ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
ERF Class Reference

#include <ERF.H>

Inheritance diagram for ERF:
Collaboration diagram for ERF:

Public Member Functions

 ERF ()
 
 ~ERF () override
 
void ERF_shared ()
 
 ERF (ERF &&) noexcept=delete
 
ERFoperator= (ERF &&other) noexcept=delete
 
 ERF (const ERF &other)=delete
 
ERFoperator= (const ERF &other)=delete
 
void Evolve ()
 
void ErrorEst (int lev, amrex::TagBoxArray &tags, amrex::Real time, int ngrow) override
 
void HurricaneTracker (int lev, amrex::Real time, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, amrex::TagBoxArray *tags=nullptr)
 
void HurricaneTrackerInitial (int lev, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, amrex::TagBoxArray *tags=nullptr)
 
void HurricaneTrackerNotInitial (int lev, amrex::TagBoxArray *tags=nullptr)
 
std::string MakeVTKFilename (int nstep)
 
std::string MakeVTKFilename_TrackerCircle (int nstep)
 
std::string MakeVTKFilename_EyeTracker_xy (int nstep)
 
std::string MakeFilename_EyeTracker_latlon (int nstep)
 
std::string MakeFilename_EyeTracker_maxvel (int nstep)
 
void WriteVTKPolyline (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void WriteLinePlot (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void InitData ()
 
void InitData_pre ()
 
void InitData_post ()
 
void WriteMyEBSurface ()
 
void compute_divergence (int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
 
void project_velocity (int lev, amrex::Real dt)
 
void project_momenta (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void project_velocity_tb (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void poisson_wall_dist (int lev)
 
void make_subdomains (const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
 
void solve_with_EB_mlmg (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void solve_with_gmres (int lev, const amrex::Box &subdomain, amrex::MultiFab &rhs, amrex::MultiFab &p, amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &fluxes, amrex::MultiFab &ax_sub, amrex::MultiFab &ay_sub, amrex::MultiFab &az_sub, amrex::MultiFab &, amrex::MultiFab &znd_sub)
 
void solve_with_mlmg (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void ImposeBCsOnPhi (int lev, amrex::MultiFab &phi, const amrex::Box &subdomain)
 
amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > get_projection_bc (amrex::Orientation::Side side) const noexcept
 
bool projection_has_dirichlet (amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > bcs) const
 
void init_only (int lev, amrex::Real time)
 
void restart ()
 
void check_state_for_nans (amrex::MultiFab const &S)
 
void check_vels_for_nans (amrex::MultiFab const &xvel, amrex::MultiFab const &yvel, amrex::MultiFab const &zvel)
 
void check_for_negative_theta (amrex::MultiFab &S)
 
void check_for_low_temp (amrex::MultiFab &S)
 
bool writeNow (const amrex::Real cur_time, const int nstep, const int plot_int, const amrex::Real plot_per, const amrex::Real dt_0, amrex::Real &last_file_time)
 
void post_timestep (int nstep, amrex::Real time, amrex::Real dt_lev)
 
void sum_integrated_quantities (amrex::Real time)
 
void sum_derived_quantities (amrex::Real time)
 
void sum_energy_quantities (amrex::Real time)
 
void write_1D_profiles (amrex::Real time)
 
void write_1D_profiles_stag (amrex::Real time)
 
amrex::Real cloud_fraction (amrex::Real time)
 
void FillBdyCCVels (amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
 
void sample_points (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void sample_lines (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void derive_diag_profiles (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_diag_profiles_stag (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_stress_profiles (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
void derive_stress_profiles_stag (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
amrex::Real volWgtSumMF (int lev, const amrex::MultiFab &mf, int comp, const amrex::MultiFab &dJ, const amrex::MultiFab &mfx, const amrex::MultiFab &mfy, bool finemask, bool local=true)
 
void MakeNewLevelFromCoarse (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void RemakeLevel (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void ClearLevel (int lev) override
 
void MakeNewLevelFromScratch (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
amrex::Real estTimeStep (int lev, long &dt_fast_ratio) const
 
void advance_dycore (int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
 
void advance_microphysics (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
 
void advance_lsm (int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
 
void advance_radiation (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
 
void build_fine_mask (int lev, amrex::MultiFab &fine_mask)
 
void MakeHorizontalAverages ()
 
void MakeDiagnosticAverage (amrex::Vector< amrex::Real > &h_havg, amrex::MultiFab &S, int n)
 
void derive_upwp (amrex::Vector< amrex::Real > &h_havg)
 
void Write3DPlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void Write2DPlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void WriteSubvolume (int isub, amrex::Vector< std::string > subvol_var_names)
 
void WriteMultiLevelPlotfileWithTerrain (const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
 
void WriteGenericPlotfileHeaderWithTerrain (std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
 
void erf_enforce_hse (int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
 
void init_from_input_sounding (int lev)
 
void init_immersed_forcing (int lev)
 
void input_sponge (int lev)
 
void init_from_hse (int lev)
 
void init_thin_body (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void FillForecastStateMultiFabs (const int lev, const std::string &filename, const std::unique_ptr< amrex::MultiFab > &z_phys_nd, amrex::Vector< amrex::Vector< amrex::MultiFab >> &weather_forecast_data)
 
void WeatherDataInterpolation (const int nlevs, const amrex::Real time, amrex::Vector< std::unique_ptr< amrex::MultiFab >> &z_phys_nd, bool regrid_forces_file_read)
 
void fill_from_bndryregs (const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
 
void MakeEBGeometry ()
 
void make_eb_box ()
 
void make_eb_regular ()
 
void AverageDownTo (int crse_lev, int scomp, int ncomp)
 
void WriteCheckpointFile () const
 
void ReadCheckpointFile ()
 
void ReadCheckpointFileSurfaceLayer ()
 
void init_zphys (int lev, amrex::Real time)
 
void remake_zphys (int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
 
void update_terrain_arrays (int lev)
 
void writeJobInfo (const std::string &dir) const
 

Static Public Member Functions

static bool is_it_time_for_action (int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
 
static void writeBuildInfo (std::ostream &os)
 
static void print_banner (MPI_Comm, std::ostream &)
 
static void print_usage (MPI_Comm, std::ostream &)
 
static void print_error (MPI_Comm, const std::string &msg)
 
static void print_summary (std::ostream &)
 
static void print_tpls (std::ostream &)
 

Public Attributes

amrex::Vector< std::array< amrex::Real, 2 > > hurricane_track_xy
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_xy
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_latlon
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_maxvel_vs_time
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_tracker_circle
 
amrex::Vector< amrex::MultiFab > weather_forecast_data_1
 
amrex::Vector< amrex::MultiFab > weather_forecast_data_2
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_1
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_2
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_interp
 
std::string pp_prefix {"erf"}
 

Private Member Functions

void ReadParameters ()
 
void ParameterSanityChecks ()
 
void AverageDown ()
 
void update_diffusive_arrays (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void Construct_ERFFillPatchers (int lev)
 
void Define_ERFFillPatchers (int lev)
 
void init1DArrays ()
 
void init_bcs ()
 
void init_custom (int lev)
 
void init_uniform (int lev)
 
void init_stuff (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
 
void turbPert_update (const int lev, const amrex::Real dt)
 
void turbPert_amplitude (const int lev)
 
void initialize_integrator (int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
 
void make_physbcs (int lev)
 
void initializeMicrophysics (const int &)
 
void FillPatchCrseLevel (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
 
void FillPatchFineLevel (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
 
void FillIntermediatePatch (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
 
void FillCoarsePatch (int lev, amrex::Real time)
 
void timeStep (int lev, amrex::Real time, int iteration)
 
void Advance (int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
 
void initHSE ()
 Initialize HSE. More...
 
void initHSE (int lev)
 
void initRayleigh ()
 Initialize Rayleigh damping profiles. More...
 
void initSponge ()
 Initialize sponge profiles. More...
 
void setRayleighRefFromSounding (bool restarting)
 Set Rayleigh mean profiles from input sounding. More...
 
void setSpongeRefFromSounding (bool restarting)
 Set sponge mean profiles from input sounding. More...
 
void ComputeDt (int step=-1)
 
std::string PlotFileName (int lev) const
 
void setPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void setPlotVariables2D (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void appendPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void setSubVolVariables (const std::string &pp_subvol_var_names, amrex::Vector< std::string > &subvol_var_names)
 
void init_Dirichlet_bc_data (const std::string input_file)
 
void InitializeFromFile ()
 
void InitializeLevelFromData (int lev, const amrex::MultiFab &initial_data)
 
void post_update (amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void fill_rhs (amrex::MultiFab &rhs_mf, const amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void init_geo_wind_profile (const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
 
void refinement_criteria_setup ()
 
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg (int lev)
 
AMREX_FORCE_INLINE std::ostream & DataLog (int i)
 
AMREX_FORCE_INLINE std::ostream & DerDataLog (int i)
 
AMREX_FORCE_INLINE int NumDataLogs () noexcept
 
AMREX_FORCE_INLINE int NumDerDataLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SamplePointLog (int i)
 
AMREX_FORCE_INLINE int NumSamplePointLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SampleLineLog (int i)
 
AMREX_FORCE_INLINE int NumSampleLineLogs () noexcept
 
amrex::IntVect & SamplePoint (int i)
 
AMREX_FORCE_INLINE int NumSamplePoints () noexcept
 
amrex::IntVect & SampleLine (int i)
 
AMREX_FORCE_INLINE int NumSampleLines () noexcept
 
void setRecordDataInfo (int i, const std::string &filename)
 
void setRecordDerDataInfo (int i, const std::string &filename)
 
void setRecordEnergyDataInfo (int i, const std::string &filename)
 
void setRecordSamplePointInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
void setRecordSampleLineInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
std::string DataLogName (int i) const noexcept
 The filename of the ith datalog file. More...
 
std::string DerDataLogName (int i) const noexcept
 
std::string SamplePointLogName (int i) const noexcept
 The filename of the ith sampleptlog file. More...
 
std::string SampleLineLogName (int i) const noexcept
 The filename of the ith samplelinelog file. More...
 
eb_ const & get_eb (int lev) const noexcept
 
amrex::EBFArrayBoxFactory const & EBFactory (int lev) const noexcept
 

Static Private Member Functions

static amrex::Vector< std::string > PlotFileVarNames (amrex::Vector< std::string > plot_var_names)
 
static void GotoNextLine (std::istream &is)
 
static AMREX_FORCE_INLINE int ComputeGhostCells (const SolverChoice &sc)
 
static amrex::Real getCPUTime ()
 
static int nghost_eb_basic ()
 
static int nghost_eb_volume ()
 
static int nghost_eb_full ()
 

Private Attributes

amrex::Vector< std::unique_ptr< amrex::MultiFab > > lat_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lon_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
 
InputSoundingData input_sounding_data
 
InputSpongeData input_sponge_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
 
std::unique_ptr< ProblemBaseprob = nullptr
 
amrex::Vector< int > num_boxes_at_level
 
amrex::Vector< int > num_files_at_level
 
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
 
amrex::Vector< int > istep
 
amrex::Vector< int > nsubsteps
 
amrex::Vector< amrex::Realt_new
 
amrex::Vector< amrex::Realt_old
 
amrex::Vector< amrex::Realdt
 
amrex::Vector< long > dt_mri_ratio
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
 
amrex::Vector< amrex::Realt_avg_cnt
 
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
 
amrex::Vector< amrex::MultiFab > pp_inc
 
amrex::Vector< amrex::MultiFab > lagged_delta_rt
 
amrex::Vector< amrex::MultiFab > avg_xmom
 
amrex::Vector< amrex::MultiFab > avg_ymom
 
amrex::Vector< amrex::MultiFab > avg_zmom
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
 
amrex::Vector< amrex::MultiFab > rU_old
 
amrex::Vector< amrex::MultiFab > rU_new
 
amrex::Vector< amrex::MultiFab > rV_old
 
amrex::Vector< amrex::MultiFab > rV_new
 
amrex::Vector< amrex::MultiFab > rW_old
 
amrex::Vector< amrex::MultiFab > rW_new
 
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
 
std::unique_ptr< Microphysicsmicro
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
 
LandSurface lsm
 
amrex::Vector< std::string > lsm_data_name
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
 
amrex::Vector< std::string > lsm_flux_name
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
 
amrex::Vector< std::unique_ptr< IRadiation > > rad
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > rad_fluxes
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
 
bool plot_rad = false
 
int rad_datalog_int = -1
 
int cf_width {0}
 
int cf_set_width {0}
 
amrex::Vector< ERFFillPatcherFPr_c
 
amrex::Vector< ERFFillPatcherFPr_u
 
amrex::Vector< ERFFillPatcherFPr_v
 
amrex::Vector< ERFFillPatcherFPr_w
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau_corr
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > land_type_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > soil_type_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > urb_frac_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
 
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > fine_mask
 
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
 
amrex::Vector< amrex::MultiFab > base_state
 
amrex::Vector< amrex::MultiFab > base_state_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
 
bool finished_wave = false
 
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
 
amrex::Vector< amrex::BCRec > domain_bcs_type
 
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
 
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_extdir_vals
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_neumann_vals
 
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
 
amrex::Vector< int > last_subvol_step
 
amrex::Vector< amrex::Reallast_subvol_time
 
const int datwidth = 14
 
const int datprecision = 6
 
const int timeprecision = 13
 
int max_step = -1
 
bool use_datetime = false
 
const std::string datetime_format = "%Y-%m-%d %H:%M:%S"
 
std::string restart_chkfile = ""
 
amrex::Vector< amrex::Realfixed_dt
 
amrex::Vector< amrex::Realfixed_fast_dt
 
int regrid_int = -1
 
bool regrid_level_0_on_restart = false
 
std::string plot3d_file_1 {"plt_1_"}
 
std::string plot3d_file_2 {"plt_2_"}
 
std::string plot2d_file_1 {"plt2d_1_"}
 
std::string plot2d_file_2 {"plt2d_2_"}
 
std::string subvol_file {"subvol"}
 
bool m_expand_plotvars_to_unif_rr = false
 
int m_plot3d_int_1 = -1
 
int m_plot3d_int_2 = -1
 
int m_plot2d_int_1 = -1
 
int m_plot2d_int_2 = -1
 
amrex::Vector< int > m_subvol_int
 
amrex::Vector< amrex::Realm_subvol_per
 
amrex::Real m_plot3d_per_1 = -1.0
 
amrex::Real m_plot3d_per_2 = -1.0
 
amrex::Real m_plot2d_per_1 = -1.0
 
amrex::Real m_plot2d_per_2 = -1.0
 
bool m_plot_face_vels = false
 
bool plot_lsm = false
 
int profile_int = -1
 
bool destag_profiles = true
 
std::string check_file {"chk"}
 
int m_check_int = -1
 
amrex::Real m_check_per = -1.0
 
amrex::Vector< std::string > subvol3d_var_names
 
amrex::Vector< std::string > plot3d_var_names_1
 
amrex::Vector< std::string > plot3d_var_names_2
 
amrex::Vector< std::string > plot2d_var_names_1
 
amrex::Vector< std::string > plot2d_var_names_2
 
const amrex::Vector< std::string > cons_names
 
const amrex::Vector< std::string > derived_names
 
const amrex::Vector< std::string > derived_names_2d
 
const amrex::Vector< std::string > derived_subvol_names {"soundspeed", "temp", "theta", "KE", "scalar"}
 
TurbulentPerturbation turbPert
 
int file_name_digits = 5
 
bool use_real_time_in_pltname = false
 
int real_width {0}
 
int real_set_width {0}
 
bool real_extrap_w {true}
 
bool metgrid_debug_quiescent {false}
 
bool metgrid_debug_isothermal {false}
 
bool metgrid_debug_dry {false}
 
bool metgrid_debug_psfc {false}
 
bool metgrid_debug_msf {false}
 
bool metgrid_interp_theta {false}
 
bool metgrid_basic_linear {false}
 
bool metgrid_use_below_sfc {true}
 
bool metgrid_use_sfc {true}
 
bool metgrid_retain_sfc {false}
 
amrex::Real metgrid_proximity {500.0}
 
int metgrid_order {2}
 
int metgrid_force_sfc_k {6}
 
amrex::Vector< amrex::BoxArray > ba1d
 
amrex::Vector< amrex::BoxArray > ba2d
 
std::unique_ptr< amrex::MultiFab > mf_C1H
 
std::unique_ptr< amrex::MultiFab > mf_C2H
 
std::unique_ptr< amrex::MultiFab > mf_MUB
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_PSFC
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
 
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
 
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
 
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_ptrs
 
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_stag_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_ptrs
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_stag_ptrs
 
amrex::Vector< amrex::Realh_havg_density
 
amrex::Vector< amrex::Realh_havg_temperature
 
amrex::Vector< amrex::Realh_havg_pressure
 
amrex::Vector< amrex::Realh_havg_qv
 
amrex::Vector< amrex::Realh_havg_qc
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_density
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_temperature
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_pressure
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_qv
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_qc
 
std::unique_ptr< WriteBndryPlanesm_w2d = nullptr
 
std::unique_ptr< ReadBndryPlanesm_r2d = nullptr
 
std::unique_ptr< SurfaceLayerm_SurfaceLayer = nullptr
 
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
 
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
 
amrex::Vector< amrex::Realdz_min
 
int line_sampling_interval = -1
 
int plane_sampling_interval = -1
 
amrex::Real line_sampling_per = -1.0
 
amrex::Real plane_sampling_per = -1.0
 
std::unique_ptr< LineSamplerline_sampler = nullptr
 
std::unique_ptr< PlaneSamplerplane_sampler = nullptr
 
amrex::Vector< std::unique_ptr< std::fstream > > datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
 
amrex::Vector< std::string > datalogname
 
amrex::Vector< std::string > der_datalogname
 
amrex::Vector< std::string > tot_e_datalogname
 
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
 
amrex::Vector< std::string > sampleptlogname
 
amrex::Vector< amrex::IntVect > samplepoint
 
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
 
amrex::Vector< std::string > samplelinelogname
 
amrex::Vector< amrex::IntVect > sampleline
 
amrex::Vector< std::unique_ptr< eb_ > > eb
 

Static Private Attributes

static int last_plot3d_file_step_1 = -1
 
static int last_plot3d_file_step_2 = -1
 
static int last_plot2d_file_step_1 = -1
 
static int last_plot2d_file_step_2 = -1
 
static int last_check_file_step = -1
 
static amrex::Real last_plot3d_file_time_1 = 0.0
 
static amrex::Real last_plot3d_file_time_2 = 0.0
 
static amrex::Real last_plot2d_file_time_1 = 0.0
 
static amrex::Real last_plot2d_file_time_2 = 0.0
 
static amrex::Real last_check_file_time = 0.0
 
static bool plot_file_on_restart = true
 
static amrex::Real start_time = 0.0
 
static amrex::Real stop_time = std::numeric_limits<amrex::Real>::max()
 
static amrex::Real cfl = 0.8
 
static amrex::Real sub_cfl = 1.0
 
static amrex::Real init_shrink = 1.0
 
static amrex::Real change_max = 1.1
 
static amrex::Real dt_max_initial = 2.0e100
 
static amrex::Real dt_max = 1.0e9
 
static int fixed_mri_dt_ratio = 0
 
static SolverChoice solverChoice
 
static int verbose = 0
 
static int mg_verbose = 0
 
static bool use_fft = false
 
static int check_for_nans = 0
 
static int sum_interval = -1
 
static int pert_interval = -1
 
static amrex::Real sum_per = -1.0
 
static PlotFileType plotfile3d_type_1 = PlotFileType::None
 
static PlotFileType plotfile3d_type_2 = PlotFileType::None
 
static PlotFileType plotfile2d_type_1 = PlotFileType::None
 
static PlotFileType plotfile2d_type_2 = PlotFileType::None
 
static StateInterpType interpolation_type
 
static std::string sponge_type
 
static amrex::Vector< amrex::Vector< std::string > > nc_init_file = {{""}}
 
static amrex::Vector< amrex::Vector< int > > have_read_nc_init_file = {{0}}
 
static std::string nc_bdy_file
 
static std::string nc_low_file
 
static int output_1d_column = 0
 
static int column_interval = -1
 
static amrex::Real column_per = -1.0
 
static amrex::Real column_loc_x = 0.0
 
static amrex::Real column_loc_y = 0.0
 
static std::string column_file_name = "column_data.nc"
 
static int output_bndry_planes = 0
 
static int bndry_output_planes_interval = -1
 
static amrex::Real bndry_output_planes_per = -1.0
 
static amrex::Real bndry_output_planes_start_time = 0.0
 
static int input_bndry_planes = 0
 
static int ng_dens_hse
 
static int ng_pres_hse
 
static amrex::Vector< amrex::AMRErrorTag > ref_tags
 
static amrex::Real startCPUTime = 0.0
 
static amrex::Real previousCPUTimeUsed = 0.0
 

Detailed Description

Main class in ERF code, instantiated from main.cpp

Constructor & Destructor Documentation

◆ ERF() [1/3]

ERF::ERF ( )
131 {
132  int fix_random_seed = 0;
133  ParmParse pp("erf"); pp.query("fix_random_seed", fix_random_seed);
134  // Note that the value of 1024UL is not significant -- the point here is just to set the
135  // same seed for all MPI processes for the purpose of regression testing
136  if (fix_random_seed) {
137  Print() << "Fixing the random seed" << std::endl;
138  InitRandom(1024UL);
139  }
140 
141  ERF_shared();
142 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real pp(amrex::Real y)
Definition: ERF_MicrophysicsUtils.H:233
void ERF_shared()
Definition: ERF.cpp:145
Here is the call graph for this function:

◆ ~ERF()

ERF::~ERF ( )
overridedefault

◆ ERF() [2/3]

ERF::ERF ( ERF &&  )
deletenoexcept

◆ ERF() [3/3]

ERF::ERF ( const ERF other)
delete

Member Function Documentation

◆ Advance()

void ERF::Advance ( int  lev,
amrex::Real  time,
amrex::Real  dt_lev,
int  iteration,
int  ncycle 
)
private

Function that advances the solution at one level for a single time step – this does some preliminaries then calls erf_advance

Parameters
[in]levlevel of refinement (coarsest level is 0)
[in]timestart time for time advance
[in]dt_levtime step for this time advance
21 {
22  BL_PROFILE("ERF::Advance()");
23 
24  // We must swap the pointers so the previous step's "new" is now this step's "old"
25  std::swap(vars_old[lev], vars_new[lev]);
26 
27  MultiFab& S_old = vars_old[lev][Vars::cons];
28  MultiFab& S_new = vars_new[lev][Vars::cons];
29 
30  MultiFab& U_old = vars_old[lev][Vars::xvel];
31  MultiFab& V_old = vars_old[lev][Vars::yvel];
32  MultiFab& W_old = vars_old[lev][Vars::zvel];
33 
34  MultiFab& U_new = vars_new[lev][Vars::xvel];
35  MultiFab& V_new = vars_new[lev][Vars::yvel];
36  MultiFab& W_new = vars_new[lev][Vars::zvel];
37 
38  // We need to set these because otherwise in the first call to erf_advance we may
39  // read uninitialized data on ghost values in setting the bc's on the velocities
40  U_new.setVal(1.e34,U_new.nGrowVect());
41  V_new.setVal(1.e34,V_new.nGrowVect());
42  W_new.setVal(1.e34,W_new.nGrowVect());
43 
44  //
45  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
46  // If lev == 0 we have already FillPatched this in ERF::TimeStep
47  //
48  if (lev > 0) {
49  FillPatchFineLevel(lev, time, {&S_old, &U_old, &V_old, &W_old},
50  {&S_old, &rU_old[lev], &rV_old[lev], &rW_old[lev]},
51  base_state[lev], base_state[lev]);
52  }
53 
54  //
55  // So we must convert the fillpatched to momenta, including the ghost values
56  //
57  VelocityToMomentum(U_old, rU_old[lev].nGrowVect(),
58  V_old, rV_old[lev].nGrowVect(),
59  W_old, rW_old[lev].nGrowVect(),
60  S_old, rU_old[lev], rV_old[lev], rW_old[lev],
61  Geom(lev).Domain(),
63 
64  // Update the inflow perturbation update time and amplitude
65  if (solverChoice.pert_type == PerturbationType::Source ||
66  solverChoice.pert_type == PerturbationType::Direct ||
67  solverChoice.pert_type == PerturbationType::CPM)
68  {
69  turbPert.calc_tpi_update(lev, dt_lev, U_old, V_old, S_old);
70  }
71 
72  // If PerturbationType::Direct or CPM is selected, directly add the computed perturbation
73  // on the conserved field
74  if (solverChoice.pert_type == PerturbationType::Direct ||
75  solverChoice.pert_type == PerturbationType::CPM)
76  {
77  auto m_ixtype = S_old.boxArray().ixType(); // Conserved term
78  for (MFIter mfi(S_old,TileNoZ()); mfi.isValid(); ++mfi) {
79  Box bx = mfi.tilebox();
80  const Array4<Real> &cell_data = S_old.array(mfi);
81  const Array4<const Real> &pert_cell = turbPert.pb_cell[lev].array(mfi);
82  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cell_data, pert_cell);
83  }
84  }
85 
86  // configure SurfaceLayer params if needed
87  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
88  if (m_SurfaceLayer) {
89  IntVect ng = Theta_prim[lev]->nGrowVect();
90  MultiFab::Copy( *Theta_prim[lev], S_old, RhoTheta_comp, 0, 1, ng);
91  MultiFab::Divide(*Theta_prim[lev], S_old, Rho_comp , 0, 1, ng);
92  if (solverChoice.moisture_type != MoistureType::None) {
93  ng = Qv_prim[lev]->nGrowVect();
94 
95  MultiFab::Copy( *Qv_prim[lev], S_old, RhoQ1_comp, 0, 1, ng);
96  MultiFab::Divide(*Qv_prim[lev], S_old, Rho_comp , 0, 1, ng);
97 
98  if (solverChoice.moisture_indices.qr > -1) {
99  MultiFab::Copy( *Qr_prim[lev], S_old, solverChoice.moisture_indices.qr, 0, 1, ng);
100  MultiFab::Divide(*Qr_prim[lev], S_old, Rho_comp , 0, 1, ng);
101  } else {
102  Qr_prim[lev]->setVal(0.0);
103  }
104  }
105  // NOTE: std::swap above causes the field ptrs to be out of date.
106  // Reassign the field ptrs for MAC avg computation.
107  m_SurfaceLayer->update_mac_ptrs(lev, vars_old, Theta_prim, Qv_prim, Qr_prim);
108  m_SurfaceLayer->update_pblh(lev, vars_old, z_phys_cc[lev].get(),
110  m_SurfaceLayer->update_fluxes(lev, time, S_old, z_phys_nd[lev]);
111  }
112  }
113 
114 #if defined(ERF_USE_WINDFARM)
115  // **************************************************************************************
116  // Update the windfarm sources
117  // **************************************************************************************
118  if (solverChoice.windfarm_type != WindFarmType::None) {
119  advance_windfarm(Geom(lev), dt_lev, S_old,
120  U_old, V_old, W_old, vars_windfarm[lev],
121  Nturb[lev], SMark[lev], time);
122  }
123 
124 #endif
125 
126  // **************************************************************************************
127  // Update the radiation sources with the "old" state
128  // **************************************************************************************
129  advance_radiation(lev, S_old, dt_lev);
130 
131 #ifdef ERF_USE_SHOC
132  // **************************************************************************************
133  // Update the "old" state using SHOC
134  // **************************************************************************************
135  if (solverChoice.use_shoc) {
136  // Get SFC fluxes from SurfaceLayer
137  if (m_SurfaceLayer) {
138  Vector<const MultiFab*> mfs = {&S_old, &U_old, &V_old, &W_old};
139  m_SurfaceLayer->impose_SurfaceLayer_bcs(lev, mfs, Tau[lev],
140  SFS_hfx1_lev[lev].get() , SFS_hfx2_lev[lev].get() , SFS_hfx3_lev[lev].get(),
141  SFS_q1fx1_lev[lev].get(), SFS_q1fx2_lev[lev].get(), SFS_q1fx3_lev[lev].get(),
142  z_phys_nd[lev].get());
143  }
144 
145  // Get Shoc tendencies and update the state
146  Real* w_sub = (solverChoice.custom_w_subsidence) ? d_w_subsid[lev].data() : nullptr;
147  compute_shoc_tendencies(lev, &S_old, &U_old, &V_old, &W_old, w_sub,
148  Tau[lev][TauType::tau13].get(), Tau[lev][TauType::tau23].get(),
149  SFS_hfx3_lev[lev].get() , SFS_q1fx3_lev[lev].get() ,
150  eddyDiffs_lev[lev].get() , z_phys_nd[lev].get() ,
151  dt_lev);
152  }
153 #endif
154 
155  const BoxArray& ba = S_old.boxArray();
156  const DistributionMapping& dm = S_old.DistributionMap();
157 
158  int nvars = S_old.nComp();
159 
160  // Source array for conserved cell-centered quantities -- this will be filled
161  // in the call to make_sources in ERF_TI_slow_rhs_pre.H
162  MultiFab cc_source(ba,dm,nvars,1); cc_source.setVal(0.0);
163 
164  // Source arrays for momenta -- these will be filled
165  // in the call to make_mom_sources in ERF_TI_slow_rhs_pre.H
166  BoxArray ba_x(ba); ba_x.surroundingNodes(0);
167  MultiFab xmom_source(ba_x,dm,1,1); xmom_source.setVal(0.0);
168 
169  BoxArray ba_y(ba); ba_y.surroundingNodes(1);
170  MultiFab ymom_source(ba_y,dm,1,1); ymom_source.setVal(0.0);
171 
172  BoxArray ba_z(ba); ba_z.surroundingNodes(2);
173  MultiFab zmom_source(ba_z,dm,1,1); zmom_source.setVal(0.0);
174  MultiFab buoyancy(ba_z,dm,1,1); buoyancy.setVal(0.0);
175 
176  amrex::Vector<MultiFab> state_old;
177  amrex::Vector<MultiFab> state_new;
178 
179  // **************************************************************************************
180  // Here we define state_old and state_new which are to be advanced
181  // **************************************************************************************
182  // Initial solution
183  // Note that "old" and "new" here are relative to each RK stage.
184  state_old.push_back(MultiFab(S_old , amrex::make_alias, 0, nvars)); // cons
185  state_old.push_back(MultiFab(rU_old[lev], amrex::make_alias, 0, 1)); // xmom
186  state_old.push_back(MultiFab(rV_old[lev], amrex::make_alias, 0, 1)); // ymom
187  state_old.push_back(MultiFab(rW_old[lev], amrex::make_alias, 0, 1)); // zmom
188 
189  // Final solution
190  // state_new at the end of the last RK stage holds the t^{n+1} data
191  state_new.push_back(MultiFab(S_new , amrex::make_alias, 0, nvars)); // cons
192  state_new.push_back(MultiFab(rU_new[lev], amrex::make_alias, 0, 1)); // xmom
193  state_new.push_back(MultiFab(rV_new[lev], amrex::make_alias, 0, 1)); // ymom
194  state_new.push_back(MultiFab(rW_new[lev], amrex::make_alias, 0, 1)); // zmom
195 
196  // **************************************************************************************
197  // Tests on the reasonableness of the solution before the dycore
198  // **************************************************************************************
199  // Test for NaNs after dycore
200  if (check_for_nans > 1) {
201  if (verbose > 1) {
202  amrex::Print() << "Testing old state and vels for NaNs before dycore" << std::endl;
203  }
204  check_state_for_nans(S_old);
205  check_vels_for_nans(rU_old[lev],rV_old[lev],rW_old[lev]);
206  }
207 
208  // We only test on low temp if we have a moisture model because we are protecting against
209  // the test on low temp inside the moisture models
210  if (solverChoice.moisture_type != MoistureType::None) {
211  if (verbose > 1) {
212  amrex::Print() << "Testing on low temperature before dycore" << std::endl;
213  }
214  check_for_low_temp(S_new);
215  } else {
216  if (verbose > 1) {
217  amrex::Print() << "Testing on negative temperature before dycore" << std::endl;
218  }
220  }
221 
222  // **************************************************************************************
223  // Update the dycore
224  // **************************************************************************************
225  advance_dycore(lev, state_old, state_new,
226  U_old, V_old, W_old,
227  U_new, V_new, W_new,
228  cc_source, xmom_source, ymom_source, zmom_source, buoyancy,
229  Geom(lev), dt_lev, time);
230 
231  // **************************************************************************************
232  // Tests on the reasonableness of the solution after the dycore
233  // **************************************************************************************
234  // Test for NaNs after dycore
235  if (check_for_nans > 0) {
236  if (verbose > 1) {
237  amrex::Print() << "Testing new state and vels for NaNs after dycore" << std::endl;
238  }
239  check_state_for_nans(S_new);
240  check_vels_for_nans(rU_new[lev],rV_new[lev],rW_new[lev]);
241  }
242 
243  // We only test on low temp if we have a moisture model because we are protecting against
244  // the test on low temp inside the moisture models
245  if (solverChoice.moisture_type != MoistureType::None) {
246  if (verbose > 1) {
247  amrex::Print() << "Testing on low temperature after dycore" << std::endl;
248  }
249  check_for_low_temp(S_new);
250  } else {
251  // Otherwise we will test on negative (rhotheta) coming out of the dycore
252  if (verbose > 1) {
253  amrex::Print() << "Testing on negative temperature after dycore" << std::endl;
254  }
256  }
257 
258  // **************************************************************************************
259  // Update the microphysics (moisture)
260  // **************************************************************************************
262  {
263  advance_microphysics(lev, S_new, dt_lev, iteration, time);
264 
265  // Test for NaNs after microphysics
266  if (check_for_nans > 0) {
267  amrex::Print() << "Testing new state for NaNs after advance_microphysics" << std::endl;
268  check_state_for_nans(S_new);
269  }
270  }
271 
272  // **************************************************************************************
273  // Update the land surface model
274  // **************************************************************************************
275  advance_lsm(lev, S_new, U_new, V_new, dt_lev);
276 
277 #ifdef ERF_USE_PARTICLES
278  // **************************************************************************************
279  // Update the particle positions
280  // **************************************************************************************
281  evolveTracers( lev, dt_lev, vars_new, z_phys_nd );
282 #endif
283 
284  // ***********************************************************************************************
285  // Impose domain boundary conditions here so that in FillPatching the fine data we won't
286  // need to re-fill these
287  // ***********************************************************************************************
288  if (lev < finest_level) {
289  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
291  0,vars_new[lev][Vars::cons].nComp(),
292  vars_new[lev][Vars::cons].nGrowVect(),time,BCVars::cons_bc,true);
293  (*physbcs_u[lev])(vars_new[lev][Vars::xvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
294  ngvect_vels,time,BCVars::xvel_bc,true);
295  (*physbcs_v[lev])(vars_new[lev][Vars::yvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
296  ngvect_vels,time,BCVars::yvel_bc,true);
297  (*physbcs_w[lev])(vars_new[lev][Vars::zvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
298  ngvect_vels,time,BCVars::zvel_bc,true);
299  }
300 
301  // **************************************************************************************
302  // Register old and new coarse data if we are at a level less than the finest level
303  // **************************************************************************************
304  if (lev < finest_level) {
305  if (cf_width > 0) {
306  // We must fill the ghost cells of these so that the parallel copy works correctly
307  state_old[IntVars::cons].FillBoundary(geom[lev].periodicity());
308  state_new[IntVars::cons].FillBoundary(geom[lev].periodicity());
309  FPr_c[lev].RegisterCoarseData({&state_old[IntVars::cons], &state_new[IntVars::cons]},
310  {time, time+dt_lev});
311  }
312 
313  if (cf_width >= 0) {
314  // We must fill the ghost cells of these so that the parallel copy works correctly
315  state_old[IntVars::xmom].FillBoundary(geom[lev].periodicity());
316  state_new[IntVars::xmom].FillBoundary(geom[lev].periodicity());
317  FPr_u[lev].RegisterCoarseData({&state_old[IntVars::xmom], &state_new[IntVars::xmom]},
318  {time, time+dt_lev});
319 
320  state_old[IntVars::ymom].FillBoundary(geom[lev].periodicity());
321  state_new[IntVars::ymom].FillBoundary(geom[lev].periodicity());
322  FPr_v[lev].RegisterCoarseData({&state_old[IntVars::ymom], &state_new[IntVars::ymom]},
323  {time, time+dt_lev});
324 
325  state_old[IntVars::zmom].FillBoundary(geom[lev].periodicity());
326  state_new[IntVars::zmom].FillBoundary(geom[lev].periodicity());
327  FPr_w[lev].RegisterCoarseData({&state_old[IntVars::zmom], &state_new[IntVars::zmom]},
328  {time, time+dt_lev});
329  }
330 
331  //
332  // Now create a MultiFab that holds (S_new - S_old) / dt from the coarse level interpolated
333  // on to the coarse/fine boundary at the fine resolution
334  //
335  Interpolater* mapper_f = &face_cons_linear_interp;
336 
337  // PhysBCFunctNoOp null_bc;
338  // MultiFab tempx(vars_new[lev+1][Vars::xvel].boxArray(),vars_new[lev+1][Vars::xvel].DistributionMap(),1,0);
339  // tempx.setVal(0.0);
340  // xmom_crse_rhs[lev+1].setVal(0.0);
341  // FPr_u[lev].FillSet(tempx , time , null_bc, domain_bcs_type);
342  // FPr_u[lev].FillSet(xmom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
343  // MultiFab::Subtract(xmom_crse_rhs[lev+1],tempx,0,0,1,IntVect{0});
344  // xmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
345 
346  // MultiFab tempy(vars_new[lev+1][Vars::yvel].boxArray(),vars_new[lev+1][Vars::yvel].DistributionMap(),1,0);
347  // tempy.setVal(0.0);
348  // ymom_crse_rhs[lev+1].setVal(0.0);
349  // FPr_v[lev].FillSet(tempy , time , null_bc, domain_bcs_type);
350  // FPr_v[lev].FillSet(ymom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
351  // MultiFab::Subtract(ymom_crse_rhs[lev+1],tempy,0,0,1,IntVect{0});
352  // ymom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
353 
354  MultiFab temp_state(zmom_crse_rhs[lev+1].boxArray(),zmom_crse_rhs[lev+1].DistributionMap(),1,0);
355  InterpFromCoarseLevel(temp_state, IntVect{0}, IntVect{0}, state_old[IntVars::zmom], 0, 0, 1,
356  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
357  InterpFromCoarseLevel(zmom_crse_rhs[lev+1], IntVect{0}, IntVect{0}, state_new[IntVars::zmom], 0, 0, 1,
358  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
359  MultiFab::Subtract(zmom_crse_rhs[lev+1],temp_state,0,0,1,IntVect{0});
360  zmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
361  }
362 
363  // ***********************************************************************************************
364  // Update the time averaged velocities if they are requested
365  // ***********************************************************************************************
367  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(), U_new, V_new, W_new);
368  }
369 }
@ tau23
Definition: ERF_DataStruct.H:32
@ tau13
Definition: ERF_DataStruct.H:32
@ nvars
Definition: ERF_DataStruct.H:97
#define Rho_comp
Definition: ERF_IndexDefines.H:36
#define RhoTheta_comp
Definition: ERF_IndexDefines.H:37
#define RhoQ1_comp
Definition: ERF_IndexDefines.H:42
@ surface_layer
amrex::Real Real
Definition: ERF_ShocInterface.H:19
AMREX_FORCE_INLINE amrex::IntVect TileNoZ()
Definition: ERF_TileNoZ.H:11
void Time_Avg_Vel_atCC(const Real &dt, Real &t_avg_cnt, MultiFab *vel_t_avg, MultiFab &xvel, MultiFab &yvel, MultiFab &zvel)
Definition: ERF_TimeAvgVel.cpp:9
void VelocityToMomentum(const amrex::MultiFab &xvel_in, const amrex::IntVect &xvel_ngrow, const amrex::MultiFab &yvel_in, const amrex::IntVect &yvel_ngrow, const amrex::MultiFab &zvel_in, const amrex::IntVect &zvel_ngrow, const amrex::MultiFab &cons_in, amrex::MultiFab &xmom_out, amrex::MultiFab &ymom_out, amrex::MultiFab &zmom_out, const amrex::Box &domain, const amrex::Vector< amrex::BCRec > &domain_bcs_type_h, const amrex::MultiFab *c_vfrac=nullptr)
amrex::Vector< amrex::MultiFab > rU_new
Definition: ERF.H:848
void check_vels_for_nans(amrex::MultiFab const &xvel, amrex::MultiFab const &yvel, amrex::MultiFab const &zvel)
Definition: ERF.cpp:2923
amrex::Vector< ERFFillPatcher > FPr_u
Definition: ERF.H:902
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
Definition: ERF.H:925
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
Definition: ERF.H:813
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
Definition: ERF.H:923
amrex::Vector< ERFFillPatcher > FPr_v
Definition: ERF.H:903
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
Definition: ERF.H:923
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
Definition: ERF.H:835
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
Definition: ERF.H:933
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
Definition: ERF.H:909
static SolverChoice solverChoice
Definition: ERF.H:1168
amrex::Vector< ERFFillPatcher > FPr_c
Definition: ERF.H:901
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
Definition: ERF.H:907
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
Definition: ERF.H:820
static int verbose
Definition: ERF.H:1203
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
Definition: ERF.H:838
amrex::Vector< amrex::MultiFab > base_state
Definition: ERF.H:967
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
Definition: ERF.H:843
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
Definition: ERF.H:925
amrex::Vector< amrex::MultiFab > rV_new
Definition: ERF.H:850
amrex::Vector< amrex::BCRec > domain_bcs_type
Definition: ERF.H:983
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
Definition: ERF.H:844
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
Definition: ERF.H:836
amrex::Vector< amrex::Real > t_avg_cnt
Definition: ERF.H:821
void FillPatchFineLevel(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
Definition: ERF_FillPatch.cpp:20
amrex::Vector< amrex::MultiFab > rU_old
Definition: ERF.H:847
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
Definition: ERF.H:842
static int check_for_nans
Definition: ERF.H:1207
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
Definition: ERF.H:837
void check_state_for_nans(amrex::MultiFab const &S)
Definition: ERF.cpp:2900
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
Definition: ERF.H:932
void advance_dycore(int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
Definition: ERF_AdvanceDycore.cpp:38
amrex::Vector< amrex::MultiFab > rW_new
Definition: ERF.H:852
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
Definition: ERF.H:856
void check_for_low_temp(amrex::MultiFab &S)
Definition: ERF.cpp:2950
void advance_lsm(int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceLSM.cpp:5
TurbulentPerturbation turbPert
Definition: ERF.H:1171
amrex::Vector< amrex::MultiFab > rW_old
Definition: ERF.H:851
void check_for_negative_theta(amrex::MultiFab &S)
Definition: ERF.cpp:2985
std::unique_ptr< SurfaceLayer > m_SurfaceLayer
Definition: ERF.H:1341
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
Definition: ERF.H:1292
amrex::Vector< ERFFillPatcher > FPr_w
Definition: ERF.H:904
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
Definition: ERF.H:923
amrex::Vector< amrex::Real > dt
Definition: ERF.H:807
void advance_radiation(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceRadiation.cpp:5
void advance_microphysics(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
Definition: ERF_AdvanceMicrophysics.cpp:5
int cf_width
Definition: ERF.H:899
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
Definition: ERF.H:925
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
Definition: ERF.H:996
amrex::Vector< amrex::MultiFab > rV_old
Definition: ERF.H:849
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
Definition: ERF.H:814
@ zvel_bc
Definition: ERF_IndexDefines.H:89
@ yvel_bc
Definition: ERF_IndexDefines.H:88
@ cons_bc
Definition: ERF_IndexDefines.H:76
@ xvel_bc
Definition: ERF_IndexDefines.H:87
@ ymom
Definition: ERF_IndexDefines.H:160
@ cons
Definition: ERF_IndexDefines.H:158
@ zmom
Definition: ERF_IndexDefines.H:161
@ xmom
Definition: ERF_IndexDefines.H:159
@ ng
Definition: ERF_Morrison.H:48
@ xvel
Definition: ERF_IndexDefines.H:141
@ cons
Definition: ERF_IndexDefines.H:140
@ zvel
Definition: ERF_IndexDefines.H:143
@ yvel
Definition: ERF_IndexDefines.H:142
int qr
Definition: ERF_DataStruct.H:109
bool use_shoc
Definition: ERF_DataStruct.H:1085
bool moisture_tight_coupling
Definition: ERF_DataStruct.H:1122
bool custom_w_subsidence
Definition: ERF_DataStruct.H:1073
MoistureType moisture_type
Definition: ERF_DataStruct.H:1101
PerturbationType pert_type
Definition: ERF_DataStruct.H:1091
WindFarmType windfarm_type
Definition: ERF_DataStruct.H:1102
MoistureComponentIndices moisture_indices
Definition: ERF_DataStruct.H:1120
bool time_avg_vel
Definition: ERF_DataStruct.H:1088
amrex::Vector< amrex::MultiFab > pb_cell
Definition: ERF_TurbPertStruct.H:640
void calc_tpi_update(const int lev, const amrex::Real dt, amrex::MultiFab &mf_xvel, amrex::MultiFab &mf_yvel, amrex::MultiFab &mf_cons)
Definition: ERF_TurbPertStruct.H:223
void apply_tpi(const int &lev, const amrex::Box &vbx, const int &comp, const amrex::IndexType &m_ixtype, const amrex::Array4< amrex::Real > &src_arr, const amrex::Array4< amrex::Real const > &pert_cell)
Definition: ERF_TurbPertStruct.H:324
Here is the call graph for this function:

◆ advance_dycore()

void ERF::advance_dycore ( int  level,
amrex::Vector< amrex::MultiFab > &  state_old,
amrex::Vector< amrex::MultiFab > &  state_new,
amrex::MultiFab &  xvel_old,
amrex::MultiFab &  yvel_old,
amrex::MultiFab &  zvel_old,
amrex::MultiFab &  xvel_new,
amrex::MultiFab &  yvel_new,
amrex::MultiFab &  zvel_new,
amrex::MultiFab &  source,
amrex::MultiFab &  xmom_src,
amrex::MultiFab &  ymom_src,
amrex::MultiFab &  zmom_src,
amrex::MultiFab &  buoyancy,
amrex::Geometry  fine_geom,
amrex::Real  dt,
amrex::Real  time 
)

Function that advances the solution at one level for a single time step – this sets up the multirate time integrator and calls the integrator's advance function

Parameters
[in]levellevel of refinement (coarsest level is 0)
[in]state_oldold-time conserved variables
[in]state_newnew-time conserved variables
[in]xvel_oldold-time x-component of velocity
[in]yvel_oldold-time y-component of velocity
[in]zvel_oldold-time z-component of velocity
[in]xvel_newnew-time x-component of velocity
[in]yvel_newnew-time y-component of velocity
[in]zvel_newnew-time z-component of velocity
[in]cc_srcsource term for conserved variables
[in]xmom_srcsource term for x-momenta
[in]ymom_srcsource term for y-momenta
[in]zmom_srcsource term for z-momenta
[in]fine_geomcontainer for geometry information at current level
[in]dt_advancetime step for this time advance
[in]old_timeold time for this time advance
48 {
49  BL_PROFILE_VAR("erf_advance_dycore()",erf_advance_dycore);
50 
51  const Box& domain = fine_geom.Domain();
52 
56 
57  MultiFab r_hse (base_state[level], make_alias, BaseState::r0_comp , 1);
58  MultiFab p_hse (base_state[level], make_alias, BaseState::p0_comp , 1);
59  MultiFab pi_hse(base_state[level], make_alias, BaseState::pi0_comp, 1);
60 
61  // These pointers are used in the MRI utility functions
62  MultiFab* r0 = &r_hse;
63  MultiFab* p0 = &p_hse;
64  MultiFab* pi0 = &pi_hse;
65 
66  Real* dptr_rhotheta_src = solverChoice.custom_rhotheta_forcing ? d_rhotheta_src[level].data() : nullptr;
67  Real* dptr_rhoqt_src = solverChoice.custom_moisture_forcing ? d_rhoqt_src[level].data() : nullptr;
68  Real* dptr_wbar_sub = solverChoice.custom_w_subsidence ? d_w_subsid[level].data() : nullptr;
69 
70  // Turbulent Perturbation Pointer
71  //Real* dptr_rhotheta_src = solverChoice.pert_type ? d_rhotheta_src[level].data() : nullptr;
72 
73  Vector<Real*> d_rayleigh_ptrs_at_lev;
74  d_rayleigh_ptrs_at_lev.resize(Rayleigh::nvars);
75  d_rayleigh_ptrs_at_lev[Rayleigh::ubar] = solverChoice.dampingChoice.rayleigh_damp_U ? d_rayleigh_ptrs[level][Rayleigh::ubar].data() : nullptr;
76  d_rayleigh_ptrs_at_lev[Rayleigh::vbar] = solverChoice.dampingChoice.rayleigh_damp_V ? d_rayleigh_ptrs[level][Rayleigh::vbar].data() : nullptr;
77  d_rayleigh_ptrs_at_lev[Rayleigh::wbar] = solverChoice.dampingChoice.rayleigh_damp_W ? d_rayleigh_ptrs[level][Rayleigh::wbar].data() : nullptr;
78  d_rayleigh_ptrs_at_lev[Rayleigh::thetabar] = solverChoice.dampingChoice.rayleigh_damp_T ? d_rayleigh_ptrs[level][Rayleigh::thetabar].data() : nullptr;
79 
80  bool use_rayleigh =
83  Real* d_sinesq_at_lev = (use_rayleigh) ? d_sinesq_ptrs[level].data() : nullptr;
84  Real* d_sinesq_stag_at_lev = (use_rayleigh) ? d_sinesq_stag_ptrs[level].data() : nullptr;
85 
86  Vector<Real*> d_sponge_ptrs_at_lev;
87  if(sc.sponge_type=="input_sponge")
88  {
89  d_sponge_ptrs_at_lev.resize(Sponge::nvars_sponge);
90  d_sponge_ptrs_at_lev[Sponge::ubar_sponge] = d_sponge_ptrs[level][Sponge::ubar_sponge].data();
91  d_sponge_ptrs_at_lev[Sponge::vbar_sponge] = d_sponge_ptrs[level][Sponge::vbar_sponge].data();
92  }
93 
94  bool l_use_terrain_fitted_coords = (solverChoice.mesh_type != MeshType::ConstantDz);
95  bool l_use_kturb = tc.use_kturb;
96  bool l_use_diff = ( (dc.molec_diff_type != MolecDiffType::None) ||
97  l_use_kturb );
98 
99  const bool use_SurfLayer = (m_SurfaceLayer != nullptr);
100  const MultiFab* z_0 = (use_SurfLayer) ? m_SurfaceLayer->get_z0(level) : nullptr;
101 
102  const BoxArray& ba = state_old[IntVars::cons].boxArray();
103  const BoxArray& ba_z = zvel_old.boxArray();
104  const DistributionMapping& dm = state_old[IntVars::cons].DistributionMap();
105 
106  int num_prim = state_old[IntVars::cons].nComp() - 1;
107 
108  MultiFab S_prim (ba , dm, num_prim, state_old[IntVars::cons].nGrowVect());
109  MultiFab pi_stage (ba , dm, 1, 1);
110  MultiFab fast_coeffs(ba_z, dm, 5, 0);
111 
112  MultiFab* eddyDiffs = eddyDiffs_lev[level].get();
113  MultiFab* SmnSmn = SmnSmn_lev[level].get();
114 
115  // **************************************************************************************
116  // Compute strain for use in slow RHS and Smagorinsky model
117  // **************************************************************************************
118  {
119  BL_PROFILE("erf_advance_strain");
120  if (l_use_diff) {
121 
122  const BCRec* bc_ptr_h = domain_bcs_type.data();
123  const GpuArray<Real, AMREX_SPACEDIM> dxInv = fine_geom.InvCellSizeArray();
124 
125 #ifdef _OPENMP
126 #pragma omp parallel if (Gpu::notInLaunchRegion())
127 #endif
128  for ( MFIter mfi(state_new[IntVars::cons],TileNoZ()); mfi.isValid(); ++mfi)
129  {
130  Box bxcc = mfi.growntilebox(IntVect(1,1,0));
131  Box tbxxy = mfi.tilebox(IntVect(1,1,0),IntVect(1,1,0));
132  Box tbxxz = mfi.tilebox(IntVect(1,0,1),IntVect(1,1,0));
133  Box tbxyz = mfi.tilebox(IntVect(0,1,1),IntVect(1,1,0));
134 
135  if (bxcc.smallEnd(2) != domain.smallEnd(2)) {
136  bxcc.growLo(2,1);
137  tbxxy.growLo(2,1);
138  tbxxz.growLo(2,1);
139  tbxyz.growLo(2,1);
140  }
141 
142  if (bxcc.bigEnd(2) != domain.bigEnd(2)) {
143  bxcc.growHi(2,1);
144  tbxxy.growHi(2,1);
145  tbxxz.growHi(2,1);
146  tbxyz.growHi(2,1);
147  }
148 
149  const Array4<const Real> & u = xvel_old.array(mfi);
150  const Array4<const Real> & v = yvel_old.array(mfi);
151  const Array4<const Real> & w = zvel_old.array(mfi);
152 
153  Array4<Real> tau11 = Tau[level][TauType::tau11].get()->array(mfi);
154  Array4<Real> tau22 = Tau[level][TauType::tau22].get()->array(mfi);
155  Array4<Real> tau33 = Tau[level][TauType::tau33].get()->array(mfi);
156  Array4<Real> tau12 = Tau[level][TauType::tau12].get()->array(mfi);
157  Array4<Real> tau13 = Tau[level][TauType::tau13].get()->array(mfi);
158  Array4<Real> tau23 = Tau[level][TauType::tau23].get()->array(mfi);
159 
160  Array4<Real> tau21 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau21].get()->array(mfi) : Array4<Real>{};
161  Array4<Real> tau31 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau31].get()->array(mfi) : Array4<Real>{};
162  Array4<Real> tau32 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau32].get()->array(mfi) : Array4<Real>{};
163  const Array4<const Real>& z_nd = z_phys_nd[level]->const_array(mfi);
164 
165  const Array4<const Real> mf_mx = mapfac[level][MapFacType::m_x]->const_array(mfi);
166  const Array4<const Real> mf_ux = mapfac[level][MapFacType::u_x]->const_array(mfi);
167  const Array4<const Real> mf_vx = mapfac[level][MapFacType::v_x]->const_array(mfi);
168  const Array4<const Real> mf_my = mapfac[level][MapFacType::m_y]->const_array(mfi);
169  const Array4<const Real> mf_uy = mapfac[level][MapFacType::u_y]->const_array(mfi);
170  const Array4<const Real> mf_vy = mapfac[level][MapFacType::v_y]->const_array(mfi);
171 
172  // We update Tau_corr[level] in erf_make_tau_terms, not here
173  Array4<Real> no_tau_corr_update_here{};
174 
175  if (solverChoice.mesh_type == MeshType::StretchedDz) {
176  ComputeStrain_S(bxcc, tbxxy, tbxxz, tbxyz, domain,
177  u, v, w,
178  tau11, tau22, tau33,
179  tau12, tau21,
180  tau13, tau31,
181  tau23, tau32,
182  stretched_dz_d[level], dxInv,
183  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h,
184  no_tau_corr_update_here, no_tau_corr_update_here);
185  } else if (l_use_terrain_fitted_coords) {
186  ComputeStrain_T(bxcc, tbxxy, tbxxz, tbxyz, domain,
187  u, v, w,
188  tau11, tau22, tau33,
189  tau12, tau21,
190  tau13, tau31,
191  tau23, tau32,
192  z_nd, detJ_cc[level]->const_array(mfi), dxInv,
193  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h,
194  no_tau_corr_update_here, no_tau_corr_update_here);
195  } else {
196  ComputeStrain_N(bxcc, tbxxy, tbxxz, tbxyz, domain,
197  u, v, w,
198  tau11, tau22, tau33,
199  tau12, tau13, tau23,
200  dxInv,
201  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h,
202  no_tau_corr_update_here, no_tau_corr_update_here);
203  }
204  } // mfi
205  } // l_use_diff
206  } // profile
207 
208 #include "ERF_TI_utils.H"
209 
210  // Additional SFS quantities, calculated once per timestep
211  MultiFab* Hfx1 = SFS_hfx1_lev[level].get();
212  MultiFab* Hfx2 = SFS_hfx2_lev[level].get();
213  MultiFab* Hfx3 = SFS_hfx3_lev[level].get();
214  MultiFab* Q1fx1 = SFS_q1fx1_lev[level].get();
215  MultiFab* Q1fx2 = SFS_q1fx2_lev[level].get();
216  MultiFab* Q1fx3 = SFS_q1fx3_lev[level].get();
217  MultiFab* Q2fx3 = SFS_q2fx3_lev[level].get();
218  MultiFab* Diss = SFS_diss_lev[level].get();
219 
220  // *************************************************************************
221  // Calculate cell-centered eddy viscosity & diffusivities
222  //
223  // Notes -- we fill all the data in ghost cells before calling this so
224  // that we can fill the eddy viscosity in the ghost regions and
225  // not have to call a boundary filler on this data itself
226  //
227  // LES - updates both horizontal and vertical eddy viscosity components
228  // PBL - only updates vertical eddy viscosity components so horizontal
229  // components come from the LES model or are left as zero.
230  // *************************************************************************
231  if (l_use_kturb)
232  {
233  // NOTE: state_new transfers to state_old for PBL (due to ptr swap in advance)
234  bool l_use_moisture = ( solverChoice.moisture_type != MoistureType::None );
235  const BCRec* bc_ptr_h = domain_bcs_type.data();
236  ComputeTurbulentViscosity(dt_advance, xvel_old, yvel_old,Tau[level],
237  state_old[IntVars::cons],
238  *walldist[level].get(),
239  *eddyDiffs, *Hfx1, *Hfx2, *Hfx3, *Diss, // to be updated
240  fine_geom, mapfac[level],
241  z_phys_nd[level], solverChoice,
242  m_SurfaceLayer, z_0, l_use_terrain_fitted_coords,
243  l_use_moisture, level,
244  bc_ptr_h);
245  }
246 
247  // ***********************************************************************************************
248  // Update user-defined source terms -- these are defined once per time step (not per RK stage)
249  // ***********************************************************************************************
251  prob->update_rhotheta_sources(old_time,
252  h_rhotheta_src[level], d_rhotheta_src[level],
253  fine_geom, z_phys_cc[level]);
254  }
255 
257  prob->update_rhoqt_sources(old_time,
258  h_rhoqt_src[level], d_rhoqt_src[level],
259  fine_geom, z_phys_cc[level]);
260  }
261 
263  prob->update_geostrophic_profile(old_time,
264  h_u_geos[level], d_u_geos[level],
265  h_v_geos[level], d_v_geos[level],
266  fine_geom, z_phys_cc[level]);
267  }
268 
270  prob->update_w_subsidence(old_time,
271  h_w_subsid[level], d_w_subsid[level],
272  fine_geom, z_phys_nd[level]);
273  }
274 
275  // ***********************************************************************************************
276  // Convert old velocity available on faces to old momentum on faces to be used in time integration
277  // ***********************************************************************************************
278  MultiFab density(state_old[IntVars::cons], make_alias, Rho_comp, 1);
279 
280  //
281  // This is an optimization since we won't need more than one ghost
282  // cell of momentum in the integrator if not using numerical diffusion
283  //
284  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : xvel_old.nGrowVect();
285  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : yvel_old.nGrowVect();
286  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : zvel_old.nGrowVect();
287 
288  VelocityToMomentum(xvel_old, ngu, yvel_old, ngv, zvel_old, ngw, density,
289  state_old[IntVars::xmom],
290  state_old[IntVars::ymom],
291  state_old[IntVars::zmom],
292  domain, domain_bcs_type);
293 
294  MultiFab::Copy(xvel_new,xvel_old,0,0,1,xvel_old.nGrowVect());
295  MultiFab::Copy(yvel_new,yvel_old,0,0,1,yvel_old.nGrowVect());
296  MultiFab::Copy(zvel_new,zvel_old,0,0,1,zvel_old.nGrowVect());
297 
298  bool fast_only = false;
299  bool vel_and_mom_synced = true;
300 
301  apply_bcs(state_old, old_time,
302  state_old[IntVars::cons].nGrow(), state_old[IntVars::xmom].nGrow(),
303  fast_only, vel_and_mom_synced);
304  cons_to_prim(state_old[IntVars::cons], state_old[IntVars::cons].nGrow());
305 
306  // ***********************************************************************************************
307  // Define a new MultiFab that holds q_total and fill it by summing the moisture components --
308  // to be used in buoyancy calculation and as part of the inertial weighting in the
309  // ***********************************************************************************************
310 
311  const bool l_eb_terrain = (solverChoice.terrain_type == TerrainType::EB);
312  MultiFab qt(grids[level], dmap[level], 1, (l_eb_terrain) ? 2 : 1);
313  qt.setVal(0.0);
314 
315 #include "ERF_TI_no_substep_fun.H"
316 #include "ERF_TI_substep_fun.H"
317 #include "ERF_TI_slow_rhs_pre.H"
318 #include "ERF_TI_slow_rhs_post.H"
319 
320  // ***************************************************************************************
321  // Setup the integrator and integrate for a single timestep
322  // **************************************************************************************
323  MRISplitIntegrator<Vector<MultiFab> >& mri_integrator = *mri_integrator_mem[level];
324 
325  // Define rhs and 'post update' utility function that is called after calculating
326  // any state data (e.g. at RK stages or at the end of a timestep)
327  mri_integrator.set_slow_rhs_pre(slow_rhs_fun_pre);
328  mri_integrator.set_slow_rhs_post(slow_rhs_fun_post);
329 
332  mri_integrator.set_no_substep(no_substep_fun);
333 
334  mri_integrator.advance(state_old, state_new, old_time, dt_advance);
335 
336  if (verbose) Print() << "Done with advance_dycore at level " << level << std::endl;
337 }
void ComputeStrain_N(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau13, Array4< Real > &tau23, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr, Array4< Real > &tau13i, Array4< Real > &tau23i)
Definition: ERF_ComputeStrain_N.cpp:31
void ComputeStrain_S(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Gpu::DeviceVector< Real > &stretched_dz_d, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr, Array4< Real > &tau13i, Array4< Real > &tau23i)
Definition: ERF_ComputeStrain_S.cpp:39
void ComputeStrain_T(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Array4< const Real > &z_nd, const Array4< const Real > &detJ, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr, Array4< Real > &tau13i, Array4< Real > &tau23i)
Definition: ERF_ComputeStrain_T.cpp:39
void ComputeTurbulentViscosity(Real dt, const MultiFab &xvel, const MultiFab &yvel, Vector< std::unique_ptr< MultiFab >> &Tau_lev, MultiFab &cons_in, const MultiFab &wdist, MultiFab &eddyViscosity, MultiFab &Hfx1, MultiFab &Hfx2, MultiFab &Hfx3, MultiFab &Diss, const Geometry &geom, Vector< std::unique_ptr< MultiFab >> &mapfac, const std::unique_ptr< MultiFab > &z_phys_nd, const SolverChoice &solverChoice, std::unique_ptr< SurfaceLayer > &SurfLayer, const MultiFab *z_0, const bool &use_terrain_fitted_coords, const bool &use_moisture, int level, const BCRec *bc_ptr, bool vert_only)
Definition: ERF_ComputeTurbulentViscosity.cpp:570
@ tau12
Definition: ERF_DataStruct.H:32
@ tau33
Definition: ERF_DataStruct.H:32
@ tau22
Definition: ERF_DataStruct.H:32
@ tau11
Definition: ERF_DataStruct.H:32
@ tau32
Definition: ERF_DataStruct.H:32
@ tau31
Definition: ERF_DataStruct.H:32
@ tau21
Definition: ERF_DataStruct.H:32
@ ubar
Definition: ERF_DataStruct.H:97
@ wbar
Definition: ERF_DataStruct.H:97
@ vbar
Definition: ERF_DataStruct.H:97
@ thetabar
Definition: ERF_DataStruct.H:97
@ nvars_sponge
Definition: ERF_DataStruct.H:102
@ vbar_sponge
Definition: ERF_DataStruct.H:102
@ ubar_sponge
Definition: ERF_DataStruct.H:102
@ v_x
Definition: ERF_DataStruct.H:24
@ u_y
Definition: ERF_DataStruct.H:25
@ v_y
Definition: ERF_DataStruct.H:25
@ m_y
Definition: ERF_DataStruct.H:25
@ u_x
Definition: ERF_DataStruct.H:24
@ m_x
Definition: ERF_DataStruct.H:24
auto no_substep_fun
Definition: ERF_TI_no_substep_fun.H:4
auto slow_rhs_fun_post
Definition: ERF_TI_slow_rhs_post.H:3
auto slow_rhs_fun_pre
Definition: ERF_TI_slow_rhs_pre.H:6
auto acoustic_substepping_fun
Definition: ERF_TI_substep_fun.H:6
auto apply_bcs
Definition: ERF_TI_utils.H:73
auto cons_to_prim
Definition: ERF_TI_utils.H:4
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
Definition: ERF.H:956
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
Definition: ERF.H:959
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
Definition: ERF.H:823
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_stag_ptrs
Definition: ERF.H:1323
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
Definition: ERF.H:1286
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
Definition: ERF.H:1291
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
Definition: ERF.H:935
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
Definition: ERF.H:1319
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
Definition: ERF.H:1288
amrex::Vector< long > dt_mri_ratio
Definition: ERF.H:808
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
Definition: ERF.H:926
std::unique_ptr< ProblemBase > prob
Definition: ERF.H:795
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
Definition: ERF.H:965
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
Definition: ERF.H:924
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_ptrs
Definition: ERF.H:1322
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
Definition: ERF.H:1298
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
Definition: ERF.H:1297
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
Definition: ERF.H:1289
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
Definition: ERF.H:1285
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
Definition: ERF.H:1294
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
Definition: ERF.H:910
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
Definition: ERF.H:1295
static int fixed_mri_dt_ratio
Definition: ERF.H:1059
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
Definition: ERF.H:1318
Definition: ERF_MRI.H:16
void set_acoustic_substepping(std::function< void(int, int, int, T &, const T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> F)
Definition: ERF_MRI.H:140
void set_no_substep(std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> F)
Definition: ERF_MRI.H:158
void set_slow_rhs_post(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:135
void set_slow_rhs_pre(std::function< void(T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:131
void set_slow_fast_timestep_ratio(const int timestep_ratio=1)
Definition: ERF_MRI.H:148
amrex::Real advance(T &S_old, T &S_new, amrex::Real time, const amrex::Real time_step)
Definition: ERF_MRI.H:168
@ pi0_comp
Definition: ERF_IndexDefines.H:65
@ p0_comp
Definition: ERF_IndexDefines.H:64
@ r0_comp
Definition: ERF_IndexDefines.H:63
@ qt
Definition: ERF_Kessler.H:27
real(c_double), parameter p0
Definition: ERF_module_model_constants.F90:40
bool rayleigh_damp_V
Definition: ERF_DampingStruct.H:85
bool rayleigh_damp_T
Definition: ERF_DampingStruct.H:87
bool rayleigh_damp_W
Definition: ERF_DampingStruct.H:86
bool rayleigh_damp_U
Definition: ERF_DampingStruct.H:84
Definition: ERF_DiffStruct.H:19
MolecDiffType molec_diff_type
Definition: ERF_DiffStruct.H:84
static MeshType mesh_type
Definition: ERF_DataStruct.H:982
DampingChoice dampingChoice
Definition: ERF_DataStruct.H:992
DiffChoice diffChoice
Definition: ERF_DataStruct.H:991
bool custom_rhotheta_forcing
Definition: ERF_DataStruct.H:1071
bool custom_geostrophic_profile
Definition: ERF_DataStruct.H:1074
bool use_num_diff
Definition: ERF_DataStruct.H:1094
bool custom_moisture_forcing
Definition: ERF_DataStruct.H:1072
amrex::Vector< TurbChoice > turbChoice
Definition: ERF_DataStruct.H:994
static TerrainType terrain_type
Definition: ERF_DataStruct.H:970
SpongeChoice spongeChoice
Definition: ERF_DataStruct.H:993
Definition: ERF_SpongeStruct.H:15
std::string sponge_type
Definition: ERF_SpongeStruct.H:58
Definition: ERF_TurbStruct.H:41
bool use_kturb
Definition: ERF_TurbStruct.H:396
Here is the call graph for this function:

◆ advance_lsm()

void ERF::advance_lsm ( int  lev,
amrex::MultiFab &  cons_in,
amrex::MultiFab &  xvel_in,
amrex::MultiFab &  yvel_in,
const amrex::Real dt_advance 
)
10 {
11  if (solverChoice.lsm_type != LandSurfaceType::None) {
12  if (solverChoice.lsm_type == LandSurfaceType::NOAHMP) {
13  lsm.Advance(lev, cons_in, xvel_in, yvel_in, SFS_hfx3_lev[lev].get(), SFS_q1fx3_lev[lev].get(), dt_advance, istep[0]);
14  } else {
15  lsm.Advance(lev, dt_advance);
16  }
17  }
18 }
LandSurface lsm
Definition: ERF.H:874
amrex::Vector< int > istep
Definition: ERF.H:801
void Advance(const int &lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, amrex::MultiFab *hfx3_out, amrex::MultiFab *qfx3_out, const amrex::Real &dt_advance, const int &nstep)
Definition: ERF_LandSurface.H:52
LandSurfaceType lsm_type
Definition: ERF_DataStruct.H:1104

◆ advance_microphysics()

void ERF::advance_microphysics ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real dt_advance,
const int &  iteration,
const amrex::Real time 
)
10 {
11  if (solverChoice.moisture_type != MoistureType::None) {
12  micro->Update_Micro_Vars_Lev(lev, cons);
13  micro->Advance(lev, dt_advance, iteration, time, solverChoice, vars_new, z_phys_nd, phys_bc_type);
14  micro->Update_State_Vars_Lev(lev, cons);
15  }
16 }
std::unique_ptr< Microphysics > micro
Definition: ERF.H:858

◆ advance_radiation()

void ERF::advance_radiation ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real dt_advance 
)
8 {
9  if (solverChoice.rad_type != RadiationType::None) {
10 #ifdef ERF_USE_NETCDF
11  MultiFab *lat_ptr = lat_m[lev].get();
12  MultiFab *lon_ptr = lon_m[lev].get();
13 #else
14  MultiFab *lat_ptr = nullptr;
15  MultiFab *lon_ptr = nullptr;
16 #endif
17  // T surf from SurfaceLayer if we have it
18  MultiFab* t_surf = (m_SurfaceLayer) ? m_SurfaceLayer->get_t_surf(lev) : nullptr;
19 
20  // RRTMGP inputs names and pointers
21  Vector<std::string> lsm_input_names = rad[lev]->get_lsm_input_varnames();
22  Vector<MultiFab*> lsm_input_ptrs(lsm_input_names.size(),nullptr);
23  for (int i(0); i<lsm_input_ptrs.size(); ++i) {
24  int varIdx = lsm.Get_DataIdx(lev,lsm_input_names[i]);
25  lsm_input_ptrs[i] = lsm.Get_Data_Ptr(lev,varIdx);
26  }
27 
28  // RRTMGP output names and pointers
29  Vector<std::string> lsm_output_names = rad[lev]->get_lsm_output_varnames();
30  Vector<MultiFab*> lsm_output_ptrs(lsm_output_names.size(),nullptr);
31  for (int i(0); i<lsm_output_ptrs.size(); ++i) {
32  int varIdx = lsm.Get_DataIdx(lev,lsm_output_names[i]);
33  lsm_output_ptrs[i] = lsm.Get_Data_Ptr(lev,varIdx);
34  }
35 
36  // Enter radiation class driver
37  amrex::Real time_for_rad = t_new[lev] + start_time;
38  rad[lev]->Run(lev, istep[lev], time_for_rad, dt_advance,
39  cons.boxArray(), geom[lev], &(cons),
40  lmask_lev[lev][0].get(), t_surf,
41  sw_lw_fluxes[lev].get(), solar_zenith[lev].get(),
42  lsm_input_ptrs, lsm_output_ptrs,
43  qheating_rates[lev].get(), rad_fluxes[lev].get(),
44  z_phys_nd[lev].get() , lat_ptr, lon_ptr);
45  }
46 }
static amrex::Real start_time
Definition: ERF.H:1039
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
Definition: ERF.H:892
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
Definition: ERF.H:915
amrex::Vector< std::unique_ptr< IRadiation > > rad
Definition: ERF.H:880
amrex::Vector< amrex::Real > t_new
Definition: ERF.H:805
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
Definition: ERF.H:893
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lon_m
Definition: ERF.H:758
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lat_m
Definition: ERF.H:758
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
Definition: ERF.H:881
amrex::Vector< std::unique_ptr< amrex::MultiFab > > rad_fluxes
Definition: ERF.H:882
int Get_DataIdx(const int &lev, std::string &varname)
Definition: ERF_LandSurface.H:107
amrex::MultiFab * Get_Data_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:89
RadiationType rad_type
Definition: ERF_DataStruct.H:1105

◆ appendPlotVariables()

void ERF::appendPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
230 {
231  ParmParse pp(pp_prefix);
232 
233  Vector<std::string> plot_var_names(0);
234  if (pp.contains(pp_plot_var_names.c_str())) {
235  std::string nm;
236  int nPltVars = pp.countval(pp_plot_var_names.c_str());
237  for (int i = 0; i < nPltVars; i++) {
238  pp.get(pp_plot_var_names.c_str(), nm, i);
239  // Add the named variable to our list of plot variables
240  // if it is not already in the list
241  if (!containerHasElement(plot_var_names, nm)) {
242  plot_var_names.push_back(nm);
243  }
244  }
245  }
246 
247  Vector<std::string> tmp_plot_names(0);
248 #ifdef ERF_USE_PARTICLES
249  Vector<std::string> particle_mesh_plot_names;
250  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
251  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
252  std::string tmp(particle_mesh_plot_names[i]);
253  if (containerHasElement(plot_var_names, tmp) ) {
254  tmp_plot_names.push_back(tmp);
255  }
256  }
257 #endif
258 
259  {
260  Vector<std::string> microphysics_plot_names;
261  micro->GetPlotVarNames(microphysics_plot_names);
262  if (microphysics_plot_names.size() > 0) {
263  static bool first_call = true;
264  if (first_call) {
265  Print() << getEnumNameString(solverChoice.moisture_type)
266  << ": the following additional variables are available to plot:\n";
267  for (int i = 0; i < microphysics_plot_names.size(); i++) {
268  Print() << " " << microphysics_plot_names[i] << "\n";
269  }
270  first_call = false;
271  }
272  for (auto& plot_name : microphysics_plot_names) {
273  if (containerHasElement(plot_var_names, plot_name)) {
274  tmp_plot_names.push_back(plot_name);
275  }
276  }
277  }
278  }
279 
280  for (int i = 0; i < tmp_plot_names.size(); i++) {
281  a_plot_var_names.push_back( tmp_plot_names[i] );
282  }
283 
284  // Finally, check to see if we found all the requested variables
285  for (const auto& plot_name : plot_var_names) {
286  if (!containerHasElement(a_plot_var_names, plot_name)) {
287  if (amrex::ParallelDescriptor::IOProcessor()) {
288  Warning("\nWARNING: Requested to plot variable '" + plot_name + "' but it is not available");
289  }
290  }
291  }
292 }
bool containerHasElement(const V &iterable, const T &query)
Definition: ERF_Container.H:5
std::string pp_prefix
Definition: ERF.H:528
Here is the call graph for this function:

◆ AverageDown()

void ERF::AverageDown ( )
private
17 {
18  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
19 
20  int src_comp, num_comp;
21  for (int lev = finest_level-1; lev >= 0; --lev)
22  {
23  // If anelastic we don't average down rho because rho == rho0.
24  if (solverChoice.anelastic[lev]) {
25  src_comp = 1;
26  } else {
27  src_comp = 0;
28  }
29  num_comp = vars_new[0][Vars::cons].nComp() - src_comp;
30  AverageDownTo(lev,src_comp,num_comp);
31  }
32 }
void AverageDownTo(int crse_lev, int scomp, int ncomp)
Definition: ERF_AverageDown.cpp:36
amrex::Vector< int > anelastic
Definition: ERF_DataStruct.H:1000
CouplingType coupling_type
Definition: ERF_DataStruct.H:1100

◆ AverageDownTo()

void ERF::AverageDownTo ( int  crse_lev,
int  scomp,
int  ncomp 
)
37 {
38  if (solverChoice.anelastic[crse_lev]) {
39  AMREX_ALWAYS_ASSERT(scomp == 1);
40  } else {
41  AMREX_ALWAYS_ASSERT(scomp == 0);
42  }
43 
44  AMREX_ALWAYS_ASSERT(ncomp == vars_new[crse_lev][Vars::cons].nComp() - scomp);
45  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
46 
47  // ******************************************************************************************
48  // First do cell-centered quantities
49  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
50  // m is the map scale factor at cell centers
51  // Here we multiply (rho S) by detJ and divide (rho S) by m^2 before average down
52  // ******************************************************************************************
53  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
54  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
55  const Box& bx = mfi.tilebox();
56  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
57  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
58  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
59  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
60  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
61  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
62  {
63  cons_arr(i,j,k,scomp+n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
64  });
65  } else {
66  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
67  {
68  cons_arr(i,j,k,scomp+n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
69  });
70  }
71  } // mfi
72  } // lev
73 
74  int fine_lev = crse_lev+1;
75 
76  if (interpolation_type == StateInterpType::Perturbational) {
77  // Make the fine rho and (rho theta) be perturbational
78  MultiFab::Divide(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
79  Rho_comp,RhoTheta_comp,1,IntVect{0});
80  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
81  BaseState::r0_comp,Rho_comp,1,IntVect{0});
82  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
83  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
84 
85  // Make the crse rho and (rho theta) be perturbational
86  MultiFab::Divide(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
87  Rho_comp,RhoTheta_comp,1,IntVect{0});
88  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
89  BaseState::r0_comp,Rho_comp,1,IntVect{0});
90  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
91  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
92  }
93 
94  if (SolverChoice::terrain_type != TerrainType::EB) {
95  average_down(vars_new[crse_lev+1][Vars::cons],vars_new[crse_lev ][Vars::cons],
96  scomp, ncomp, refRatio(crse_lev));
97  } else {
98  // const auto dx = geom[fine_lev].CellSize();
99  // Setting cell_vol to the exact value may cause round-off errors in volume average.
100  // const Real cell_vol = dx[0]*dx[1]*dx[2];
101  constexpr Real cell_vol = 1.0;
102  const BoxArray& ba = vars_new[fine_lev][IntVars::cons].boxArray();
103  const DistributionMapping& dm = vars_new[fine_lev][IntVars::cons].DistributionMap();
104  MultiFab vol_fine(ba, dm, 1, 0);
105  vol_fine.setVal(cell_vol);
106  EB_average_down(vars_new[fine_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
107  vol_fine, *detJ_cc[fine_lev],
108  scomp, ncomp, refRatio(crse_lev));
109  }
110 
111  if (interpolation_type == StateInterpType::Perturbational) {
112  // Restore the fine data to what it was
113  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
114  BaseState::r0_comp,Rho_comp,1,IntVect{0});
115  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
116  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
117  MultiFab::Multiply(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
118  Rho_comp,RhoTheta_comp,1,IntVect{0});
119 
120  // Make the crse data be full values not perturbational
121  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
122  BaseState::r0_comp,Rho_comp,1,IntVect{0});
123  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
124  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
125  MultiFab::Multiply(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
126  Rho_comp,RhoTheta_comp,1,IntVect{0});
127  }
128 
129  vars_new[crse_lev][Vars::cons].FillBoundary(geom[crse_lev].periodicity());
130 
131  // ******************************************************************************************
132  // Here we multiply (rho S) by m^2 and divide by detJ after average down
133  // ******************************************************************************************
134  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
135  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
136  const Box& bx = mfi.tilebox();
137  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
138  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
139  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
140  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
141  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
142  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
143  {
144  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
145  });
146  } else { // MeshType::ConstantDz
147  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
148  {
149  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
150  });
151  }
152  } // mfi
153  } // lev
154 
155  // Fill EB covered cells by old values
156  // (This won't be needed because EB_average_down copyies the covered value.)
157  if (SolverChoice::terrain_type == TerrainType::EB) {
158  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
159  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
160  const Box& bx = mfi.tilebox();
161  const Array4< Real> cons_new = vars_new[lev][Vars::cons].array(mfi);
162  const Array4<const Real> cons_old = vars_old[lev][Vars::cons].array(mfi);
163  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
164  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
165  {
166  if (detJ_arr(i,j,k) == 0.0) {
167  cons_new(i,j,k,scomp+n) = cons_old(i,j,k,scomp+n);
168  }
169  });
170  } // mfi
171  } // lev
172  }
173 
174  // ******************************************************************************************
175  // Now average down momenta.
176  // Note that vars_new holds velocities not momenta, but we want to do conservative
177  // averaging so we first convert to momentum, then average down, then convert
178  // back to velocities -- only on the valid region
179  // ******************************************************************************************
180  for (int lev = crse_lev; lev <= crse_lev+1; lev++)
181  {
182  // FillBoundary for density so we can go back and forth between velocity and momentum
183  vars_new[lev][Vars::cons].FillBoundary(geom[lev].periodicity());
184 
185  if (SolverChoice::terrain_type != TerrainType::EB) {
186  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect(0,0,0),
187  vars_new[lev][Vars::yvel], IntVect(0,0,0),
188  vars_new[lev][Vars::zvel], IntVect(0,0,0),
189  vars_new[lev][Vars::cons],
190  rU_new[lev],
191  rV_new[lev],
192  rW_new[lev],
193  Geom(lev).Domain(),
195  } else {
196  const MultiFab& c_vfrac = (get_eb(lev).get_const_factory())->getVolFrac();
197 
198  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect(0,0,0),
199  vars_new[lev][Vars::yvel], IntVect(0,0,0),
200  vars_new[lev][Vars::zvel], IntVect(0,0,0),
201  vars_new[lev][Vars::cons],
202  rU_new[lev],
203  rV_new[lev],
204  rW_new[lev],
205  Geom(lev).Domain(),
207  &c_vfrac);
208  }
209  }
210 
211  if (SolverChoice::terrain_type != TerrainType::EB) {
212  average_down_faces(rU_new[crse_lev+1], rU_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
213  average_down_faces(rV_new[crse_lev+1], rV_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
214  average_down_faces(rW_new[crse_lev+1], rW_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
215  } else {
216  EB_average_down_faces({&rU_new[crse_lev+1], &rV_new[crse_lev+1], &rW_new[crse_lev+1]},
217  {&rU_new[crse_lev], &rV_new[crse_lev], &rW_new[crse_lev]},
218  refRatio(crse_lev), 0);
219  }
220 
221  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
222  if (SolverChoice::terrain_type != TerrainType::EB) {
224  vars_new[lev][Vars::yvel],
225  vars_new[lev][Vars::zvel],
226  vars_new[lev][Vars::cons],
227  rU_new[lev],
228  rV_new[lev],
229  rW_new[lev],
230  Geom(lev).Domain(),
232  } else {
233  const MultiFab& c_vfrac = (get_eb(lev).get_const_factory())->getVolFrac();
234 
236  vars_new[lev][Vars::yvel],
237  vars_new[lev][Vars::zvel],
238  vars_new[lev][Vars::cons],
239  rU_new[lev],
240  rV_new[lev],
241  rW_new[lev],
242  Geom(lev).Domain(),
244  &c_vfrac);
245  }
246  }
247 }
void MomentumToVelocity(MultiFab &xvel, MultiFab &yvel, MultiFab &zvel, const MultiFab &density, const MultiFab &xmom_in, const MultiFab &ymom_in, const MultiFab &zmom_in, const Box &domain, const Vector< BCRec > &domain_bcs_type_h, const MultiFab *c_vfrac)
Definition: ERF_MomentumToVelocity.cpp:25
eb_ const & get_eb(int lev) const noexcept
Definition: ERF.H:1628
static StateInterpType interpolation_type
Definition: ERF.H:1223
const std::unique_ptr< amrex::EBFArrayBoxFactory > & get_const_factory() const noexcept
Definition: ERF_EB.H:46
@ th0_comp
Definition: ERF_IndexDefines.H:66
Here is the call graph for this function:

◆ build_fine_mask()

void ERF::build_fine_mask ( int  lev,
amrex::MultiFab &  fine_mask 
)

Helper function for constructing a fine mask, that is, a MultiFab masking coarser data at a lower level by zeroing out covered cells in the fine mask MultiFab we compute.

