0].isPeriodic(1),Geom()[lev0].isPeriodic(2)};
1481  g2[lev0].define(Geom()[lev0].Domain(),&(Geom()[lev0].ProbDomain()),0,periodicity.data());
1482 
1483  r2[0] = IntVect(desired_ratio/ref_ratio[lev0][0],
1484  desired_ratio/ref_ratio[lev0][1],
1485  desired_ratio/ref_ratio[lev0][2]);
1486 
1487  for (int lev = 1; lev <= finest_level; ++lev) {
1488  if (lev > 1) {
1489  r2[lev-1][0] = r2[lev-2][0] * desired_ratio / ref_ratio[lev-1][0];
1490  r2[lev-1][1] = r2[lev-2][1] * desired_ratio / ref_ratio[lev-1][1];
1491  r2[lev-1][2] = r2[lev-2][2] * desired_ratio / ref_ratio[lev-1][2];
1492  }
1493 
1494  mf2[lev].define(refine(grids[lev],r2[lev-1]), dmap[lev], ncomp_mf, 0);
1495 
1496  // Set the new problem domain
1497  Box d2(Geom()[lev].Domain());
1498  d2.refine(r2[lev-1]);
1499 
1500  g2[lev].define(d2,&(Geom()[lev].ProbDomain()),0,periodicity.data());
1501  }
1502 
1503  //
1504  // We need to make a temporary that is the size of ncomp_mf
1505  // in order to not get an out of bounds error
1506  // even though the values will not be used
1507  //
1508  Vector<BCRec> temp_domain_bcs_type;
1509  temp_domain_bcs_type.resize(ncomp_mf);
1510 
1511  //
1512  // Do piecewise constant interpolation of mf into mf2
1513  //
1514  for (int lev = 1; lev <= finest_level; ++lev) {
1515  Interpolater* mapper_c = &pc_interp;
1516  InterpFromCoarseLevel(mf2[lev], t_new[lev], mf[lev],
1517  0, 0, ncomp_mf,
1518  geom[lev], g2[lev],
1520  r2[lev-1], mapper_c, temp_domain_bcs_type, 0);
1521  }
1522 
1523  // Define an effective ref_ratio which is isotropic to be passed into WriteMultiLevelPlotfile
1524  Vector<IntVect> rr(finest_level);
1525  for (int lev = 0; lev < finest_level; ++lev) {
1526  rr[lev] = IntVect(desired_ratio);
1527  }
1528 
1529  Print() << "Writing plotfile " << plotfilename << "\n";
1530  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1531  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1532  GetVecOfConstPtrs(mf2),
1533  GetVecOfConstPtrs(mf_nd),
1534  varnames,
1535  g2, t_new[0], istep, rr);
1536  } else {
1537  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1538  GetVecOfConstPtrs(mf2), varnames,
1539  g2, t_new[0], istep, rr);
1540  }
1541 
1542  } else {
1543  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1544  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1545  GetVecOfConstPtrs(mf),
1546  GetVecOfConstPtrs(mf_nd),
1547  varnames,
1548  geom, t_new[0], istep, ref_ratio);
1549  } else {
1550  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1551  GetVecOfConstPtrs(mf), varnames,
1552  geom, t_new[0], istep, ref_ratio);
1553  }
1554  if (m_plot_face_vels) {
1555  Print() << "Writing face velocities" << std::endl;
1556  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1557  GetVecOfConstPtrs(mf_u),
1558  {"x_velocity_stag"},
1559  geom, t_new[0], istep, ref_ratio);
1560  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1561  GetVecOfConstPtrs(mf_v),
1562  {"y_velocity_stag"},
1563  geom, t_new[0], istep, ref_ratio);
1564  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1565  GetVecOfConstPtrs(mf_w),
1566  {"z_velocity_stag"},
1567  geom, t_new[0], istep, ref_ratio);
1568  }
1569  } // ref_ratio test
1570 
1571  writeJobInfo(plotfilename);
1572 
1573 #ifdef ERF_USE_PARTICLES
1574  particleData.writePlotFile(plotfilename);
1575 #endif
1576 
1577 #ifdef ERF_USE_NETCDF
1578  } else if (plotfile_type == PlotFileType::Netcdf) {
1579  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1580  for (int lev = 0; lev <= finest_level; ++lev) {
1581  for (int which_box = 0; which_box < num_boxes_at_level[lev]; which_box++) {
1582  Box bounding_region = (lev == 0) ? geom[lev].Domain() : boxes_at_level[lev][which_box];
1583  const Real* p_lo = geom[lev].ProbLo();
1584  const Real* p_hi = geom[lev].ProbHi();
1585  const auto dx = geom[lev].CellSizeArray();
1586  writeNCPlotFile(lev, which_box, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1587  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1588  bounding_region, t_new[0], start_bdy_time);
1589  }
1590  }
1591 #endif
1592  }
1593  } // end multi-level
1594 }
constexpr amrex::Real PI
Definition: ERF_Constants.H:6
constexpr amrex::Real Cp_l
Definition: ERF_Constants.H:14
#define RhoQ4_comp
Definition: ERF_IndexDefines.H:45
void compute_gradp(const MultiFab &p, const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc, const eb_ &ebfact, Vector< MultiFab > &gradp, const SolverChoice &solverChoice)
Definition: ERF_MakeGradP.cpp:74
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real erf_esatw(amrex::Real t)
Definition: ERF_MicrophysicsUtils.H:65
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void erf_qsatw(amrex::Real t, amrex::Real p, amrex::Real &qsatw)
Definition: ERF_MicrophysicsUtils.H:163
void writeNCPlotFile(int lev, int which_subdomain, const std::string &dir, const Vector< const MultiFab * > &plotMF, const Vector< std::string > &plot_var_names, const Vector< int > &, Array< Real, AMREX_SPACEDIM > prob_lo, Array< Real, AMREX_SPACEDIM > prob_hi, Array< Real, AMREX_SPACEDIM > dx_in, const Box &subdomain, const Real time, const Real start_bdy_time)
Definition: ERF_NCPlotFile.cpp:14
PhysBCFunctNoOp null_bc_for_fill
Definition: ERF_Plotfile.cpp:6
static amrex::Vector< std::string > PlotFileVarNames(amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:251
void WriteMultiLevelPlotfileWithTerrain(const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
Definition: ERF_Plotfile.cpp:1597
void writeJobInfo(const std::string &dir) const
Definition: ERF_WriteJobInfo.cpp:9
void Plot_Lsm_Data(amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &ref_ratio)
Definition: ERF_LandSurface.H:98
@ Turb_lengthscale
Definition: ERF_IndexDefines.H:180
@ Mom_h
Definition: ERF_IndexDefines.H:170
@ Theta_h
Definition: ERF_IndexDefines.H:171
void erf_dervortx(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:200
void erf_dervorty(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:228
void erf_dermagvel(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:319
void erf_dernull(const Box &, FArrayBox &, int, int, const FArrayBox &, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:39
void erf_dertemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:91
void erf_derKE(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:186
void erf_dermoisttemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:113
void erf_dersoundspeed(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:58
real(c_double), parameter g
Definition: ERF_module_model_constants.F90:19
Here is the call graph for this function:

◆ WriteSubvolume()

void ERF::WriteSubvolume ( )
10 {
11  ParmParse pp("erf.subvol");
12 
13  Vector<Real> origin;
14  Vector< int> ncell;
15  Vector<Real> delta;
16 
17  // **************************************************************
18  // Read in the origin, number of cells in each dir, and resolution
19  // **************************************************************
20  pp.getarr("origin",origin,0,AMREX_SPACEDIM);
21  pp.getarr("nxnynz", ncell,0,AMREX_SPACEDIM);
22  pp.getarr("dxdydz", delta,0,AMREX_SPACEDIM);
23 
24  int lev_for_sub = 0;
25 
26  bool found = false;
27  for (int i = 0; i <= finest_level; i++) {
28  if (!found) {
29  if (almostEqual(delta[0],geom[i].CellSize(0)) &&
30  almostEqual(delta[1],geom[i].CellSize(1)) &&
31  almostEqual(delta[2],geom[i].CellSize(2)) ) {
32 
33  // amrex::Print() << "XDIR " << delta[0] << " " << geom[i].CellSize(0) << std::endl;
34  // amrex::Print() << "YDIR " << delta[1] << " " << geom[i].CellSize(1) << std::endl;
35  // amrex::Print() << "ZDIR " << delta[2] << " " << geom[i].CellSize(2) << std::endl;
36  amrex::Print() << "Resolution specified matches that of level " << i << std::endl;
37  found = true;
38  lev_for_sub = i;
39  }
40  }
41  }
42 
43  if (!found) {
44  amrex::Abort("Resolution specified for subvol does not match the resolution of any of the levels.");
45  }
46 
47  // **************************************************************
48  // Now that we know which level we're at, we can figure out which (i,j,k) the origin corresponds to
49  // Note we use 1.0001 as a fudge factor since the division of two reals --> integer will do a floor
50  // **************************************************************
51  int i0 = static_cast<int>((origin[0] - geom[lev_for_sub].ProbLo(0)) * 1.0001 / delta[0]);
52  int j0 = static_cast<int>((origin[1] - geom[lev_for_sub].ProbLo(1)) * 1.0001 / delta[1]);
53  int k0 = static_cast<int>((origin[2] - geom[lev_for_sub].ProbLo(2)) * 1.0001 / delta[2]);
54 
55  found = false;
56  if (almostEqual(geom[lev_for_sub].ProbLo(0)+i0*delta[0],origin[0]) &&
57  almostEqual(geom[lev_for_sub].ProbLo(1)+j0*delta[1],origin[1]) &&
58  almostEqual(geom[lev_for_sub].ProbLo(2)+k0*delta[2],origin[2]) )
59  {
60  amrex::Print() << "Specified origin is the lower left corner of cell " << IntVect(i0,j0,k0) << std::endl;
61  found = true;
62  }
63 
64  if (!found) {
65  amrex::Abort("Origin specified does not correspond to a node at this level.");
66  }
67 
68  Box domain(geom[lev_for_sub].Domain());
69 
70  Box bx(IntVect(i0,j0,k0),IntVect(i0+ncell[0]-1,j0+ncell[1]-1,k0+ncell[2]-1));
71  amrex::Print() << "Box requested is " << bx << std::endl;
72 
73  if (!domain.contains(bx))
74  {
75  amrex::Abort("Box requested is larger than the existing domain");
76  }
77 
78  Vector<int> cs(3);
79  int count = pp.countval("chunk_size");
80  if (count > 0) {
81  pp.queryarr("chunk_size",cs,0,AMREX_SPACEDIM);
82  } else {
83  cs[0] = max_grid_size[0][0];
84  cs[1] = max_grid_size[0][1];
85  cs[2] = max_grid_size[0][2];
86  }
87  IntVect chunk_size(cs[0],cs[1],cs[2]);
88 
89  BoxArray ba(bx);
90  ba.maxSize(chunk_size);
91 
92  amrex::Print() << "BoxArray is " << ba << std::endl;
93 
94  int ncomp_mf = AMREX_SPACEDIM;
95 
96  DistributionMapping dm(ba);
97 
98  MultiFab mf(ba, dm, ncomp_mf, 0);
99 
100  MultiFab mf_cc_vel(grids[lev_for_sub], dmap[lev_for_sub], ncomp_mf, 0);
101  average_face_to_cellcenter(mf_cc_vel,0,
102  Array<const MultiFab*,3>{&vars_new[lev_for_sub][Vars::xvel],
103  &vars_new[lev_for_sub][Vars::yvel],
104  &vars_new[lev_for_sub][Vars::zvel]});
105 
106  mf.ParallelCopy(mf_cc_vel,0,0,AMREX_SPACEDIM,0,0);
107 
108  std::string subvol_filename = Concatenate(subvol_file, istep[0], 5);
109 
110  Vector<std::string> varnames;
111  varnames.push_back("x_velocity");
112  varnames.push_back("y_velocity");
113  varnames.push_back("z_velocity");
114 
115  Real time = t_new[lev_for_sub];
116 
117  amrex::Print() <<"Writing subvolume into " << subvol_filename << std::endl;
118  WriteSingleLevelPlotfile(subvol_filename,mf,varnames,geom[lev_for_sub],time,istep[0]);
119 }
real(c_double), private cs
Definition: ERF_module_mp_morr_two_moment.F90:202
Here is the call graph for this function:

◆ WriteVTKPolyline()

void ERF::WriteVTKPolyline ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
595 {
596  std::ofstream vtkfile(filename);
597  if (!vtkfile.is_open()) {
598  std::cerr << "Error: Cannot open file " << filename << std::endl;
599  return;
600  }
601 
602  int num_points = points_xy.size();
603  if (num_points == 0) {
604  vtkfile << "# vtk DataFile Version 3.0\n";
605  vtkfile << "Hurricane Track\n";
606  vtkfile << "ASCII\n";
607  vtkfile << "DATASET POLYDATA\n";
608  vtkfile << "POINTS " << num_points << " float\n";
609  vtkfile.close();
610  return;
611  }
612  if (num_points < 2) {
613  points_xy.push_back(points_xy[0]);
614  }
615  num_points = points_xy.size();
616 
617  vtkfile << "# vtk DataFile Version 3.0\n";
618  vtkfile << "Hurricane Track\n";
619  vtkfile << "ASCII\n";
620  vtkfile << "DATASET POLYDATA\n";
621 
622  // Write points (Z=0 assumed)
623  vtkfile << "POINTS " << num_points << " float\n";
624  for (const auto& pt : points_xy) {
625  vtkfile << pt[0] << " " << pt[1] << " 10000.0\n";
626  }
627 
628  // Write polyline connectivity
629  vtkfile << "LINES 1 " << num_points + 1 << "\n";
630  vtkfile << num_points << " ";
631  for (int i = 0; i < num_points; ++i) {
632  vtkfile << i << " ";
633  }
634  vtkfile << "\n";
635 
636  vtkfile.close();
637 }

Member Data Documentation

◆ advflux_reg

amrex::Vector<amrex::YAFluxRegister*> ERF::advflux_reg
private

Referenced by getAdvFluxReg().

◆ ax

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax
private

◆ ax_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax_src
private

◆ ay

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay
private

◆ ay_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay_src
private

◆ az

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az
private

◆ az_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az_src
private

◆ ba1d

amrex::Vector<amrex::BoxArray> ERF::ba1d
private

◆ ba2d

amrex::Vector<amrex::BoxArray> ERF::ba2d
private

◆ base_state

amrex::Vector<amrex::MultiFab> ERF::base_state
private

◆ base_state_new

amrex::Vector<amrex::MultiFab> ERF::base_state_new
private

◆ bndry_output_planes_interval

int ERF::bndry_output_planes_interval = -1
staticprivate

◆ bndry_output_planes_per

Real ERF::bndry_output_planes_per = -1.0
staticprivate

◆ bndry_output_planes_start_time

Real ERF::bndry_output_planes_start_time = 0.0
staticprivate

◆ boxes_at_level

amrex::Vector<amrex::Vector<amrex::Box> > ERF::boxes_at_level
private

◆ cf_set_width

int ERF::cf_set_width {0}
private

◆ cf_width

int ERF::cf_width {0}
private

◆ cfl

Real ERF::cfl = 0.8
staticprivate

◆ change_max

Real ERF::change_max = 1.1
staticprivate

◆ check_file

std::string ERF::check_file {"chk"}
private

◆ column_file_name

std::string ERF::column_file_name = "column_data.nc"
staticprivate

◆ column_interval

int ERF::column_interval = -1
staticprivate

◆ column_loc_x

Real ERF::column_loc_x = 0.0
staticprivate

◆ column_loc_y

Real ERF::column_loc_y = 0.0
staticprivate

◆ column_per

Real ERF::column_per = -1.0
staticprivate

◆ cons_names

const amrex::Vector<std::string> ERF::cons_names
private
Initial value:
{"density", "rhotheta", "rhoKE", "rhoadv_0",
"rhoQ1", "rhoQ2", "rhoQ3",
"rhoQ4", "rhoQ5", "rhoQ6"}

◆ cosPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::cosPhi_m
private

◆ d_havg_density

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_density
private

◆ d_havg_pressure

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_pressure
private

◆ d_havg_qc

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qc
private

◆ d_havg_qv

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qv
private

◆ d_havg_temperature

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_temperature
private

◆ d_rayleigh_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_rayleigh_ptrs
private

◆ d_rhoqt_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhoqt_src
private

◆ d_rhotheta_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhotheta_src
private

◆ d_sponge_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_sponge_ptrs
private

◆ d_u_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_u_geos
private

◆ d_v_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_v_geos
private

◆ d_w_subsid

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_w_subsid
private

◆ data_sampler

std::unique_ptr<SampleData> ERF::data_sampler = nullptr
private

◆ datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::datalog
private

◆ datalogname

amrex::Vector<std::string> ERF::datalogname
private

Referenced by DataLogName().