Parameters
levelFine level index which masks underlying coarser data
80 {
81  // Mask for zeroing covered cells
82  AMREX_ASSERT(level > 0);
83 
84  BoxArray cba = grids[level-1];
85  DistributionMapping cdm = dmap[level-1];
86 
87  BoxArray fba = fine_mask_lev.boxArray();
88 
89  iMultiFab ifine_mask_lev = makeFineMask(cba, cdm, fba, ref_ratio[level-1], 1, 0);
90 
91  const auto fma = fine_mask_lev.arrays();
92  const auto ifma = ifine_mask_lev.arrays();
93  ParallelFor(fine_mask_lev, [=] AMREX_GPU_DEVICE(int bno, int i, int j, int k) noexcept
94  {
95  fma[bno](i,j,k) = ifma[bno](i,j,k);
96  });
97 }

◆ check_for_low_temp()

void ERF::check_for_low_temp ( amrex::MultiFab &  S)
2951 {
2952  // *****************************************************************************
2953  // Test for low temp (low is defined as beyond the microphysics range of validity)
2954  // *****************************************************************************
2955  //
2956  // This value is defined in erf_dtesati in Source/Utils/ERF_MicrophysicsUtils.H
2957  Real t_low = 273.16 - 85.;
2958  //
2959  for (MFIter mfi(S); mfi.isValid(); ++mfi)
2960  {
2961  Box bx = mfi.tilebox();
2962  const Array4<Real> &s_arr = S.array(mfi);
2963  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
2964  {
2965  const Real rho = s_arr(i, j, k, Rho_comp);
2966  const Real rhotheta = s_arr(i, j, k, RhoTheta_comp);
2967  const Real qv = s_arr(i, j, k, RhoQ1_comp);
2968 
2969  Real temp = getTgivenRandRTh(rho, rhotheta, qv);
2970 
2971  if (temp < t_low) {
2972 #ifdef AMREX_USE_GPU
2973  AMREX_DEVICE_PRINTF("Temperature too low going into microphysics in cell: %d %d %d %e \n", i,j,k,temp);
2974 #else
2975  printf("Temperature too low going into microphyics in cell: %d %d %d \n", i,j,k);
2976  printf("Based on temp / rhotheta / rho %e %e %e \n", temp,rhotheta,rho);
2977  amrex::Abort();
2978 #endif
2979  }
2980  });
2981  }
2982 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getTgivenRandRTh(const amrex::Real rho, const amrex::Real rhotheta, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:46
@ rho
Definition: ERF_Kessler.H:22
@ qv
Definition: ERF_Kessler.H:28
Here is the call graph for this function:

◆ check_for_negative_theta()

void ERF::check_for_negative_theta ( amrex::MultiFab &  S)
2986 {
2987  // *****************************************************************************
2988  // Test for negative (rho theta)
2989  // *****************************************************************************
2990  for (MFIter mfi(S); mfi.isValid(); ++mfi)
2991  {
2992  Box bx = mfi.tilebox();
2993  const Array4<Real> &s_arr = S.array(mfi);
2994  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
2995  {
2996  const Real rhotheta = s_arr(i, j, k, RhoTheta_comp);
2997  if (rhotheta <= 0.) {
2998 #ifdef AMREX_USE_GPU
2999  AMREX_DEVICE_PRINTF("RhoTheta is negative at %d %d %d %e \n", i,j,k,rhotheta);
3000 #else
3001  printf("RhoTheta is negative at %d %d %d %e \n", i,j,k,rhotheta);
3002  amrex::Abort("Bad theta in check_for_negative_theta");
3003 #endif
3004  }
3005  });
3006  } // mfi
3007 }

◆ check_state_for_nans()

void ERF::check_state_for_nans ( amrex::MultiFab const &  S)
2901 {
2902  int ncomp = S.nComp();
2903  for (int lev = 0; lev <= finest_level; lev++)
2904  {
2905  //
2906  // Test at the end of every full timestep whether the solution data contains NaNs
2907  //
2908  bool any_have_nans = false;
2909  for (int i = 0; i < ncomp; i++) {
2910  if (S.contains_nan(i,1,0))
2911  {
2912  amrex::Print() << "Component " << i << " of conserved variables contains NaNs" << '\n';
2913  any_have_nans = true;
2914  }
2915  }
2916  if (any_have_nans) {
2917  exit(0);
2918  }
2919  }
2920 }

◆ check_vels_for_nans()

void ERF::check_vels_for_nans ( amrex::MultiFab const &  xvel,
amrex::MultiFab const &  yvel,
amrex::MultiFab const &  zvel 
)
2924 {
2925  //
2926  // Test at the end of every full timestep whether the solution data contains NaNs
2927  //
2928  bool any_have_nans = false;
2929  if (xvel.contains_nan(0,1,0))
2930  {
2931  amrex::Print() << "x-velocity contains NaNs " << '\n';
2932  any_have_nans = true;
2933  }
2934  if (yvel.contains_nan(0,1,0))
2935  {
2936  amrex::Print() << "y-velocity contains NaNs" << '\n';
2937  any_have_nans = true;
2938  }
2939  if (zvel.contains_nan(0,1,0))
2940  {
2941  amrex::Print() << "z-velocity contains NaNs" << '\n';
2942  any_have_nans = true;
2943  }
2944  if (any_have_nans) {
2945  exit(0);
2946  }
2947 }

◆ ClearLevel()

void ERF::ClearLevel ( int  lev)
override
743 {
744  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
745  vars_new[lev][var_idx].clear();
746  vars_old[lev][var_idx].clear();
747  }
748 
749  base_state[lev].clear();
750 
751  rU_new[lev].clear();
752  rU_old[lev].clear();
753  rV_new[lev].clear();
754  rV_old[lev].clear();
755  rW_new[lev].clear();
756  rW_old[lev].clear();
757 
758  if (lev > 0) {
759  zmom_crse_rhs[lev].clear();
760  }
761 
762  if ( (solverChoice.anelastic[lev] == 1) || (solverChoice.project_initial_velocity[lev] == 1) ) {
763  pp_inc[lev].clear();
764  }
765  if (solverChoice.anelastic[lev] == 0) {
766  lagged_delta_rt[lev].clear();
767  }
768  avg_xmom[lev].clear();
769  avg_ymom[lev].clear();
770  avg_zmom[lev].clear();
771 
772  // Clears the integrator memory
773  mri_integrator_mem[lev].reset();
774 
775  // Clears the physical boundary condition routines
776  physbcs_cons[lev].reset();
777  physbcs_u[lev].reset();
778  physbcs_v[lev].reset();
779  physbcs_w[lev].reset();
780  physbcs_base[lev].reset();
781 
782  // Clears the flux register array
783  advflux_reg[lev]->reset();
784 }
amrex::Vector< amrex::MultiFab > avg_xmom
Definition: ERF.H:830
amrex::Vector< amrex::MultiFab > pp_inc
Definition: ERF.H:826
amrex::Vector< amrex::MultiFab > lagged_delta_rt
Definition: ERF.H:829
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
Definition: ERF.H:978
amrex::Vector< amrex::MultiFab > avg_ymom
Definition: ERF.H:831
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
Definition: ERF.H:839
amrex::Vector< amrex::MultiFab > avg_zmom
Definition: ERF.H:832
@ NumTypes
Definition: ERF_IndexDefines.H:144
amrex::Vector< int > project_initial_velocity
Definition: ERF_DataStruct.H:1002

◆ cloud_fraction()

Real ERF::cloud_fraction ( amrex::Real  time)
452 {
453  BL_PROFILE("ERF::cloud_fraction()");
454 
455  int lev = 0;
456  // This holds all of qc
457  MultiFab qc(vars_new[lev][Vars::cons],make_alias,RhoQ2_comp,1);
458 
459  int direction = 2; // z-direction
460  Box const& domain = geom[lev].Domain();
461 
462  auto const& qc_arr = qc.const_arrays();
463 
464  // qc_2d is an BaseFab<int> holding the max value over the column
465  auto qc_2d = ReduceToPlane<ReduceOpMax,int>(direction, domain, qc,
466  [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) -> int
467  {
468  if (qc_arr[box_no](i,j,k) > 0) {
469  return 1;
470  } else {
471  return 0;
472  }
473  });
474 
475  auto* p = qc_2d.dataPtr();
476 
477  Long numpts = qc_2d.numPts();
478 
479  AMREX_ASSERT(numpts < Long(std::numeric_limits<int>::max));
480 
481 #if 1
482  if (ParallelDescriptor::UseGpuAwareMpi()) {
483  ParallelDescriptor::ReduceIntMax(p,static_cast<int>(numpts));
484  } else {
485  Gpu::PinnedVector<int> hv(numpts);
486  Gpu::copyAsync(Gpu::deviceToHost, p, p+numpts, hv.data());
487  Gpu::streamSynchronize();
488  ParallelDescriptor::ReduceIntMax(hv.data(),static_cast<int>(numpts));
489  Gpu::copyAsync(Gpu::hostToDevice, hv.data(), hv.data()+numpts, p);
490  }
491 
492  // Sum over component 0
493  Long num_cloudy = qc_2d.template sum<RunOn::Device>(0);
494 
495 #else
496  //
497  // We need this if we allow domain decomposition in the vertical
498  // but for now we leave it commented out
499  //
500  Long num_cloudy = Reduce::Sum<Long>(numpts,
501  [=] AMREX_GPU_DEVICE (Long i) -> Long {
502  if (p[i] == 1) {
503  return 1;
504  } else {
505  return 0;
506  }
507  });
508  ParallelDescriptor::ReduceLongSum(num_cloudy);
509 #endif
510 
511  Real num_total = qc_2d.box().d_numPts();
512 
513  Real cloud_frac = num_cloudy / num_total;
514 
515  return cloud_frac;
516 }
#define RhoQ2_comp
Definition: ERF_IndexDefines.H:43
@ qc
Definition: ERF_SatAdj.H:36

◆ compute_divergence()

void ERF::compute_divergence ( int  lev,
amrex::MultiFab &  rhs,
amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM >  rho0_u_const,
amrex::Geometry const &  geom_at_lev 
)

Project the single-level velocity field to enforce incompressibility Note that the level may or may not be level 0.

11 {
12  BL_PROFILE("ERF::compute_divergence()");
13 
14  auto dxInv = geom_at_lev.InvCellSizeArray();
15 
16  // ****************************************************************************
17  // Compute divergence which will form RHS
18  // Note that we replace "rho0w" with the contravariant momentum, Omega
19  // ****************************************************************************
20  if (solverChoice.terrain_type == TerrainType::EB)
21  {
22  bool already_on_centroids = true;
23  EB_computeDivergence(rhs, rho0_u_const, geom_at_lev, already_on_centroids);
24  }
25  else if (SolverChoice::mesh_type == MeshType::ConstantDz)
26  {
27  computeDivergence(rhs, rho0_u_const, geom_at_lev);
28  }
29  else
30  {
31  for ( MFIter mfi(rhs,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Box bx = mfi.tilebox();
34  const Array4<Real const>& rho0u_arr = rho0_u_const[0]->const_array(mfi);
35  const Array4<Real const>& rho0v_arr = rho0_u_const[1]->const_array(mfi);
36  const Array4<Real const>& rho0w_arr = rho0_u_const[2]->const_array(mfi);
37  const Array4<Real >& rhs_arr = rhs.array(mfi);
38 
39  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
40  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
41  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
42  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
43 
44  if (SolverChoice::mesh_type == MeshType::StretchedDz)
45  {
46  Real* stretched_dz_d_ptr = stretched_dz_d[lev].data();
47  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
48  {
49  Real inv_dz = 1.0/stretched_dz_d_ptr[k];
50  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
51  rhs_arr(i,j,k) = ( (rho0u_arr(i+1,j ,k )/mf_uy(i+1,j,0) - rho0u_arr(i,j,k)/mf_uy(i,j,0)) * dxInv[0]
52  +(rho0v_arr(i ,j+1,k )/mf_vx(i,j+1,0) - rho0v_arr(i,j,k)/mf_vx(i,j,0)) * dxInv[1]
53  +(rho0w_arr(i ,j ,k+1)/mfsq - rho0w_arr(i,j,k)/mfsq ) * inv_dz ) * mfsq;
54  });
55  }
56  else
57  {
58  //
59  // Note we compute the divergence using "rho0w" == Omega
60  //
61  const Array4<Real const>& ax_arr = ax[lev]->const_array(mfi);
62  const Array4<Real const>& ay_arr = ay[lev]->const_array(mfi);
63  const Array4<Real const>& dJ_arr = detJ_cc[lev]->const_array(mfi);
64 
65  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
66  {
67  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
68  rhs_arr(i,j,k) = ( ( ax_arr(i+1,j,k)*rho0u_arr(i+1,j,k)/mf_uy(i+1,j,0)
69  -ax_arr(i ,j,k)*rho0u_arr(i ,j,k)/mf_uy(i ,j,0) ) * dxInv[0]
70  + ( ay_arr(i,j+1,k)*rho0v_arr(i,j+1,k)/mf_vx(i,j+1,0)
71  -ay_arr(i,j ,k)*rho0v_arr(i,j ,k)/mf_vx(i,j ,0) ) * dxInv[1]
72  +( rho0w_arr(i,j,k+1)/mfsq
73  - rho0w_arr(i,j,k )/mfsq ) * dxInv[2] ) * mfsq / dJ_arr(i,j,k);
74  });
75  }
76  } // mfi
77  }
78 }
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
Definition: ERF.H:936
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
Definition: ERF.H:937

◆ ComputeDt()

void ERF::ComputeDt ( int  step = -1)
private

Function that calls estTimeStep for each level

12 {
13  Vector<Real> dt_tmp(finest_level+1);
14 
15  for (int lev = 0; lev <= finest_level; ++lev)
16  {
17  dt_tmp[lev] = estTimeStep(lev, dt_mri_ratio[lev]);
18  }
19 
20  ParallelDescriptor::ReduceRealMin(&dt_tmp[0], dt_tmp.size());
21 
22  Real dt_0 = dt_tmp[0];
23  int n_factor = 1;
24  for (int lev = 0; lev <= finest_level; ++lev) {
25  dt_tmp[lev] = amrex::min(dt_tmp[lev], change_max*dt[lev]);
26  n_factor *= nsubsteps[lev];
27  dt_0 = amrex::min(dt_0, n_factor*dt_tmp[lev]);
28  if (step == 0){
29  dt_0 *= init_shrink;
30  if (verbose && init_shrink != 1.0) {
31  Print() << "Timestep 0: shrink initial dt at level " << lev << " by " << init_shrink << std::endl;
32  }
33  }
34  }
35  // Limit dt's by the value of stop_time.
36  const Real eps = 1.e-3*dt_0;
37  if (t_new[0] + dt_0 > stop_time - eps) {
38  dt_0 = stop_time - t_new[0];
39  }
40 
41  dt[0] = dt_0;
42  for (int lev = 1; lev <= finest_level; ++lev) {
43  dt[lev] = dt[lev-1] / nsubsteps[lev];
44  }
45 }
amrex::Real estTimeStep(int lev, long &dt_fast_ratio) const
Definition: ERF_ComputeTimestep.cpp:54
static amrex::Real stop_time
Definition: ERF.H:1040
amrex::Vector< int > nsubsteps
Definition: ERF.H:802
static amrex::Real init_shrink
Definition: ERF.H:1051
static amrex::Real change_max
Definition: ERF.H:1052

◆ ComputeGhostCells()

static AMREX_FORCE_INLINE int ERF::ComputeGhostCells ( const SolverChoice sc)
inlinestaticprivate
1356  {
1357  int ngrow = 0;
1358 
1359  if (sc.use_num_diff)
1360  {
1361  ngrow = 3;
1362  } else {
1363  if (
1370  { ngrow = 3; }
1371  else if (
1378  { ngrow = 3; }
1379  else if (
1388  { ngrow = 3; }
1389  else if (
1398  { ngrow = 4; }
1399  else
1400  {
1401  if (sc.terrain_type == TerrainType::EB){
1402  ngrow = 3;
1403  } else {
1404  ngrow = 2;
1405  }
1406  }
1407  }
1408 
1409  return ngrow;
1410  }
@ Centered_6th
AdvType moistscal_horiz_adv_type
Definition: ERF_AdvStruct.H:423
AdvType dycore_vert_adv_type
Definition: ERF_AdvStruct.H:420
AdvType moistscal_vert_adv_type
Definition: ERF_AdvStruct.H:424
AdvType dryscal_horiz_adv_type
Definition: ERF_AdvStruct.H:421
AdvType dycore_horiz_adv_type
Definition: ERF_AdvStruct.H:419
AdvType dryscal_vert_adv_type
Definition: ERF_AdvStruct.H:422
AdvChoice advChoice
Definition: ERF_DataStruct.H:990

◆ Construct_ERFFillPatchers()

void ERF::Construct_ERFFillPatchers ( int  lev)
private
2803 {
2804  auto& fine_new = vars_new[lev];
2805  auto& crse_new = vars_new[lev-1];
2806  auto& ba_fine = fine_new[Vars::cons].boxArray();
2807  auto& ba_crse = crse_new[Vars::cons].boxArray();
2808  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2809  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2810 
2811  int ncomp = vars_new[lev][Vars::cons].nComp();
2812 
2813  FPr_c.emplace_back(ba_fine, dm_fine, geom[lev] ,
2814  ba_crse, dm_crse, geom[lev-1],
2815  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2816  FPr_u.emplace_back(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2817  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2818  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2819  FPr_v.emplace_back(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2820  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2821  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2822  FPr_w.emplace_back(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2823  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2824  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2825 }
int cf_set_width
Definition: ERF.H:900

◆ DataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DataLog ( int  i)
inlineprivate
1421  {
1422  return *datalog[i];
1423  }
amrex::Vector< std::unique_ptr< std::fstream > > datalog
Definition: ERF.H:1600

◆ DataLogName()

std::string ERF::DataLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith datalog file.

1616 { return datalogname[i]; }
amrex::Vector< std::string > datalogname
Definition: ERF.H:1603

◆ Define_ERFFillPatchers()

void ERF::Define_ERFFillPatchers ( int  lev)
private
2829 {
2830  auto& fine_new = vars_new[lev];
2831  auto& crse_new = vars_new[lev-1];
2832  auto& ba_fine = fine_new[Vars::cons].boxArray();
2833  auto& ba_crse = crse_new[Vars::cons].boxArray();
2834  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2835  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2836 
2837  int ncomp = fine_new[Vars::cons].nComp();
2838 
2839  FPr_c[lev-1].Define(ba_fine, dm_fine, geom[lev] ,
2840  ba_crse, dm_crse, geom[lev-1],
2841  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2842  FPr_u[lev-1].Define(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2843  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2844  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2845  FPr_v[lev-1].Define(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2846  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2847  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2848  FPr_w[lev-1].Define(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2849  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2850  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2851 }

◆ DerDataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DerDataLog ( int  i)
inlineprivate
1428  {
1429  return *der_datalog[i];
1430  }
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
Definition: ERF.H:1601

◆ DerDataLogName()

std::string ERF::DerDataLogName ( int  i) const
inlineprivatenoexcept
1617 { return der_datalogname[i]; }
amrex::Vector< std::string > der_datalogname
Definition: ERF.H:1604

◆ derive_diag_profiles()

void ERF::derive_diag_profiles ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
205 {
206  // We assume that this is always called at level 0
207  int lev = 0;
208 
209  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
210  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
211  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, uw, vv, vw, ww, uth, vth, wth,
212  // 0 1 2 3 4 5 6 7 8 9 10 11 12 13
213  // thth, uiuiu, uiuiv, uiuiw, p, pu, pv, pw, qv, qc, qr, wqv, wqc, wqr,
214  // 14 15 16 17 18 19 20 21 22 23 24 25 26 27
215  // qi, qs, qg, wthv
216  // 28 29 30 31
217  MultiFab mf_out(grids[lev], dmap[lev], 32, 0);
218 
219  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
220 
221  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
222  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
223  MultiFab w_cc(mf_vels, make_alias, 2, 1); // w at cell centers
224 
225  average_face_to_cellcenter(mf_vels,0,
226  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
227 
228  int zdir = 2;
229  auto domain = geom[0].Domain();
230 
231  // Sum in the horizontal plane
232  h_avg_u = sumToLine(mf_vels ,0,1,domain,zdir);
233  h_avg_v = sumToLine(mf_vels ,1,1,domain,zdir);
234  h_avg_w = sumToLine(mf_vels ,2,1,domain,zdir);
235 
236  int hu_size = h_avg_u.size();
237 
238  // Divide by the total number of cells we are averaging over
239  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
240  for (int k = 0; k < hu_size; ++k) {
241  h_avg_u[k] /= area_z; h_avg_v[k] /= area_z; h_avg_w[k] /= area_z;
242  }
243 
244  Gpu::DeviceVector<Real> d_avg_u(hu_size, Real(0.0));
245  Gpu::DeviceVector<Real> d_avg_v(hu_size, Real(0.0));
246  Gpu::DeviceVector<Real> d_avg_w(hu_size, Real(0.0));
247 
248 #if 0
249  auto* avg_u_ptr = d_avg_u.data();
250  auto* avg_v_ptr = d_avg_v.data();
251  auto* avg_w_ptr = d_avg_w.data();
252 #endif
253 
254  Gpu::copy(Gpu::hostToDevice, h_avg_u.begin(), h_avg_u.end(), d_avg_u.begin());
255  Gpu::copy(Gpu::hostToDevice, h_avg_v.begin(), h_avg_v.end(), d_avg_v.begin());
256  Gpu::copy(Gpu::hostToDevice, h_avg_w.begin(), h_avg_w.end(), d_avg_w.begin());
257 
258  int nvars = vars_new[lev][Vars::cons].nComp();
259  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
260 
261  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
262 
263  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
264 
265  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
266  {
267  const Box& bx = mfi.tilebox();
268  const Array4<Real>& fab_arr = mf_out.array(mfi);
269  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
270  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
271  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
272  const Array4<Real>& cons_arr = mf_cons.array(mfi);
273  const Array4<Real>& p0_arr = p_hse.array(mfi);
274  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
275  Array4<const Real>{};
276 
277  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
278  {
279  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
280  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
281  fab_arr(i, j, k, 1) = theta;
282  Real ksgs = 0.0;
283  if (l_use_KE) {
284  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
285  }
286  fab_arr(i, j, k, 2) = ksgs;
287 #if 1
288  if (l_use_kturb) {
289  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
290  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
291  } else {
292  fab_arr(i, j, k, 3) = 0.0;
293  fab_arr(i, j, k, 4) = 0.0;
294  }
295 #else
296  // Here we hijack the "Kturb" variable name to print out the resolved kinetic energy
297  Real upert = u_cc_arr(i,j,k) - avg_u_ptr[k];
298  Real vpert = v_cc_arr(i,j,k) - avg_v_ptr[k];
299  Real wpert = w_cc_arr(i,j,k) - avg_w_ptr[k];
300  fab_arr(i, j, k, 3) = 0.5 * (upert*upert + vpert*vpert + wpert*wpert);
301 #endif
302  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
303  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
304  fab_arr(i, j, k, 7) = u_cc_arr(i,j,k) * w_cc_arr(i,j,k); // u*w
305  fab_arr(i, j, k, 8) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
306  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * w_cc_arr(i,j,k); // v*w
307  fab_arr(i, j, k,10) = w_cc_arr(i,j,k) * w_cc_arr(i,j,k); // w*w
308  fab_arr(i, j, k,11) = u_cc_arr(i,j,k) * theta; // u*th
309  fab_arr(i, j, k,12) = v_cc_arr(i,j,k) * theta; // v*th
310  fab_arr(i, j, k,13) = w_cc_arr(i,j,k) * theta; // w*th
311  fab_arr(i, j, k,14) = theta * theta; // th*th
312 
313  // if the number of fields is changed above, then be sure to update
314  // the following def!
315  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,8) + fab_arr(i,j,k,10);
316  fab_arr(i, j, k,15) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
317  fab_arr(i, j, k,16) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
318  fab_arr(i, j, k,17) = uiui * w_cc_arr(i,j,k); // (ui*ui)*w
319 
320  if (!use_moisture) {
321  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
322  p -= p0_arr(i,j,k);
323  fab_arr(i, j, k,18) = p; // p
324  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
325  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
326  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
327  fab_arr(i, j, k,22) = 0.; // qv
328  fab_arr(i, j, k,23) = 0.; // qc
329  fab_arr(i, j, k,24) = 0.; // qr
330  fab_arr(i, j, k,25) = 0.; // w*qv
331  fab_arr(i, j, k,26) = 0.; // w*qc
332  fab_arr(i, j, k,27) = 0.; // w*qr
333  fab_arr(i, j, k,28) = 0.; // qi
334  fab_arr(i, j, k,29) = 0.; // qs
335  fab_arr(i, j, k,30) = 0.; // qg
336  fab_arr(i, j, k,31) = 0.; // w*thv
337  }
338  });
339  } // mfi
340 
341  if (use_moisture)
342  {
343  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
344 
345  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
346  {
347  const Box& bx = mfi.tilebox();
348  const Array4<Real>& fab_arr = mf_out.array(mfi);
349  const Array4<Real>& cons_arr = mf_cons.array(mfi);
350  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
351  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
352  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
353  const Array4<Real>& p0_arr = p_hse.array(mfi);
354 
355  int rhoqr_comp = solverChoice.moisture_indices.qr;
356 
357  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
358  {
359  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
360  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
361  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
362  Real(0.0);
363  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
364 
365  p -= p0_arr(i,j,k);
366  fab_arr(i, j, k,18) = p; // p
367  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
368  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
369  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
370  fab_arr(i, j, k,22) = qv; // qv
371  fab_arr(i, j, k,23) = qc; // qc
372  fab_arr(i, j, k,24) = qr; // qr
373  fab_arr(i, j, k,25) = w_cc_arr(i,j,k) * qv; // w*qv
374  fab_arr(i, j, k,26) = w_cc_arr(i,j,k) * qc; // w*qc
375  fab_arr(i, j, k,27) = w_cc_arr(i,j,k) * qr; // w*qr
376  if (n_qstate_moist > 3) {
377  fab_arr(i, j, k,28) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
378  fab_arr(i, j, k,29) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
379  fab_arr(i, j, k,30) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
380  } else {
381  fab_arr(i, j, k,28) = 0.0; // qi
382  fab_arr(i, j, k,29) = 0.0; // qs
383  fab_arr(i, j, k,30) = 0.0; // qg
384  }
385  Real ql = qc + qr;
386  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
387  Real thv = theta * (1 + 0.61*qv - ql);
388  fab_arr(i, j, k,31) = w_cc_arr(i,j,k) * thv; // w*thv
389  });
390  } // mfi
391  } // use_moisture
392 
393  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
394  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
395  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
396  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
397  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
398  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
399  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
400  h_avg_uw = sumToLine(mf_out, 7,1,domain,zdir);
401  h_avg_vv = sumToLine(mf_out, 8,1,domain,zdir);
402  h_avg_vw = sumToLine(mf_out, 9,1,domain,zdir);
403  h_avg_ww = sumToLine(mf_out,10,1,domain,zdir);
404  h_avg_uth = sumToLine(mf_out,11,1,domain,zdir);
405  h_avg_vth = sumToLine(mf_out,12,1,domain,zdir);
406  h_avg_wth = sumToLine(mf_out,13,1,domain,zdir);
407  h_avg_thth = sumToLine(mf_out,14,1,domain,zdir);
408  h_avg_uiuiu = sumToLine(mf_out,15,1,domain,zdir);
409  h_avg_uiuiv = sumToLine(mf_out,16,1,domain,zdir);
410  h_avg_uiuiw = sumToLine(mf_out,17,1,domain,zdir);
411  h_avg_p = sumToLine(mf_out,18,1,domain,zdir);
412  h_avg_pu = sumToLine(mf_out,19,1,domain,zdir);
413  h_avg_pv = sumToLine(mf_out,20,1,domain,zdir);
414  h_avg_pw = sumToLine(mf_out,21,1,domain,zdir);
415  h_avg_qv = sumToLine(mf_out,22,1,domain,zdir);
416  h_avg_qc = sumToLine(mf_out,23,1,domain,zdir);
417  h_avg_qr = sumToLine(mf_out,24,1,domain,zdir);
418  h_avg_wqv = sumToLine(mf_out,25,1,domain,zdir);
419  h_avg_wqc = sumToLine(mf_out,26,1,domain,zdir);
420  h_avg_wqr = sumToLine(mf_out,27,1,domain,zdir);
421  h_avg_qi = sumToLine(mf_out,28,1,domain,zdir);
422  h_avg_qs = sumToLine(mf_out,29,1,domain,zdir);
423  h_avg_qg = sumToLine(mf_out,30,1,domain,zdir);
424  h_avg_wthv = sumToLine(mf_out,31,1,domain,zdir);
425 
426  // Divide by the total number of cells we are averaging over
427  int h_avg_u_size = static_cast<int>(h_avg_u.size());
428  for (int k = 0; k < h_avg_u_size; ++k) {
429  h_avg_rho[k] /= area_z;
430  h_avg_ksgs[k] /= area_z;
431  h_avg_Kmv[k] /= area_z;
432  h_avg_Khv[k] /= area_z;
433  h_avg_th[k] /= area_z;
434  h_avg_thth[k] /= area_z;
435  h_avg_uu[k] /= area_z;
436  h_avg_uv[k] /= area_z;
437  h_avg_uw[k] /= area_z;
438  h_avg_vv[k] /= area_z;
439  h_avg_vw[k] /= area_z;
440  h_avg_ww[k] /= area_z;
441  h_avg_uth[k] /= area_z;
442  h_avg_vth[k] /= area_z;
443  h_avg_wth[k] /= area_z;
444  h_avg_uiuiu[k] /= area_z;
445  h_avg_uiuiv[k] /= area_z;
446  h_avg_uiuiw[k] /= area_z;
447  h_avg_p[k] /= area_z;
448  h_avg_pu[k] /= area_z;
449  h_avg_pv[k] /= area_z;
450  h_avg_pw[k] /= area_z;
451  h_avg_qv[k] /= area_z;
452  h_avg_qc[k] /= area_z;
453  h_avg_qr[k] /= area_z;
454  h_avg_wqv[k] /= area_z;
455  h_avg_wqc[k] /= area_z;
456  h_avg_wqr[k] /= area_z;
457  h_avg_qi[k] /= area_z;
458  h_avg_qs[k] /= area_z;
459  h_avg_qg[k] /= area_z;
460  h_avg_wthv[k] /= area_z;
461  }
462 
463 #if 0
464  // Here we print the integrated total kinetic energy as computed in the 1D profile above
465  Real sum = 0.;
466  Real dz = geom[0].ProbHi(2) / static_cast<Real>(h_avg_u_size);
467  for (int k = 0; k < h_avg_u_size; ++k) {
468  sum += h_avg_kturb[k] * h_avg_rho[k] * dz;
469  }
470  amrex::Print() << "ITKE " << time << " " << sum << " using " << h_avg_u_size << " " << dz << std::endl;
471 #endif
472 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getPgivenRTh(const amrex::Real rhotheta, const amrex::Real qv=0.)
Definition: ERF_EOS.H:81
#define RhoQ3_comp
Definition: ERF_IndexDefines.H:44
#define RhoQ6_comp
Definition: ERF_IndexDefines.H:47
#define RhoQ5_comp
Definition: ERF_IndexDefines.H:46
#define RhoKE_comp
Definition: ERF_IndexDefines.H:38
@ Theta_v
Definition: ERF_IndexDefines.H:176
@ Mom_v
Definition: ERF_IndexDefines.H:175
@ theta
Definition: ERF_MM5.H:20
Here is the call graph for this function:

◆ derive_diag_profiles_stag()

void ERF::derive_diag_profiles_stag ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities at staggered heights.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
311 {
312  // We assume that this is always called at level 0
313  int lev = 0;
314 
315  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
316  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
317  // Note: "uiui" == u_i*u_i = u*u + v*v + w*w
318  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, vv, uth, vth,
319  // indices: 0 1 2 3 4 5 6 7 8 9
320  // thth, uiuiu, uiuiv, p, pu, pv, qv, qc, qr, qi, qs, qg
321  // 10 11 12 13 14 15 16 17 18 19 20 21
322  MultiFab mf_out(grids[lev], dmap[lev], 22, 0);
323 
324  // This will hold uw, vw, ww, wth, uiuiw, pw, wqv, wqc, wqr, wthv
325  // indices: 0 1 2 3 4 5 6 7 8 9
326  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 10, 0);
327 
328  // This is only used to average u and v; w is not averaged to cell centers
329  MultiFab mf_vels(grids[lev], dmap[lev], 2, 0);
330 
331  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
332  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
333  MultiFab w_fc(vars_new[lev][Vars::zvel], make_alias, 0, 1); // w at face centers (staggered)
334 
335  int zdir = 2;
336  auto domain = geom[0].Domain();
337  Box stag_domain = domain;
338  stag_domain.convert(IntVect(0,0,1));
339 
340  int nvars = vars_new[lev][Vars::cons].nComp();
341  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
342 
343  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
344 
345  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
346 
347  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
348  {
349  const Box& bx = mfi.tilebox();
350  const Array4<Real>& fab_arr = mf_out.array(mfi);
351  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
352  const Array4<Real>& u_arr = vars_new[lev][Vars::xvel].array(mfi);
353  const Array4<Real>& v_arr = vars_new[lev][Vars::yvel].array(mfi);
354  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
355  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
356  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
357  const Array4<Real>& cons_arr = mf_cons.array(mfi);
358  const Array4<Real>& p0_arr = p_hse.array(mfi);
359  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
360  Array4<const Real>{};
361 
362  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
363  {
364  u_cc_arr(i,j,k) = 0.5 * (u_arr(i,j,k) + u_arr(i+1,j ,k));
365  v_cc_arr(i,j,k) = 0.5 * (v_arr(i,j,k) + v_arr(i ,j+1,k));
366 
367  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
368  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
369  fab_arr(i, j, k, 1) = theta;
370  Real ksgs = 0.0;
371  if (l_use_KE) {
372  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
373  }
374  fab_arr(i, j, k, 2) = ksgs;
375  if (l_use_kturb) {
376  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
377  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
378  } else {
379  fab_arr(i, j, k, 3) = 0.0;
380  fab_arr(i, j, k, 4) = 0.0;
381  }
382  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
383  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
384  fab_arr(i, j, k, 7) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
385  fab_arr(i, j, k, 8) = u_cc_arr(i,j,k) * theta; // u*th
386  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * theta; // v*th
387  fab_arr(i, j, k,10) = theta * theta; // th*th
388 
389  Real wcc = 0.5 * (w_fc_arr(i,j,k) + w_fc_arr(i,j,k+1));
390 
391  // if the number of fields is changed above, then be sure to update
392  // the following def!
393  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,7) + wcc*wcc;
394  fab_arr(i, j, k,11) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
395  fab_arr(i, j, k,12) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
396 
397  if (!use_moisture) {
398  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
399  p -= p0_arr(i,j,k);
400  fab_arr(i, j, k,13) = p; // p
401  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
402  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
403  fab_arr(i, j, k,16) = 0.; // qv
404  fab_arr(i, j, k,17) = 0.; // qc
405  fab_arr(i, j, k,18) = 0.; // qr
406  fab_arr(i, j, k,19) = 0.; // qi
407  fab_arr(i, j, k,20) = 0.; // qs
408  fab_arr(i, j, k,21) = 0.; // qg
409  }
410  });
411 
412  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
413  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
414  {
415  // average to z faces (first to cell centers, then in z)
416  Real uface = 0.25 * ( u_arr(i ,j,k) + u_arr(i ,j,k-1)
417  + u_arr(i+1,j,k) + u_arr(i+1,j,k-1));
418  Real vface = 0.25 * ( v_arr(i,j ,k) + v_arr(i,j ,k-1)
419  + v_arr(i,j+1,k) + v_arr(i,j+1,k-1));
420  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
421  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
422  Real thface = 0.5*(theta0 + theta1);
423  fab_arr_stag(i,j,k,0) = uface * w_fc_arr(i,j,k); // u*w
424  fab_arr_stag(i,j,k,1) = vface * w_fc_arr(i,j,k); // v*w
425  fab_arr_stag(i,j,k,2) = w_fc_arr(i,j,k) * w_fc_arr(i,j,k); // w*w
426  fab_arr_stag(i,j,k,3) = thface * w_fc_arr(i,j,k); // th*w
427  Real uiui = uface*uface + vface*vface + fab_arr_stag(i,j,k,2);
428  fab_arr_stag(i,j,k,4) = uiui * w_fc_arr(i,j,k); // (ui*ui)*w
429  if (!use_moisture) {
430  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp)) - p0_arr(i,j,k );
431  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp)) - p0_arr(i,j,k-1);
432  Real pface = 0.5 * (p0 + p1);
433  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
434  fab_arr_stag(i,j,k,6) = 0.; // w*qv
435  fab_arr_stag(i,j,k,7) = 0.; // w*qc
436  fab_arr_stag(i,j,k,8) = 0.; // w*qr
437  fab_arr_stag(i,j,k,9) = 0.; // w*thv
438  }
439  });
440 
441  } // mfi
442 
443  if (use_moisture)
444  {
445  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
446 
447  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
448  {
449  const Box& bx = mfi.tilebox();
450  const Array4<Real>& fab_arr = mf_out.array(mfi);
451  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
452  const Array4<Real>& cons_arr = mf_cons.array(mfi);
453  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
454  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
455  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
456  const Array4<Real>& p0_arr = p_hse.array(mfi);
457 
458  int rhoqr_comp = solverChoice.moisture_indices.qr;
459 
460  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
461  {
462  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
463  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
464  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
465  Real(0.0);
466  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
467 
468  p -= p0_arr(i,j,k);
469  fab_arr(i, j, k,13) = p; // p
470  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
471  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
472  fab_arr(i, j, k,16) = qv; // qv
473  fab_arr(i, j, k,17) = qc; // qc
474  fab_arr(i, j, k,18) = qr; // qr
475  if (n_qstate_moist > 3) { // SAM model
476  fab_arr(i, j, k,19) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
477  fab_arr(i, j, k,20) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
478  fab_arr(i, j, k,21) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
479  } else {
480  fab_arr(i, j, k,19) = 0.0; // qi
481  fab_arr(i, j, k,20) = 0.0; // qs
482  fab_arr(i, j, k,21) = 0.0; // qg
483  }
484  });
485 
486  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
487  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
488  {
489  Real qv0 = cons_arr(i,j,k ,RhoQ1_comp) / cons_arr(i,j,k ,Rho_comp);
490  Real qv1 = cons_arr(i,j,k-1,RhoQ1_comp) / cons_arr(i,j,k-1,Rho_comp);
491  Real qc0 = cons_arr(i,j,k ,RhoQ2_comp) / cons_arr(i,j,k ,Rho_comp);
492  Real qc1 = cons_arr(i,j,k-1,RhoQ2_comp) / cons_arr(i,j,k-1,Rho_comp);
493  Real qr0 = (rhoqr_comp > -1) ? cons_arr(i,j,k ,RhoQ3_comp) / cons_arr(i,j,k ,Rho_comp) :
494  Real(0.0);
495  Real qr1 = (rhoqr_comp > -1) ? cons_arr(i,j,k-1,RhoQ3_comp) / cons_arr(i,j,k-1,Rho_comp) :
496  Real(0.0);
497  Real qvface = 0.5 * (qv0 + qv1);
498  Real qcface = 0.5 * (qc0 + qc1);
499  Real qrface = 0.5 * (qr0 + qr1);
500 
501  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp), qv0) - p0_arr(i,j,k );
502  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp), qv1) - p0_arr(i,j,k-1);
503  Real pface = 0.5 * (p0 + p1);
504 
505  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
506  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
507  Real thface = 0.5*(theta0 + theta1);
508  Real ql = qcface + qrface;
509  Real thv = thface * (1 + 0.61*qvface - ql);
510 
511  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
512  fab_arr_stag(i,j,k,6) = qvface * w_fc_arr(i,j,k); // w*qv
513  fab_arr_stag(i,j,k,7) = qcface * w_fc_arr(i,j,k); // w*qc
514  fab_arr_stag(i,j,k,8) = qrface * w_fc_arr(i,j,k); // w*qr
515  fab_arr_stag(i,j,k,9) = thv * w_fc_arr(i,j,k); // w*thv
516  });
517  } // mfi
518  } // use_moisture
519 
520  // Sum in the horizontal plane
521  h_avg_u = sumToLine(u_cc,0,1, domain,zdir);
522  h_avg_v = sumToLine(v_cc,0,1, domain,zdir);
523  h_avg_w = sumToLine(w_fc,0,1,stag_domain,zdir);
524 
525  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
526  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
527  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
528  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
529  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
530  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
531  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
532  h_avg_vv = sumToLine(mf_out, 7,1,domain,zdir);
533  h_avg_uth = sumToLine(mf_out, 8,1,domain,zdir);
534  h_avg_vth = sumToLine(mf_out, 9,1,domain,zdir);
535  h_avg_thth = sumToLine(mf_out,10,1,domain,zdir);
536  h_avg_uiuiu = sumToLine(mf_out,11,1,domain,zdir);
537  h_avg_uiuiv = sumToLine(mf_out,12,1,domain,zdir);
538  h_avg_p = sumToLine(mf_out,13,1,domain,zdir);
539  h_avg_pu = sumToLine(mf_out,14,1,domain,zdir);
540  h_avg_pv = sumToLine(mf_out,15,1,domain,zdir);
541  h_avg_qv = sumToLine(mf_out,16,1,domain,zdir);
542  h_avg_qc = sumToLine(mf_out,17,1,domain,zdir);
543  h_avg_qr = sumToLine(mf_out,18,1,domain,zdir);
544  h_avg_qi = sumToLine(mf_out,19,1,domain,zdir);
545  h_avg_qs = sumToLine(mf_out,20,1,domain,zdir);
546  h_avg_qg = sumToLine(mf_out,21,1,domain,zdir);
547 
548  h_avg_uw = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
549  h_avg_vw = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
550  h_avg_ww = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
551  h_avg_wth = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
552  h_avg_uiuiw = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
553  h_avg_pw = sumToLine(mf_out_stag,5,1,stag_domain,zdir);
554  h_avg_wqv = sumToLine(mf_out_stag,6,1,stag_domain,zdir);
555  h_avg_wqc = sumToLine(mf_out_stag,7,1,stag_domain,zdir);
556  h_avg_wqr = sumToLine(mf_out_stag,8,1,stag_domain,zdir);
557  h_avg_wthv = sumToLine(mf_out_stag,9,1,stag_domain,zdir);
558 
559  // Divide by the total number of cells we are averaging over
560  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
561  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
562  for (int k = 0; k < unstag_size; ++k) {
563  h_avg_u[k] /= area_z;
564  h_avg_v[k] /= area_z;
565  h_avg_rho[k] /= area_z;
566  h_avg_ksgs[k] /= area_z;
567  h_avg_Kmv[k] /= area_z;
568  h_avg_Khv[k] /= area_z;
569  h_avg_th[k] /= area_z;
570  h_avg_thth[k] /= area_z;
571  h_avg_uu[k] /= area_z;
572  h_avg_uv[k] /= area_z;
573  h_avg_vv[k] /= area_z;
574  h_avg_uth[k] /= area_z;
575  h_avg_vth[k] /= area_z;
576  h_avg_uiuiu[k] /= area_z;
577  h_avg_uiuiv[k] /= area_z;
578  h_avg_p[k] /= area_z;
579  h_avg_pu[k] /= area_z;
580  h_avg_pv[k] /= area_z;
581  h_avg_qv[k] /= area_z;
582  h_avg_qc[k] /= area_z;
583  h_avg_qr[k] /= area_z;
584  h_avg_qi[k] /= area_z;
585  h_avg_qs[k] /= area_z;
586  h_avg_qg[k] /= area_z;
587  }
588 
589  for (int k = 0; k < unstag_size+1; ++k) { // staggered heights
590  h_avg_w[k] /= area_z;
591  h_avg_uw[k] /= area_z;
592  h_avg_vw[k] /= area_z;
593  h_avg_ww[k] /= area_z;
594  h_avg_wth[k] /= area_z;
595  h_avg_uiuiw[k] /= area_z;
596  h_avg_pw[k] /= area_z;
597  h_avg_wqv[k] /= area_z;
598  h_avg_wqc[k] /= area_z;
599  h_avg_wqr[k] /= area_z;
600  h_avg_wthv[k] /= area_z;
601  }
602 }
const Box zbx
Definition: ERF_SetupDiff.H:9
Here is the call graph for this function:

◆ derive_stress_profiles()

void ERF::derive_stress_profiles ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
480 {
481  int lev = 0;
482 
483  // This will hold the stress tensor components
484  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
485 
486  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
487 
488  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
489 
490  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
491  {
492  const Box& bx = mfi.tilebox();
493  const Array4<Real>& fab_arr = mf_out.array(mfi);
494 
495  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
496 
497  // NOTE: These are from the last RK stage...
498  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
499  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
500  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
501  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
502  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
503  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
504 
505  // These should be re-calculated during ERF_slow_rhs_post
506  // -- just vertical SFS kinematic heat flux for now
507  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
508  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
509  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
510  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
511  Array4<const Real>{};
512  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
513  Array4<const Real>{};
514  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
515 
516  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
517  {
518  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
519  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
520  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
521  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
522  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
523  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
524  fab_arr(i, j, k, 2) = ( tau13_arr(i,j,k ) + tau13_arr(i+1,j,k )
525  + tau13_arr(i,j,k+1) + tau13_arr(i+1,j,k+1) )
526  / ( rho_arr(i,j,k ) + rho_arr(i+1,j,k )
527  + rho_arr(i,j,k+1) + rho_arr(i+1,j,k+1) );
528  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
529  fab_arr(i, j, k, 4) = ( tau23_arr(i,j,k ) + tau23_arr(i,j+1,k )
530  + tau23_arr(i,j,k+1) + tau23_arr(i,j+1,k+1) )
531  / ( rho_arr(i,j,k ) + rho_arr(i,j+1,k )
532  + rho_arr(i,j,k+1) + rho_arr(i,j+1,k+1) );
533  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
534  fab_arr(i, j, k, 6) = 0.5 * ( hfx3_arr(i,j,k) + hfx3_arr(i,j,k+1) ) / rho_arr(i,j,k);
535  fab_arr(i, j, k, 7) = (l_use_moist) ? 0.5 * ( q1fx3_arr(i,j,k) + q1fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
536  fab_arr(i, j, k, 8) = (l_use_moist) ? 0.5 * ( q2fx3_arr(i,j,k) + q2fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
537  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
538  });
539  }
540 
541  int zdir = 2;
542  auto domain = geom[0].Domain();
543 
544  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
545  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
546  h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
547  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
548  h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
549  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
550  h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
551  h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
552  h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
553  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
554 
555  int ht_size = h_avg_tau11.size();
556 
557  // Divide by the total number of cells we are averaging over
558  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
559  for (int k = 0; k < ht_size; ++k) {
560  h_avg_tau11[k] /= area_z;
561  h_avg_tau12[k] /= area_z;
562  h_avg_tau13[k] /= area_z;
563  h_avg_tau22[k] /= area_z;
564  h_avg_tau23[k] /= area_z;
565  h_avg_tau33[k] /= area_z;
566  h_avg_hfx3[k] /= area_z;
567  h_avg_q1fx3[k] /= area_z;
568  h_avg_q2fx3[k] /= area_z;
569  h_avg_diss[k] /= area_z;
570  }
571 }

◆ derive_stress_profiles_stag()

void ERF::derive_stress_profiles_stag ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
610 {
611  int lev = 0;
612 
613  // This will hold the stress tensor components
614  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
615 
616  // This will hold Tau13 and Tau23
617  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 5, 0);
618 
619  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
620 
621  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
622 
623  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
624  {
625  const Box& bx = mfi.tilebox();
626  const Array4<Real>& fab_arr = mf_out.array(mfi);
627  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
628 
629  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
630 
631  // NOTE: These are from the last RK stage...
632  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
633  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
634  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
635  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
636  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
637  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
638 
639  // These should be re-calculated during ERF_slow_rhs_post
640  // -- just vertical SFS kinematic heat flux for now
641  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
642  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
643  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
644  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
645  Array4<const Real>{};
646  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
647  Array4<const Real>{};
648  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
649 
650  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
651  {
652  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
653  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
654  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
655  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
656  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
657  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
658  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
659  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
660  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
661  });
662 
663  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
664  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
665  {
666  Real rho_face = 0.5 * (rho_arr(i,j,k-1) + rho_arr(i,j,k));
667  // average from edge to face center
668  fab_arr_stag(i,j,k,0) = 0.5*(tau13_arr(i,j,k) + tau13_arr(i+1,j ,k)) / rho_face;
669  fab_arr_stag(i,j,k,1) = 0.5*(tau23_arr(i,j,k) + tau23_arr(i ,j+1,k)) / rho_face;
670 
671  fab_arr_stag(i,j,k,2) = hfx3_arr(i,j,k) / rho_face;
672  fab_arr_stag(i,j,k,3) = (l_use_moist) ? q1fx3_arr(i,j,k) / rho_face : 0.0;
673  fab_arr_stag(i,j,k,4) = (l_use_moist) ? q2fx3_arr(i,j,k) / rho_face : 0.0;
674  });
675  }
676 
677  int zdir = 2;
678  auto domain = geom[0].Domain();
679  Box stag_domain = domain;
680  stag_domain.convert(IntVect(0,0,1));
681 
682  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
683  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
684 // h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
685  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
686 // h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
687  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
688 // h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
689 // h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
690 // h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
691  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
692 
693  h_avg_tau13 = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
694  h_avg_tau23 = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
695  h_avg_hfx3 = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
696  h_avg_q1fx3 = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
697  h_avg_q2fx3 = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
698 
699  int ht_size = h_avg_tau11.size(); // _un_staggered
700 
701  // Divide by the total number of cells we are averaging over
702  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
703  for (int k = 0; k < ht_size; ++k) {
704  h_avg_tau11[k] /= area_z;
705  h_avg_tau12[k] /= area_z;
706  h_avg_tau13[k] /= area_z;
707  h_avg_tau22[k] /= area_z;
708  h_avg_tau23[k] /= area_z;
709  h_avg_tau33[k] /= area_z;
710  h_avg_hfx3[k] /= area_z;
711  h_avg_q1fx3[k] /= area_z;
712  h_avg_q2fx3[k] /= area_z;
713  h_avg_diss[k] /= area_z;
714  }
715  // staggered heights
716  h_avg_tau13[ht_size] /= area_z;
717  h_avg_tau23[ht_size] /= area_z;
718  h_avg_hfx3[ht_size] /= area_z;
719  h_avg_q1fx3[ht_size] /= area_z;
720  h_avg_q2fx3[ht_size] /= area_z;
721 }

◆ derive_upwp()

void ERF::derive_upwp ( amrex::Vector< amrex::Real > &  h_havg)

◆ EBFactory()

amrex::EBFArrayBoxFactory const& ERF::EBFactory ( int  lev) const
inlineprivatenoexcept
1634  {
1635  return *(eb[lev]->get_const_factory());
1636  }
amrex::Vector< std::unique_ptr< eb_ > > eb
Definition: ERF.H:1626

◆ erf_enforce_hse()

void ERF::erf_enforce_hse ( int  lev,
amrex::MultiFab &  dens,
amrex::MultiFab &  pres,
amrex::MultiFab &  pi,
amrex::MultiFab &  th,
amrex::MultiFab &  qv,
std::unique_ptr< amrex::MultiFab > &  z_cc 
)

Enforces hydrostatic equilibrium when using terrain.

Parameters
[in]levInteger specifying the current level
[out]densMultiFab storing base state density
[out]presMultiFab storing base state pressure
[out]piMultiFab storing base state Exner function
[in]z_ccPointer to MultiFab storing cell centered z-coordinates
167 {
168  Real l_gravity = solverChoice.gravity;
169  bool l_use_terrain = (solverChoice.mesh_type != MeshType::ConstantDz);
170 
171  const auto geomdata = geom[lev].data();
172  const Real dz = geomdata.CellSize(2);
173 
174  for ( MFIter mfi(dens, TileNoZ()); mfi.isValid(); ++mfi )
175  {
176  // Create a flat box with same horizontal extent but only one cell in vertical
177  const Box& tbz = mfi.nodaltilebox(2);
178  int klo = tbz.smallEnd(2);
179  int khi = tbz.bigEnd(2);
180 
181  // Note we only grow by 1 because that is how big z_cc is.
182  Box b2d = tbz; // Copy constructor
183  b2d.grow(0,1);
184  b2d.grow(1,1);
185  b2d.setRange(2,0);
186 
187  // Intersect this box with the domain
188  Box zdomain = convert(geom[lev].Domain(),tbz.ixType());
189  b2d &= zdomain;
190 
191  // We integrate to the first cell (and below) by using rho in this cell
192  // If gravity == 0 this is constant pressure
193  // If gravity != 0, hence this is a wall, this gives gp0 = dens[0] * gravity
194  // (dens_hse*gravity would also be dens[0]*gravity because we use foextrap for rho at k = -1)
195  // Note ng_pres_hse = 1
196 
197  // We start by assuming pressure on the ground is p_0 (in ERF_Constants.H)
198  // Note that gravity is positive
199 
200  Array4<Real> rho_arr = dens.array(mfi);
201  Array4<Real> pres_arr = pres.array(mfi);
202  Array4<Real> pi_arr = pi.array(mfi);
203  Array4<Real> th_arr = theta.array(mfi);
204  Array4<Real> zcc_arr;
205  if (l_use_terrain) {
206  zcc_arr = z_cc->array(mfi);
207  }
208 
209  const Real rdOcp = solverChoice.rdOcp;
210 
211  ParallelFor(b2d, [=] AMREX_GPU_DEVICE (int i, int j, int)
212  {
213  // Set value at surface from Newton iteration for rho
214  if (klo == 0)
215  {
216  // Physical height of the terrain at cell center
217  Real hz;
218  if (l_use_terrain) {
219  hz = zcc_arr(i,j,klo);
220  } else {
221  hz = 0.5*dz;
222  }
223 
224  pres_arr(i,j,klo) = p_0 - hz * rho_arr(i,j,klo) * l_gravity;
225  pi_arr(i,j,klo) = getExnergivenP(pres_arr(i,j,klo), rdOcp);
226  th_arr(i,j,klo) = getRhoThetagivenP(pres_arr(i,j,klo)) / rho_arr(i,j,klo);
227 
228  //
229  // Set ghost cell with dz and rho at boundary
230  // (We will set the rest of the ghost cells in the boundary condition routine)
231  //
232  pres_arr(i,j,klo-1) = p_0 + hz * rho_arr(i,j,klo) * l_gravity;
233  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
234  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
235 
236  } else {
237 
238  // If level > 0 and klo > 0, we need to use the value of pres_arr(i,j,klo-1) which was
239  // filled from FillPatch-ing it.
240  Real dz_loc;
241  if (l_use_terrain) {
242  dz_loc = (zcc_arr(i,j,klo) - zcc_arr(i,j,klo-1));
243  } else {
244  dz_loc = dz;
245  }
246 
247  Real dens_interp = 0.5*(rho_arr(i,j,klo) + rho_arr(i,j,klo-1));
248  pres_arr(i,j,klo) = pres_arr(i,j,klo-1) - dz_loc * dens_interp * l_gravity;
249 
250  pi_arr(i,j,klo ) = getExnergivenP(pres_arr(i,j,klo ), rdOcp);
251  th_arr(i,j,klo ) = getRhoThetagivenP(pres_arr(i,j,klo )) / rho_arr(i,j,klo );
252 
253  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
254  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
255  }
256 
257  Real dens_interp;
258  if (l_use_terrain) {
259  for (int k = klo+1; k <= khi; k++) {
260  Real dz_loc = (zcc_arr(i,j,k) - zcc_arr(i,j,k-1));
261  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
262  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz_loc * dens_interp * l_gravity;
263  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
264  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
265  }
266  } else {
267  for (int k = klo+1; k <= khi; k++) {
268  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
269  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz * dens_interp * l_gravity;
270  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
271  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
272  }
273  }
274  });
275 
276  } // mfi
277 
278  dens.FillBoundary(geom[lev].periodicity());
279  pres.FillBoundary(geom[lev].periodicity());
280  pi.FillBoundary(geom[lev].periodicity());
281  theta.FillBoundary(geom[lev].periodicity());
282  qv.FillBoundary(geom[lev].periodicity());
283 }
constexpr amrex::Real p_0
Definition: ERF_Constants.H:18
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getRhoThetagivenP(const amrex::Real p, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:172
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getExnergivenP(const amrex::Real P, const amrex::Real rdOcp)
Definition: ERF_EOS.H:141
@ pres
Definition: ERF_Kessler.H:25
real(c_double), parameter, private pi
Definition: ERF_module_mp_morr_two_moment.F90:100
amrex::Real rdOcp
Definition: ERF_DataStruct.H:1058
amrex::Real gravity
Definition: ERF_DataStruct.H:1056
Here is the call graph for this function:

◆ ERF_shared()

void ERF::ERF_shared ( )
146 {
147  if (ParallelDescriptor::IOProcessor()) {
148  const char* erf_hash = buildInfoGetGitHash(1);
149  const char* amrex_hash = buildInfoGetGitHash(2);
150  const char* buildgithash = buildInfoGetBuildGitHash();
151  const char* buildgitname = buildInfoGetBuildGitName();
152 
153  if (strlen(erf_hash) > 0) {
154  Print() << "\n"
155  << "ERF git hash: " << erf_hash << "\n";
156  }
157  if (strlen(amrex_hash) > 0) {
158  Print() << "AMReX git hash: " << amrex_hash << "\n";
159  }
160  if (strlen(buildgithash) > 0) {
161  Print() << buildgitname << " git hash: " << buildgithash << "\n";
162  }
163 
164  Print() << "\n";
165  }
166 
167  int nlevs_max = max_level + 1;
168 
169 #ifdef ERF_USE_WINDFARM
170  Nturb.resize(nlevs_max);
171  vars_windfarm.resize(nlevs_max);
172  SMark.resize(nlevs_max);
173 #endif
174 
175  qheating_rates.resize(nlevs_max);
176  rad_fluxes.resize(nlevs_max);
177  sw_lw_fluxes.resize(nlevs_max);
178  solar_zenith.resize(nlevs_max);
179 
180  // NOTE: size lsm before readparams (chooses the model at all levels)
181  lsm.ReSize(nlevs_max);
182  lsm_data.resize(nlevs_max);
183  lsm_flux.resize(nlevs_max);
184 
185  // NOTE: size canopy model before readparams (if file exists, we construct)
186  m_forest_drag.resize(nlevs_max);
187  for (int lev = 0; lev <= max_level; ++lev) { m_forest_drag[lev] = nullptr;}
188 
189  ReadParameters();
190  initializeMicrophysics(nlevs_max);
191 
192 #ifdef ERF_USE_WINDFARM
193  initializeWindFarm(nlevs_max);
194 #endif
195 
196 #ifdef ERF_USE_SHOC
197  shoc_interface.resize(nlevs_max);
198  if (solverChoice.use_shoc) {
199  for (int lev = 0; lev <= max_level; ++lev) {
200  shoc_interface[lev] = std::make_unique<SHOCInterface>(lev, solverChoice);
201  }
202  }
203 #endif
204 
205  rad.resize(nlevs_max);
206  for (int lev = 0; lev <= max_level; ++lev) {
207  if (solverChoice.rad_type == RadiationType::RRTMGP) {
208 #ifdef ERF_USE_RRTMGP
209  rad[lev] = std::make_unique<Radiation>(lev, solverChoice);
210  // pass radiation datalog frequency to model - RRTMGP needs to know when to save data for profiles
211  rad[lev]->setDataLogFrequency(rad_datalog_int);
212 #endif
213  } else if (solverChoice.rad_type != RadiationType::None) {
214  Abort("Don't know this radiation model!");
215  }
216  }
217 
218  const std::string& pv3d_1 = "plot_vars_1" ; setPlotVariables(pv3d_1,plot3d_var_names_1);
219  const std::string& pv3d_2 = "plot_vars_2" ; setPlotVariables(pv3d_2,plot3d_var_names_2);
220  const std::string& pv2d_1 = "plot2d_vars_1"; setPlotVariables2D(pv2d_1,plot2d_var_names_1);
221  const std::string& pv2d_2 = "plot2d_vars_2"; setPlotVariables2D(pv2d_2,plot2d_var_names_2);
222 
223  // This is only used when we have mesh_type == MeshType::StretchedDz
224  stretched_dz_h.resize(nlevs_max);
225  stretched_dz_d.resize(nlevs_max);
226 
227  // Initialize staggered vertical levels for grid stretching or terrain, and
228  // to simplify Rayleigh damping layer calculations.
229  zlevels_stag.resize(max_level+1);
233  geom,
234  refRatio(),
237  solverChoice.dz0);
238 
239  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
240  SolverChoice::mesh_type == MeshType::VariableDz) {
241  int nz = geom[0].Domain().length(2) + 1; // staggered
242  if (std::fabs(zlevels_stag[0][nz-1]-geom[0].ProbHi(2)) > 1.0e-4) {
243  Print() << "Note: prob_hi[2]=" << geom[0].ProbHi(2)
244  << " does not match highest requested z level " << zlevels_stag[0][nz-1]
245  << std::endl;
246  }
247  if (std::fabs(zlevels_stag[0][0]-geom[0].ProbLo(2)) > 1.0e-4) {
248  Print() << "Note: prob_lo[2]=" << geom[0].ProbLo(2)
249  << " does not match lowest requested level " << zlevels_stag[0][0]
250  << std::endl;
251  }
252 
253  // Redefine the problem domain here?
254  }
255 
256  // Get lo/hi indices for massflux calc
258  if (solverChoice.mesh_type == MeshType::ConstantDz) {
259  const Real massflux_zlo = solverChoice.const_massflux_layer_lo - geom[0].ProbLo(2);
260  const Real massflux_zhi = solverChoice.const_massflux_layer_hi - geom[0].ProbLo(2);
261  const Real dz = geom[0].CellSize(2);
262  if (massflux_zlo == -1e34) {
263  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
264  } else {
265  solverChoice.massflux_klo = static_cast<int>(std::ceil(massflux_zlo / dz - 0.5));
266  }
267  if (massflux_zhi == 1e34) {
268  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2);
269  } else {
270  solverChoice.massflux_khi = static_cast<int>(std::floor(massflux_zhi / dz - 0.5));
271  }
272  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
273  const Real massflux_zlo = solverChoice.const_massflux_layer_lo;
274  const Real massflux_zhi = solverChoice.const_massflux_layer_hi;
275  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
276  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2) + 1;
277  for (int k=0; k <= geom[0].Domain().bigEnd(2)+1; ++k) {
278  if (zlevels_stag[0][k] <= massflux_zlo) solverChoice.massflux_klo = k;
279  if (zlevels_stag[0][k] <= massflux_zhi) solverChoice.massflux_khi = k;
280  }
281  } else { // solverChoice.mesh_type == MeshType::VariableDz
282  Error("Const massflux with variable dz not supported -- planar averages are on k rather than constant-z planes");
283  }
284 
285  Print() << "Constant mass flux based on k in ["
286  << solverChoice.massflux_klo << ", " << solverChoice.massflux_khi << "]" << std::endl;
287  }
288 
289  prob = amrex_probinit(geom[0].ProbLo(),geom[0].ProbHi());
290 
291  // Geometry on all levels has been defined already.
292 
293  // No valid BoxArray and DistributionMapping have been defined.
294  // But the arrays for them have been resized.
295 
296  t_new.resize(nlevs_max, 0.0);
297  t_old.resize(nlevs_max, -1.e100);
298  dt.resize(nlevs_max, std::min(1.e100,dt_max_initial));
299  dt_mri_ratio.resize(nlevs_max, 1);
300 
301  vars_new.resize(nlevs_max);
302  vars_old.resize(nlevs_max);
303  gradp.resize(nlevs_max);
304 
305  // We resize this regardless in order to pass it without error
306  pp_inc.resize(nlevs_max);
307 
308  // Used in the fast substepping only
309  lagged_delta_rt.resize(nlevs_max);
310  avg_xmom.resize(nlevs_max);
311  avg_ymom.resize(nlevs_max);
312  avg_zmom.resize(nlevs_max);
313 
314  rU_new.resize(nlevs_max);
315  rV_new.resize(nlevs_max);
316  rW_new.resize(nlevs_max);
317 
318  rU_old.resize(nlevs_max);
319  rV_old.resize(nlevs_max);
320  rW_old.resize(nlevs_max);
321 
322  // xmom_crse_rhs.resize(nlevs_max);
323  // ymom_crse_rhs.resize(nlevs_max);
324  zmom_crse_rhs.resize(nlevs_max);
325 
326  for (int lev = 0; lev < nlevs_max; ++lev) {
327  vars_new[lev].resize(Vars::NumTypes);
328  vars_old[lev].resize(Vars::NumTypes);
329  gradp[lev].resize(AMREX_SPACEDIM);
330  }
331 
332  // Time integrator
333  mri_integrator_mem.resize(nlevs_max);
334 
335  // Physical boundary conditions
336  physbcs_cons.resize(nlevs_max);
337  physbcs_u.resize(nlevs_max);
338  physbcs_v.resize(nlevs_max);
339  physbcs_w.resize(nlevs_max);
340  physbcs_base.resize(nlevs_max);
341 
342  // Planes to hold Dirichlet values at boundaries
343  xvel_bc_data.resize(nlevs_max);
344  yvel_bc_data.resize(nlevs_max);
345  zvel_bc_data.resize(nlevs_max);
346  th_bc_data.resize(nlevs_max);
347 
348  advflux_reg.resize(nlevs_max);
349 
350  // Stresses
351  Tau.resize(nlevs_max);
352  Tau_corr.resize(nlevs_max);
353  SFS_hfx1_lev.resize(nlevs_max); SFS_hfx2_lev.resize(nlevs_max); SFS_hfx3_lev.resize(nlevs_max);
354  SFS_diss_lev.resize(nlevs_max);
355  SFS_q1fx1_lev.resize(nlevs_max); SFS_q1fx2_lev.resize(nlevs_max); SFS_q1fx3_lev.resize(nlevs_max);
356  SFS_q2fx3_lev.resize(nlevs_max);
357  eddyDiffs_lev.resize(nlevs_max);
358  SmnSmn_lev.resize(nlevs_max);
359 
360  // Sea surface temps
361  sst_lev.resize(nlevs_max);
362  tsk_lev.resize(nlevs_max);
363  lmask_lev.resize(nlevs_max);
364 
365  // Land and soil grid type and urban fractions
366  land_type_lev.resize(nlevs_max);
367  soil_type_lev.resize(nlevs_max);
368  urb_frac_lev.resize(nlevs_max);
369 
370  // Metric terms
371  z_phys_nd.resize(nlevs_max);
372  z_phys_cc.resize(nlevs_max);
373  detJ_cc.resize(nlevs_max);
374  ax.resize(nlevs_max);
375  ay.resize(nlevs_max);
376  az.resize(nlevs_max);
377 
378  z_phys_nd_new.resize(nlevs_max);
379  detJ_cc_new.resize(nlevs_max);
380 
381  z_phys_nd_src.resize(nlevs_max);
382  z_phys_cc_src.resize(nlevs_max);
383  detJ_cc_src.resize(nlevs_max);
384  ax_src.resize(nlevs_max);
385  ay_src.resize(nlevs_max);
386  az_src.resize(nlevs_max);
387 
388  z_t_rk.resize(nlevs_max);
389 
390  terrain_blanking.resize(nlevs_max);
391 
392  // Wall distance
393  walldist.resize(nlevs_max);
394 
395  // BoxArrays to make MultiFabs needed to convert WRFBdy data
396  ba1d.resize(nlevs_max);
397  ba2d.resize(nlevs_max);
398 
399  // MultiFabs needed to convert WRFBdy data
400  mf_PSFC.resize(nlevs_max);
401 
402  // Map factors
403  mapfac.resize(nlevs_max);
404 
405  // Fine mask
406  fine_mask.resize(nlevs_max);
407 
408  // Thin immersed body
409  xflux_imask.resize(nlevs_max);
410  yflux_imask.resize(nlevs_max);
411  zflux_imask.resize(nlevs_max);
412  //overset_imask.resize(nlevs_max);
413  thin_xforce.resize(nlevs_max);
414  thin_yforce.resize(nlevs_max);
415  thin_zforce.resize(nlevs_max);
416 
417  // Base state
418  base_state.resize(nlevs_max);
419  base_state_new.resize(nlevs_max);
420 
421  // Wave coupling data
422  Hwave.resize(nlevs_max);
423  Lwave.resize(nlevs_max);
424  for (int lev = 0; lev < max_level; ++lev)
425  {
426  Hwave[lev] = nullptr;
427  Lwave[lev] = nullptr;
428  }
429  Hwave_onegrid.resize(nlevs_max);
430  Lwave_onegrid.resize(nlevs_max);
431  for (int lev = 0; lev < max_level; ++lev)
432  {
433  Hwave_onegrid[lev] = nullptr;
434  Lwave_onegrid[lev] = nullptr;
435  }
436 
437  // Theta prim for MOST
438  Theta_prim.resize(nlevs_max);
439 
440  // Qv prim for MOST
441  Qv_prim.resize(nlevs_max);
442 
443  // Qr prim for MOST
444  Qr_prim.resize(nlevs_max);
445 
446  // Time averaged velocity field
447  vel_t_avg.resize(nlevs_max);
448  t_avg_cnt.resize(nlevs_max);
449 
450  // Size lat long arrays and default to null pointers
451  lat_m.resize(nlevs_max);
452  lon_m.resize(nlevs_max);
453  for (int lev = 0; lev < max_level; ++lev) {
454  lat_m[lev] = nullptr;
455  lon_m[lev] = nullptr;
456  }
457 
458  // Variable coriolis
459  sinPhi_m.resize(nlevs_max);
460  cosPhi_m.resize(nlevs_max);
461  for (int lev = 0; lev < max_level; ++lev) {
462  sinPhi_m[lev] = nullptr;
463  cosPhi_m[lev] = nullptr;
464  }
465 
466  // Initialize tagging criteria for mesh refinement
468 
469  for (int lev = 0; lev < max_level; ++lev)
470  {
471  Print() << "Refinement ratio at level " << lev+1 << " set to be " <<
472  ref_ratio[lev][0] << " " << ref_ratio[lev][1] << " " << ref_ratio[lev][2] << std::endl;
473  }
474 
475  // We will create each of these in MakeNewLevelFromScratch
476  eb.resize(max_level+1);
477  for (int lev = 0; lev < max_level + 1; lev++){
478  eb[lev] = std::make_unique<eb_>();
479  }
480 
481  //
482  // Construct the EB data structures and store in a separate class
483  //
484  // This is needed before initializing level MultiFabs
485  if ( solverChoice.terrain_type == TerrainType::EB ||
486  solverChoice.terrain_type == TerrainType::ImmersedForcing)
487  {
488  std::string geometry ="terrain";
489  ParmParse pp("eb2");
490  pp.queryAdd("geometry", geometry);
491 
492  constexpr int ngrow_for_eb = 4; // This is the default in amrex but we need to explicitly pass it here since
493  // we want to also pass the build_coarse_level_by_coarsening argument
494  const bool build_eb_for_multigrid = (solverChoice.terrain_type == TerrainType::EB &&
496  solverChoice.anelastic[0] == 1));
497  // Note this just needs to be an integer > number of V-cycles one might use
498  const int max_coarsening_level = (build_eb_for_multigrid) ? 100 : 0;
499  const bool build_coarse_level_by_coarsening(false);
500 
501  // Define GeometryShop using the implicit function
502  if (geometry == "terrain") {
503  Box terrain_bx(surroundingNodes(geom[max_level].Domain())); terrain_bx.grow(3);
504  FArrayBox terrain_fab(makeSlab(terrain_bx,2,0),1);
505  Real dummy_time = 0.0;
506  prob->init_terrain_surface(geom[max_level], terrain_fab, dummy_time);
507  TerrainIF implicit_fun(terrain_fab, geom[max_level], stretched_dz_d[max_level]);
508  auto gshop = EB2::makeShop(implicit_fun);
509  if (build_eb_for_multigrid) {
510  EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level,
511  ngrow_for_eb, build_coarse_level_by_coarsening);
512  } else {
513  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
514  }
515  } else if (geometry == "box") {
516  RealArray box_lo{0.0, 0.0, 0.0};
517  RealArray box_hi{0.0, 0.0, 0.0};
518  pp.query("box_lo", box_lo);
519  pp.query("box_hi", box_hi);
520  EB2::BoxIF implicit_fun(box_lo, box_hi, false);
521  auto gshop = EB2::makeShop(implicit_fun);
522  if (build_eb_for_multigrid) {
523  EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level,
524  ngrow_for_eb, build_coarse_level_by_coarsening);
525  } else {
526  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
527  }
528  } else if (geometry == "sphere") {
529  auto ProbLoArr = geom[max_level].ProbLoArray();
530  auto ProbHiArr = geom[max_level].ProbHiArray();
531  const Real xcen = 0.5 * (ProbLoArr[0] + ProbHiArr[0]);
532  const Real ycen = 0.5 * (ProbLoArr[1] + ProbHiArr[1]);
533  RealArray sphere_center = {xcen, ycen, 0.0};
534  EB2::SphereIF implicit_fun(0.5, sphere_center, false);
535  auto gshop = EB2::makeShop(implicit_fun);
536  if (build_eb_for_multigrid) {
537  EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level,
538  ngrow_for_eb, build_coarse_level_by_coarsening);
539  } else {
540  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
541  }
542  }
543  }
544 
545  if ( solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
546  constexpr int ngrow_for_eb = 4;
547  Box buildings_bx(surroundingNodes(geom[max_level].Domain())); buildings_bx.grow(3);
548  FArrayBox buildings_fab(makeSlab(buildings_bx,2,0),1);
549  Real dummy_time = 0.0;
550  prob->init_buildings_surface(geom[max_level], buildings_fab, dummy_time);
551  TerrainIF implicit_fun(buildings_fab, geom[max_level], stretched_dz_d[max_level]);
552  auto gshop = EB2::makeShop(implicit_fun);
553  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
554  }
555  forecast_state_1.resize(nlevs_max);
556  forecast_state_2.resize(nlevs_max);
557  forecast_state_interp.resize(nlevs_max);
558 }
void init_zlevels(Vector< Vector< Real >> &zlevels_stag, Vector< Vector< Real >> &stretched_dz_h, Vector< Gpu::DeviceVector< Real >> &stretched_dz_d, Vector< Geometry > const &geom, Vector< IntVect > const &ref_ratio, const Real grid_stretching_ratio, const Real zsurf, const Real dz0)
Definition: ERF_InitZLevels.cpp:11
std::unique_ptr< ProblemBase > amrex_probinit(const amrex_real *problo, const amrex_real *probhi) AMREX_ATTRIBUTE_WEAK
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
Definition: ERF.H:973
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
Definition: ERF.H:1006
void setPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:25
amrex::Vector< amrex::BoxArray > ba2d
Definition: ERF.H:1257
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
Definition: ERF.H:817
void ReadParameters()
Definition: ERF.cpp:2118
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_interp
Definition: ERF.H:170
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_PSFC
Definition: ERF.H:1262
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
Definition: ERF.H:940
amrex::Vector< amrex::MultiFab > base_state_new
Definition: ERF.H:968
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
Definition: ERF.H:938
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
Definition: ERF.H:953
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
Definition: ERF.H:947
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
Definition: ERF.H:1007
amrex::Vector< std::string > plot3d_var_names_2
Definition: ERF.H:1104
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
Definition: ERF.H:913
amrex::Vector< std::string > plot2d_var_names_1
Definition: ERF.H:1105
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
Definition: ERF.H:1005
void setPlotVariables2D(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:187
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
Definition: ERF.H:772
amrex::Vector< amrex::Real > t_old
Definition: ERF.H:806
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
Definition: ERF.H:950
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
Definition: ERF.H:974
amrex::Vector< std::unique_ptr< amrex::MultiFab > > fine_mask
Definition: ERF.H:962
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
Definition: ERF.H:1342
amrex::Vector< amrex::BoxArray > ba1d
Definition: ERF.H:1256
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
Definition: ERF.H:769
int rad_datalog_int
Definition: ERF.H:896
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
Definition: ERF.H:942
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
Definition: ERF.H:944
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
Definition: ERF.H:1000
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
Definition: ERF.H:878
amrex::Vector< std::string > plot3d_var_names_1
Definition: ERF.H:1103
void refinement_criteria_setup()
Definition: ERF_Tagging.cpp:274
amrex::Vector< std::string > plot2d_var_names_2
Definition: ERF.H:1106
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau_corr
Definition: ERF.H:908
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
Definition: ERF.H:760
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
Definition: ERF.H:943
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > urb_frac_lev
Definition: ERF.H:920
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
Definition: ERF.H:941
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_2
Definition: ERF.H:169
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > soil_type_lev
Definition: ERF.H:919
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
Definition: ERF.H:929
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
Definition: ERF.H:876
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
Definition: ERF.H:964
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
Definition: ERF.H:945
static amrex::Real dt_max_initial
Definition: ERF.H:1053
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
Definition: ERF.H:972
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
Definition: ERF.H:760
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > land_type_lev
Definition: ERF.H:918
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_1
Definition: ERF.H:168
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
Definition: ERF.H:1001
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
Definition: ERF.H:771
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
Definition: ERF.H:948
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
Definition: ERF.H:770
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
Definition: ERF.H:971
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
Definition: ERF.H:999
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
Definition: ERF.H:914
void initializeMicrophysics(const int &)
Definition: ERF.cpp:1884
void ReSize(const int &nlev)
Definition: ERF_LandSurface.H:24
Definition: ERF_EBIFTerrain.H:14
const char * buildInfoGetGitHash(int i)
amrex::Real dz0
Definition: ERF_DataStruct.H:1063
amrex::Real const_massflux_layer_lo
Definition: ERF_DataStruct.H:1138
amrex::Real const_massflux_v
Definition: ERF_DataStruct.H:1136
int massflux_klo
Definition: ERF_DataStruct.H:1140
amrex::Real grid_stretching_ratio
Definition: ERF_DataStruct.H:1061
amrex::Real const_massflux_u
Definition: ERF_DataStruct.H:1135
amrex::Real zsurf
Definition: ERF_DataStruct.H:1062
static BuildingsType buildings_type
Definition: ERF_DataStruct.H:973
amrex::Real const_massflux_layer_hi
Definition: ERF_DataStruct.H:1139
int massflux_khi
Definition: ERF_DataStruct.H:1141
Here is the call graph for this function:

◆ ErrorEst()

void ERF::ErrorEst ( int  lev,
amrex::TagBoxArray &  tags,
amrex::Real  time,
int  ngrow 
)
override

Function to tag cells for refinement – this overrides the pure virtual function in AmrCore

Parameters
[in]levclevel of refinement at which we tag cells (0 is coarsest level)
[out]tagsarray of tagged cells
[in]timecurrent time
21 {
22  const int clearval = TagBox::CLEAR;
23  const int tagval = TagBox::SET;
24 
25 #ifdef ERF_USE_NETCDF
26  if (solverChoice.init_type == InitType::WRFInput) {
27  int ratio;
28  Box subdomain;
29 
30  if (!nc_init_file[levc+1].empty())
31  {
32  Real levc_start_time = read_start_time_from_wrfinput(levc , nc_init_file[levc ][0]);
33  amrex::Print() << " WRFInput time at level " << levc << " is " << levc_start_time << std::endl;
34 
35  for (int isub = 0; isub < nc_init_file[levc+1].size(); isub++) {
36  if (!have_read_nc_init_file[levc+1][isub])
37  {
38  Real levf_start_time = read_start_time_from_wrfinput(levc+1, nc_init_file[levc+1][isub]);
39  amrex::Print() << " WRFInput start_time at level " << levc+1 << " is " << levf_start_time << std::endl;
40 
41  // We assume there is only one subdomain at levc; otherwise we don't know
42  // which one is the parent of the fine region we are trying to create
43  AMREX_ALWAYS_ASSERT(subdomains[levc].size() == 1);
44 
45  if ( (ref_ratio[levc][2]) != 1) {
46  amrex::Abort("The ref_ratio specified in the inputs file must have 1 in the z direction; please use ref_ratio_vect rather than ref_ratio");
47  }
48 
49  if ( levf_start_time <= (levc_start_time + t_new[levc]) ) {
50  amrex::Print() << " WRFInput file to read: " << nc_init_file[levc+1][isub] << std::endl;
51  subdomain = read_subdomain_from_wrfinput(levc, nc_init_file[levc+1][isub], ratio);
52  amrex::Print() << " WRFInput subdomain " << isub << " at level " << levc+1 << " is " << subdomain << std::endl;
53 
54  if ( (ratio != ref_ratio[levc][0]) || (ratio != ref_ratio[levc][1]) ) {
55  amrex::Print() << "File " << nc_init_file[levc+1][0] << " has refinement ratio = " << ratio << std::endl;
56  amrex::Print() << "The inputs file has refinement ratio = " << ref_ratio[levc] << std::endl;
57  amrex::Abort("These must be the same -- please edit your inputs file and try again.");
58  }
59 
60  subdomain.coarsen(IntVect(ratio,ratio,1));
61 
62  Box coarser_level(subdomains[levc][isub].minimalBox());
63  subdomain.shift(coarser_level.smallEnd());
64 
65  if (verbose > 0) {
66  amrex::Print() << " Crse subdomain to be tagged is" << subdomain << std::endl;
67  }
68 
69  Box new_fine(subdomain); new_fine.refine(IntVect(ratio,ratio,1));
70  num_boxes_at_level[levc+1] = 1;
71  boxes_at_level[levc+1].push_back(new_fine);
72 
73  for (MFIter mfi(tags); mfi.isValid(); ++mfi) {
74  auto tag_arr = tags.array(mfi); // Get device-accessible array
75 
76  Box bx = mfi.validbox(); bx &= subdomain;
77 
78  if (!bx.isEmpty()) {
79  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
80  tag_arr(i,j,k) = TagBox::SET;
81  });
82  }
83  }
84  } // time is right
85  } else {
86  // Re-tag this region
87  for (MFIter mfi(tags); mfi.isValid(); ++mfi)
88  {
89  auto tag_arr = tags.array(mfi); // Get device-accessible array
90 
91  Box existing_bx_coarsened(boxes_at_level[levc+1][isub]);
92  existing_bx_coarsened.coarsen(ref_ratio[levc]);
93 
94  Box bx = mfi.validbox(); bx &= existing_bx_coarsened;
95 
96  if (!bx.isEmpty()) {
97  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
98  tag_arr(i,j,k) = TagBox::SET;
99  });
100  }
101  }
102  } // has file been read?
103  } // isub
104  } // file not empty
105 
106  return;
107  }
108 #endif
109 
110  //
111  // Make sure the ghost cells of the level we are tagging at are filled
112  // in case we take differences that require them
113  // NOTE: We are Fillpatching only the cell-centered variables here
114  //
115  MultiFab& S_new = vars_new[levc][Vars::cons];
116  MultiFab& U_new = vars_new[levc][Vars::xvel];
117  MultiFab& V_new = vars_new[levc][Vars::yvel];
118  MultiFab& W_new = vars_new[levc][Vars::zvel];
119  //
120  if (levc == 0) {
121  FillPatchCrseLevel(levc, time, {&S_new, &U_new, &V_new, &W_new});
122  } else {
123  FillPatchFineLevel(levc, time, {&S_new, &U_new, &V_new, &W_new},
124  {&S_new, &rU_new[levc], &rV_new[levc], &rW_new[levc]},
125  base_state[levc], base_state[levc],
126  false, true);
127  }
128 
129  for (int j=0; j < ref_tags.size(); ++j)
130  {
131  //
132  // This mf must have ghost cells because we may take differences between adjacent values
133  //
134  std::unique_ptr<MultiFab> mf = std::make_unique<MultiFab>(grids[levc], dmap[levc], 1, 1);
135  mf->setVal(0.0);
136 
137  // This allows dynamic refinement based on the value of the density
138  if (ref_tags[j].Field() == "density")
139  {
140  MultiFab::Copy(*mf,vars_new[levc][Vars::cons],Rho_comp,0,1,1);
141 
142  // This allows dynamic refinement based on the value of qv
143  } else if ( ref_tags[j].Field() == "qv" ) {
144  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ1_comp, 0, 1, 1);
145  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
146 
147 
148  // This allows dynamic refinement based on the value of qc
149  } else if (ref_tags[j].Field() == "qc" ) {
150  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ2_comp, 0, 1, 1);
151  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
152 
153  // This allows dynamic refinement based on the value of the z-component of vorticity
154  } else if (ref_tags[j].Field() == "vorticity" ) {
155  Vector<MultiFab> mf_cc_vel(1);
156  mf_cc_vel[0].define(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(1,1,1));
157  average_face_to_cellcenter(mf_cc_vel[0],0,Array<const MultiFab*,3>{&U_new, &V_new, &W_new});
158 
159  // Impose bc's at domain boundaries at all levels
160  FillBdyCCVels(mf_cc_vel,levc);
161 
162  mf->setVal(0.);
163 
164  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
165  {
166  const Box& bx = mfi.tilebox();
167  auto& dfab = (*mf)[mfi];
168  auto& sfab = mf_cc_vel[0][mfi];
169  derived::erf_dervortz(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
170  }
171 
172  // This allows dynamic refinement based on the value of the scalar/theta
173  } else if ( (ref_tags[j].Field() == "scalar" ) ||
174  (ref_tags[j].Field() == "theta" ) )
175  {
176  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
177  {
178  const Box& bx = mfi.growntilebox();
179  auto& dfab = (*mf)[mfi];
180  auto& sfab = vars_new[levc][Vars::cons][mfi];
181  if (ref_tags[j].Field() == "scalar") {
182  derived::erf_derscalar(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
183  } else if (ref_tags[j].Field() == "theta") {
184  derived::erf_dertheta(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
185  }
186  } // mfi
187  // This allows dynamic refinement based on the value of the density
188  } else if ( (SolverChoice::terrain_type == TerrainType::ImmersedForcing) &&
189  (ref_tags[j].Field() == "terrain_blanking") )
190  {
191  MultiFab::Copy(*mf,*terrain_blanking[levc],0,0,1,1);
192  }
193  else if (ref_tags[j].Field() == "velmag")
194  {
195  ParmParse pp(pp_prefix);
196  Vector<std::string> refinement_indicators;
197  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
198  Real velmag_threshold;
199  bool is_hurricane_tracker = false;
200  for (int i=0; i<refinement_indicators.size(); ++i)
201  {
202  if (refinement_indicators[i]=="hurricane_tracker") {
203  is_hurricane_tracker = true;
204  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
205  ParmParse ppr(ref_prefix);
206  ppr.get("value_greater", velmag_threshold);
207  break;
208  }
209  }
210 
211  if (is_hurricane_tracker) {
212  HurricaneTracker(levc, time, U_new, V_new, W_new, velmag_threshold, &tags);
213  } else {
214  Vector<MultiFab> mf_cc_vel(1);
215  mf_cc_vel[0].define(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
216  average_face_to_cellcenter(mf_cc_vel[0],0,Array<const MultiFab*,3>{&U_new, &V_new, &W_new});
217  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
218  {
219  const Box& bx = mfi.tilebox();
220  auto& dfab = (*mf)[mfi];
221  auto& sfab = mf_cc_vel[0][mfi];
222  derived::erf_dermagvel(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
223  }
224  }
225 
226 #ifdef ERF_USE_PARTICLES
227  } else {
228  //
229  // This allows dynamic refinement based on the number of particles per cell
230  //
231  // Note that we must count all the particles in levels both at and above the current,
232  // since otherwise, e.g., if the particles are all at level 1, counting particles at
233  // level 0 will not trigger refinement when regridding so level 1 will disappear,
234  // then come back at the next regridding
235  //
236  const auto& particles_namelist( particleData.getNames() );
237  mf->setVal(0.0);
238  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++)
239  {
240  std::string tmp_string(particles_namelist[i]+"_count");
241  IntVect rr = IntVect::TheUnitVector();
242  if (ref_tags[j].Field() == tmp_string) {
243  for (int lev = levc; lev <= finest_level; lev++)
244  {
245  MultiFab temp_dat(grids[lev], dmap[lev], 1, 0); temp_dat.setVal(0);
246  particleData[particles_namelist[i]]->IncrementWithTotal(temp_dat, lev);
247 
248  MultiFab temp_dat_crse(grids[levc], dmap[levc], 1, 0); temp_dat_crse.setVal(0);
249 
250  if (lev == levc) {
251  MultiFab::Copy(*mf, temp_dat, 0, 0, 1, 0);
252  } else {
253  for (int d = 0; d < AMREX_SPACEDIM; d++) {
254  rr[d] *= ref_ratio[levc][d];
255  }
256  average_down(temp_dat, temp_dat_crse, 0, 1, rr);
257  MultiFab::Add(*mf, temp_dat_crse, 0, 0, 1, 0);
258  }
259  }
260  }
261  }
262 #endif
263  }
264 
265  ref_tags[j](tags,mf.get(),clearval,tagval,time,levc,geom[levc]);
266  } // loop over j
267 }
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
Definition: ERF.H:799
void FillBdyCCVels(amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
Definition: ERF_FillBdyCCVels.cpp:11
void FillPatchCrseLevel(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
Definition: ERF_FillPatch.cpp:282
static amrex::Vector< amrex::Vector< std::string > > nc_init_file
Definition: ERF.H:1229
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
Definition: ERF.H:1349
static amrex::Vector< amrex::Vector< int > > have_read_nc_init_file
Definition: ERF.H:1230
static amrex::Vector< amrex::AMRErrorTag > ref_tags
Definition: ERF.H:1347
amrex::Vector< int > num_boxes_at_level
Definition: ERF.H:797
void HurricaneTracker(int lev, amrex::Real time, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, amrex::TagBoxArray *tags=nullptr)
Definition: ERF_Tagging.cpp:632
void erf_derscalar(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:165
void erf_dermagvel(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:319
void erf_dervortz(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:256
void erf_dertheta(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:144
real(c_double), private rr
Definition: ERF_module_mp_morr_two_moment.F90:224
integer, private isub
Definition: ERF_module_mp_morr_two_moment.F90:164
static InitType init_type
Definition: ERF_DataStruct.H:964
Here is the call graph for this function:

◆ estTimeStep()

Real ERF::estTimeStep ( int  level,
long &  dt_fast_ratio 
) const

Function that calls estTimeStep for each level

Parameters
[in]levellevel of refinement (coarsest level i 0)
[out]dt_fast_ratioratio of slow to fast time step
55 {
56  BL_PROFILE("ERF::estTimeStep()");
57 
58  Real estdt_comp = 1.e20;
59  Real estdt_lowM = 1.e20;
60 
61  // We intentionally use the level 0 domain to compute whether to use this direction in the dt calculation
62  const int nxc = geom[0].Domain().length(0);
63  const int nyc = geom[0].Domain().length(1);
64 
65  auto const dxinv = geom[level].InvCellSizeArray();
66  auto const dzinv = 1.0 / dz_min[level];
67 
68  MultiFab const& S_new = vars_new[level][Vars::cons];
69 
70  MultiFab ccvel(grids[level],dmap[level],3,0);
71 
72  average_face_to_cellcenter(ccvel,0,
73  Array<const MultiFab*,3>{&vars_new[level][Vars::xvel],
74  &vars_new[level][Vars::yvel],
75  &vars_new[level][Vars::zvel]});
76 
77  bool l_substepping = (solverChoice.substepping_type[level] == SubsteppingType::Implicit);
78  int l_anelastic = solverChoice.anelastic[level];
79 
80  bool l_comp_substepping_diag = (verbose && l_substepping && !l_anelastic && solverChoice.substepping_diag);
81 
82  Real estdt_comp_inv;
83  Real estdt_vert_comp_inv;
84  Real estdt_vert_lowM_inv;
85 
86  if (l_substepping && (nxc==1) && (nyc==1)) {
87  // SCM -- should not depend on dx or dy; force minimum number of substeps
88  estdt_comp_inv = std::numeric_limits<Real>::min();
89  }
90  else if (solverChoice.terrain_type == TerrainType::EB)
91  {
92  const eb_& eb_lev = get_eb(level);
93  const MultiFab& detJ = (eb_lev.get_const_factory())->getVolFrac();
94 
95  estdt_comp_inv = ReduceMax(S_new, ccvel, detJ, 0,
96  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
97  Array4<Real const> const& s,
98  Array4<Real const> const& u,
99  Array4<Real const> const& vf) -> Real
100  {
101  Real new_comp_dt = -1.e100;
102  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
103  {
104  if (vf(i,j,k) > 0.)
105  {
106  const Real rho = s(i, j, k, Rho_comp);
107  const Real rhotheta = s(i, j, k, RhoTheta_comp);
108 
109  // NOTE: even when moisture is present,
110  // we only use the partial pressure of the dry air
111  // to compute the soundspeed
112  Real pressure = getPgivenRTh(rhotheta);
113  Real c = std::sqrt(Gamma * pressure / rho);
114 
115  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
116  // to the computation of the time step
117  if (l_substepping) {
118  if ((nxc > 1) && (nyc==1)) {
119  // 2-D in x-z
120  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
121  } else if ((nyc > 1) && (nxc==1)) {
122  // 2-D in y-z
123  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
124  } else {
125  // 3-D
126  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
127  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
128  }
129 
130  // If we are not doing implicit acoustic substepping, then the z-direction contributes
131  // to the computation of the time step
132  } else {
133  if (nxc > 1 && nyc > 1) {
134  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
135  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
136  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
137  } else if (nxc > 1) {
138  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
139  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
140  } else if (nyc > 1) {
141  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
142  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
143  } else {
144  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
145  }
146 
147  }
148  }
149  });
150  return new_comp_dt;
151  });
152 
153  } else {
154  estdt_comp_inv = ReduceMax(S_new, ccvel, 0,
155  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
156  Array4<Real const> const& s,
157  Array4<Real const> const& u) -> Real
158  {
159  Real new_comp_dt = -1.e100;
160  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
161  {
162  {
163  const Real rho = s(i, j, k, Rho_comp);
164  const Real rhotheta = s(i, j, k, RhoTheta_comp);
165 
166  // NOTE: even when moisture is present,
167  // we only use the partial pressure of the dry air
168  // to compute the soundspeed
169  Real pressure = getPgivenRTh(rhotheta);
170  Real c = std::sqrt(Gamma * pressure / rho);
171 
172  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
173  // to the computation of the time step
174  if (l_substepping) {
175  if ((nxc > 1) && (nyc==1)) {
176  // 2-D in x-z
177  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
178  } else if ((nyc > 1) && (nxc==1)) {
179  // 2-D in y-z
180  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
181  } else {
182  // 3-D
183  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
184  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
185  }
186 
187  // If we are not doing implicit acoustic substepping, then the z-direction contributes
188  // to the computation of the time step
189  } else {
190  if (nxc > 1 && nyc > 1) {
191  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
192  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
193  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
194  } else if (nxc > 1) {
195  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
196  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
197  } else if (nyc > 1) {
198  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
199  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
200  } else {
201  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
202  }
203 
204  }
205  }
206  });
207  return new_comp_dt;
208  });
209  } // not EB
210 
211  ParallelDescriptor::ReduceRealMax(estdt_comp_inv);
212  estdt_comp = cfl / estdt_comp_inv;
213 
214  Real estdt_lowM_inv = ReduceMax(ccvel, 0,
215  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
216  Array4<Real const> const& u) -> Real
217  {
218  Real new_lm_dt = -1.e100;
219  Loop(b, [=,&new_lm_dt] (int i, int j, int k) noexcept
220  {
221  new_lm_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0)))*dxinv[0]),
222  ((amrex::Math::abs(u(i,j,k,1)))*dxinv[1]),
223  ((amrex::Math::abs(u(i,j,k,2)))*dxinv[2]), new_lm_dt);
224  });
225  return new_lm_dt;
226  });
227 
228  ParallelDescriptor::ReduceRealMax(estdt_lowM_inv);
229  if (estdt_lowM_inv > 0.0_rt)
230  estdt_lowM = cfl / estdt_lowM_inv;
231 
232  // Additional vertical diagnostics
233  if (l_comp_substepping_diag) {
234  estdt_vert_comp_inv = ReduceMax(S_new, ccvel, 0,
235  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
236  Array4<Real const> const& s,
237  Array4<Real const> const& u) -> Real
238  {
239  Real new_comp_dt = -1.e100;
240  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
241  {
242  {
243  const Real rho = s(i, j, k, Rho_comp);
244  const Real rhotheta = s(i, j, k, RhoTheta_comp);
245 
246  // NOTE: even when moisture is present,
247  // we only use the partial pressure of the dry air
248  // to compute the soundspeed
249  Real pressure = getPgivenRTh(rhotheta);
250  Real c = std::sqrt(Gamma * pressure / rho);
251 
252  // Look at z-direction only
253  new_comp_dt = amrex::max((amrex::Math::abs(u(i,j,k,2)) + c) * dzinv, new_comp_dt);
254  }
255  });
256  return new_comp_dt;
257  });
258 
259  estdt_vert_lowM_inv = ReduceMax(ccvel, 0,
260  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
261  Array4<Real const> const& u) -> Real
262  {
263  Real new_lowM_dt = -1.e100;
264  amrex::Loop(b, [=,&new_lowM_dt] (int i, int j, int k) noexcept
265  {
266  new_lowM_dt = amrex::max((amrex::Math::abs(u(i,j,k,2))) * dzinv, new_lowM_dt);
267  });
268  return new_lowM_dt;
269  });
270 
271  ParallelDescriptor::ReduceRealMax(estdt_vert_comp_inv);
272  ParallelDescriptor::ReduceRealMax(estdt_vert_lowM_inv);
273  }
274 
275  if (verbose) {
276  if (fixed_dt[level] <= 0.0) {
277  Print() << "Using cfl = " << cfl << " and dx/dy/dz_min = " <<
278  1.0/dxinv[0] << " " << 1.0/dxinv[1] << " " << dz_min[level] << std::endl;
279  Print() << "Compressible dt at level " << level << ": " << estdt_comp << std::endl;
280  if (estdt_lowM_inv > 0.0_rt) {
281  Print() << "Anelastic dt at level " << level << ": " << estdt_lowM << std::endl;
282  } else {
283  Print() << "Anelastic dt at level " << level << ": undefined " << std::endl;
284  }
285  }
286 
287  if (fixed_dt[level] > 0.0) {
288  Print() << "Based on cfl of 1.0 " << std::endl;
289  Print() << "Compressible dt at level " << level << " would be: " << estdt_comp/cfl << std::endl;
290  if (estdt_lowM_inv > 0.0_rt) {
291  Print() << "Anelastic dt at level " << level << " would be: " << estdt_lowM/cfl << std::endl;
292  } else {
293  Print() << "Anelastic dt at level " << level << " would be undefined " << std::endl;
294  }
295  Print() << "Fixed dt at level " << level << " is: " << fixed_dt[level] << std::endl;
296  if (fixed_fast_dt[level] > 0.0) {
297  Print() << "Fixed fast dt at level " << level << " is: " << fixed_fast_dt[level] << std::endl;
298  }
299  }
300  }
301 
302  if (solverChoice.substepping_type[level] != SubsteppingType::None) {
303  if (fixed_dt[level] > 0. && fixed_fast_dt[level] > 0.) {
304  dt_fast_ratio = static_cast<long>( fixed_dt[level] / fixed_fast_dt[level] );
305  } else if (fixed_dt[level] > 0.) {
306  // Max CFL_c = 1.0 for substeps by default, but we enforce a min of 4 substeps
307  auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
308  dt_fast_ratio = static_cast<long>( std::max(fixed_dt[level]/dt_sub_max,4.) );
309  } else {
310  // auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
311  // dt_fast_ratio = static_cast<long>( std::max(estdt_comp/dt_sub_max,4.) );
312  dt_fast_ratio = static_cast<long>( std::max(cfl / sub_cfl, 4.) );
313  }
314 
315  // Force time step ratio to be an even value
317  if ( dt_fast_ratio%2 != 0) dt_fast_ratio += 1;
318  } else {
319  if ( dt_fast_ratio%6 != 0) {
320  Print() << "mri_dt_ratio = " << dt_fast_ratio
321  << " not divisible by 6 for N/3 substeps in stage 1" << std::endl;
322  dt_fast_ratio = static_cast<int>(std::ceil(dt_fast_ratio/6.0) * 6);
323  }
324  }
325 
326  if (verbose) {
327  Print() << "smallest even ratio is: " << dt_fast_ratio << std::endl;
328  }
329  } // if substepping
330 
331  // Print out some extra diagnostics -- dt calcs are repeated so as to not
332  // disrupt the overall code flow...
333  if (l_comp_substepping_diag) {
334  Real dt_diag = (fixed_dt[level] > 0.0) ? fixed_dt[level] : estdt_comp;
335  int ns = (fixed_mri_dt_ratio > 0.0) ? fixed_mri_dt_ratio : dt_fast_ratio;
336 
337  // horizontal acoustic CFL must be < 1 (fully explicit)
338  // vertical acoustic CFL may be > 1
339  Print() << "effective horiz,vert acoustic CFL with " << ns << " substeps : "
340  << (dt_diag / ns) * estdt_comp_inv << " "
341  << (dt_diag / ns) * estdt_vert_comp_inv << std::endl;
342 
343  // vertical advective CFL should be < 1, otherwise w-damping may be needed
344  Print() << "effective vert advective CFL : "
345  << dt_diag * estdt_vert_lowM_inv << std::endl;
346  }
347 
348  if (fixed_dt[level] > 0.0) {
349  return fixed_dt[level];
350  } else {
351  // Anelastic (substepping is not allowed)
352  if (l_anelastic) {
353 
354  // Make sure that timestep is less than the dt_max
355  estdt_lowM = amrex::min(estdt_lowM, dt_max);
356 
357  // On the first timestep enforce dt_max_initial
358  if (istep[level] == 0) {
359  return amrex::min(dt_max_initial, estdt_lowM);
360  } else {
361  return estdt_lowM;
362  }
363 
364 
365  // Compressible with or without substepping
366  } else {
367  return estdt_comp;
368  }
369  }
370 }
constexpr amrex::Real Gamma
Definition: ERF_Constants.H:19
amrex::Vector< amrex::Real > dz_min
Definition: ERF.H:1351
amrex::Vector< amrex::Real > fixed_dt
Definition: ERF.H:1057
static amrex::Real dt_max
Definition: ERF.H:1054
amrex::Vector< amrex::Real > fixed_fast_dt
Definition: ERF.H:1058
static amrex::Real cfl
Definition: ERF.H:1049
static amrex::Real sub_cfl
Definition: ERF.H:1050
Definition: ERF_EB.H:13
@ ns
Definition: ERF_Morrison.H:47
int force_stage1_single_substep
Definition: ERF_DataStruct.H:997
amrex::Vector< SubsteppingType > substepping_type
Definition: ERF_DataStruct.H:999
bool substepping_diag
Definition: ERF_DataStruct.H:1006
Here is the call graph for this function:

◆ Evolve()

void ERF::Evolve ( )
565 {
566  BL_PROFILE_VAR("ERF::Evolve()", evolve);
567 
568  Real cur_time = t_new[0];
569 
570  // Take one coarse timestep by calling timeStep -- which recursively calls timeStep
571  // for finer levels (with or without subcycling)
572  for (int step = istep[0]; step < max_step && start_time+cur_time < stop_time; ++step)
573  {
574  if (use_datetime) {
575  Print() << "\n" << getTimestamp(start_time+cur_time, datetime_format)
576  << " (" << cur_time << " s elapsed)" << std::endl;
577  }
578  Print() << "\nCoarse STEP " << step+1 << " starts ..." << std::endl;
579 
580  ComputeDt(step);
581 
582  // Make sure we have read enough of the boundary plane data to make it through this timestep
583  if (input_bndry_planes)
584  {
585  m_r2d->read_input_files(cur_time,dt[0],m_bc_extdir_vals);
586  }
587 
588 #ifdef ERF_USE_PARTICLES
589  // We call this every time step with the knowledge that the particles may be
590  // initialized at a later time than the simulation start time.
591  // The ParticleContainer carries a "start time" so the initialization will happen
592  // only when a) time > start_time, and b) particles have not yet been initialized
593  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,cur_time);
594 #endif
595 
596  if(solverChoice.init_type == InitType::HindCast and
598  for(int lev=0;lev<finest_level+1;lev++){
599  WeatherDataInterpolation(lev,cur_time,z_phys_nd,false);
600  }
601  }
602 
603  auto dEvolveTime0 = amrex::second();
604 
605  int iteration = 1;
606  timeStep(0, cur_time, iteration);
607 
608  cur_time += dt[0];
609 
610  Print() << "Coarse STEP " << step+1 << " ends." << " TIME = " << cur_time
611  << " DT = " << dt[0] << std::endl;
612 
613  if (check_for_nans > 0) {
614  amrex::Print() << "Testing new state and vels for NaNs at end of timestep" << std::endl;
615  for (int lev = 0; lev <= finest_level; ++lev) {
618  }
619  }
620 
621  if (verbose > 0)
622  {
623  auto dEvolveTime = amrex::second() - dEvolveTime0;
624  ParallelDescriptor::ReduceRealMax(dEvolveTime,ParallelDescriptor::IOProcessorNumber());
625  amrex::Print() << "Timestep time = " << dEvolveTime << " seconds." << '\n';
626  }
627 
628  post_timestep(step, cur_time, dt[0]);
629 
630  if (writeNow(cur_time, step+1, m_plot3d_int_1, m_plot3d_per_1, dt[0], last_plot3d_file_time_1)) {
631  last_plot3d_file_step_1 = step+1;
633  for (int lev = 0; lev <= finest_level; ++lev) {lsm.Plot(lev, step+1);}
635  }
636  if (writeNow(cur_time, step+1, m_plot3d_int_2, m_plot3d_per_2, dt[0], last_plot3d_file_time_2)) {
637  last_plot3d_file_step_2 = step+1;
639  for (int lev = 0; lev <= finest_level; ++lev) {lsm.Plot(lev, step+1);}
641  }
642 
643  if (writeNow(cur_time, step+1, m_plot2d_int_1, m_plot2d_per_1, dt[0], last_plot2d_file_time_1)) {
644  last_plot2d_file_step_1 = step+1;
647  }
648 
649  if (writeNow(cur_time, step+1, m_plot2d_int_2, m_plot2d_per_2, dt[0], last_plot2d_file_time_2)) {
650  last_plot2d_file_step_2 = step+1;
653  }
654 
655  for (int i = 0; i < m_subvol_int.size(); i++) {
656  if (writeNow(cur_time, step+1, m_subvol_int[i], m_subvol_per[i], dt[0], last_subvol_time[i])) {
657  last_subvol_step[i] = step+1;
659  if (m_subvol_per[i] > 0.) {last_subvol_time[i] += m_subvol_per[i];}
660  }
661  }
662 
663  if (writeNow(cur_time, step+1, m_check_int, m_check_per, dt[0], last_check_file_time)) {
664  last_check_file_step = step+1;
667  }
668 
669 #ifdef AMREX_MEM_PROFILING
670  {
671  std::ostringstream ss;
672  ss << "[STEP " << step+1 << "]";
673  MemProfiler::report(ss.str());
674  }
675 #endif
676 
677  if (cur_time >= stop_time - 1.e-6*dt[0]) break;
678  }
679 
680  // Write plotfiles at final time
681  if ( (m_plot3d_int_1 > 0 || m_plot3d_per_1 > 0.) && istep[0] > last_plot3d_file_step_1 ) {
684  }
685  if ( (m_plot3d_int_2 > 0 || m_plot3d_per_2 > 0.) && istep[0] > last_plot3d_file_step_2) {
688  }
689  if ( (m_plot2d_int_1 > 0 || m_plot2d_per_1 > 0.) && istep[0] > last_plot2d_file_step_1 ) {
692  }
693  if ( (m_plot2d_int_2 > 0 || m_plot2d_per_2 > 0.) && istep[0] > last_plot2d_file_step_2) {
696  }
697 
698  for (int i = 0; i < m_subvol_int.size(); i++) {
699  if ( (m_subvol_int[i] > 0 || m_subvol_per[i] > 0.) && istep[0] > last_subvol_step[i]) {
701  if (m_subvol_per[i] > 0.) {last_subvol_time[i] += m_subvol_per[i];}
702  }
703  }
704 
705  if ( (m_check_int > 0 || m_check_per > 0.) && istep[0] > last_check_file_step) {
708  }
709 
710  BL_PROFILE_VAR_STOP(evolve);
711 }
AMREX_FORCE_INLINE std::string getTimestamp(const amrex::Real epoch_real, const std::string &datetime_format, bool add_long_frac=true)
Definition: ERF_EpochTime.H:72
static int last_check_file_step
Definition: ERF.H:1013
int max_step
Definition: ERF.H:1036
static amrex::Real last_plot2d_file_time_2
Definition: ERF.H:1018
amrex::Vector< std::string > subvol3d_var_names
Definition: ERF.H:1101
amrex::Real m_plot2d_per_1
Definition: ERF.H:1086
static amrex::Real last_plot2d_file_time_1
Definition: ERF.H:1017
static int last_plot2d_file_step_2
Definition: ERF.H:1012
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_extdir_vals
Definition: ERF.H:990
static amrex::Real last_plot3d_file_time_2
Definition: ERF.H:1016
int m_plot2d_int_2
Definition: ERF.H:1079
int m_plot3d_int_1
Definition: ERF.H:1076
static int last_plot3d_file_step_2
Definition: ERF.H:1010
void post_timestep(int nstep, amrex::Real time, amrex::Real dt_lev)
Definition: ERF.cpp:715
amrex::Real m_plot2d_per_2
Definition: ERF.H:1087
amrex::Real m_check_per
Definition: ERF.H:1099
int m_check_int
Definition: ERF.H:1098
static int input_bndry_planes
Definition: ERF.H:1279
void Write2DPlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:1931
const std::string datetime_format
Definition: ERF.H:1043
bool use_datetime
Definition: ERF.H:1042
amrex::Vector< amrex::Real > m_subvol_per
Definition: ERF.H:1082
void ComputeDt(int step=-1)
Definition: ERF_ComputeTimestep.cpp:11
void WeatherDataInterpolation(const int nlevs, const amrex::Real time, amrex::Vector< std::unique_ptr< amrex::MultiFab >> &z_phys_nd, bool regrid_forces_file_read)
Definition: ERF_WeatherDataInterpolation.cpp:347
void WriteSubvolume(int isub, amrex::Vector< std::string > subvol_var_names)
Definition: ERF_WriteSubvolume.cpp:145
amrex::Real m_plot3d_per_2
Definition: ERF.H:1085
amrex::Vector< int > last_subvol_step
Definition: ERF.H:1021
static PlotFileType plotfile3d_type_2
Definition: ERF.H:1216
static PlotFileType plotfile2d_type_2
Definition: ERF.H:1218
bool writeNow(const amrex::Real cur_time, const int nstep, const int plot_int, const amrex::Real plot_per, const amrex::Real dt_0, amrex::Real &last_file_time)
Definition: ERF.cpp:2879
int m_plot2d_int_1
Definition: ERF.H:1078
void WriteCheckpointFile() const
Definition: ERF_Checkpoint.cpp:26
void Write3DPlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:308
static int last_plot2d_file_step_1
Definition: ERF.H:1011
amrex::Real m_plot3d_per_1
Definition: ERF.H:1084
std::unique_ptr< ReadBndryPlanes > m_r2d
Definition: ERF.H:1340
amrex::Vector< amrex::Real > last_subvol_time
Definition: ERF.H:1022
static amrex::Real last_check_file_time
Definition: ERF.H:1019
static int last_plot3d_file_step_1
Definition: ERF.H:1009
static amrex::Real last_plot3d_file_time_1
Definition: ERF.H:1015
static PlotFileType plotfile2d_type_1
Definition: ERF.H:1217
static PlotFileType plotfile3d_type_1
Definition: ERF.H:1215
amrex::Vector< int > m_subvol_int
Definition: ERF.H:1081
int m_plot3d_int_2
Definition: ERF.H:1077
void timeStep(int lev, amrex::Real time, int iteration)
Definition: ERF_TimeStep.cpp:17
void Plot(const int &lev, const int &nstep)
Definition: ERF_LandSurface.H:71
bool hindcast_lateral_forcing
Definition: ERF_DataStruct.H:1145

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ fill_from_bndryregs()

void ERF::fill_from_bndryregs ( const amrex::Vector< amrex::MultiFab * > &  mfs,
amrex::Real  time 
)
14 {
15  //
16  // We now assume that if we read in on one face, we read in on all faces
17  //
18  AMREX_ALWAYS_ASSERT(m_r2d);
19 
20  int lev = 0;
21  const Box& domain = geom[lev].Domain();
22 
23  const auto& dom_lo = lbound(domain);
24  const auto& dom_hi = ubound(domain);
25 
26  Vector<std::unique_ptr<PlaneVector>>& bndry_data = m_r2d->interp_in_time(time);
27 
28  const BCRec* bc_ptr = domain_bcs_type_d.data();
29 
30  // xlo: ori = 0
31  // ylo: ori = 1
32  // zlo: ori = 2
33  // xhi: ori = 3
34  // yhi: ori = 4
35  // zhi: ori = 5
36  const auto& bdatxlo = (*bndry_data[0])[lev].const_array();
37  const auto& bdatylo = (*bndry_data[1])[lev].const_array();
38  const auto& bdatxhi = (*bndry_data[3])[lev].const_array();
39  const auto& bdatyhi = (*bndry_data[4])[lev].const_array();
40 
41  int bccomp;
42 
43  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx)
44  {
45  MultiFab& mf = *mfs[var_idx];
46  const int icomp = 0;
47  const int ncomp = mf.nComp();
48 
49  if (var_idx == Vars::xvel) {
50  bccomp = BCVars::xvel_bc;
51  } else if (var_idx == Vars::yvel) {
52  bccomp = BCVars::yvel_bc;
53  } else if (var_idx == Vars::zvel) {
54  bccomp = BCVars::zvel_bc;
55  } else if (var_idx == Vars::cons) {
56  bccomp = BCVars::cons_bc;
57  }
58 
59 #ifdef AMREX_USE_OMP
60 #pragma omp parallel if (Gpu::notInLaunchRegion())
61 #endif
62  for (MFIter mfi(mf); mfi.isValid(); ++mfi)
63  {
64  const Array4<Real>& dest_arr = mf.array(mfi);
65  Box bx = mfi.growntilebox();
66 
67  // x-faces
68  {
69  Box bx_xlo(bx); bx_xlo.setBig(0,dom_lo.x-1);
70  if (var_idx == Vars::xvel) bx_xlo.setBig(0,dom_lo.x);
71 
72  Box bx_xhi(bx); bx_xhi.setSmall(0,dom_hi.x+1);
73  if (var_idx == Vars::xvel) bx_xhi.setSmall(0,dom_hi.x);
74 
75  ParallelFor(
76  bx_xlo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
77  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
78  BCVars::RhoScalar_bc_comp : icomp+n;
79  if (bc_ptr[bc_comp].lo(0) == ERFBCType::ext_dir_ingested) {
80  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
81  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
82  dest_arr(i,j,k,icomp+n) = bdatxlo(dom_lo.x-1,jb,kb,bccomp+n);
83  }
84  },
85  bx_xhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
86  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
87  BCVars::RhoScalar_bc_comp : icomp+n;
88  if (bc_ptr[bc_comp].hi(0) == ERFBCType::ext_dir_ingested) {
89  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
90  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
91  dest_arr(i,j,k,icomp+n) = bdatxhi(dom_hi.x+1,jb,kb,bccomp+n);
92  }
93  }
94  );
95  } // x-faces
96 
97  // y-faces
98  {
99  Box bx_ylo(bx); bx_ylo.setBig (1,dom_lo.y-1);
100  if (var_idx == Vars::yvel) bx_ylo.setBig(1,dom_lo.y);
101 
102  Box bx_yhi(bx); bx_yhi.setSmall(1,dom_hi.y+1);
103  if (var_idx == Vars::yvel) bx_yhi.setSmall(1,dom_hi.y);
104 
105  ParallelFor(
106  bx_ylo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
107  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
108  BCVars::RhoScalar_bc_comp : icomp+n;
109  if (bc_ptr[bc_comp].lo(1) == ERFBCType::ext_dir_ingested) {
110  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
111  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
112  dest_arr(i,j,k,icomp+n) = bdatylo(ib,dom_lo.y-1,kb,bccomp+n);
113  }
114  },
115  bx_yhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
116  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
117  BCVars::RhoScalar_bc_comp : icomp+n;
118  if (bc_ptr[bc_comp].hi(1) == ERFBCType::ext_dir_ingested) {
119  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
120  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
121  dest_arr(i,j,k,icomp+n) = bdatyhi(ib,dom_hi.y+1,kb,bccomp+n);
122  }
123  }
124  );
125  } // y-faces
126  } // mf
127  } // var_idx
128 }
#define RhoScalar_comp
Definition: ERF_IndexDefines.H:40
#define NSCALARS
Definition: ERF_IndexDefines.H:16
const auto & dom_hi
Definition: ERF_SetupVertDiff.H:2
const auto & dom_lo
Definition: ERF_SetupVertDiff.H:1
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
Definition: ERF.H:984
@ RhoScalar_bc_comp
Definition: ERF_IndexDefines.H:80
@ ext_dir_ingested
Definition: ERF_IndexDefines.H:212

◆ fill_rhs()

void ERF::fill_rhs ( amrex::MultiFab &  rhs_mf,
const amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ FillBdyCCVels()

void ERF::FillBdyCCVels ( amrex::Vector< amrex::MultiFab > &  mf_cc_vel,
int  levc = 0 
)
12 {
13  // Impose bc's at domain boundaries
14  for (int ilev(0); ilev < mf_cc_vel.size(); ++ilev)
15  {
16  int lev = ilev + levc;
17  Box domain(Geom(lev).Domain());
18 
19  int ihi = domain.bigEnd(0);
20  int jhi = domain.bigEnd(1);
21  int khi = domain.bigEnd(2);
22 
23  // Impose periodicity first
24  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
25 
26  int jper = (Geom(lev).isPeriodic(1));
27  int kper = (Geom(lev).isPeriodic(2));
28 
29  for (MFIter mfi(mf_cc_vel[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
30  {
31  const Box& bx = mfi.tilebox();
32  const Array4<Real>& vel_arr = mf_cc_vel[lev].array(mfi);
33 
34  if (!Geom(lev).isPeriodic(0)) {
35  // Low-x side
36  if (bx.smallEnd(0) <= domain.smallEnd(0)) {
37  Real multn = ( (phys_bc_type[0] == ERF_BC::slip_wall ) ||
39  (phys_bc_type[0] == ERF_BC::symmetry ) ) ? -1. : 1.;
40  Real multt = (phys_bc_type[0] == ERF_BC::no_slip_wall) ? -1. : 1.;
41  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
42  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
43  {
44  vel_arr(-1,j,k,0) = multn*vel_arr(0,j,k,0); // u
45  vel_arr(-1,j,k,1) = multt*vel_arr(0,j,k,1); // v
46  vel_arr(-1,j,k,2) = multt*vel_arr(0,j,k,2); // w
47  });
48  }
49 
50  // High-x side
51  if (bx.bigEnd(0) >= domain.bigEnd(0)) {
52  Real multn = ( (phys_bc_type[3] == ERF_BC::slip_wall ) ||
54  (phys_bc_type[3] == ERF_BC::symmetry ) ) ? -1. : 1.;
55  Real multt = (phys_bc_type[3] == ERF_BC::no_slip_wall) ? -1. : 1.;
56  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
57  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
58  {
59  vel_arr(ihi+1,j,k,0) = multn*vel_arr(ihi,j,k,0); // u
60  vel_arr(ihi+1,j,k,1) = multt*vel_arr(ihi,j,k,1); // v
61  vel_arr(ihi+1,j,k,2) = multt*vel_arr(ihi,j,k,2); // w
62  });
63  }
64  } // !periodic
65 
66  if (!Geom(lev).isPeriodic(1)) {
67  // Low-y side
68  if (bx.smallEnd(1) <= domain.smallEnd(1)) {
69  Real multn = ( (phys_bc_type[1] == ERF_BC::slip_wall ) ||
71  (phys_bc_type[1] == ERF_BC::symmetry ) ) ? -1. : 1.;
72  Real multt = (phys_bc_type[1] == ERF_BC::no_slip_wall) ? -1. : 1.;
73  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
74  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
75  {
76  vel_arr(i,-1,k,0) = multt*vel_arr(i,0,k,0); // u
77  vel_arr(i,-1,k,1) = multn*vel_arr(i,0,k,1); // u
78  vel_arr(i,-1,k,2) = multt*vel_arr(i,0,k,2); // w
79  });
80  }
81 
82  // High-y side
83  if (bx.bigEnd(1) >= domain.bigEnd(1)) {
84  Real multn = ( (phys_bc_type[4] == ERF_BC::slip_wall ) ||
86  (phys_bc_type[4] == ERF_BC::symmetry ) ) ? -1. : 1.;
87  Real multt = (phys_bc_type[4] == ERF_BC::no_slip_wall) ? -1. : 1.;
88  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
89  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
90  {
91  vel_arr(i,jhi+1,k,0) = multt*vel_arr(i,jhi,k,0); // u
92  vel_arr(i,jhi+1,k,1) = multn*vel_arr(i,jhi,k,1); // v
93  vel_arr(i,jhi+1,k,2) = multt*vel_arr(i,jhi,k,2); // w
94  });
95  }
96  } // !periodic
97 
98  if (!Geom(lev).isPeriodic(2)) {
99  // Low-z side
100  if (bx.smallEnd(2) <= domain.smallEnd(2)) {
101  Real multn = ( (phys_bc_type[2] == ERF_BC::slip_wall ) ||
103  (phys_bc_type[2] == ERF_BC::symmetry ) ) ? -1. : 1.;
104  Real multt = (phys_bc_type[2] == ERF_BC::no_slip_wall) ? -1. : 1.;
105  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
106  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
107  {
108  vel_arr(i,j,-1,0) = multt*vel_arr(i,j,0,0); // u
109  vel_arr(i,j,-1,1) = multt*vel_arr(i,j,0,1); // v
110  vel_arr(i,j,-1,2) = multn*vel_arr(i,j,0,2); // w
111  });
112  }
113 
114  // High-z side
115  if (bx.bigEnd(2) >= domain.bigEnd(2)) {
116  Real multn = ( (phys_bc_type[5] == ERF_BC::slip_wall ) ||
118  (phys_bc_type[5] == ERF_BC::symmetry ) ) ? -1. : 1.;
119  Real multt = (phys_bc_type[5] == ERF_BC::no_slip_wall) ? -1. : 1.;
120  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
121  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
122  {
123  vel_arr(i,j,khi+1,0) = multt*vel_arr(i,j,khi,0); // u
124  vel_arr(i,j,khi+1,1) = multt*vel_arr(i,j,khi,1); // v
125  vel_arr(i,j,khi+1,2) = multn*vel_arr(i,j,khi,2); // w
126  });
127  }
128  } // !periodic
129  } // MFIter
130 
131  // Impose periodicity again
132  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
133  } // lev
134 }
@ no_slip_wall

◆ FillCoarsePatch()

void ERF::FillCoarsePatch ( int  lev,
amrex::Real  time 
)
private
22 {
23  BL_PROFILE_VAR("FillCoarsePatch()",FillCoarsePatch);
24  AMREX_ASSERT(lev > 0);
25 
26  //
27  //****************************************************************************************************************
28  // First fill velocities and density at the COARSE level so we can convert velocity to momenta at the COARSE level
29  //****************************************************************************************************************
30  //
31  bool cons_only = false;
32  if (lev == 1) {
33  FillPatchCrseLevel(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
34  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
35  cons_only);
36  } else {
37  FillPatchFineLevel(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
38  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
39  {&vars_new[lev-1][Vars::cons],
40  &rU_new[lev-1], &rV_new[lev-1], &rW_new[lev-1]},
41  base_state[lev-1], base_state[lev-1],
42  false, cons_only);
43  }
44 
45  //
46  // ************************************************
47  // Convert velocity to momentum at the COARSE level
48  // ************************************************
49  //
50  VelocityToMomentum(vars_new[lev-1][Vars::xvel], IntVect{0},
51  vars_new[lev-1][Vars::yvel], IntVect{0},
52  vars_new[lev-1][Vars::zvel], IntVect{0},
53  vars_new[lev-1][Vars::cons],
54  rU_new[lev-1],
55  rV_new[lev-1],
56  rW_new[lev-1],
57  Geom(lev).Domain(),
59  //
60  // *****************************************************************
61  // Interpolate all cell-centered variables from coarse to fine level
62  // *****************************************************************
63  //
64  Interpolater* mapper_c = &cell_cons_interp;
65  Interpolater* mapper_f = &face_cons_linear_interp;
66 
67  //
68  //************************************************************************************************
69  // Interpolate cell-centered data from coarse to fine level
70  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
71  // ************************************************************************************************
72  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
73  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
74 
75  InterpFromCoarseLevel(vars_new[lev ][Vars::cons], ngvect_cons, IntVect(0,0,0),
76  vars_new[lev-1][Vars::cons], 0, 0, ncomp_cons,
77  geom[lev-1], geom[lev],
78  refRatio(lev-1), mapper_c, domain_bcs_type, BCVars::cons_bc);
79 
80  // ***************************************************************************
81  // Physical bc's for cell centered variables at domain boundary
82  // ***************************************************************************
84  0,ncomp_cons,ngvect_cons,time,BCVars::cons_bc,true);
85 
86  //
87  //************************************************************************************************
88  // Interpolate x-momentum from coarse to fine level
89  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
90  // ************************************************************************************************
91  //
92  InterpFromCoarseLevel(rU_new[lev], IntVect{0}, IntVect{0}, rU_new[lev-1], 0, 0, 1,
93  geom[lev-1], geom[lev],
94  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::xvel_bc);
95 
96  //
97  //************************************************************************************************
98  // Interpolate y-momentum from coarse to fine level
99  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
100  // ************************************************************************************************
101  //
102  InterpFromCoarseLevel(rV_new[lev], IntVect{0}, IntVect{0}, rV_new[lev-1], 0, 0, 1,
103  geom[lev-1], geom[lev],
104  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::yvel_bc);
105 
106  //************************************************************************************************
107  // Interpolate z-momentum from coarse to fine level
108  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
109  // ************************************************************************************************
110  InterpFromCoarseLevel(rW_new[lev], IntVect{0}, IntVect{0}, rW_new[lev-1], 0, 0, 1,
111  geom[lev-1], geom[lev],
112  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::zvel_bc);
113  //
114  // *********************************************************
115  // After interpolation of momentum, convert back to velocity
116  // *********************************************************
117  //
118  for (int which_lev = lev-1; which_lev <= lev; which_lev++)
119  {
121  vars_new[which_lev][Vars::yvel],
122  vars_new[which_lev][Vars::zvel],
123  vars_new[which_lev][Vars::cons],
124  rU_new[which_lev],
125  rV_new[which_lev],
126  rW_new[which_lev],
127  Geom(which_lev).Domain(),
129  }
130 
131  // ***************************************************************************
132  // Physical bc's at domain boundary
133  // ***************************************************************************
134  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
135 
137  ngvect_vels,time,BCVars::xvel_bc,true);
139  ngvect_vels,time,BCVars::yvel_bc,true);
141  ngvect_vels,time,BCVars::zvel_bc,true);
142 
143  // ***************************************************************************
144  // Since lev > 0 here we don't worry about m_r2d or wrfbdy data
145  // ***************************************************************************
146 }
void FillCoarsePatch(int lev, amrex::Real time)
Definition: ERF_FillCoarsePatch.cpp:21
Here is the call graph for this function:

◆ FillForecastStateMultiFabs()

void ERF::FillForecastStateMultiFabs ( const int  lev,
const std::string &  filename,
const std::unique_ptr< amrex::MultiFab > &  z_phys_nd,
amrex::Vector< amrex::Vector< amrex::MultiFab >> &  weather_forecast_data 
)
68 {
69 
70  Vector<Real> latvec_h, lonvec_h, xvec_h, yvec_h, zvec_h;
71  Vector<Real> rho_h, uvel_h, vvel_h, wvel_h, theta_h, qv_h, qc_h, qr_h;
72 
73  ReadCustomBinaryIC(filename, latvec_h, lonvec_h,
74  xvec_h, yvec_h, zvec_h, rho_h,
75  uvel_h, vvel_h, wvel_h,
76  theta_h, qv_h, qc_h, qr_h);
77 
78  Real zmax = *std::max_element(zvec_h.begin(), zvec_h.end());
79 
80  const auto prob_lo_erf = geom[lev].ProbLoArray();
81  const auto prob_hi_erf = geom[lev].ProbHiArray();
82  const auto dx_erf = geom[lev].CellSizeArray();
83 
84  if (prob_hi_erf[2] >= zmax) {
85  Abort("ERROR: the maximum z of the domain (" + std::to_string(prob_hi_erf[2]) +
86  ") should be less than the maximum z in the forecast data (" + std::to_string(zmax) +
87  "). Change geometry.prob_hi[2] in the inputs to be less than " + std::to_string(zmax) + "."
88  );
89  }
90 
91  if(prob_lo_erf[0] < xvec_h.front() + 4*dx_erf[0]){
92  amrex::Abort("The xlo value of the domain has to be greater than " + std::to_string(xvec_h.front() + 4*dx_erf[0]));
93  }
94  if(prob_hi_erf[0] > xvec_h.back() - 4*dx_erf[0]){
95  amrex::Abort("The xhi value of the domain has to be less than " + std::to_string(xvec_h.back() - 4*dx_erf[0]));
96  }
97  if(prob_lo_erf[1] < yvec_h.front() + 4*dx_erf[1]){
98  amrex::Abort("The ylo value of the domain has to be greater than " + std::to_string(yvec_h.front() + 4*dx_erf[1]));
99  }
100  if(prob_hi_erf[1] > yvec_h.back() - 4*dx_erf[1]){
101  amrex::Abort("The yhi value of the domain has to be less than " + std::to_string(yvec_h.back() - 4*dx_erf[1]));
102  }
103 
104 
105  int nx = xvec_h.size();
106  int ny = yvec_h.size();
107  int nz = zvec_h.size();
108 
109  amrex::Real dxvec = (xvec_h[nx-1]-xvec_h[0])/(nx-1);
110  amrex::Real dyvec = (yvec_h[ny-1]-yvec_h[0])/(ny-1);
111 
112  amrex::Gpu::DeviceVector<Real> latvec_d(nx*ny), lonvec_d(nx*ny), zvec_d(nz);
113  amrex::Gpu::DeviceVector<Real> xvec_d(nx*ny*nz), yvec_d(nx*ny*nz);
114  amrex::Gpu::DeviceVector<Real> rho_d(nx*ny*nz), uvel_d(nx*ny*nz), vvel_d(nx*ny*nz), wvel_d(nx*ny*nz),
115  theta_d(nx*ny*nz), qv_d(nx*ny*nz), qc_d(nx*ny*nz), qr_d(nx*ny*nz);
116 
117  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, latvec_h.begin(), latvec_h.end(), latvec_d.begin());
118  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, lonvec_h.begin(), lonvec_h.end(), lonvec_d.begin());
119 
120  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, xvec_h.begin(), xvec_h.end(), xvec_d.begin());
121  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, yvec_h.begin(), yvec_h.end(), yvec_d.begin());
122  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, zvec_h.begin(), zvec_h.end(), zvec_d.begin());
123  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, rho_h.begin(), rho_h.end(), rho_d.begin());
124  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, theta_h.begin(), theta_h.end(), theta_d.begin());
125  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, uvel_h.begin(), uvel_h.end(), uvel_d.begin());
126  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, vvel_h.begin(), vvel_h.end(), vvel_d.begin());
127  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, wvel_h.begin(), wvel_h.end(), wvel_d.begin());
128  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, qv_h.begin(), qv_h.end(), qv_d.begin());
129  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, qc_h.begin(), qc_h.end(), qc_d.begin());
130  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, qr_h.begin(), qr_h.end(), qr_d.begin());
131 
132  amrex::Gpu::streamSynchronize();
133 
134  Real* latvec_d_ptr = latvec_d.data();
135  Real* lonvec_d_ptr = lonvec_d.data();
136  Real* xvec_d_ptr = xvec_d.data();
137  Real* yvec_d_ptr = yvec_d.data();
138  Real* zvec_d_ptr = zvec_d.data();
139  Real* rho_d_ptr = rho_d.data();
140  Real* uvel_d_ptr = uvel_d.data();
141  Real* vvel_d_ptr = vvel_d.data();
142  Real* wvel_d_ptr = wvel_d.data();
143  Real* theta_d_ptr = theta_d.data();
144  Real* qv_d_ptr = qv_d.data();
145  Real* qc_d_ptr = qc_d.data();
146  Real* qr_d_ptr = qr_d.data();
147 
148  MultiFab& erf_mf_cons = forecast_state[lev][Vars::cons];
149  MultiFab& erf_mf_xvel = forecast_state[lev][Vars::xvel];
150  MultiFab& erf_mf_yvel = forecast_state[lev][Vars::yvel];
151  MultiFab& erf_mf_zvel = forecast_state[lev][Vars::zvel];
152  MultiFab& erf_mf_latlon = forecast_state[lev][4];
153 
154  erf_mf_cons.setVal(0.0);
155  erf_mf_xvel.setVal(0.0);
156  erf_mf_yvel.setVal(0.0);
157  erf_mf_zvel.setVal(0.0);
158  erf_mf_latlon.setVal(0.0);
159 
160  // Interpolate the data on to the ERF mesh
161 
162  for (MFIter mfi(erf_mf_cons); mfi.isValid(); ++mfi) {
163  const auto z_arr = (a_z_phys_nd) ? a_z_phys_nd->const_array(mfi) :
164  Array4<const Real> {};
165  const Array4<Real> &fine_cons_arr = erf_mf_cons.array(mfi);
166  const Array4<Real> &fine_xvel_arr = erf_mf_xvel.array(mfi);
167  const Array4<Real> &fine_yvel_arr = erf_mf_yvel.array(mfi);
168  const Array4<Real> &fine_zvel_arr = erf_mf_zvel.array(mfi);
169  const Array4<Real> &fine_latlon_arr = erf_mf_latlon.array(mfi);
170 
171 
172  const Box& gbx = mfi.growntilebox(); // tilebox + ghost cells
173 
174  const Box &gtbx = mfi.tilebox(IntVect(1,0,0));
175  const Box &gtby = mfi.tilebox(IntVect(0,1,0));
176  const Box &gtbz = mfi.tilebox(IntVect(0,0,1));
177  const auto prob_lo = geom[lev].ProbLoArray();
178  const auto dx = geom[lev].CellSizeArray();
179  //const Box &gtbz = mfi.tilebox(IntVect(0,0,1));
180 
181  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
182  // Geometry (note we must include these here to get the data on device)
183  const Real x = prob_lo[0] + (i + 0.5) * dx[0];
184  const Real y = prob_lo[1] + (j + 0.5) * dx[1];
185  //const Real z = prob_lo[2] + (k + 0.5) * dx[2];
186  const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
187 
188  // First interpolate where the weather data is available from
189  Real tmp_rho, tmp_theta, tmp_qv, tmp_qc, tmp_qr, tmp_lat, tmp_lon;
190  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
191  dxvec, dyvec,
192  nx, ny, nz,
193  x, y, z,
194  rho_d_ptr, tmp_rho);
195 
196  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
197  dxvec, dyvec,
198  nx, ny, nz,
199  x, y, z,
200  theta_d_ptr, tmp_theta);
201 
202  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
203  dxvec, dyvec,
204  nx, ny, nz,
205  x, y, z,
206  qv_d_ptr, tmp_qv);
207 
208  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
209  dxvec, dyvec,
210  nx, ny, nz,
211  x, y, z,
212  qc_d_ptr, tmp_qc);
213 
214  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
215  dxvec, dyvec,
216  nx, ny, nz,
217  x, y, z,
218  qr_d_ptr, tmp_qr);
219 
220  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
221  dxvec, dyvec,
222  nx, ny, 1,
223  x, y, 0.0,
224  latvec_d_ptr, tmp_lat);
225 
226  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
227  dxvec, dyvec,
228  nx, ny, 1,
229  x, y, 0.0,
230  lonvec_d_ptr, tmp_lon);
231 
232  fine_cons_arr(i,j,k,Rho_comp) = tmp_rho;
233  fine_latlon_arr(i,j,k,0) = tmp_lat;
234  fine_latlon_arr(i,j,k,1) = tmp_lon;
235  });
236 
237  ParallelFor(gtbx, gtby, gtbz,
238  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
239  // Physical location of the fine node
240  Real x = prob_lo_erf[0] + i * dx_erf[0];
241  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
242  //Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
243  const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
244 
245  Real tmp_uvel;
246  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
247  dxvec, dyvec,
248  nx, ny, nz,
249  x, y, z,
250  uvel_d_ptr, tmp_uvel);
251 
252  fine_xvel_arr(i, j, k, 0) = tmp_uvel;
253  },
254  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
255  // Physical location of the fine node
256  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
257  Real y = prob_lo_erf[1] + j * dx_erf[1];
258  //Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
259  const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
260 
261  Real tmp_vvel;
262  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
263  dxvec, dyvec,
264  nx, ny, nz,
265  x, y, z,
266  vvel_d_ptr, tmp_vvel);
267 
268  fine_yvel_arr(i, j, k, 0) = tmp_vvel;
269  },
270  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
271  // Physical location of the fine node
272  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
273  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
274  Real z = prob_lo_erf[2] + k * dx_erf[2];
275  //const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
276 
277  Real tmp_wvel;
278  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
279  dxvec, dyvec,
280  nx, ny, nz,
281  x, y, z,
282  wvel_d_ptr, tmp_wvel);
283 
284  fine_zvel_arr(i, j, k, 0) = tmp_wvel;
285  });
286  }
287 
288  /*Vector<std::string> varnames = {
289  "rho", "uvel", "vvel", "wvel", "theta", "qv", "qc", "qr"
290  }; // Customize variable names
291 
292  Vector<std::string> varnames_cons = {
293  "rho", "rhotheta", "ke", "sc", "rhoqv", "rhoqc", "rhoqr"
294  }; // Customize variable names
295 
296  Vector<std::string> varnames_plot_mf = {
297  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel", "latitude", "longitude"
298  }; // Customize variable names
299 
300  const Real time = 0.0;
301 
302  std::string pltname = "plt_interp";
303 
304  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
305  10, 0);
306 
307  plot_mf.setVal(0.0);
308 
309  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
310  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
311  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
312  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
313  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
314  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
315  const Array4<Real> &erf_mf_latlon_arr = erf_mf_latlon.array(mfi);
316 
317  const Box& bx = mfi.validbox();
318 
319  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
320  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
321  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
322  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
323  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
324  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
325 
326  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
327  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
328  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
329 
330  plot_mf_arr(i,j,k,8) = erf_mf_latlon_arr(i,j,k,0);
331  plot_mf_arr(i,j,k,9) = erf_mf_latlon_arr(i,j,k,1);
332  });
333  }
334 
335 
336  WriteSingleLevelPlotfile(
337  pltname,
338  plot_mf,
339  varnames_plot_mf,
340  geom[0],
341  time,
342  0 // level
343  );*/
344 }
AMREX_FORCE_INLINE AMREX_GPU_HOST_DEVICE void bilinear_interpolation(const amrex::Real *xvec, const amrex::Real *yvec, const amrex::Real *zvec, const amrex::Real dxvec, const amrex::Real dyvec, const int nx, const int ny, const int nz, const amrex::Real x, const amrex::Real y, const amrex::Real z, const amrex::Real *varvec, amrex::Real &tmp_var)
Definition: ERF_Interpolation_Bilinear.H:23
void ReadCustomBinaryIC(const std::string filename, amrex::Vector< amrex::Real > &latvec_h, amrex::Vector< amrex::Real > &lonvec_h, amrex::Vector< amrex::Real > &xvec_h, amrex::Vector< amrex::Real > &yvec_h, amrex::Vector< amrex::Real > &zvec_h, amrex::Vector< amrex::Real > &rho_h, amrex::Vector< amrex::Real > &uvel_h, amrex::Vector< amrex::Real > &vvel_h, amrex::Vector< amrex::Real > &wvel_h, amrex::Vector< amrex::Real > &theta_h, amrex::Vector< amrex::Real > &qv_h, amrex::Vector< amrex::Real > &qc_h, amrex::Vector< amrex::Real > &qr_h)
Definition: ERF_ReadCustomBinaryIC.H:12
Here is the call graph for this function:

◆ FillIntermediatePatch()

void ERF::FillIntermediatePatch ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
int  ng_cons,
int  ng_vel,
bool  cons_only,
int  icomp_cons,
int  ncomp_cons 
)
private
33 {
34  BL_PROFILE_VAR("FillIntermediatePatch()",FillIntermediatePatch);
35  Interpolater* mapper;
36 
37  PhysBCFunctNoOp null_bc;
38 
39  //
40  // ***************************************************************************
41  // The first thing we do is interpolate the momenta on the "valid" faces of
42  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
43  // will not be over-written by interpolation below because the FillPatch
44  // operators see these as valid faces. But we must have these interpolated
45  // values in the fine data before we call FillPatchTwoLevels.
46  //
47  // Also -- note that we might be filling values by interpolation at physical boundaries
48  // here but that's ok because we will overwrite those values when we impose
49  // the physical bc's below
50  // ***************************************************************************
51  if (lev>0) {
52  if (cf_set_width > 0) {
53  // We note that mfs_vel[Vars::cons] and mfs_mom[Vars::cons] are in fact the same pointer
54  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
55  }
56  if ( !cons_only && (cf_set_width >= 0) ) {
57  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
58  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
59  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
60  }
61  }
62 
63  // amrex::Print() << "LEVEL " << lev << " CONS ONLY " << cons_only <<
64  // " ICOMP NCOMP " << icomp_cons << " " << ncomp_cons << " NGHOST " << ng_cons << std::endl;
65 
66  if (!cons_only) {
67  AMREX_ALWAYS_ASSERT(mfs_mom.size() == IntVars::NumTypes);
68  AMREX_ALWAYS_ASSERT(mfs_vel.size() == Vars::NumTypes);
69  }
70 
71  // Enforce no penetration for thin immersed body
72  if (!cons_only) {
73  // Enforce no penetration for thin immersed body
74  if (xflux_imask[lev]) {
75  ApplyMask(*mfs_mom[IntVars::xmom], *xflux_imask[lev]);
76  }
77  if (yflux_imask[lev]) {
78  ApplyMask(*mfs_mom[IntVars::ymom], *yflux_imask[lev]);
79  }
80  if (zflux_imask[lev]) {
81  ApplyMask(*mfs_mom[IntVars::zmom], *zflux_imask[lev]);
82  }
83  }
84 
85  //
86  // We now start working on conserved quantities + VELOCITY
87  //
88  if (lev == 0)
89  {
90  // We don't do anything here because we will call the physbcs routines below,
91  // which calls FillBoundary and fills other domain boundary conditions
92  // Physical boundaries will be filled below
93 
94  if (!cons_only)
95  {
96  // ***************************************************************************
97  // We always come in to this call with updated momenta but we need to create updated velocity
98  // in order to impose the rest of the bc's
99  // ***************************************************************************
100  // This only fills VALID region of velocity
101  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
102  *mfs_vel[Vars::cons],
103  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
104  Geom(lev).Domain(), domain_bcs_type);
105  }
106  }
107  else
108  {
109  //
110  // We must fill a temporary then copy it back so we don't double add/subtract
111  //
112  MultiFab mf(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
113  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
114  //
115  // Set all components to 1.789e19, then copy just the density from *mfs_vel[Vars::cons]
116  //
117  mf.setVal(1.789e19);
118  MultiFab::Copy(mf,*mfs_vel[Vars::cons],Rho_comp,Rho_comp,1,mf.nGrowVect());
119 
120  Vector<MultiFab*> fmf = {mfs_vel[Vars::cons],mfs_vel[Vars::cons]};
121  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
122  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
123  Vector<Real> ftime = {time,time};
124 
125  if (interpolation_type == StateInterpType::Perturbational)
126  {
127  if (icomp_cons+ncomp_cons > 1)
128  {
129  // Divide (rho theta) by rho to get theta
130  MultiFab::Divide(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
131 
132  // Subtract theta_0 from theta
133  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
134 
135  if (!amrex::almostEqual(time,ctime[1])) {
136  MultiFab::Divide(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
137  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
138  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
139  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
140  }
141  if (!amrex::almostEqual(time,ctime[0])) {
142  MultiFab::Divide(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
143  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
144  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
145  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
146  }
147  }
148 
149  // Subtract rho_0 from rho before we interpolate -- note we only subtract
150  // on valid region of mf since the ghost cells will be filled below
151  if (icomp_cons == 0)
152  {
153  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{0});
154 
155  if (!amrex::almostEqual(time,ctime[1])) {
156  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
157  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
158  }
159  if (!amrex::almostEqual(time,ctime[0])) {
160  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
161  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
162  }
163  }
164  } // interpolation_type == StateInterpType::Perturbational
165 
166  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
167  mapper = &cell_cons_interp;
168  FillPatchTwoLevels(mf, IntVect{ng_cons}, IntVect(0,0,0),
169  time, cmf, ctime, fmf, ftime,
170  icomp_cons, icomp_cons, ncomp_cons, geom[lev-1], geom[lev],
171  refRatio(lev-1), mapper, domain_bcs_type,
172  icomp_cons);
173 
174  if (interpolation_type == StateInterpType::Perturbational)
175  {
176  if (icomp_cons == 0)
177  {
178  // Restore the coarse values to what they were
179  if (!amrex::almostEqual(time,ctime[1])) {
180  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
181  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
182  }
183  if (!amrex::almostEqual(time,ctime[0])) {
184  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
185  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
186  }
187 
188  // Set values in the cells outside the domain boundary so that we can do the Add
189  // without worrying about uninitialized values outside the domain -- these
190  // will be filled in the physbcs call
191  mf.setDomainBndry(1.234e20,Rho_comp,1,geom[lev]);
192 
193  // Add rho_0 back to rho after we interpolate -- on all the valid + ghost region
194  MultiFab::Add(mf, base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{ng_cons});
195  }
196 
197  if (icomp_cons+ncomp_cons > 1)
198  {
199  // Add theta_0 to theta
200  if (!amrex::almostEqual(time,ctime[1])) {
201  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
202  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
203  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
204  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
205  }
206  if (!amrex::almostEqual(time,ctime[0])) {
207  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
208  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
209  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
210  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
211  }
212 
213  // Multiply theta by rho to get (rho theta)
214  MultiFab::Multiply(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
215 
216  // Add theta_0 to theta
217  MultiFab::Add(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
218 
219  // Add theta_0 back to theta
220  MultiFab::Add(mf,base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{ng_cons});
221 
222  // Multiply (theta) by rho to get (rho theta)
223  MultiFab::Multiply(mf,mf,Rho_comp,RhoTheta_comp,1,IntVect{ng_cons});
224  }
225  } // interpolation_type == StateInterpType::Perturbational
226 
227  // Impose physical bc's on fine data (note time and 0 are not used)
228  // Note that we do this after the FillPatch because imposing physical bc's on fine ghost
229  // cells that need to be filled from coarse requires that we have done the interpolation first
230  bool do_fb = true; bool do_terrain_adjustment = false;
231  (*physbcs_cons[lev])(mf,*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
232  icomp_cons,ncomp_cons,IntVect{ng_cons},time,BCVars::cons_bc,
233  do_fb, do_terrain_adjustment);
234 
235  // Make sure to only copy back the components we worked on
236  MultiFab::Copy(*mfs_vel[Vars::cons],mf,icomp_cons,icomp_cons,ncomp_cons,IntVect{ng_cons});
237 
238  // *****************************************************************************************
239 
240  if (!cons_only)
241  {
242  // ***************************************************************************
243  // We always come in to this call with updated momenta but we need to create updated velocity
244  // in order to impose the rest of the bc's
245  // ***************************************************************************
246  // This only fills VALID region of velocity
247  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
248  *mfs_vel[Vars::cons],
249  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
250  Geom(lev).Domain(), domain_bcs_type);
251 
252  mapper = &face_cons_linear_interp;
253 
254  //
255  // NOTE: All interpolation here happens on velocities not momenta;
256  // note we only do the interpolation and FillBoundary here,
257  // physical bc's are imposed later
258  //
259  // NOTE: This will only fill velocity from coarse grid *outside* the fine grids
260  // unlike the FillSet calls above which filled momenta on the coarse/fine bdy
261  //
262 
263  MultiFab& mfu = *mfs_vel[Vars::xvel];
264 
265  fmf = {&mfu,&mfu};
266  cmf = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
267 
268  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
269  FillPatchTwoLevels(mfu, IntVect{ng_vel}, IntVect(0,0,0),
270  time, cmf, ctime, fmf, ftime,
271  0, 0, 1, geom[lev-1], geom[lev],
272  refRatio(lev-1), mapper, domain_bcs_type,
274 
275  // *****************************************************************************************
276 
277  MultiFab& mfv = *mfs_vel[Vars::yvel];
278 
279  fmf = {&mfv,&mfv};
280  cmf = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
281 
282  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
283  FillPatchTwoLevels(mfv, IntVect{ng_vel}, IntVect(0,0,0),
284  time, cmf, ctime, fmf, ftime,
285  0, 0, 1, geom[lev-1], geom[lev],
286  refRatio(lev-1), mapper, domain_bcs_type,
288 
289  // *****************************************************************************************
290 
291  MultiFab& mfw = *mfs_vel[Vars::zvel];
292 
293  fmf = {&mfw,&mfw};
294  cmf = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
295 
296  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
297  FillPatchTwoLevels(mfw, IntVect{ng_vel}, IntVect(0,0,0),
298  time, cmf, ctime, fmf, ftime,
299  0, 0, 1, geom[lev-1], geom[lev],
300  refRatio(lev-1), mapper, domain_bcs_type,
302  } // !cons_only
303  } // lev > 0
304 
305  // ***************************************************************************
306  // Physical bc's at domain boundary
307  // ***************************************************************************
308  IntVect ngvect_cons = IntVect(ng_cons,ng_cons,ng_cons);
309  IntVect ngvect_vels = IntVect(ng_vel ,ng_vel ,ng_vel);
310 
311  bool do_fb = true;
312 
313 #ifdef ERF_USE_NETCDF
314  // We call this here because it is an ERF routine
315  if (solverChoice.use_real_bcs && (lev==0)) {
317  fill_from_realbdy_upwind(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
318  } else {
319  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
320  }
321  do_fb = false;
322  }
323 #endif
324 
325  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
326 
327  // We call this even if use_real_bcs is true because these will fill the vertical bcs
328  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
329  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
330  if (!cons_only) {
331  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
332  ngvect_vels,time,BCVars::xvel_bc, do_fb);
333  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
334  ngvect_vels,time,BCVars::yvel_bc, do_fb);
335  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
336  ngvect_vels,time,BCVars::zvel_bc, do_fb);
337  }
338  // ***************************************************************************
339 
340  // We always come in to this call with momenta so we need to leave with momenta!
341  // We need to make sure we convert back on all ghost cells/faces because this is
342  // how velocity from fine-fine copies (as well as physical and interpolated bcs) will be filled
343  if (!cons_only)
344  {
345  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::xvel]->nGrowVect();
346  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::yvel]->nGrowVect();
347  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : mfs_vel[Vars::zvel]->nGrowVect();
348 
349  VelocityToMomentum(*mfs_vel[Vars::xvel], ngu,
350  *mfs_vel[Vars::yvel], ngv,
351  *mfs_vel[Vars::zvel], ngw,
352  *mfs_vel[Vars::cons],
353  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
354  Geom(lev).Domain(),
356  }
357 
358  // NOTE: There are not FillBoundary calls here for the following reasons:
359  // Removal of the FillBoundary (FB) calls has bee completed for the following reasons:
360  //
361  // 1. physbc_cons is called before VelocityToMomentum and a FB is completed in that functor.
362  // Therefore, the conserved CC vars have their inter-rank ghost cells filled and then their
363  // domain ghost cells filled from the BC operations. We should not call FB on this MF again.
364  //
365  // 2. physbc_u/v/w is also called before VelocityToMomentum and a FB is completed those functors.
366  // Furthermore, VelocityToMomentum operates on a growntilebox so we exit that routine with momentum
367  // filled everywhere---i.e., physbc_u/v/w fills velocity ghost cells (inter-rank and domain)
368  // and then V2M does the conversion to momenta everywhere; so there is again no need to do a FB on momenta.
369 }
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:408
void fill_from_bndryregs(const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
Definition: ERF_BoundaryConditionsBndryReg.cpp:13
void FillIntermediatePatch(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
Definition: ERF_FillIntermediatePatch.cpp:28
@ NumTypes
Definition: ERF_IndexDefines.H:162
static bool upwind_real_bcs
Definition: ERF_DataStruct.H:979
static bool use_real_bcs
Definition: ERF_DataStruct.H:976
Here is the call graph for this function:

◆ FillPatchCrseLevel()

void ERF::FillPatchCrseLevel ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
bool  cons_only = false 
)
private
285 {
286  BL_PROFILE_VAR("ERF::FillPatchCrseLevel()",ERF_FillPatchCrseLevel);
287 
288  AMREX_ALWAYS_ASSERT(lev == 0);
289 
290  IntVect ngvect_cons = mfs_vel[Vars::cons]->nGrowVect();
291  IntVect ngvect_vels = mfs_vel[Vars::xvel]->nGrowVect();
292 
293  Vector<Real> ftime = {t_old[lev], t_new[lev]};
294 
295  //
296  // Below we call FillPatchSingleLevel which does NOT fill ghost cells outside the domain
297  //
298 
299  Vector<MultiFab*> fmf;
300  Vector<MultiFab*> fmf_u;
301  Vector<MultiFab*> fmf_v;
302  Vector<MultiFab*> fmf_w;
303 
304  if (amrex::almostEqual(time,ftime[0])) {
305  fmf = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::cons]};
306  } else if (amrex::almostEqual(time,ftime[1])) {
307  fmf = {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::cons]};
308  } else {
309  fmf = {&vars_old[lev][Vars::cons], &vars_new[lev][Vars::cons]};
310  }
311 
312  const int ncomp = mfs_vel[Vars::cons]->nComp();
313 
314  FillPatchSingleLevel(*mfs_vel[Vars::cons], ngvect_cons, time, fmf, IntVect(0,0,0), ftime,
315  0, 0, ncomp, geom[lev]);
316 
317  if (!cons_only) {
318  if (amrex::almostEqual(time,ftime[0])) {
319  fmf_u = {&vars_old[lev][Vars::xvel], &vars_old[lev][Vars::xvel]};
320  fmf_v = {&vars_old[lev][Vars::yvel], &vars_old[lev][Vars::yvel]};
321  fmf_w = {&vars_old[lev][Vars::zvel], &vars_old[lev][Vars::zvel]};
322  } else if (amrex::almostEqual(time,ftime[1])) {
323  fmf_u = {&vars_new[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
324  fmf_v = {&vars_new[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
325  fmf_w = {&vars_new[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
326  } else {
327  fmf_u = {&vars_old[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
328  fmf_v = {&vars_old[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
329  fmf_w = {&vars_old[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
330  }
331  FillPatchSingleLevel(*mfs_vel[Vars::xvel], ngvect_vels, time, fmf_u,
332  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
333 
334  FillPatchSingleLevel(*mfs_vel[Vars::yvel], ngvect_vels, time, fmf_v,
335  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
336 
337  FillPatchSingleLevel(*mfs_vel[Vars::zvel], ngvect_vels, time, fmf_w,
338  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
339  } // !cons_only
340 
341  // ***************************************************************************
342  // Physical bc's at domain boundary
343  // ***************************************************************************
344  int icomp_cons = 0;
345  int ncomp_cons = mfs_vel[Vars::cons]->nComp();
346 
347  bool do_fb = true;
348 
349 #ifdef ERF_USE_NETCDF
350  // We call this here because it is an ERF routine
351  if(solverChoice.use_real_bcs && (lev==0)) {
353  fill_from_realbdy_upwind(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
354  } else {
355  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
356  }
357  do_fb = false;
358  }
359 #endif
360 
361  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
362 
363  // We call this even if use_real_bcs is true because these will fill the vertical bcs
364  // Note that we call FillBoundary inside the physbcs call
365  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
366  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
367  if (!cons_only) {
368  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
369  ngvect_vels,time,BCVars::xvel_bc, do_fb);
370  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
371  ngvect_vels,time,BCVars::yvel_bc, do_fb);
372  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
373  ngvect_vels,time,BCVars::zvel_bc, do_fb);
374  }
375 }

◆ FillPatchFineLevel()

void ERF::FillPatchFineLevel ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
const amrex::MultiFab &  old_base_state,
const amrex::MultiFab &  new_base_state,
bool  fillset = true,
bool  cons_only = false 
)
private
26 {
27  BL_PROFILE_VAR("ERF::FillPatchFineLevel()",ERF_FillPatchFineLevel);
28 
29  AMREX_ALWAYS_ASSERT(lev > 0);
30 
31  Interpolater* mapper = nullptr;
32 
33  PhysBCFunctNoOp null_bc;
34 
35  //
36  // ***************************************************************************
37  // The first thing we do is interpolate the momenta on the "valid" faces of
38  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
39  // will not be over-written below because the FillPatch operators see these as
40  // valid faces.
41  //
42  // Note that we interpolate momentum not velocity, but all the other boundary
43  // conditions are imposed on velocity, so we convert to momentum here then
44  // convert back.
45  // ***************************************************************************
46  if (fillset) {
47  if (cf_set_width > 0) {
48  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
49  }
50  if (cf_set_width >= 0 && !cons_only) {
51  VelocityToMomentum(*mfs_vel[Vars::xvel], IntVect{0},
52  *mfs_vel[Vars::yvel], IntVect{0},
53  *mfs_vel[Vars::zvel], IntVect{0},
54  *mfs_vel[Vars::cons],
55  *mfs_mom[IntVars::xmom],
56  *mfs_mom[IntVars::ymom],
57  *mfs_mom[IntVars::zmom],
58  Geom(lev).Domain(),
60 
61  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
62  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
63  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
64 
65  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
66  *mfs_vel[Vars::cons],
67  *mfs_mom[IntVars::xmom],
68  *mfs_mom[IntVars::ymom],
69  *mfs_mom[IntVars::zmom],
70  Geom(lev).Domain(),
72  }
73  }
74 
75  IntVect ngvect_cons = mfs_vel[Vars::cons]->nGrowVect();
76  IntVect ngvect_vels = mfs_vel[Vars::xvel]->nGrowVect();
77 
78  Vector<Real> ftime = {t_old[lev ], t_new[lev ]};
79  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
80 
81  amrex::Real small_dt = 1.e-8 * (ftime[1] - ftime[0]);
82 
83  Vector<MultiFab*> fmf;
84  if ( amrex::almostEqual(time,ftime[0]) || (time-ftime[0]) < small_dt ) {
85  fmf = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::cons]};
86  } else if (amrex::almostEqual(time,ftime[1])) {
87  fmf = {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::cons]};
88  } else {
89  fmf = {&vars_old[lev][Vars::cons], &vars_new[lev][Vars::cons]};
90  }
91  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
92 
93  // We must fill a temporary then copy it back so we don't double add/subtract
94  MultiFab mf_c(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
95  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
96 
97  mapper = &cell_cons_interp;
98 
99  if (interpolation_type == StateInterpType::Perturbational)
100  {
101  // Divide (rho theta) by rho to get theta (before we subtract rho0 from rho!)
102  if (!amrex::almostEqual(time,ctime[1])) {
103  MultiFab::Divide(vars_old[lev-1][Vars::cons],vars_old[lev-1][Vars::cons],
104  Rho_comp,RhoTheta_comp,1,ngvect_cons);
105  MultiFab::Subtract(vars_old[lev-1][Vars::cons],base_state[lev-1],
106  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
107  MultiFab::Subtract(vars_old[lev-1][Vars::cons],base_state[lev-1],
108  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
109  }
110  if (!amrex::almostEqual(time,ctime[0])) {
111  MultiFab::Divide(vars_new[lev-1][Vars::cons],vars_new[lev-1][Vars::cons],
112  Rho_comp,RhoTheta_comp,1,ngvect_cons);
113  MultiFab::Subtract(vars_new[lev-1][Vars::cons],base_state[lev-1],
114  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
115  MultiFab::Subtract(vars_new[lev-1][Vars::cons],base_state[lev-1],
116  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
117  }
118 
119  if (!amrex::almostEqual(time,ftime[1])) {
120  MultiFab::Divide(vars_old[lev ][Vars::cons],vars_old[lev ][Vars::cons],
121  Rho_comp,RhoTheta_comp,1,IntVect{0});
122  MultiFab::Subtract(vars_old[lev ][Vars::cons],old_base_state,
123  BaseState::r0_comp,Rho_comp,1,IntVect{0});
124  MultiFab::Subtract(vars_old[lev ][Vars::cons],old_base_state,
125  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
126  }
127  if (!amrex::almostEqual(time,ftime[0])) {
128  MultiFab::Divide(vars_new[lev ][Vars::cons],vars_new[lev ][Vars::cons],
129  Rho_comp,RhoTheta_comp,1,IntVect{0});
130  MultiFab::Subtract(vars_new[lev ][Vars::cons],old_base_state,
131  BaseState::r0_comp,Rho_comp,1,IntVect{0});
132  MultiFab::Subtract(vars_new[lev ][Vars::cons],old_base_state,
133  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
134  }
135  }
136 
137  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
138  FillPatchTwoLevels(mf_c, ngvect_cons, IntVect(0,0,0),
139  time, cmf, ctime, fmf, ftime,
140  0, 0, mf_c.nComp(), geom[lev-1], geom[lev],
141  refRatio(lev-1), mapper, domain_bcs_type,
143 
144  if (interpolation_type == StateInterpType::Perturbational)
145  {
146  // Restore the coarse values to what they were
147  if (!amrex::almostEqual(time,ctime[1])) {
148  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
149  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
150  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
151  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
152  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
153  Rho_comp,RhoTheta_comp,1,ngvect_cons);
154  }
155  if (!amrex::almostEqual(time,ctime[0])) {
156  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
157  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
158  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
159  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
160  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
161  Rho_comp,RhoTheta_comp,1,ngvect_cons);
162  }
163 
164  if (!amrex::almostEqual(time,ftime[1])) {
165  MultiFab::Add(vars_old[lev][Vars::cons],base_state[lev ],BaseState::r0_comp,Rho_comp,1,ngvect_cons);
166  MultiFab::Add(vars_old[lev][Vars::cons],base_state[lev ],BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
167  MultiFab::Multiply(vars_old[lev][Vars::cons], vars_old[lev][Vars::cons],
168  Rho_comp,RhoTheta_comp,1,ngvect_cons);
169  }
170  if (!amrex::almostEqual(time,ftime[0])) {
171  MultiFab::Add(vars_new[lev][Vars::cons], base_state[lev],BaseState::r0_comp,Rho_comp,1,ngvect_cons);
172  MultiFab::Add(vars_new[lev][Vars::cons], base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
173  MultiFab::Multiply(vars_new[lev][Vars::cons], vars_new[lev][Vars::cons],
174  Rho_comp,RhoTheta_comp,1,ngvect_cons);
175  }
176 
177  // Set values in the cells outside the domain boundary so that we can do the Add
178  // without worrying about uninitialized values outside the domain -- these
179  // will be filled in the physbcs call
180  mf_c.setDomainBndry(1.234e20,0,2,geom[lev]); // Do both rho and (rho theta) together
181 
182  // Add rho_0 back to rho and theta_0 back to theta
183  MultiFab::Add(mf_c, new_base_state,BaseState::r0_comp,Rho_comp,1,ngvect_cons);
184  MultiFab::Add(mf_c, new_base_state,BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
185 
186  // Multiply (theta) by rho to get (rho theta)
187  MultiFab::Multiply(mf_c,mf_c,Rho_comp,RhoTheta_comp,1,ngvect_cons);
188  }
189 
190  MultiFab::Copy(*mfs_vel[Vars::cons],mf_c,0,0,mf_c.nComp(),mf_c.nGrowVect());
191 
192  // ***************************************************************************************
193 
194  if (!cons_only)
195  {
196  mapper = &face_cons_linear_interp;
197 
198  MultiFab& mf_u = *mfs_vel[Vars::xvel];
199  MultiFab& mf_v = *mfs_vel[Vars::yvel];
200  MultiFab& mf_w = *mfs_vel[Vars::zvel];
201 
202  Vector<MultiFab*> fmf_u; Vector<MultiFab*> fmf_v; Vector<MultiFab*> fmf_w;
203  Vector<MultiFab*> cmf_u; Vector<MultiFab*> cmf_v; Vector<MultiFab*> cmf_w;
204 
205  // **********************************************************************
206 
207  if ( amrex::almostEqual(time,ftime[0]) || (time-ftime[0]) < small_dt ) {
208  fmf_u = {&vars_old[lev][Vars::xvel], &vars_old[lev][Vars::xvel]};
209  fmf_v = {&vars_old[lev][Vars::yvel], &vars_old[lev][Vars::yvel]};
210  fmf_w = {&vars_old[lev][Vars::zvel], &vars_old[lev][Vars::zvel]};
211  } else if ( amrex::almostEqual(time,ftime[1]) ) {
212  fmf_u = {&vars_new[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
213  fmf_v = {&vars_new[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
214  fmf_w = {&vars_new[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
215  } else {
216  fmf_u = {&vars_old[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
217  fmf_v = {&vars_old[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
218  fmf_w = {&vars_old[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
219  }
220  cmf_u = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
221  cmf_v = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
222  cmf_w = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
223 
224  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
225  FillPatchTwoLevels(mf_u, ngvect_vels, IntVect(0,0,0),
226  time, cmf_u, ctime, fmf_u, ftime,
227  0, 0, 1, geom[lev-1], geom[lev],
228  refRatio(lev-1), mapper, domain_bcs_type,
230 
231  FillPatchTwoLevels(mf_v, ngvect_vels, IntVect(0,0,0),
232  time, cmf_v, ctime, fmf_v, ftime,
233  0, 0, 1, geom[lev-1], geom[lev],
234  refRatio(lev-1), mapper, domain_bcs_type,
236 
237  // We put these here because these may be used in constructing omega outside the
238  // domain when fillpatching w
239  bool do_fb = true;
240  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
241  ngvect_vels,time,BCVars::xvel_bc, do_fb);
242  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
243  ngvect_vels,time,BCVars::yvel_bc, do_fb);
244 
245  // **********************************************************************
246 
247  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
248  FillPatchTwoLevels(mf_w, ngvect_vels, IntVect(0,0,0),
249  time, cmf_w, ctime, fmf_w, ftime,
250  0, 0, 1, geom[lev-1], geom[lev],
251  refRatio(lev-1), mapper, domain_bcs_type,
253  } // !cons_only
254 
255  // ***************************************************************************
256  // Physical bc's at domain boundary
257  // ***************************************************************************
258  int icomp_cons = 0;
259  int ncomp_cons = mfs_vel[Vars::cons]->nComp();
260 
261  bool do_fb = true;
262 
263  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
264 
265  // We call this even if use_real_bcs is true because these will fill the vertical bcs
266  // Note that we call FillBoundary inside the physbcs call
267  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
268  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
269  if (!cons_only) {
270  // Note that we need to fill u and v in the case of terrain because we will use
271  // these in the call of WFromOmega in lateral ghost cells of the fine grid
272  // (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
273  // ngvect_vels,time,BCVars::xvel_bc, do_fb);
274  // (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
275  // ngvect_vels,time,BCVars::yvel_bc, do_fb);
276  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
277  ngvect_vels,time,BCVars::zvel_bc, do_fb);
278  }
279 }
Here is the call graph for this function:

◆ get_eb()

eb_ const& ERF::get_eb ( int  lev) const
inlineprivatenoexcept
1628  {
1629  AMREX_ASSERT(lev >= 0 && lev < eb.size() && eb[lev] != nullptr);
1630  return *eb[lev];
1631  }

◆ get_projection_bc()

Array< LinOpBCType, AMREX_SPACEDIM > ERF::get_projection_bc ( amrex::Orientation::Side  side) const
noexcept
18 {
19  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> r;
20  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
21  if (geom[0].isPeriodic(dir)) {
22  r[dir] = LinOpBCType::Periodic;
23  } else {
24  auto bc_type = domain_bc_type[Orientation(dir,side)];
25  if (bc_type == "Outflow") {
26  r[dir] = LinOpBCType::Dirichlet;
27  } else
28  {
29  r[dir] = LinOpBCType::Neumann;
30  }
31  }
32  }
33  return r;
34 }
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
Definition: ERF.H:987

◆ getAdvFluxReg()

AMREX_FORCE_INLINE amrex::YAFluxRegister* ERF::getAdvFluxReg ( int  lev)
inlineprivate
1414  {
1415  return advflux_reg[lev];
1416  }

◆ getCPUTime()

static amrex::Real ERF::getCPUTime ( )
inlinestaticprivate
1506  {
1507  int numCores = amrex::ParallelDescriptor::NProcs();
1508 #ifdef _OPENMP
1509  numCores = numCores * omp_get_max_threads();
1510 #endif
1511 
1512  amrex::Real T =
1513  numCores * (amrex::ParallelDescriptor::second() - startCPUTime) +
1515 
1516  return T;
1517  }
static amrex::Real previousCPUTimeUsed
Definition: ERF.H:1502
static amrex::Real startCPUTime
Definition: ERF.H:1501
@ T
Definition: ERF_IndexDefines.H:110

◆ GotoNextLine()

void ERF::GotoNextLine ( std::istream &  is)
staticprivate

Utility to skip to next line in Header file input stream.