◆ datetime_format

const std::string ERF::datetime_format = "%Y-%m-%d %H:%M:%S"
private

◆ datprecision

const int ERF::datprecision = 6
private

◆ datwidth

const int ERF::datwidth = 14
private

◆ der_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::der_datalog
private

◆ der_datalogname

amrex::Vector<std::string> ERF::der_datalogname
private

Referenced by DerDataLogName().

◆ derived_names

const amrex::Vector<std::string> ERF::derived_names
private

◆ destag_profiles

bool ERF::destag_profiles = true
private

◆ detJ_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc
private

◆ detJ_cc_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_new
private

◆ detJ_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_src
private

◆ domain_bc_type

amrex::Array<std::string,2*AMREX_SPACEDIM> ERF::domain_bc_type
private

◆ domain_bcs_type

amrex::Vector<amrex::BCRec> ERF::domain_bcs_type
private

◆ domain_bcs_type_d

amrex::Gpu::DeviceVector<amrex::BCRec> ERF::domain_bcs_type_d
private

◆ dt

amrex::Vector<amrex::Real> ERF::dt
private

◆ dt_max

Real ERF::dt_max = 1e9
staticprivate

◆ dt_max_initial

Real ERF::dt_max_initial = 2.0e100
staticprivate

◆ dt_mri_ratio

amrex::Vector<long> ERF::dt_mri_ratio
private

◆ dz_min

amrex::Vector<amrex::Real> ERF::dz_min
private

◆ eb

amrex::Vector<std::unique_ptr<eb_> > ERF::eb
private

Referenced by EBFactory(), and get_eb().

◆ eddyDiffs_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::eddyDiffs_lev
private

◆ fine_mask

amrex::MultiFab ERF::fine_mask
private

◆ finished_wave

bool ERF::finished_wave = false
private

◆ fixed_dt

amrex::Vector<amrex::Real> ERF::fixed_dt
private

◆ fixed_fast_dt

amrex::Vector<amrex::Real> ERF::fixed_fast_dt
private

◆ fixed_mri_dt_ratio

int ERF::fixed_mri_dt_ratio = 0
staticprivate

◆ FPr_c

amrex::Vector<ERFFillPatcher> ERF::FPr_c
private

◆ FPr_u

amrex::Vector<ERFFillPatcher> ERF::FPr_u
private

◆ FPr_v

amrex::Vector<ERFFillPatcher> ERF::FPr_v
private

◆ FPr_w

amrex::Vector<ERFFillPatcher> ERF::FPr_w
private

◆ geom_weather

amrex::Geometry ERF::geom_weather
private

◆ gradp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::gradp
private

◆ h_havg_density

amrex::Vector<amrex::Real> ERF::h_havg_density
private

◆ h_havg_pressure

amrex::Vector<amrex::Real> ERF::h_havg_pressure
private

◆ h_havg_qc

amrex::Vector<amrex::Real> ERF::h_havg_qc
private

◆ h_havg_qv

amrex::Vector<amrex::Real> ERF::h_havg_qv
private

◆ h_havg_temperature

amrex::Vector<amrex::Real> ERF::h_havg_temperature
private

◆ h_rayleigh_ptrs

amrex::Vector<amrex::Vector< amrex::Vector<amrex::Real> > > ERF::h_rayleigh_ptrs
private

◆ h_rhoqt_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhoqt_src
private

◆ h_rhotheta_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhotheta_src
private

◆ h_sponge_ptrs

amrex::Vector<amrex::Vector< amrex::Vector<amrex::Real> > > ERF::h_sponge_ptrs
private

◆ h_u_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_u_geos
private

◆ h_v_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_v_geos
private

◆ h_w_subsid

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_w_subsid
private

◆ hurricane_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_track_xy

◆ Hwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave
private

◆ Hwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave_onegrid
private

◆ init_shrink

Real ERF::init_shrink = 1.0
staticprivate

◆ initial_state

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::initial_state

◆ input_bndry_planes

int ERF::input_bndry_planes = 0
staticprivate

◆ input_sounding_data

InputSoundingData ERF::input_sounding_data
private

◆ input_sponge_data

InputSpongeData ERF::input_sponge_data
private

◆ interpolation_type

StateInterpType ERF::interpolation_type
staticprivate

◆ istep

amrex::Vector<int> ERF::istep
private

◆ last_check_file_step

int ERF::last_check_file_step
private

◆ last_plot_file_step_1

int ERF::last_plot_file_step_1
private

◆ last_plot_file_step_2

int ERF::last_plot_file_step_2
private

◆ last_subvol

int ERF::last_subvol
private

◆ lmask_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::lmask_lev
private

◆ lsm

LandSurface ERF::lsm
private

◆ lsm_data

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_data
private

◆ lsm_flux

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_flux
private

◆ Lwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave
private

◆ Lwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave_onegrid
private

◆ m_bc_extdir_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_extdir_vals
private

◆ m_bc_neumann_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_neumann_vals
private

◆ m_check_int

int ERF::m_check_int = -1
private

◆ m_check_per

amrex::Real ERF::m_check_per = -1.0
private

◆ m_expand_plotvars_to_unif_rr

bool ERF::m_expand_plotvars_to_unif_rr = false
private

◆ m_forest_drag

amrex::Vector<std::unique_ptr<ForestDrag> > ERF::m_forest_drag
private

◆ m_plot_face_vels

bool ERF::m_plot_face_vels = false
private

◆ m_plot_int_1

int ERF::m_plot_int_1 = -1
private

◆ m_plot_int_2

int ERF::m_plot_int_2 = -1
private

◆ m_plot_per_1

amrex::Real ERF::m_plot_per_1 = -1.0
private

◆ m_plot_per_2

amrex::Real ERF::m_plot_per_2 = -1.0
private

◆ m_r2d

std::unique_ptr<ReadBndryPlanes> ERF::m_r2d = nullptr
private

◆ m_subvol_int

int ERF::m_subvol_int = -1
private

◆ m_subvol_per

amrex::Real ERF::m_subvol_per = -1.0
private

◆ m_SurfaceLayer

std::unique_ptr<SurfaceLayer> ERF::m_SurfaceLayer = nullptr
private

◆ m_w2d

std::unique_ptr<WriteBndryPlanes> ERF::m_w2d = nullptr
private

◆ mapfac

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::mapfac
private

◆ max_step

int ERF::max_step = std::numeric_limits<int>::max()
private

◆ metgrid_basic_linear

bool ERF::metgrid_basic_linear {false}
private

◆ metgrid_debug_dry

bool ERF::metgrid_debug_dry {false}
private

◆ metgrid_debug_isothermal

bool ERF::metgrid_debug_isothermal {false}
private

◆ metgrid_debug_msf

bool ERF::metgrid_debug_msf {false}
private

◆ metgrid_debug_psfc

bool ERF::metgrid_debug_psfc {false}
private

◆ metgrid_debug_quiescent

bool ERF::metgrid_debug_quiescent {false}
private

◆ metgrid_force_sfc_k

int ERF::metgrid_force_sfc_k {6}
private

◆ metgrid_interp_theta

bool ERF::metgrid_interp_theta {false}
private

◆ metgrid_order

int ERF::metgrid_order {2}
private

◆ metgrid_proximity

amrex::Real ERF::metgrid_proximity {500.0}
private

◆ metgrid_retain_sfc

bool ERF::metgrid_retain_sfc {false}
private

◆ metgrid_use_below_sfc

bool ERF::metgrid_use_below_sfc {true}
private

◆ metgrid_use_sfc

bool ERF::metgrid_use_sfc {true}
private

◆ mf_C1H

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::mf_C1H
private

◆ mf_C2H

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::mf_C2H
private

◆ mf_MUB

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::mf_MUB
private

◆ mg_verbose

int ERF::mg_verbose = 0
staticprivate

◆ micro

std::unique_ptr<Microphysics> ERF::micro
private

◆ mri_integrator_mem

amrex::Vector<std::unique_ptr<MRISplitIntegrator<amrex::Vector<amrex::MultiFab> > > > ERF::mri_integrator_mem
private