17 {
18  constexpr std::streamsize bl_ignore_max { 100000 };
19  is.ignore(bl_ignore_max, '\n');
20 }

◆ HurricaneTracker()

void ERF::HurricaneTracker ( int  lev,
amrex::Real  time,
const amrex::MultiFab &  U_new,
const amrex::MultiFab &  V_new,
const amrex::MultiFab &  W_new,
const amrex::Real  velmag_threshold,
amrex::TagBoxArray *  tags = nullptr 
)
639 {
640  static Vector<char> is_start;
641  if(is_start.empty()){
642  is_start.resize(max_level+1,1);
643  }
644  if(time==0.0){
645  HurricaneTrackerInitial(levc, U_new, V_new, W_new, velmag_threshold, tags);
646  is_start[levc] = 0;
647  } else {
648  HurricaneTrackerNotInitial(levc, tags);
649  }
650 }
void HurricaneTrackerNotInitial(int lev, amrex::TagBoxArray *tags=nullptr)
Definition: ERF_Tagging.cpp:601
void HurricaneTrackerInitial(int lev, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, amrex::TagBoxArray *tags=nullptr)
Definition: ERF_Tagging.cpp:502

◆ HurricaneTrackerInitial()

void ERF::HurricaneTrackerInitial ( int  lev,
const amrex::MultiFab &  U_new,
const amrex::MultiFab &  V_new,
const amrex::MultiFab &  W_new,
const amrex::Real  velmag_threshold,
amrex::TagBoxArray *  tags = nullptr 
)
508 {
509  const auto dx = geom[levc].CellSizeArray();
510  const auto prob_lo = geom[levc].ProbLoArray();
511 
512  const int ncomp = AMREX_SPACEDIM; // Number of components (3 for 3D)
513 
514  Gpu::DeviceVector<Real> d_coords(3, 0.0); // Initialize to -1
515  Real* d_coords_ptr = d_coords.data(); // Get pointer to device vector
516  Gpu::DeviceVector<int> d_found(1,0);
517  int* d_found_ptr = d_found.data();
518 
519  MultiFab mf_cc_vel(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
520  average_face_to_cellcenter(mf_cc_vel,0,{AMREX_D_DECL(&U_new,&V_new,&W_new)},0);
521 
522  // Loop through MultiFab using MFIter
523  for (MFIter mfi(mf_cc_vel); mfi.isValid(); ++mfi) {
524  const Box& box = mfi.validbox(); // Get the valid box for the current MFIter
525  const Array4<const Real>& vel_arr = mf_cc_vel.const_array(mfi); // Get the array for this MFIter
526 
527  // ParallelFor loop to check velocity magnitudes on the GPU
528  amrex::ParallelFor(box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
529  // Access velocity components using ncomp
530  Real magnitude = 0.0; // Initialize magnitude
531 
532  for (int comp = 0; comp < ncomp; ++comp) {
533  Real vel = vel_arr(i, j, k, comp); // Access the component for each (i, j, k)
534  magnitude += vel * vel; // Sum the square of the components
535  }
536 
537  magnitude = std::sqrt(magnitude)*3.6; // Calculate magnitude
538  Real x = prob_lo[0] + (i + 0.5) * dx[0];
539  Real y = prob_lo[1] + (j + 0.5) * dx[1];
540  Real z = prob_lo[2] + (k + 0.5) * dx[2];
541 
542  // Check if magnitude exceeds threshold
543  if (z < 2.0e3 && magnitude > velmag_threshold) {
544  // Use atomic operations to set found flag and store coordinates
545  Gpu::Atomic::Add(&d_found_ptr[0], 1); // Mark as found
546 
547  // Store coordinates
548  Gpu::Atomic::Add(&d_coords_ptr[0],x); // Store x index
549  Gpu::Atomic::Add(&d_coords_ptr[1],y); // Store x index
550  Gpu::Atomic::Add(&d_coords_ptr[2],z); // Store x index
551  }
552  });
553  }
554 
555  // Synchronize to ensure all threads complete their execution
556  amrex::Gpu::streamSynchronize(); // Wait for all GPU threads to finish
557 
558  Vector<int> h_found(1,0);
559  Gpu::copy(Gpu::deviceToHost, d_found.begin(), d_found.end(), h_found.begin());
560  ParallelAllReduce::Sum(h_found.data(),
561  h_found.size(),
562  ParallelContext::CommunicatorAll());
563 
564  Real eye_x, eye_y;
565  // Broadcast coordinates if found
566  if (h_found[0] > 0) {
567  Vector<Real> h_coords(3,-1e10);
568  Gpu::copy(Gpu::deviceToHost, d_coords.begin(), d_coords.end(), h_coords.begin());
569 
570  ParallelAllReduce::Sum(h_coords.data(),
571  h_coords.size(),
572  ParallelContext::CommunicatorAll());
573 
574  eye_x = h_coords[0]/h_found[0];
575  eye_y = h_coords[1]/h_found[0];
576 
577  Real rad_tag = 4e5*std::pow(2, max_level-1-levc);
578 
579  for (MFIter mfi(*tags); mfi.isValid(); ++mfi) {
580  TagBox& tag = (*tags)[mfi];
581  auto tag_arr = tag.array(); // Get device-accessible array
582 
583  const Box& tile_box = mfi.tilebox(); // The box for this tile
584 
585  ParallelFor(tile_box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
586  // Compute cell center coordinates
587  Real x = prob_lo[0] + (i + 0.5) * dx[0];
588  Real y = prob_lo[1] + (j + 0.5) * dx[1];
589 
590  Real dist = std::sqrt((x - eye_x)*(x - eye_x) + (y - eye_y)*(y - eye_y));
591 
592  if (dist < rad_tag) {
593  tag_arr(i,j,k) = TagBox::SET;
594  }
595  });
596  }
597  }
598 }

◆ HurricaneTrackerNotInitial()

void ERF::HurricaneTrackerNotInitial ( int  lev,
amrex::TagBoxArray *  tags = nullptr 
)
602 {
603  const auto dx = geom[levc].CellSizeArray();
604  const auto prob_lo = geom[levc].ProbLoArray();
605 
606  Real rad_tag = 4e5*std::pow(2, max_level-1-levc);
607  const auto& last = hurricane_eye_track_xy.back();
608  Real eye_x = last[0];
609  Real eye_y = last[1];
610 
611  for (MFIter mfi(*tags); mfi.isValid(); ++mfi) {
612  TagBox& tag = (*tags)[mfi];
613  auto tag_arr = tag.array(); // Get device-accessible array
614 
615  const Box& tile_box = mfi.tilebox(); // The box for this tile
616 
617  ParallelFor(tile_box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
618  // Compute cell center coordinates
619  Real x = prob_lo[0] + (i + 0.5) * dx[0];
620  Real y = prob_lo[1] + (j + 0.5) * dx[1];
621 
622  Real dist = std::sqrt((x - eye_x)*(x - eye_x) + (y - eye_y)*(y - eye_y));
623 
624  if (dist < rad_tag) {
625  tag_arr(i,j,k) = TagBox::SET;
626  }
627  });
628  }
629 }
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_xy
Definition: ERF.H:163

◆ ImposeBCsOnPhi()

void ERF::ImposeBCsOnPhi ( int  lev,
amrex::MultiFab &  phi,
const amrex::Box &  subdomain 
)

Impose bc's on the pressure that comes out of the solve

13 {
14  BL_PROFILE("ERF::ImposeBCsOnPhi()");
15 
16  auto const sub_lo = lbound(subdomain);
17  auto const sub_hi = ubound(subdomain);
18 
19  auto const dom_lo = lbound(geom[lev].Domain());
20  auto const dom_hi = ubound(geom[lev].Domain());
21 
22  phi.setBndry(1.e25);
23  phi.FillBoundary(geom[lev].periodicity());
24 
25  // ****************************************************************************
26  // Impose bc's on pprime
27  // ****************************************************************************
28 #ifdef _OPENMP
29 #pragma omp parallel if (Gpu::notInLaunchRegion())
30 #endif
31  for (MFIter mfi(phi,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Array4<Real> const& pp_arr = phi.array(mfi);
34  Box const& bx = mfi.tilebox();
35  auto const bx_lo = lbound(bx);
36  auto const bx_hi = ubound(bx);
37 
38  auto bc_type_xlo = domain_bc_type[Orientation(0,Orientation::low)];
39  auto bc_type_xhi = domain_bc_type[Orientation(0,Orientation::high)];
40  auto bc_type_ylo = domain_bc_type[Orientation(1,Orientation::low)];
41  auto bc_type_yhi = domain_bc_type[Orientation(1,Orientation::high)];
42  auto bc_type_zhi = domain_bc_type[Orientation(2,Orientation::high)];
43 
44  if ( (bx_lo.x == dom_lo.x) && (bc_type_xlo == "Outflow" || bc_type_xlo == "Open") && !solverChoice.use_real_bcs) {
45  ParallelFor(makeSlab(bx,0,dom_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
46  {
47  pp_arr(i-1,j,k) = -pp_arr(i,j,k);
48  });
49  } else if (bx_lo.x == sub_lo.x) {
50  ParallelFor(makeSlab(bx,0,sub_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
51  {
52  pp_arr(i-1,j,k) = pp_arr(i,j,k);
53  });
54  }
55 
56  if ( (bx_hi.x == dom_hi.x) && (bc_type_xhi == "Outflow" || bc_type_xhi == "Open") && !solverChoice.use_real_bcs) {
57  ParallelFor(makeSlab(bx,0,dom_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
58  {
59  pp_arr(i+1,j,k) = -pp_arr(i,j,k);
60  });
61  } else if (bx_hi.x == sub_hi.x) {
62  ParallelFor(makeSlab(bx,0,sub_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
63  {
64  pp_arr(i+1,j,k) = pp_arr(i,j,k);
65  });
66  }
67 
68  if ( (bx_lo.y == dom_lo.y) && (bc_type_ylo == "Outflow" || bc_type_ylo == "Open") && !solverChoice.use_real_bcs) {
69  ParallelFor(makeSlab(bx,1,dom_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
70  {
71  pp_arr(i,j-1,k) = -pp_arr(i,j,k);
72  });
73  } else if (bx_lo.y == sub_lo.y) {
74  ParallelFor(makeSlab(bx,1,sub_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
75  {
76  pp_arr(i,j-1,k) = pp_arr(i,j,k);
77  });
78  }
79 
80  if ( (bx_hi.y == dom_hi.y) && (bc_type_yhi == "Outflow" || bc_type_yhi == "Open") && !solverChoice.use_real_bcs) {
81  ParallelFor(makeSlab(bx,1,dom_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
82  {
83  pp_arr(i,j+1,k) = -pp_arr(i,j,k);
84  });
85  } else if (bx_hi.y == sub_hi.y) {
86  ParallelFor(makeSlab(bx,1,sub_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
87  {
88  pp_arr(i,j+1,k) = pp_arr(i,j,k);
89  });
90  }
91 
92  // At low z we are always Neumann whether the box touches the bottom boundary or not
93  Box zbx(bx); zbx.grow(0,1); zbx.grow(1,1); // Grow in x-dir and y-dir because we have filled that above
94  if (bx_lo.z == sub_lo.z) {
95  ParallelFor(makeSlab(zbx,2,dom_lo.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
96  {
97  pp_arr(i,j,k-1) = pp_arr(i,j,k);
98  });
99  }
100 
101  if ( (bx_hi.z == dom_hi.z) && (bc_type_zhi == "Outflow" || bc_type_zhi == "Open") ) {
102  ParallelFor(makeSlab(bx,2,dom_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
103  {
104  pp_arr(i,j,k+1) = -pp_arr(i,j,k);
105  });
106  } else if (bx_hi.z == sub_hi.z) {
107  ParallelFor(makeSlab(bx,2,sub_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
108  {
109  pp_arr(i,j,k+1) = pp_arr(i,j,k);
110  });
111  }
112  } // mfi
113 
114  // Now overwrite with periodic fill outside domain and fine-fine fill inside
115  phi.FillBoundary(geom[lev].periodicity());
116 }

◆ init1DArrays()

void ERF::init1DArrays ( )
private

◆ init_bcs()

void ERF::init_bcs ( )
private

Initializes data structures in the ERF class that specify which boundary conditions we are implementing on each face of the domain.

This function also maps the selected boundary condition types (e.g. Outflow, Inflow, InflowOutflow, Periodic, Dirichlet, ...) to the specific implementation needed for each variable.

Stores this information in both host and device vectors so it is available for GPU kernels.

21 {
22  bool rho_read = false;
23  bool read_prim_theta = true;
24  Vector<Real> cons_dir_init(NBCVAR_max,0.0);
25  cons_dir_init[BCVars::Rho_bc_comp] = 1.0;
26  cons_dir_init[BCVars::RhoTheta_bc_comp] = -1.0;
27  auto f = [this,&rho_read,&read_prim_theta] (std::string const& bcid, Orientation ori)
28  {
29  // These are simply defaults for Dirichlet faces -- they should be over-written below
31  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = -1.0; // It is important to set this negative
32  // because the sign is tested on below
33  for (int n = BCVars::RhoKE_bc_comp; n < BCVars::xvel_bc; n++) {
34  m_bc_extdir_vals[n][ori] = 0.0;
35  }
36 
37  m_bc_extdir_vals[BCVars::xvel_bc][ori] = 0.0; // default
40 
41  // These are simply defaults for Neumann gradients -- they should be over-written below
44 
53 
57 
58  std::string pp_text = pp_prefix + "." + bcid;
59  ParmParse pp(pp_text);
60 
61  std::string bc_type_in;
62  if (pp.query("type", bc_type_in) <= 0)
63  {
64  pp_text = bcid;
65  pp = ParmParse(pp_text);
66  pp.query("type", bc_type_in);
67  }
68 
69  std::string bc_type = amrex::toLower(bc_type_in);
70 
71  if (bc_type == "symmetry")
72  {
73  // Print() << bcid << " set to symmetry.\n";
75  domain_bc_type[ori] = "Symmetry";
76  }
77  else if (bc_type == "outflow")
78  {
79  // Print() << bcid << " set to outflow.\n";
81  domain_bc_type[ori] = "Outflow";
82  }
83  else if (bc_type == "open")
84  {
85  // Print() << bcid << " set to open.\n";
86  AMREX_ASSERT_WITH_MESSAGE((ori.coordDir() != 2), "Open boundary not valid on zlo or zhi!");
88  domain_bc_type[ori] = "Open";
89  }
90  else if (bc_type == "ho_outflow")
91  {
93  domain_bc_type[ori] = "HO_Outflow";
94  }
95 
96  else if (bc_type == "inflow" || bc_type == "inflow_outflow")
97  {
98  if (bc_type == "inflow") {
99  // Print() << bcid << " set to inflow.\n";
101  domain_bc_type[ori] = "Inflow";
102  } else {
103  // Print() << bcid << " set to inflow_outflow.\n";
105  domain_bc_type[ori] = "InflowOutflow";
106  }
107 
108  std::vector<Real> v;
109  if (input_bndry_planes && m_r2d->ingested_velocity()) {
113  } else {
114  // Test for input data file if at xlo face
115  std::string dirichlet_file;
116  auto file_exists = pp.query("dirichlet_file", dirichlet_file);
117  if (file_exists) {
118  pp.query("read_prim_theta", read_prim_theta);
119  init_Dirichlet_bc_data(dirichlet_file);
120  } else {
121  pp.getarr("velocity", v, 0, AMREX_SPACEDIM);
122  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
123  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
124  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
125  }
126  }
127 
128  Real rho_in = 0.;
129  if (input_bndry_planes && m_r2d->ingested_density()) {
131  } else {
132  if (!pp.query("density", rho_in)) {
133  amrex::Print() << "Using interior values to set conserved vars" << std::endl;
134  }
135  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
136  }
137 
138  bool th_read = (th_bc_data[0].data()!=nullptr);
139  Real theta_in = 0.;
140  if (input_bndry_planes && m_r2d->ingested_theta()) {
142  } else if (!th_read) {
143  if (rho_in > 0) {
144  pp.get("theta", theta_in);
145  }
146  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = rho_in*theta_in;
147  }
148 
149  Real scalar_in = 0.;
150  if (input_bndry_planes && m_r2d->ingested_scalar()) {
152  } else {
153  if (pp.query("scalar", scalar_in))
154  m_bc_extdir_vals[BCVars::RhoScalar_bc_comp][ori] = rho_in*scalar_in;
155  }
156 
157  if (solverChoice.moisture_type != MoistureType::None) {
158  Real qv_in = 0.;
159  if (input_bndry_planes && m_r2d->ingested_q1()) {
161  } else {
162  if (pp.query("qv", qv_in))
163  m_bc_extdir_vals[BCVars::RhoQ1_bc_comp][ori] = rho_in*qv_in;
164  }
165  Real qc_in = 0.;
166  if (input_bndry_planes && m_r2d->ingested_q2()) {
168  } else {
169  if (pp.query("qc", qc_in))
170  m_bc_extdir_vals[BCVars::RhoQ2_bc_comp][ori] = rho_in*qc_in;
171  }
172  }
173 
174  Real KE_in = 0.;
175  if (input_bndry_planes && m_r2d->ingested_KE()) {
177  } else {
178  if (pp.query("KE", KE_in))
179  m_bc_extdir_vals[BCVars::RhoKE_bc_comp][ori] = rho_in*KE_in;
180  }
181  }
182  else if (bc_type == "noslipwall")
183  {
184  // Print() << bcid <<" set to no-slip wall.\n";
186  domain_bc_type[ori] = "NoSlipWall";
187 
188  std::vector<Real> v;
189 
190  // The values of m_bc_extdir_vals default to 0.
191  // But if we find "velocity" in the inputs file, use those values instead.
192  if (pp.queryarr("velocity", v, 0, AMREX_SPACEDIM))
193  {
194  v[ori.coordDir()] = 0.0;
195  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
196  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
197  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
198  }
199 
200  Real rho_in;
201  rho_read = pp.query("density", rho_in);
202  if (rho_read)
203  {
204  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
205  }
206 
207  Real theta_in;
208  if (pp.query("theta", theta_in))
209  {
211  }
212 
213  Real theta_grad_in;
214  if (pp.query("theta_grad", theta_grad_in))
215  {
216  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
217  }
218 
219  Real qv_in;
220  if (pp.query("qv", qv_in))
221  {
223  }
224  }
225  else if (bc_type == "slipwall")
226  {
227  // Print() << bcid <<" set to slip wall.\n";
228 
230  domain_bc_type[ori] = "SlipWall";
231 
232  Real rho_in;
233  rho_read = pp.query("density", rho_in);
234  if (rho_read)
235  {
236  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
237  }
238 
239  Real theta_in;
240  if (pp.query("theta", theta_in))
241  {
243  }
244 
245  Real rho_grad_in;
246  if (pp.query("density_grad", rho_grad_in))
247  {
248  m_bc_neumann_vals[BCVars::Rho_bc_comp][ori] = rho_grad_in;
249  }
250 
251  Real theta_grad_in;
252  if (pp.query("theta_grad", theta_grad_in))
253  {
254  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
255  }
256  }
257  else if (bc_type == "surface_layer")
258  {
260  domain_bc_type[ori] = "surface_layer";
261  }
262  else
263  {
265  }
266 
267  if (geom[0].isPeriodic(ori.coordDir())) {
268  domain_bc_type[ori] = "Periodic";
269  if (phys_bc_type[ori] == ERF_BC::undefined)
270  {
272  } else {
273  Abort("Wrong BC type for periodic boundary");
274  }
275  }
276 
277  if (phys_bc_type[ori] == ERF_BC::undefined)
278  {
279  Print() << "BC Type specified for face " << bcid << " is " << bc_type_in << std::endl;
280  Abort("This BC type is unknown");
281  }
282  };
283 
284  f("xlo", Orientation(Direction::x,Orientation::low));
285  f("xhi", Orientation(Direction::x,Orientation::high));
286  f("ylo", Orientation(Direction::y,Orientation::low));
287  f("yhi", Orientation(Direction::y,Orientation::high));
288  f("zlo", Orientation(Direction::z,Orientation::low));
289  f("zhi", Orientation(Direction::z,Orientation::high));
290 
291  // *****************************************************************************
292  //
293  // Here we translate the physical boundary conditions -- one type per face --
294  // into logical boundary conditions for each velocity component
295  //
296  // *****************************************************************************
297  {
298  domain_bcs_type.resize(AMREX_SPACEDIM+NBCVAR_max);
299  domain_bcs_type_d.resize(AMREX_SPACEDIM+NBCVAR_max);
300 
301  for (OrientationIter oit; oit; ++oit) {
302  Orientation ori = oit();
303  int dir = ori.coordDir();
304  Orientation::Side side = ori.faceDir();
305  auto const bct = phys_bc_type[ori];
306  if ( bct == ERF_BC::symmetry )
307  {
308  if (side == Orientation::low) {
309  for (int i = 0; i < AMREX_SPACEDIM; i++) {
311  }
313  } else {
314  for (int i = 0; i < AMREX_SPACEDIM; i++) {
316  }
318  }
319  }
320  else if (bct == ERF_BC::outflow or bct == ERF_BC::ho_outflow )
321  {
322  if (side == Orientation::low) {
323  for (int i = 0; i < AMREX_SPACEDIM; i++) {
325  }
326  if (!solverChoice.anelastic[0]) {
328  }
329  } else {
330  for (int i = 0; i < AMREX_SPACEDIM; i++) {
332  }
333  if (!solverChoice.anelastic[0]) {
335  }
336  }
337  }
338  else if (bct == ERF_BC::open)
339  {
340  if (side == Orientation::low) {
341  for (int i = 0; i < AMREX_SPACEDIM; i++)
343  } else {
344  for (int i = 0; i < AMREX_SPACEDIM; i++)
346  }
347  }
348  else if (bct == ERF_BC::inflow)
349  {
350  if (side == Orientation::low) {
351  for (int i = 0; i < AMREX_SPACEDIM; i++) {
353  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
355  }
356  }
357  } else {
358  for (int i = 0; i < AMREX_SPACEDIM; i++) {
360  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
362  }
363  }
364  }
365  }
366  else if (bct == ERF_BC::inflow_outflow)
367  {
368  if (side == Orientation::low) {
369  for (int i = 0; i < AMREX_SPACEDIM; i++) {
371  }
372  } else {
373  for (int i = 0; i < AMREX_SPACEDIM; i++) {
375  }
376  }
377  }
378  else if (bct == ERF_BC::no_slip_wall)
379  {
380  if (side == Orientation::low) {
381  for (int i = 0; i < AMREX_SPACEDIM; i++) {
383  }
384  } else {
385  for (int i = 0; i < AMREX_SPACEDIM; i++) {
387  }
388  }
389  }
390  else if (bct == ERF_BC::slip_wall)
391  {
392  if (side == Orientation::low) {
393  for (int i = 0; i < AMREX_SPACEDIM; i++) {
395  }
396  // Only normal direction has ext_dir
398 
399  } else {
400  for (int i = 0; i < AMREX_SPACEDIM; i++) {
402  }
403  // Only normal direction has ext_dir
405  }
406  }
407  else if (bct == ERF_BC::periodic)
408  {
409  if (side == Orientation::low) {
410  for (int i = 0; i < AMREX_SPACEDIM; i++) {
412  }
413  } else {
414  for (int i = 0; i < AMREX_SPACEDIM; i++) {
416  }
417  }
418  }
419  else if ( bct == ERF_BC::surface_layer )
420  {
421  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
425  }
426  }
427  }
428 
429  // *****************************************************************************
430  //
431  // Here we translate the physical boundary conditions -- one type per face --
432  // into logical boundary conditions for each cell-centered variable
433  // (including the base state variables)
434  // NOTE: all "scalars" share the same type of boundary condition
435  //
436  // *****************************************************************************
437  {
438  for (OrientationIter oit; oit; ++oit) {
439  Orientation ori = oit();
440  int dir = ori.coordDir();
441  Orientation::Side side = ori.faceDir();
442  auto const bct = phys_bc_type[ori];
443  if ( bct == ERF_BC::symmetry )
444  {
445  if (side == Orientation::low) {
446  for (int i = 0; i < NBCVAR_max; i++) {
448  }
449  } else {
450  for (int i = 0; i < NBCVAR_max; i++) {
452  }
453  }
454  }
455  else if ( bct == ERF_BC::outflow )
456  {
457  if (side == Orientation::low) {
458  for (int i = 0; i < NBCVAR_max; i++) {
460  }
461  } else {
462  for (int i = 0; i < NBCVAR_max; i++) {
464  }
465  }
466  }
467  else if ( bct == ERF_BC::ho_outflow )
468  {
469  if (side == Orientation::low) {
470  for (int i = 0; i < NBCVAR_max; i++) {
472  }
473  } else {
474  for (int i = 0; i < NBCVAR_max; i++) {
476  }
477  }
478  }
479  else if ( bct == ERF_BC::open )
480  {
481  if (side == Orientation::low) {
482  for (int i = 0; i < NBCVAR_max; i++)
484  } else {
485  for (int i = 0; i < NBCVAR_max; i++)
487  }
488  }
489  else if ( bct == ERF_BC::no_slip_wall )
490  {
491  if (side == Orientation::low) {
492  for (int i = 0; i < NBCVAR_max; i++) {
494  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
495  if (rho_read) {
497  } else {
499  }
500  }
501  }
502  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
504  }
505  } else {
506  for (int i = 0; i < NBCVAR_max; i++) {
508  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
509  if (rho_read) {
511  } else {
513  }
514  }
515  }
516  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
518  }
519  }
520  }
521  else if (bct == ERF_BC::slip_wall)
522  {
523  if (side == Orientation::low) {
524  for (int i = 0; i < NBCVAR_max; i++) {
526  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
527  if (rho_read) {
529  } else {
531  }
532  }
533  }
534  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
536  }
537  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
539  }
540  } else {
541  for (int i = 0; i < NBCVAR_max; i++) {
543  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
544  if (rho_read) {
546  } else {
548  }
549  }
550  }
551  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
553  }
554  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
556  }
557  }
558  }
559  else if (bct == ERF_BC::inflow)
560  {
561  if (side == Orientation::low) {
562  for (int i = 0; i < NBCVAR_max; i++) {
564  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
565  (th_bc_data[0].data() != nullptr))
566  {
567  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setLo(dir, ERFBCType::ext_dir_prim);
568  }
569  else if (input_bndry_planes && dir < 2 && (
570  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
571  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
572  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
573  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
574  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
575  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )) )
576  {
578  }
579  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
581  }
582  }
583  } else {
584  for (int i = 0; i < NBCVAR_max; i++) {
586  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
587  (th_bc_data[0].data() != nullptr))
588  {
589  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setHi(dir, ERFBCType::ext_dir_prim);
590  }
591  else if (input_bndry_planes && dir < 2 && (
592  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
593  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
594  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
595  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
596  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
597  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )
598  ) )
599  {
601  }
602  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
604  }
605  }
606  }
607  }
608  else if (bct == ERF_BC::inflow_outflow )
609  {
610  if (side == Orientation::low) {
611  for (int i = 0; i < NBCVAR_max; i++) {
613  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
615  }
616  }
617  } else {
618  for (int i = 0; i < NBCVAR_max; i++) {
620  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
622  }
623  }
624  }
625  }
626  else if (bct == ERF_BC::periodic)
627  {
628  if (side == Orientation::low) {
629  for (int i = 0; i < NBCVAR_max; i++) {
631  }
632  } else {
633  for (int i = 0; i < NBCVAR_max; i++) {
635  }
636  }
637  }
638  else if ( bct == ERF_BC::surface_layer )
639  {
640  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
641  for (int i = 0; i < NBCVAR_max; i++) {
643  }
644  }
645  }
646  }
647 
648  // NOTE: Gpu:copy is a wrapper to htod_memcpy (GPU) or memcpy (CPU) and is a blocking comm
649  Gpu::copy(Gpu::hostToDevice, domain_bcs_type.begin(), domain_bcs_type.end(), domain_bcs_type_d.begin());
650 }
#define NBCVAR_max
Definition: ERF_IndexDefines.H:29
@ ho_outflow
@ inflow_outflow
void init_Dirichlet_bc_data(const std::string input_file)
Definition: ERF_InitBCs.cpp:652
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_neumann_vals
Definition: ERF.H:993
@ RhoQ6_bc_comp
Definition: ERF_IndexDefines.H:86
@ RhoQ1_bc_comp
Definition: ERF_IndexDefines.H:81
@ RhoQ4_bc_comp
Definition: ERF_IndexDefines.H:84
@ RhoKE_bc_comp
Definition: ERF_IndexDefines.H:79
@ RhoQ3_bc_comp
Definition: ERF_IndexDefines.H:83
@ RhoTheta_bc_comp
Definition: ERF_IndexDefines.H:78
@ RhoQ2_bc_comp
Definition: ERF_IndexDefines.H:82
@ Rho_bc_comp
Definition: ERF_IndexDefines.H:77
@ RhoQ5_bc_comp
Definition: ERF_IndexDefines.H:85
@ neumann
Definition: ERF_IndexDefines.H:213
@ open
Definition: ERF_IndexDefines.H:215
@ reflect_odd
Definition: ERF_IndexDefines.H:205
@ hoextrap
Definition: ERF_IndexDefines.H:216
@ foextrap
Definition: ERF_IndexDefines.H:208
@ ext_dir
Definition: ERF_IndexDefines.H:209
@ ext_dir_prim
Definition: ERF_IndexDefines.H:211
@ ext_dir_upwind
Definition: ERF_IndexDefines.H:217
@ int_dir
Definition: ERF_IndexDefines.H:206
@ neumann_int
Definition: ERF_IndexDefines.H:214
@ reflect_even
Definition: ERF_IndexDefines.H:207
Here is the call graph for this function:

◆ init_custom()

void ERF::init_custom ( int  lev)
private

Wrapper for custom problem-specific initialization routines that can be defined by the user as they set up a new problem in ERF. This wrapper handles all the overhead of defining the perturbation as well as initializing the random seed if needed.

This wrapper calls a user function to customize initialization on a per-Fab level inside an MFIter loop, so all the MultiFab operations are hidden from the user.

Parameters
levInteger specifying the current level
27 {
28  auto& lev_new = vars_new[lev];
29 
30  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
31  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
32 
33  MultiFab cons_pert(lev_new[Vars::cons].boxArray(), lev_new[Vars::cons].DistributionMap(),
34  lev_new[Vars::cons].nComp() , lev_new[Vars::cons].nGrow());
35  MultiFab xvel_pert(lev_new[Vars::xvel].boxArray(), lev_new[Vars::xvel].DistributionMap(), 1, lev_new[Vars::xvel].nGrowVect());
36  MultiFab yvel_pert(lev_new[Vars::yvel].boxArray(), lev_new[Vars::yvel].DistributionMap(), 1, lev_new[Vars::yvel].nGrowVect());
37  MultiFab zvel_pert(lev_new[Vars::zvel].boxArray(), lev_new[Vars::zvel].DistributionMap(), 1, lev_new[Vars::zvel].nGrowVect());
38 
39  // Default all perturbations to zero
40  cons_pert.setVal(0.);
41  xvel_pert.setVal(0.);
42  yvel_pert.setVal(0.);
43  zvel_pert.setVal(0.);
44 
45 #ifdef _OPENMP
46 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
47 #endif
48  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
49  {
50  const Box &bx = mfi.tilebox();
51  const Box &xbx = mfi.tilebox(IntVect(1,0,0));
52  const Box &ybx = mfi.tilebox(IntVect(0,1,0));
53  const Box &zbx = mfi.tilebox(IntVect(0,0,1));
54 
55  const auto &cons_pert_arr = cons_pert.array(mfi);
56  const auto &xvel_pert_arr = xvel_pert.array(mfi);
57  const auto &yvel_pert_arr = yvel_pert.array(mfi);
58  const auto &zvel_pert_arr = zvel_pert.array(mfi);
59 
60  Array4<Real const> cons_arr = lev_new[Vars::cons].const_array(mfi);
61  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
62  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
63 
64  // Here we arbitrarily choose the x-oriented map factor -- this should be generalized
65  Array4<Real const> mf_m = mapfac[lev][MapFacType::m_x]->const_array(mfi);
66  Array4<Real const> mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
67  Array4<Real const> mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
68 
69  Array4<Real> r_hse_arr = r_hse.array(mfi);
70  Array4<Real> p_hse_arr = p_hse.array(mfi);
71 
72  prob->init_custom_pert(bx, xbx, ybx, zbx, cons_arr, cons_pert_arr,
73  xvel_pert_arr, yvel_pert_arr, zvel_pert_arr,
74  r_hse_arr, p_hse_arr, z_nd_arr, z_cc_arr,
75  geom[lev].data(), mf_m, mf_u, mf_v,
76  solverChoice, lev);
77  } //mfi
78 
79  // Add problem-specific perturbation to background flow if not doing anelastic with fixed-in-time density
80  if (!solverChoice.fixed_density[lev]) {
81  MultiFab::Add(lev_new[Vars::cons], cons_pert, Rho_comp, Rho_comp, 1, cons_pert.nGrow());
82  }
83  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoTheta_comp, RhoTheta_comp, 1, cons_pert.nGrow());
84  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoScalar_comp,RhoScalar_comp,NSCALARS, cons_pert.nGrow());
85 
86  // RhoKE is relevant if using Deardorff with LES, k-equation for RANS, or MYNN with PBL
87  if (solverChoice.turbChoice[lev].use_tke) {
88  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoKE_comp, RhoKE_comp, 1, cons_pert.nGrow());
89  }
90 
91  if (solverChoice.moisture_type != MoistureType::None) {
92  int qstate_size = micro->Get_Qstate_Size();
93  for (int q_offset(0); q_offset<qstate_size; ++q_offset) {
94  int q_idx = RhoQ1_comp+q_offset;
95  MultiFab::Add(lev_new[Vars::cons], cons_pert, q_idx, q_idx, 1, cons_pert.nGrow());
96  }
97  }
98 
99  MultiFab::Add(lev_new[Vars::xvel], xvel_pert, 0, 0, 1, xvel_pert.nGrowVect());
100  MultiFab::Add(lev_new[Vars::yvel], yvel_pert, 0, 0, 1, yvel_pert.nGrowVect());
101  MultiFab::Add(lev_new[Vars::zvel], zvel_pert, 0, 0, 1, zvel_pert.nGrowVect());
102 }
const Box xbx
Definition: ERF_SetupDiff.H:7
const Box ybx
Definition: ERF_SetupDiff.H:8
amrex::Vector< int > fixed_density
Definition: ERF_DataStruct.H:1001
Here is the call graph for this function:

◆ init_Dirichlet_bc_data()

void ERF::init_Dirichlet_bc_data ( const std::string  input_file)
private
653 {
654  // Read the dirichlet_input file
655  Print() << "dirichlet_input file location : " << input_file << std::endl;
656  std::ifstream input_reader(input_file);
657  if (!input_reader.is_open()) {
658  amrex::Abort("Error opening the dirichlet_input file.\n");
659  }
660 
661  Print() << "Successfully opened the dirichlet_input file. Now reading... " << std::endl;
662  std::string line;
663 
664  // Size of Ninp (number of z points in input file)
665  Vector<Real> z_inp_tmp, u_inp_tmp, v_inp_tmp, w_inp_tmp, th_inp_tmp;
666 
667  // Top and bot for domain
668  const int klo = geom[0].Domain().smallEnd()[2];
669  const int khi = geom[0].Domain().bigEnd()[2];
670  const Real zbot = zlevels_stag[0][klo];
671  const Real ztop = zlevels_stag[0][khi+1];
672 
673  // Flag if theta input
674  Real th_init = -300.0;
675  bool th_read{false};
676 
677  // Add surface
678  z_inp_tmp.push_back(zbot); // height above sea level [m]
679  u_inp_tmp.push_back(0.);
680  v_inp_tmp.push_back(0.);
681  w_inp_tmp.push_back(0.);
682  th_inp_tmp.push_back(th_init);
683 
684  // Read the vertical profile at each given height
685  Real z, u, v, w, th;
686  while(std::getline(input_reader, line)) {
687  std::istringstream iss_z(line);
688 
689  Vector<Real> rval_v;
690  Real rval;
691  while (iss_z >> rval) {
692  rval_v.push_back(rval);
693  }
694  z = rval_v[0];
695  u = rval_v[1];
696  v = rval_v[2];
697  w = rval_v[3];
698 
699  // Format without theta
700  if (rval_v.size() == 4) {
701  if (z == zbot) {
702  u_inp_tmp[0] = u;
703  v_inp_tmp[0] = v;
704  w_inp_tmp[0] = w;
705  } else {
706  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
707  z_inp_tmp.push_back(z);
708  u_inp_tmp.push_back(u);
709  v_inp_tmp.push_back(v);
710  w_inp_tmp.push_back(w);
711  if (z >= ztop) break;
712  }
713  } else if (rval_v.size() == 5) {
714  th_read = true;
715  th = rval_v[4];
716  if (z == zbot) {
717  u_inp_tmp[0] = u;
718  v_inp_tmp[0] = v;
719  w_inp_tmp[0] = w;
720  th_inp_tmp[0] = th;
721  } else {
722  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
723  z_inp_tmp.push_back(z);
724  u_inp_tmp.push_back(u);
725  v_inp_tmp.push_back(v);
726  w_inp_tmp.push_back(w);
727  th_inp_tmp.push_back(th);
728  if (z >= ztop) break;
729  }
730  } else {
731  Abort("Unknown inflow file format!");
732  }
733  }
734 
735  // Ensure we set a reasonable theta surface
736  if (th_read) {
737  if (th_inp_tmp[0] == th_init) {
738  Real slope = (th_inp_tmp[2] - th_inp_tmp[1]) / (z_inp_tmp[2] - z_inp_tmp[1]);
739  Real dz = z_inp_tmp[0] - z_inp_tmp[1];
740  th_inp_tmp[0] = slope * dz + th_inp_tmp[1];
741  }
742  }
743 
744  amrex::Print() << "Successfully read and interpolated the dirichlet_input file..." << std::endl;
745  input_reader.close();
746 
747  for (int lev = 0; lev <= max_level; lev++) {
748 
749  const int Nz = geom[lev].Domain().size()[2];
750 
751  // Size of Nz (domain grid)
752  Vector<Real> zcc_inp(Nz );
753  Vector<Real> znd_inp(Nz+1);
754  Vector<Real> u_inp(Nz ); xvel_bc_data[lev].resize(Nz ,0.0);
755  Vector<Real> v_inp(Nz ); yvel_bc_data[lev].resize(Nz ,0.0);
756  Vector<Real> w_inp(Nz+1); zvel_bc_data[lev].resize(Nz+1,0.0);
757  Vector<Real> th_inp;
758  if (th_read) {
759  th_inp.resize(Nz);
760  th_bc_data[lev].resize(Nz, 0.0);
761  }
762 
763  // At this point, we have an input from zbot up to
764  // z_inp_tmp[N-1] >= ztop. Now, interpolate to grid level 0 heights
765  const int Ninp = z_inp_tmp.size();
766  for (int k(0); k<Nz; ++k) {
767  zcc_inp[k] = 0.5 * (zlevels_stag[lev][k] + zlevels_stag[lev][k+1]);
768  znd_inp[k] = zlevels_stag[lev][k+1];
769  u_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), u_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
770  v_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), v_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
771  w_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), znd_inp[k], Ninp);
772  if (th_read) {
773  th_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), th_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
774  }
775  }
776  znd_inp[Nz] = ztop;
777  w_inp[Nz] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), ztop, Ninp);
778 
779  // Copy host data to the device
780  Gpu::copy(Gpu::hostToDevice, u_inp.begin(), u_inp.end(), xvel_bc_data[lev].begin());
781  Gpu::copy(Gpu::hostToDevice, v_inp.begin(), v_inp.end(), yvel_bc_data[lev].begin());
782  Gpu::copy(Gpu::hostToDevice, w_inp.begin(), w_inp.end(), zvel_bc_data[lev].begin());
783  if (th_read) {
784  Gpu::copy(Gpu::hostToDevice, th_inp.begin(), th_inp.end(), th_bc_data[lev].begin());
785  }
786 
787  // NOTE: These device vectors are passed to the PhysBC constructors when that
788  // class is instantiated in ERF_MakeNewArrays.cpp.
789  } // lev
790 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real interpolate_1d(const amrex::Real *alpha, const amrex::Real *beta, const amrex::Real alpha_interp, const int alpha_size)
Definition: ERF_Interpolation_1D.H:12
Here is the call graph for this function:

◆ init_from_hse()

void ERF::init_from_hse ( int  lev)

Initialize the background flow to have the calculated HSE density and rho*theta calculated from the HSE pressure. In general, the hydrostatically balanced density and pressure (r_hse and p_hse from base_state) used here may be calculated through a solver path such as:

ERF::initHSE(lev)

  • call prob->erf_init_dens_hse(...)
    • call Problem::init_isentropic_hse(...), to simultaneously calculate r_hse and p_hse with Newton iteration – assuming constant theta
    • save r_hse
  • call ERF::enforce_hse(...), calculates p_hse from saved r_hse (redundant, but needed because p_hse is not necessarily calculated by the Problem implementation) and pi_hse and th_hse – note: this pressure does not exactly match the p_hse from before because what is calculated by init_isentropic_hse comes from the EOS whereas what is calculated here comes from the hydro- static equation
Parameters
levInteger specifying the current level
33 {
34  auto& lev_new = vars_new[lev];
35 
36  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
37  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
38 
39 #ifdef _OPENMP
40 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
41 #endif
42  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
43  {
44  const Box &gbx = mfi.growntilebox(1);
45  const Array4<Real >& cons_arr = lev_new[Vars::cons].array(mfi);
46  const Array4<Real const>& r_hse_arr = r_hse.const_array(mfi);
47  const Array4<Real const>& p_hse_arr = p_hse.const_array(mfi);
48 
49  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
50  {
51  cons_arr(i,j,k,Rho_comp) = r_hse_arr(i,j,k);
52  cons_arr(i,j,k,RhoTheta_comp) = getRhoThetagivenP(p_hse_arr(i,j,k));
53  });
54  } //mfi
55 }
Here is the call graph for this function:

◆ init_from_input_sounding()

void ERF::init_from_input_sounding ( int  lev)

High level wrapper for initializing scalar and velocity level data from input sounding data.