◆ nc_bdy_file

std::string ERF::nc_bdy_file
staticprivate

◆ nc_init_file

Vector< Vector< std::string > > ERF::nc_init_file = {{""}}
staticprivate

◆ nc_low_file

std::string ERF::nc_low_file
staticprivate

◆ ng_dens_hse

int ERF::ng_dens_hse
staticprivate

◆ ng_pres_hse

int ERF::ng_pres_hse
staticprivate

◆ nsubsteps

amrex::Vector<int> ERF::nsubsteps
private

◆ num_boxes_at_level

amrex::Vector<int> ERF::num_boxes_at_level
private

◆ num_files_at_level

amrex::Vector<int> ERF::num_files_at_level
private

◆ output_1d_column

int ERF::output_1d_column = 0
staticprivate

◆ output_bndry_planes

int ERF::output_bndry_planes = 0
staticprivate

◆ pert_interval

int ERF::pert_interval = -1
staticprivate

◆ phys_bc_type

amrex::GpuArray<ERF_BC, AMREX_SPACEDIM*2> ERF::phys_bc_type
private

◆ physbcs_base

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_base> > ERF::physbcs_base
private

◆ physbcs_cons

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_cons> > ERF::physbcs_cons
private

◆ physbcs_u

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_u> > ERF::physbcs_u
private

◆ physbcs_v

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_v> > ERF::physbcs_v
private

◆ physbcs_w

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_w> > ERF::physbcs_w
private

◆ plot_file_1

std::string ERF::plot_file_1 {"plt_1_"}
private

◆ plot_file_2

std::string ERF::plot_file_2 {"plt_2_"}
private

◆ plot_file_on_restart

int ERF::plot_file_on_restart = 1
private

◆ plot_lsm

bool ERF::plot_lsm = false
private

◆ plot_rad

bool ERF::plot_rad = false
private

◆ plot_var_names_1

amrex::Vector<std::string> ERF::plot_var_names_1
private

◆ plot_var_names_2

amrex::Vector<std::string> ERF::plot_var_names_2
private

◆ plotfile_type_1

PlotFileType ERF::plotfile_type_1 = PlotFileType::None
staticprivate

◆ plotfile_type_2

PlotFileType ERF::plotfile_type_2 = PlotFileType::None
staticprivate

◆ pp_inc

amrex::Vector<amrex::MultiFab> ERF::pp_inc
private

◆ pp_prefix

std::string ERF::pp_prefix {"erf"}

◆ previousCPUTimeUsed

Real ERF::previousCPUTimeUsed = 0.0
staticprivate

Referenced by getCPUTime().

◆ prob

std::unique_ptr<ProblemBase> ERF::prob = nullptr
private

◆ profile_int

int ERF::profile_int = -1
private

◆ qheating_rates

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::qheating_rates
private

◆ qmoist

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::qmoist
private

◆ Qr_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qr_prim
private

◆ Qv_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qv_prim
private

◆ rad

amrex::Vector<std::unique_ptr<IRadiation> > ERF::rad
private

◆ rad_datalog_int

int ERF::rad_datalog_int = -1
private

◆ real_set_width

int ERF::real_set_width {0}
private

◆ real_width

int ERF::real_width {0}
private

◆ ref_tags

Vector< AMRErrorTag > ERF::ref_tags
staticprivate

◆ regrid_int

int ERF::regrid_int = -1
private

◆ regrid_level_0_on_restart

bool ERF::regrid_level_0_on_restart = false
private

◆ restart_chkfile

std::string ERF::restart_chkfile = ""
private

◆ rU_new

amrex::Vector<amrex::MultiFab> ERF::rU_new
private

◆ rU_old

amrex::Vector<amrex::MultiFab> ERF::rU_old
private

◆ rV_new

amrex::Vector<amrex::MultiFab> ERF::rV_new
private

◆ rV_old

amrex::Vector<amrex::MultiFab> ERF::rV_old
private

◆ rW_new

amrex::Vector<amrex::MultiFab> ERF::rW_new
private

◆ rW_old

amrex::Vector<amrex::MultiFab> ERF::rW_old
private

◆ sampleline

amrex::Vector<amrex::IntVect> ERF::sampleline
private

Referenced by NumSampleLines(), and SampleLine().

◆ samplelinelog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::samplelinelog
private

◆ samplelinelogname

amrex::Vector<std::string> ERF::samplelinelogname
private

Referenced by SampleLineLogName().

◆ samplepoint

amrex::Vector<amrex::IntVect> ERF::samplepoint
private

Referenced by NumSamplePoints(), and SamplePoint().