Parameters
levInteger specifying the current level
53 {
54  // We only want to read the file once -- here we fill one FArrayBox (per variable) that spans the domain
55  if (lev == 0) {
57  Error("input_sounding file name must be provided via input");
58  }
59 
61 
62  // this will interpolate the input profiles to the nominal height levels
63  // (ranging from 0 to the domain top)
64  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
66  }
67 
68  // this will calculate the hydrostatically balanced density and pressure
69  // profiles following WRF ideal.exe
70  if (solverChoice.sounding_type == SoundingType::Ideal) {
72  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
73  solverChoice.sounding_type == SoundingType::DryIsentropic) {
74  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
76  }
77 
78  } else {
79  //
80  // We need to do this interp from coarse level in order to set the values of
81  // the base state inside the domain but outside of the fine region
82  //
83  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
84  //
85  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
86  // have been pre-filled - this includes ghost cells both inside and outside
87  // the domain
88  //
89  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
90  IntVect(0,0,0), // do not fill ghost cells outside the domain
91  base_state[lev-1], 0, 0, base_state[lev].nComp(),
92  geom[lev-1], geom[lev],
93  refRatio(lev-1), &cell_cons_interp,
95 
96  // We need to do this here because the interpolation above may leave corners unfilled
97  // when the corners need to be filled by, for example, reflection of the fine ghost
98  // cell outside the fine region but inide the domain.
99  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
100  }
101 
102  auto& lev_new = vars_new[lev];
103 
104  // updated if sounding is ideal (following WRF) or isentropic
105  const bool l_isentropic = (solverChoice.sounding_type == SoundingType::Isentropic ||
106  solverChoice.sounding_type == SoundingType::DryIsentropic);
107  const bool sounding_ideal_or_isentropic = (solverChoice.sounding_type == SoundingType::Ideal ||
108  l_isentropic);
109  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
110  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
111  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
112  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
113  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
114 
115  const Real l_gravity = solverChoice.gravity;
116  const Real l_rdOcp = solverChoice.rdOcp;
117  const bool l_moist = (solverChoice.moisture_type != MoistureType::None);
118 
119 #ifdef _OPENMP
120 #pragma omp parallel if (Gpu::notInLaunchRegion())
121 #endif
122  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
123  const Box &bx = mfi.tilebox();
124  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
125  const auto &xvel_arr = lev_new[Vars::xvel].array(mfi);
126  const auto &yvel_arr = lev_new[Vars::yvel].array(mfi);
127  const auto &zvel_arr = lev_new[Vars::zvel].array(mfi);
128  Array4<Real> r_hse_arr = r_hse.array(mfi);
129  Array4<Real> p_hse_arr = p_hse.array(mfi);
130  Array4<Real> pi_hse_arr = pi_hse.array(mfi);
131  Array4<Real> th_hse_arr = th_hse.array(mfi);
132  Array4<Real> qv_hse_arr = qv_hse.array(mfi);
133 
134  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
135  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
136 
137  if (sounding_ideal_or_isentropic)
138  {
139  // HSE will be initialized here, interpolated from values previously
140  // calculated by calc_rho_p or calc_rho_p_isentropic
142  bx, cons_arr,
143  r_hse_arr, p_hse_arr, pi_hse_arr, th_hse_arr, qv_hse_arr,
144  geom[lev].data(), z_cc_arr,
145  l_gravity, l_rdOcp, l_moist, input_sounding_data,
146  l_isentropic);
147  }
148  else
149  {
150  // This assumes rho_0 = 1.0
151  // HSE will be calculated later with call to initHSE
153  bx, cons_arr,
154  geom[lev].data(), z_cc_arr,
155  l_moist, input_sounding_data);
156  }
157 
159  bx, xvel_arr, yvel_arr, zvel_arr,
160  geom[lev].data(), z_nd_arr,
162 
163  } //mfi
164 }
void init_bx_scalars_from_input_sounding(const Box &bx, Array4< Real > const &state, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const bool &l_moist, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:176
void init_bx_scalars_from_input_sounding_hse(const Box &bx, Array4< Real > const &state, Array4< Real > const &r_hse_arr, Array4< Real > const &p_hse_arr, Array4< Real > const &pi_hse_arr, Array4< Real > const &th_hse_arr, Array4< Real > const &qv_hse_arr, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const Real &l_gravity, const Real &l_rdOcp, const bool &l_moist, InputSoundingData const &inputSoundingData, const bool &l_isentropic)
Definition: ERF_InitFromInputSounding.cpp:238
void init_bx_velocities_from_input_sounding(const Box &bx, Array4< Real > const &x_vel, Array4< Real > const &y_vel, Array4< Real > const &z_vel, GeometryData const &geomdata, Array4< const Real > const &z_nd_arr, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:374
InputSoundingData input_sounding_data
Definition: ERF.H:763
@ rho0_bc_comp
Definition: ERF_IndexDefines.H:98
@ qv0_comp
Definition: ERF_IndexDefines.H:67
void resize_arrays()
Definition: ERF_InputSoundingData.H:60
int n_sounding_files
Definition: ERF_InputSoundingData.H:395
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag, int itime)
Definition: ERF_InputSoundingData.H:77
amrex::Vector< std::string > input_sounding_file
Definition: ERF_InputSoundingData.H:393
void calc_rho_p(int itime)
Definition: ERF_InputSoundingData.H:173
void calc_rho_p_isentropic(int itime)
Definition: ERF_InputSoundingData.H:259
bool assume_dry
Definition: ERF_InputSoundingData.H:398
static SoundingType sounding_type
Definition: ERF_DataStruct.H:967
Here is the call graph for this function:

◆ init_geo_wind_profile()

void ERF::init_geo_wind_profile ( const std::string  input_file,
amrex::Vector< amrex::Real > &  u_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  u_geos_d,
amrex::Vector< amrex::Real > &  v_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  v_geos_d,
const amrex::Geometry &  lgeom,
const amrex::Vector< amrex::Real > &  zlev_stag 
)
private
17 {
18  const int klo = 0;
19  const int khi = lgeom.Domain().bigEnd()[AMREX_SPACEDIM-1];
20  const amrex::Real dz = lgeom.CellSize()[AMREX_SPACEDIM-1];
21 
22  const bool grid_stretch = (zlev_stag.size() > 0);
23  const Real zbot = (grid_stretch) ? zlev_stag[klo] : lgeom.ProbLo(AMREX_SPACEDIM-1);
24  const Real ztop = (grid_stretch) ? zlev_stag[khi+1] : lgeom.ProbHi(AMREX_SPACEDIM-1);
25 
26  amrex::Print() << "Reading geostrophic wind profile from " << input_file << std::endl;
27  std::ifstream profile_reader(input_file);
28  if(!profile_reader.is_open()) {
29  amrex::Error("Error opening the abl_geo_wind_table\n");
30  }
31 
32  // First, read the input data into temp vectors
33  std::string line;
34  Vector<Real> z_inp, Ug_inp, Vg_inp;
35  Real z, Ug, Vg;
36  amrex::Print() << "z Ug Vg" << std::endl;
37  while(std::getline(profile_reader, line)) {
38  std::istringstream iss(line);
39  iss >> z >> Ug >> Vg;
40  amrex::Print() << z << " " << Ug << " " << Vg << std::endl;
41  z_inp.push_back(z);
42  Ug_inp.push_back(Ug);
43  Vg_inp.push_back(Vg);
44  if (z >= ztop) break;
45  }
46 
47  const int Ninp = z_inp.size();
48  AMREX_ALWAYS_ASSERT(z_inp[0] <= zbot);
49  AMREX_ALWAYS_ASSERT(z_inp[Ninp-1] >= ztop);
50 
51  // Now, interpolate vectors to the cell centers
52  for (int k = 0; k <= khi; k++) {
53  z = (grid_stretch) ? 0.5 * (zlev_stag[k] + zlev_stag[k+1])
54  : zbot + (k + 0.5) * dz;
55  u_geos[k] = interpolate_1d(z_inp.dataPtr(), Ug_inp.dataPtr(), z, Ninp);
56  v_geos[k] = interpolate_1d(z_inp.dataPtr(), Vg_inp.dataPtr(), z, Ninp);
57  }
58 
59  // Copy from host version to device version
60  Gpu::copy(Gpu::hostToDevice, u_geos.begin(), u_geos.end(), u_geos_d.begin());
61  Gpu::copy(Gpu::hostToDevice, v_geos.begin(), v_geos.end(), v_geos_d.begin());
62 
63  profile_reader.close();
64 }
Here is the call graph for this function:

◆ init_immersed_forcing()

void ERF::init_immersed_forcing ( int  lev)

Set velocities in cells that are immersed to be 0 (or a very small number)

Parameters
levInteger specifying the current level
16 {
17  auto& lev_new = vars_new[lev];
18  MultiFab* terrain_blank = terrain_blanking[lev].get();
19 
20 #ifdef _OPENMP
21 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
22 #endif
23  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
24  {
25  const Box &xbx = mfi.tilebox(IntVect(1,0,0));
26  const Box &ybx = mfi.tilebox(IntVect(0,1,0));
27  const Box &zbx = mfi.tilebox(IntVect(0,0,1));
28  const Real epsilon = 1e-2;
29 
30  const Array4<const Real>& t_blank_arr = terrain_blank->const_array(mfi);
31 
32  const auto &xvel_arr = lev_new[Vars::xvel].array(mfi);
33  const auto &yvel_arr = lev_new[Vars::yvel].array(mfi);
34  const auto &zvel_arr = lev_new[Vars::zvel].array(mfi);
35 
36  // Set the x,y,z-velocities
37  ParallelFor(xbx, ybx, zbx,
38  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
39  const Real t_blank = 0.5 * (t_blank_arr(i, j, k) + t_blank_arr(i-1, j, k));
40  if (t_blank == 1.0) { xvel_arr(i, j, k) = epsilon; }
41  },
42  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
43  const Real t_blank = 0.5 * (t_blank_arr(i, j, k) + t_blank_arr(i, j-1, k));
44  if (t_blank == 1.0) { yvel_arr(i, j, k) = epsilon; }
45  },
46  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
47  const Real t_blank = 0.5 * (t_blank_arr(i, j, k) + t_blank_arr(i, j, k-1));
48  if (t_blank == 1.0) { zvel_arr(i, j, k) = epsilon; }
49  });
50  } //mfi
51 }
real(c_double), parameter epsilon
Definition: ERF_module_model_constants.F90:12
Here is the call graph for this function:

◆ init_only()

void ERF::init_only ( int  lev,
amrex::Real  time 
)
1982 {
1983  t_new[lev] = time;
1984  t_old[lev] = time - 1.e200;
1985 
1986  auto& lev_new = vars_new[lev];
1987  auto& lev_old = vars_old[lev];
1988 
1989  // Loop over grids at this level to initialize our grid data
1990  lev_new[Vars::cons].setVal(0.0); lev_old[Vars::cons].setVal(0.0);
1991  lev_new[Vars::xvel].setVal(0.0); lev_old[Vars::xvel].setVal(0.0);
1992  lev_new[Vars::yvel].setVal(0.0); lev_old[Vars::yvel].setVal(0.0);
1993  lev_new[Vars::zvel].setVal(0.0); lev_old[Vars::zvel].setVal(0.0);
1994 
1995  // Initialize background flow (optional)
1996  if (solverChoice.init_type == InitType::Input_Sounding) {
1997  // The physbc's need the terrain but are needed for initHSE
1998  // We have already made the terrain in the call to init_zphys
1999  // in MakeNewLevelFromScratch
2000  make_physbcs(lev);
2001 
2002  // Now init the base state and the data itself
2004 
2005  // The base state has been initialized by integrating vertically
2006  // through the sounding for ideal (like WRF) or isentropic approaches
2007  if (solverChoice.sounding_type == SoundingType::Ideal ||
2008  solverChoice.sounding_type == SoundingType::Isentropic ||
2009  solverChoice.sounding_type == SoundingType::DryIsentropic) {
2010  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(solverChoice.use_gravity,
2011  "Gravity should be on to be consistent with sounding initialization.");
2012  } else { // SoundingType::ConstantDensity
2013  AMREX_ASSERT_WITH_MESSAGE(!solverChoice.use_gravity,
2014  "Constant density probably doesn't make sense with gravity");
2015  initHSE();
2016  }
2017 
2018 #ifdef ERF_USE_NETCDF
2019  }
2020  else if (solverChoice.init_type == InitType::WRFInput)
2021  {
2022  // The base state is initialized from WRF wrfinput data, output by
2023  // ideal.exe or real.exe
2024 
2025  init_from_wrfinput(lev, *mf_C1H, *mf_C2H, *mf_MUB, *mf_PSFC[lev]);
2026 
2027  if (lev==0) {
2028  if ((start_time > 0) && (start_time != start_bdy_time)) {
2029  Print() << "Ignoring specified start_time="
2030  << std::setprecision(timeprecision) << start_time
2031  << std::endl;
2032  }
2033  }
2034 
2035  start_time = start_bdy_time;
2036 
2037  use_datetime = true;
2038 
2039  // The physbc's need the terrain but are needed for initHSE
2040  if (!solverChoice.use_real_bcs) {
2041  make_physbcs(lev);
2042  }
2043  }
2044  else if (solverChoice.init_type == InitType::NCFile)
2045  {
2046  // The state is initialized by reading from a Netcdf file
2047  init_from_ncfile(lev);
2048 
2049  // The physbc's need the terrain but are needed for initHSE
2050  make_physbcs(lev);
2051  }
2052  else if (solverChoice.init_type == InitType::Metgrid)
2053  {
2054  // The base state is initialized from data output by WPS metgrid;
2055  // we will rebalance after interpolation
2056  init_from_metgrid(lev);
2057 #endif
2058  } else if (solverChoice.init_type == InitType::Uniform) {
2059  // Initialize a uniform background field and base state based on the
2060  // problem-specified reference density and temperature
2061 
2062  // The physbc's need the terrain but are needed for initHSE
2063  make_physbcs(lev);
2064 
2065  init_uniform(lev);
2066  initHSE(lev);
2067  } else {
2068  // No background flow initialization specified, initialize the
2069  // background field to be equal to the base state, calculated from the
2070  // problem-specific erf_init_dens_hse
2071 
2072  // The bc's need the terrain but are needed for initHSE
2073  make_physbcs(lev);
2074 
2075  // We will initialize the state from the background state so must set that first
2076  initHSE(lev);
2077  init_from_hse(lev);
2078  }
2079 
2080  // Add problem-specific flow features
2081  //
2082  // Notes:
2083  // - This calls init_custom_pert that is defined for each problem
2084  // - This may modify the base state
2085  // - The fields set by init_custom_pert are **perturbations** to the
2086  // background flow set based on init_type
2087  if (solverChoice.init_type != InitType::NCFile) {
2088  init_custom(lev);
2089  }
2090 
2091  // Ensure that the face-based data are the same on both sides of a periodic domain.
2092  // The data associated with the lower grid ID is considered the correct value.
2093  lev_new[Vars::xvel].OverrideSync(geom[lev].periodicity());
2094  lev_new[Vars::yvel].OverrideSync(geom[lev].periodicity());
2095  lev_new[Vars::zvel].OverrideSync(geom[lev].periodicity());
2096 
2097  if(solverChoice.spongeChoice.sponge_type == "input_sponge"){
2098  input_sponge(lev);
2099  }
2100 
2101  // Initialize turbulent perturbation
2102  if (solverChoice.pert_type == PerturbationType::Source ||
2103  solverChoice.pert_type == PerturbationType::Direct ||
2104  solverChoice.pert_type == PerturbationType::CPM) {
2105  turbPert_update(lev, 0.);
2106  turbPert_amplitude(lev);
2107  }
2108 
2109  // Set initial velocity field for immersed cells to be close to 0
2110  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
2111  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
2112  init_immersed_forcing(lev);
2113  }
2114 }
const int timeprecision
Definition: ERF.H:1029
void init_from_input_sounding(int lev)
Definition: ERF_InitFromInputSounding.cpp:52
std::unique_ptr< amrex::MultiFab > mf_MUB
Definition: ERF.H:1260
std::unique_ptr< amrex::MultiFab > mf_C2H
Definition: ERF.H:1259
void init_custom(int lev)
Definition: ERF_InitCustom.cpp:26
void init_from_hse(int lev)
Definition: ERF_InitFromHSE.cpp:32
void initHSE()
Initialize HSE.
Definition: ERF_Init1D.cpp:146
void turbPert_update(const int lev, const amrex::Real dt)
Definition: ERF_InitTurbPert.cpp:12
void input_sponge(int lev)
Definition: ERF_InitSponge.cpp:17
void make_physbcs(int lev)
Definition: ERF_MakeNewArrays.cpp:797
void init_immersed_forcing(int lev)
Definition: ERF_InitImmersedForcing.cpp:15
void init_uniform(int lev)
Definition: ERF_InitUniform.cpp:17
std::unique_ptr< amrex::MultiFab > mf_C1H
Definition: ERF.H:1258
void turbPert_amplitude(const int lev)
Definition: ERF_InitTurbPert.cpp:32
bool use_gravity
Definition: ERF_DataStruct.H:1031

◆ init_stuff()

void ERF::init_stuff ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm,
amrex::Vector< amrex::MultiFab > &  lev_new,
amrex::Vector< amrex::MultiFab > &  lev_old,
amrex::MultiFab &  tmp_base_state,
std::unique_ptr< amrex::MultiFab > &  tmp_zphys_nd 
)
private
28 {
29  // ********************************************************************************************
30  // Base state holds r_0, pres_0, pi_0, th_0 (in that order)
31  //
32  // Here is where we set the number of ghost cells for the base state!
33  // ********************************************************************************************
34  int ngb = (solverChoice.terrain_type == TerrainType::EB) ? 4 : 3;
35  tmp_base_state.define(ba,dm,BaseState::num_comps,ngb);
36  tmp_base_state.setVal(0.);
37 
38  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
39  base_state_new[lev].define(ba,dm,BaseState::num_comps,base_state[lev].nGrowVect());
40  base_state_new[lev].setVal(0.);
41  }
42 
43  // ********************************************************************************************
44  // Allocate terrain arrays
45  // ********************************************************************************************
46 
47  BoxArray ba_nd(ba);
48  ba_nd.surroundingNodes();
49 
50  // NOTE: this is where we actually allocate z_phys_nd -- but here it's called "tmp_zphys_nd"
51  // We need this to be one greater than the ghost cells to handle levels > 0
52 
53  int ngrow = ComputeGhostCells(solverChoice) + 2;
54  tmp_zphys_nd = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
55 
56  z_phys_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
57  init_default_zphys(lev, geom[lev], *tmp_zphys_nd, *z_phys_cc[lev]);
58 
59  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh)
60  {
61  detJ_cc_new[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
62  detJ_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
63 
64  ax_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
65  ay_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
66  az_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
67 
68  z_t_rk[lev] = std::make_unique<MultiFab>( convert(ba, IntVect(0,0,1)), dm, 1, 1 );
69 
70  z_phys_nd_new[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
71  z_phys_nd_src[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
72  z_phys_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
73  }
74  else
75  {
76  z_phys_nd_new[lev] = nullptr;
77  detJ_cc_new[lev] = nullptr;
78 
79  z_phys_nd_src[lev] = nullptr;
80  z_phys_cc_src[lev] = nullptr;
81  detJ_cc_src[lev] = nullptr;
82 
83  z_t_rk[lev] = nullptr;
84  }
85 
86  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
87  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
88  {
89  terrain_blanking[lev] = std::make_unique<MultiFab>(ba,dm,1,ngrow);
90  terrain_blanking[lev]->setVal(1.0);
91  }
92 
93  // We use these area arrays regardless of terrain, EB or none of the above
94  detJ_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
95  ax[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
96  ay[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
97  az[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
98 
99  detJ_cc[lev]->setVal(1.0);
100  ax[lev]->setVal(1.0);
101  ay[lev]->setVal(1.0);
102  az[lev]->setVal(1.0);
103 
104  // ********************************************************************************************
105  // Create wall distance array for RANS modeling
106  // ********************************************************************************************
107  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
108  walldist[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
109  walldist[lev]->setVal(1e23);
110  } else {
111  walldist[lev] = nullptr;
112  }
113 
114  // ********************************************************************************************
115  // These are the persistent containers for the old and new data
116  // ********************************************************************************************
117  int ncomp;
118  if (lev > 0) {
119  ncomp = vars_new[lev-1][Vars::cons].nComp();
120  } else {
121  int n_qstate = micro->Get_Qstate_Size();
122  ncomp = NDRY + NSCALARS + n_qstate;
123  }
124 
125  // ********************************************************************************************
126  // The number of ghost cells for density must be 1 greater than that for velocity
127  // so that we can go back in forth between velocity and momentum on all faces
128  // ********************************************************************************************
129  int ngrow_state = ComputeGhostCells(solverChoice) + 1;
130  int ngrow_vels = ComputeGhostCells(solverChoice);
131 
132  // ********************************************************************************************
133  // New solution data containers
134  // ********************************************************************************************
135  if (solverChoice.terrain_type != TerrainType::EB) {
136  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state);
137  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state);
138  } else {
139  // EB: Define the MultiFabs with the EBFactory
140  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state, MFInfo(), EBFactory(lev));
141  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state, MFInfo(), EBFactory(lev));
142  }
143  lev_new[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
144  lev_old[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
145 
146  lev_new[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
147  lev_old[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
148 
149  gradp[lev][GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp[lev][GpVars::gpx].setVal(0.);
150  gradp[lev][GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp[lev][GpVars::gpy].setVal(0.);
151  gradp[lev][GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp[lev][GpVars::gpz].setVal(0.);
152 
153  // Note that we need the ghost cells in the z-direction if we are doing any
154  // kind of domain decomposition in the vertical (at level 0 or above)
155  lev_new[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
156  lev_old[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
157 
158  if ( (solverChoice.anelastic[lev] == 1) || (solverChoice.project_initial_velocity[lev] == 1) ) {
159  pp_inc[lev].define(ba, dm, 1, 1);
160  pp_inc[lev].setVal(0.0);
161  }
162 
163  // We use this in the fast substepping only
164  if (solverChoice.anelastic[lev] == 0) {
165  lagged_delta_rt[lev].define(ba, dm, 1, 1);
166  lagged_delta_rt[lev].setVal(0.0);
167  }
168 
169  // We use these for advecting the slow variables, whether anelastic or compressible
170  avg_xmom[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, 1);
171  avg_ymom[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, 1);
172  avg_zmom[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, 1);
173  avg_xmom[lev].setVal(0.0); avg_ymom[lev].setVal(0.0); avg_zmom[lev].setVal(0.0);
174 
175  // ********************************************************************************************
176  // These are just used for scratch in the time integrator but we might as well define them here
177  // ********************************************************************************************
178  if (solverChoice.terrain_type != TerrainType::EB) {
179  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
180  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
181 
182  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
183  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
184 
185  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
186  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
187  } else {
188  // EB: Define the MultiFabs with the EBFactory
189  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
190  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
191 
192  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
193  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
194 
195  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
196  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
197  }
198 
199  if (lev > 0) {
200  //xmom_crse_rhs[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, IntVect{0});
201  //ymom_crse_rhs[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, IntVect{0});
202  zmom_crse_rhs[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, IntVect{0});
203  }
204 
205  // We do this here just so they won't be undefined in the initial FillPatch
206  rU_old[lev].setVal(1.2e21);
207  rV_old[lev].setVal(3.4e22);
208  rW_old[lev].setVal(5.6e23);
209  rU_new[lev].setVal(1.2e21);
210  rV_new[lev].setVal(3.4e22);
211  rW_new[lev].setVal(5.6e23);
212 
213  // ********************************************************************************************
214  // These are just time averaged fields for diagnostics
215  // ********************************************************************************************
216 
217  // NOTE: We are not completing a fillpach call on the time averaged data;
218  // which would copy on intersection and interpolate from coarse.
219  // Therefore, we are restarting the averaging when the ba changes,
220  // this may give poor statistics for dynamic mesh refinement.
221  vel_t_avg[lev] = nullptr;
223  vel_t_avg[lev] = std::make_unique<MultiFab>(ba, dm, 4, 0); // Each vel comp and the mag
224  vel_t_avg[lev]->setVal(0.0);
225  t_avg_cnt[lev] = 0.0;
226  }
227 
228  // ********************************************************************************************
229  // Initialize flux registers whenever we create/re-create a level
230  // ********************************************************************************************
231  if (solverChoice.coupling_type == CouplingType::TwoWay) {
232  if (lev == 0) {
233  advflux_reg[0] = nullptr;
234  } else {
235  int ncomp_reflux = vars_new[0][Vars::cons].nComp();
236  advflux_reg[lev] = new YAFluxRegister(ba , grids[lev-1],
237  dm , dmap[lev-1],
238  geom[lev], geom[lev-1],
239  ref_ratio[lev-1], lev, ncomp_reflux);
240  }
241  }
242 
243  // ********************************************************************************************
244  // Define Theta_prim storage if using surface_layer BC
245  // ********************************************************************************************
246  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
247  Theta_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
248  if (solverChoice.moisture_type != MoistureType::None) {
249  Qv_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
250  Qr_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
251  } else {
252  Qv_prim[lev] = nullptr;
253  Qr_prim[lev] = nullptr;
254  }
255  } else {
256  Theta_prim[lev] = nullptr;
257  Qv_prim[lev] = nullptr;
258  Qr_prim[lev] = nullptr;
259  }
260 
261  // ********************************************************************************************
262  // Map factors
263  // ********************************************************************************************
264  BoxList bl2d_mf = ba.boxList();
265  for (auto& b : bl2d_mf) {
266  b.setRange(2,0);
267  }
268  BoxArray ba2d_mf(std::move(bl2d_mf));
269 
270  mapfac[lev].resize(MapFacType::num);
271  mapfac[lev][MapFacType::m_x] = std::make_unique<MultiFab>( ba2d_mf,dm,1,IntVect(3,3,0));
272  mapfac[lev][MapFacType::u_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,IntVect(3,3,0));
273  mapfac[lev][MapFacType::v_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,IntVect(3,3,0));
274 
275 #if 0
276  // For now we comment this out to avoid CI failures but we will need to re-enable
277  // this if using non-conformal mappings
279  mapfac[lev][MapFacType::m_y] = std::make_unique<MultiFab>(ba2d_mf,dm,1,IntVect(3,3,0));
280  }
282  mapfac[lev][MapFacType::u_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,IntVect(3,3,0));
283  }
285  mapfac[lev][MapFacType::v_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,IntVect(3,3,0));
286  }
287 #endif
288 
290  for (int i = 0; i < 3; i++) {
291  mapfac[lev][i]->setVal(0.5);
292  }
293  for (int i = 3; i < mapfac[lev].size(); i++) {
294  mapfac[lev][i]->setVal(0.25);
295  }
296  } else {
297  for (int i = 0; i < mapfac[lev].size(); i++) {
298  mapfac[lev][i]->setVal(1.0);
299  }
300  }
301 
302  // ********************************************************************************************
303  // Build 1D BA and 2D BA
304  // ********************************************************************************************
305  BoxList bl1d = ba.boxList();
306  for (auto& b : bl1d) {
307  b.setRange(0,0);
308  b.setRange(1,0);
309  }
310  ba1d[lev] = BoxArray(std::move(bl1d));
311 
312  // Build 2D BA
313  BoxList bl2d = ba.boxList();
314  for (auto& b : bl2d) {
315  b.setRange(2,0);
316  }
317  ba2d[lev] = BoxArray(std::move(bl2d));
318 
319  IntVect ng = vars_new[lev][Vars::cons].nGrowVect();
320 
321  if (lev == 0) {
322  mf_C1H = std::make_unique<MultiFab>(ba1d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
323  mf_C2H = std::make_unique<MultiFab>(ba1d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
324  mf_MUB = std::make_unique<MultiFab>(ba2d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
325  }
326 
327  mf_PSFC[lev] = std::make_unique<MultiFab>(ba2d[lev],dm,1,ng);
328 
329  //*********************************************************
330  // Variables for Fitch model for windfarm parametrization
331  //*********************************************************
332 #if defined(ERF_USE_WINDFARM)
333  if (solverChoice.windfarm_type == WindFarmType::Fitch){
334  vars_windfarm[lev].define(ba, dm, 5, ngrow_state); // V, dVabsdt, dudt, dvdt, dTKEdt
335  }
336  if (solverChoice.windfarm_type == WindFarmType::EWP){
337  vars_windfarm[lev].define(ba, dm, 3, ngrow_state); // dudt, dvdt, dTKEdt
338  }
339  if (solverChoice.windfarm_type == WindFarmType::SimpleAD) {
340  vars_windfarm[lev].define(ba, dm, 2, ngrow_state);// dudt, dvdt
341  }
342  if (solverChoice.windfarm_type == WindFarmType::GeneralAD) {
343  vars_windfarm[lev].define(ba, dm, 3, ngrow_state);// dudt, dvdt, dwdt
344  }
345  Nturb[lev].define(ba, dm, 1, ngrow_state); // Number of turbines in a cell
346  SMark[lev].define(ba, dm, 2, 1); // Free stream velocity/source term
347  // sampling marker in a cell - 2 components
348 #endif
349 
350  if(solverChoice.init_type == InitType::HindCast and
352 
353  int ncomp_extra = 2;
354  int nvars = vars_new[lev].size();
355 
356  // Resize all containers
357  forecast_state_1[lev].resize(nvars + 1);
358  forecast_state_2[lev].resize(nvars + 1);
359  forecast_state_interp[lev].resize(nvars + 1);
360 
361  // Define the "normal" components
362  for (int comp = 0; comp < nvars; ++comp) {
363  const MultiFab& src = vars_new[lev][comp];
364  ncomp = src.nComp();
365  ngrow = src.nGrow();
366 
367  forecast_state_1[lev][comp].define(ba, dm, ncomp, ng);
368  forecast_state_2[lev][comp].define(ba, dm, ncomp, ng);
369  forecast_state_interp[lev][comp].define(ba, dm, ncomp, ng);
370  }
371 
372  // Define the "extra" component (last slot)
373  {
374  const MultiFab& src0 = vars_new[lev][0];
375  ngrow = src0.nGrow();
376  int idx = nvars;
377 
378  forecast_state_1[lev][idx].define(ba, dm, ncomp_extra, ngrow);
379  forecast_state_2[lev][idx].define(ba, dm, ncomp_extra, ngrow);
380  forecast_state_interp[lev][idx].define(ba, dm, ncomp_extra, ngrow);
381  }
382  bool regrid_forces_file_read = true;
383  WeatherDataInterpolation(lev, t_new[0],z_phys_nd, regrid_forces_file_read);
384  }
385 
386 
387 #ifdef ERF_USE_WW3_COUPLING
388  // create a new BoxArray and DistributionMapping for a MultiFab with 1 box
389  BoxArray ba_onegrid(geom[lev].Domain());
390  BoxList bl2d_onegrid = ba_onegrid.boxList();
391  for (auto& b : bl2d_onegrid) {
392  b.setRange(2,0);
393  }
394  BoxArray ba2d_onegrid(std::move(bl2d_onegrid));
395  Vector<int> pmap;
396  pmap.resize(1);
397  pmap[0]=0;
398  DistributionMapping dm_onegrid(ba2d_onegrid);
399  dm_onegrid.define(pmap);
400 
401  Hwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
402  Lwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
403 
404  BoxList bl2d_wave = ba.boxList();
405  for (auto& b : bl2d_wave) {
406  b.setRange(2,0);
407  }
408  BoxArray ba2d_wave(std::move(bl2d_wave));
409 
410  Hwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
411  Lwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
412 
413  std::cout<<ba_onegrid<<std::endl;
414  std::cout<<ba2d_onegrid<<std::endl;
415  std::cout<<dm_onegrid<<std::endl;
416 #endif
417 
418 
419  //*********************************************************
420  // Radiation heating source terms
421  //*********************************************************
422  if (solverChoice.rad_type != RadiationType::None)
423  {
424  qheating_rates[lev] = std::make_unique<MultiFab>(ba, dm, 2, 0);
425  rad_fluxes[lev] = std::make_unique<MultiFab>(ba, dm, 4, 0);
426  qheating_rates[lev]->setVal(0.);
427  rad_fluxes[lev]->setVal(0.);
428  }
429 
430  //*********************************************************
431  // Radiation fluxes for coupling to LSM
432  //*********************************************************
433 
434  // NOTE: Finer levels do not need to coincide with the bottom domain boundary
435  // at k=0. We make slabs here with the kmin for a given box. Therefore,
436  // care must be taken before applying these fluxes to an LSM model. For
437 
438  // Radiative fluxes for LSM
439  if (solverChoice.lsm_type != LandSurfaceType::None &&
440  solverChoice.rad_type != RadiationType::None)
441  {
442  BoxList m_bl = ba.boxList();
443  for (auto& b : m_bl) {
444  int kmin = b.smallEnd(2);
445  b.setRange(2,kmin);
446  }
447  BoxArray m_ba(std::move(m_bl));
448 
449  sw_lw_fluxes[lev] = std::make_unique<MultiFab>(m_ba, dm, 6, 0); // DIR/DIF VIS/NIR (4), NET SW (1), LW (1)
450  solar_zenith[lev] = std::make_unique<MultiFab>(m_ba, dm, 1, 0);
451 
452  sw_lw_fluxes[lev]->setVal(0.);
453  solar_zenith[lev]->setVal(0.);
454  }
455 
456  //*********************************************************
457  // Turbulent perturbation region initialization
458  //*********************************************************
459  if (solverChoice.pert_type == PerturbationType::Source ||
460  solverChoice.pert_type == PerturbationType::Direct ||
461  solverChoice.pert_type == PerturbationType::CPM)
462  {
463  amrex::Box bnd_bx = ba.minimalBox();
465  turbPert.init_tpi(lev, bnd_bx.smallEnd(), bnd_bx.bigEnd(), geom[lev].CellSizeArray(),
466  ba, dm, ngrow_state, pp_prefix, refRatio(), max_level);
467  }
468 
469  //
470  // Define the land mask here and set it to all land by default
471  // NOTE: the logic below will BREAK if we have any grids not touching the bottom boundary
472  //
473  {
474  lmask_lev[lev].resize(1);
475  auto ngv = lev_new[Vars::cons].nGrowVect(); ngv[2] = 0;
476  BoxList bl2d_mask = ba.boxList();
477  for (auto& b : bl2d_mask) {
478  b.setRange(2,0);
479  }
480  BoxArray ba2d_mask(std::move(bl2d_mask));
481  lmask_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
482  lmask_lev[lev][0]->setVal(1);
483  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
484 
485  land_type_lev[lev].resize(1);
486  land_type_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
487  land_type_lev[lev][0]->setVal(0);
488  land_type_lev[lev][0]->FillBoundary(geom[lev].periodicity());
489 
490  soil_type_lev[lev].resize(1);
491  soil_type_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
492  soil_type_lev[lev][0]->setVal(0);
493  soil_type_lev[lev][0]->FillBoundary(geom[lev].periodicity());
494 
495  urb_frac_lev[lev].resize(1);
496  urb_frac_lev[lev][0] = std::make_unique<MultiFab>(ba2d_mask,dm,1,ngv);
497  urb_frac_lev[lev][0]->setVal(1.0);
498  urb_frac_lev[lev][0]->FillBoundary(geom[lev].periodicity());
499  }
500 
501  // Read in tables needed for windfarm simulations
502  // fill in Nturb multifab - number of turbines in each mesh cell
503  // write out the vtk files for wind turbine location and/or
504  // actuator disks
505  #ifdef ERF_USE_WINDFARM
506  //init_windfarm(lev);
507  #endif
508 
509  if (lev > 0) {
510  fine_mask[lev] = std::make_unique<MultiFab>(grids[lev-1], dmap[lev-1], 1, 0);
511  build_fine_mask(lev, *fine_mask[lev].get());
512  }
513 }
@ num
Definition: ERF_DataStruct.H:24
#define NDRY
Definition: ERF_IndexDefines.H:13
void init_default_zphys(int, const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:15
void build_fine_mask(int lev, amrex::MultiFab &fine_mask)
Definition: ERF_VolWgtSum.cpp:79
static AMREX_FORCE_INLINE int ComputeGhostCells(const SolverChoice &sc)
Definition: ERF.H:1355
amrex::EBFArrayBoxFactory const & EBFactory(int lev) const noexcept
Definition: ERF.H:1634
@ num_comps
Definition: ERF_IndexDefines.H:68
@ gpz
Definition: ERF_IndexDefines.H:152
@ gpy
Definition: ERF_IndexDefines.H:151
@ gpx
Definition: ERF_IndexDefines.H:150
bool test_mapfactor
Definition: ERF_DataStruct.H:1026
void init_tpi_type(const PerturbationType &pert_type)
Definition: ERF_TurbPertStruct.H:28
void init_tpi(const int lev, const amrex::IntVect &valid_box_lo, const amrex::IntVect &valid_box_hi, const amrex::GpuArray< amrex::Real, 3 > dx, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, const int ngrow_state, std::string pp_prefix, const amrex::Vector< amrex::IntVect > refRatio, const int max_level)
Definition: ERF_TurbPertStruct.H:45
Here is the call graph for this function:

◆ init_thin_body()

void ERF::init_thin_body ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
788 {
789  //********************************************************************************************
790  // Thin immersed body
791  // *******************************************************************************************
792 #if 0
793  if ((solverChoice.advChoice.zero_xflux.size() > 0) ||
794  (solverChoice.advChoice.zero_yflux.size() > 0) ||
795  (solverChoice.advChoice.zero_zflux.size() > 0))
796  {
797  overset_imask[lev] = std::make_unique<iMultiFab>(ba,dm,1,0);
798  overset_imask[lev]->setVal(1); // == value is unknown (to be solved)
799  }
800 #endif
801 
802  if (solverChoice.advChoice.zero_xflux.size() > 0) {
803  amrex::Print() << "Setting up thin immersed body for "
804  << solverChoice.advChoice.zero_xflux.size() << " xfaces" << std::endl;
805  BoxArray ba_xf(ba);
806  ba_xf.surroundingNodes(0);
807  thin_xforce[lev] = std::make_unique<MultiFab>(ba_xf,dm,1,0);
808  thin_xforce[lev]->setVal(0.0);
809  xflux_imask[lev] = std::make_unique<iMultiFab>(ba_xf,dm,1,0);
810  xflux_imask[lev]->setVal(1);
811  for ( MFIter mfi(*xflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
812  {
813  Array4<int> const& imask_arr = xflux_imask[lev]->array(mfi);
814  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
815  Box xbx = mfi.nodaltilebox(0);
816  for (int iv=0; iv < solverChoice.advChoice.zero_xflux.size(); ++iv) {
817  const auto& faceidx = solverChoice.advChoice.zero_xflux[iv];
818  if ((faceidx[0] >= xbx.smallEnd(0)) && (faceidx[0] <= xbx.bigEnd(0)) &&
819  (faceidx[1] >= xbx.smallEnd(1)) && (faceidx[1] <= xbx.bigEnd(1)) &&
820  (faceidx[2] >= xbx.smallEnd(2)) && (faceidx[2] <= xbx.bigEnd(2)))
821  {
822  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
823  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
824  //imask_cell_arr(faceidx[0]-1,faceidx[1],faceidx[2]) = 0;
825  amrex::AllPrint() << " mask xface at " << faceidx << std::endl;
826  }
827  }
828  }
829  } else {
830  thin_xforce[lev] = nullptr;
831  xflux_imask[lev] = nullptr;
832  }
833 
834  if (solverChoice.advChoice.zero_yflux.size() > 0) {
835  amrex::Print() << "Setting up thin immersed body for "
836  << solverChoice.advChoice.zero_yflux.size() << " yfaces" << std::endl;
837  BoxArray ba_yf(ba);
838  ba_yf.surroundingNodes(1);
839  thin_yforce[lev] = std::make_unique<MultiFab>(ba_yf,dm,1,0);
840  thin_yforce[lev]->setVal(0.0);
841  yflux_imask[lev] = std::make_unique<iMultiFab>(ba_yf,dm,1,0);
842  yflux_imask[lev]->setVal(1);
843  for ( MFIter mfi(*yflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
844  {
845  Array4<int> const& imask_arr = yflux_imask[lev]->array(mfi);
846  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
847  Box ybx = mfi.nodaltilebox(1);
848  for (int iv=0; iv < solverChoice.advChoice.zero_yflux.size(); ++iv) {
849  const auto& faceidx = solverChoice.advChoice.zero_yflux[iv];
850  if ((faceidx[0] >= ybx.smallEnd(0)) && (faceidx[0] <= ybx.bigEnd(0)) &&
851  (faceidx[1] >= ybx.smallEnd(1)) && (faceidx[1] <= ybx.bigEnd(1)) &&
852  (faceidx[2] >= ybx.smallEnd(2)) && (faceidx[2] <= ybx.bigEnd(2)))
853  {
854  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
855  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
856  //imask_cell_arr(faceidx[0],faceidx[1]-1,faceidx[2]) = 0;
857  amrex::AllPrint() << " mask yface at " << faceidx << std::endl;
858  }
859  }
860  }
861  } else {
862  thin_yforce[lev] = nullptr;
863  yflux_imask[lev] = nullptr;
864  }
865 
866  if (solverChoice.advChoice.zero_zflux.size() > 0) {
867  amrex::Print() << "Setting up thin immersed body for "
868  << solverChoice.advChoice.zero_zflux.size() << " zfaces" << std::endl;
869  BoxArray ba_zf(ba);
870  ba_zf.surroundingNodes(2);
871  thin_zforce[lev] = std::make_unique<MultiFab>(ba_zf,dm,1,0);
872  thin_zforce[lev]->setVal(0.0);
873  zflux_imask[lev] = std::make_unique<iMultiFab>(ba_zf,dm,1,0);
874  zflux_imask[lev]->setVal(1);
875  for ( MFIter mfi(*zflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
876  {
877  Array4<int> const& imask_arr = zflux_imask[lev]->array(mfi);
878  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
879  Box zbx = mfi.nodaltilebox(2);
880  for (int iv=0; iv < solverChoice.advChoice.zero_zflux.size(); ++iv) {
881  const auto& faceidx = solverChoice.advChoice.zero_zflux[iv];
882  if ((faceidx[0] >= zbx.smallEnd(0)) && (faceidx[0] <= zbx.bigEnd(0)) &&
883  (faceidx[1] >= zbx.smallEnd(1)) && (faceidx[1] <= zbx.bigEnd(1)) &&
884  (faceidx[2] >= zbx.smallEnd(2)) && (faceidx[2] <= zbx.bigEnd(2)))
885  {
886  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
887  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
888  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]-1) = 0;
889  amrex::AllPrint() << " mask zface at " << faceidx << std::endl;
890  }
891  }
892  }
893  } else {
894  thin_zforce[lev] = nullptr;
895  zflux_imask[lev] = nullptr;
896  }
897 }
amrex::Vector< amrex::IntVect > zero_yflux
Definition: ERF_AdvStruct.H:438
amrex::Vector< amrex::IntVect > zero_xflux
Definition: ERF_AdvStruct.H:437
amrex::Vector< amrex::IntVect > zero_zflux
Definition: ERF_AdvStruct.H:439

◆ init_uniform()

void ERF::init_uniform ( int  lev)
private

Use problem-specific reference density and temperature to set the background state to a uniform value.

Parameters
levInteger specifying the current level
18 {
19  auto& lev_new = vars_new[lev];
20  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
21  const Box &gbx = mfi.growntilebox(1);
22  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
23  prob->init_uniform(gbx, cons_arr);
24  }
25 }

◆ init_zphys()

void ERF::init_zphys ( int  lev,
amrex::Real  time 
)
642 {
643  if (solverChoice.init_type != InitType::WRFInput && solverChoice.init_type != InitType::Metgrid)
644  {
645  if (lev > 0) {
646  //
647  // First interpolate from coarser level if there is one
648  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
649  // have been pre-filled - this includes ghost cells both inside and outside
650  // the domain
651  //
652  InterpFromCoarseLevel(*z_phys_nd[lev], z_phys_nd[lev]->nGrowVect(),
653  IntVect(0,0,0), // do not fill ghost cells outside the domain
654  *z_phys_nd[lev-1], 0, 0, 1,
655  geom[lev-1], geom[lev],
656  refRatio(lev-1), &node_bilinear_interp,
658  }
659 
660  int ngrow = ComputeGhostCells(solverChoice) + 2;
661  Box bx(surroundingNodes(Geom(lev).Domain())); bx.grow(ngrow);
662  FArrayBox terrain_fab(makeSlab(bx,2,0),1);
663 
664  //
665  // If we are using fitted mesh then we use the surface as defined above
666  // If we are not using fitted mesh but are using z_levels, we still need z_phys (for now)
667  // but we need to use a flat terrain for the mesh itself (the EB data has already been made
668  // from the correct terrain)
669  //
670  if (solverChoice.terrain_type != TerrainType::StaticFittedMesh &&
671  solverChoice.terrain_type != TerrainType::MovingFittedMesh) {
672  terrain_fab.template setVal<RunOn::Device>(0.0);
673  } else {
674  //
675  // Fill the values of the terrain height at k=0 only
676  //
677  prob->init_terrain_surface(geom[lev],terrain_fab,time);
678  }
679 
680  for (MFIter mfi(*z_phys_nd[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
681  {
682  Box isect = terrain_fab.box() & (*z_phys_nd[lev])[mfi].box();
683  if (!isect.isEmpty()) {
684  (*z_phys_nd[lev])[mfi].template copy<RunOn::Device>(terrain_fab,isect,0,isect,0,1);
685  }
686  }
687 
689 
690  z_phys_nd[lev]->FillBoundary(geom[lev].periodicity());