◆ sampleptlog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::sampleptlog
private

◆ sampleptlogname

amrex::Vector<std::string> ERF::sampleptlogname
private

Referenced by SamplePointLogName().

◆ sampler_interval

int ERF::sampler_interval = -1
private

◆ sampler_per

amrex::Real ERF::sampler_per = -1.0
private

◆ SFS_diss_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_diss_lev
private

◆ SFS_hfx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx1_lev
private

◆ SFS_hfx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx2_lev
private

◆ SFS_hfx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx3_lev
private

◆ SFS_q1fx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx1_lev
private

◆ SFS_q1fx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx2_lev
private

◆ SFS_q1fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx3_lev
private

◆ SFS_q2fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q2fx3_lev
private

◆ sinPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sinPhi_m
private

◆ SmnSmn_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SmnSmn_lev
private

◆ solar_zenith

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::solar_zenith
private

◆ solverChoice

SolverChoice ERF::solverChoice
staticprivate

◆ sponge_type

std::string ERF::sponge_type
staticprivate

◆ sst_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::sst_lev
private

◆ start_time

amrex::Real ERF::start_time = 0.0
private

◆ startCPUTime

Real ERF::startCPUTime = 0.0
staticprivate

Referenced by getCPUTime().

◆ stop_time

amrex::Real ERF::stop_time = std::numeric_limits<amrex::Real>::max()
private

◆ stretched_dz_d

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::stretched_dz_d
private

◆ stretched_dz_h

amrex::Vector<amrex::Vector<amrex::Real> > ERF::stretched_dz_h
private

◆ sub_cfl

Real ERF::sub_cfl = 1.0
staticprivate

◆ subdomains

amrex::Vector<amrex::Vector<amrex::BoxArray> > ERF::subdomains
private

◆ subvol_file

std::string ERF::subvol_file {"subvol"}
private

◆ sum_interval

int ERF::sum_interval = -1
staticprivate

◆ sum_per

Real ERF::sum_per = -1.0
staticprivate

◆ sw_lw_fluxes

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sw_lw_fluxes
private

◆ t_avg_cnt

amrex::Vector<amrex::Real> ERF::t_avg_cnt
private

◆ t_new

amrex::Vector<amrex::Real> ERF::t_new
private

◆ t_old

amrex::Vector<amrex::Real> ERF::t_old
private

◆ Tau

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::Tau
private

◆ terrain_blanking

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::terrain_blanking
private

◆ th_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::th_bc_data
private

◆ Theta_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Theta_prim
private

◆ thin_xforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_xforce
private

◆ thin_yforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_yforce
private

◆ thin_zforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_zforce
private

◆ timeprecision

const int ERF::timeprecision = 13
private

◆ tot_e_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::tot_e_datalog
private

Referenced by setRecordEnergyDataInfo().

◆ tot_e_datalogname

amrex::Vector<std::string> ERF::tot_e_datalogname
private

◆ tsk_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::tsk_lev
private

◆ turbPert

TurbulentPerturbation ERF::turbPert
private

◆ use_datetime

bool ERF::use_datetime = false
private

◆ use_fft

bool ERF::use_fft = false
staticprivate

◆ vars_new

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_new
private

◆ vars_old

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_old
private

◆ vel_t_avg

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::vel_t_avg
private

◆ verbose

int ERF::verbose = 0
staticprivate

◆ walldist

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::walldist
private

◆ weather_forecast_data

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data
private

◆ xflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::xflux_imask
private

◆ xvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::xvel_bc_data
private

◆ yflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::yflux_imask
private

◆ yvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::yvel_bc_data
private

◆ z_phys_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc
private

◆ z_phys_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc_src
private

◆ z_phys_nd

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd
private

◆ z_phys_nd_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_new
private

◆ z_phys_nd_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_src
private

◆ z_t_rk

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_t_rk
private

◆ zflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::zflux_imask
private

◆ zlevels_stag

amrex::Vector<amrex::Vector<amrex::Real> > ERF::zlevels_stag
private

◆ zmom_crse_rhs

amrex::Vector<amrex::MultiFab> ERF::zmom_crse_rhs
private

◆ zvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::zvel_bc_data
private

The documentation for this class was generated from the following files: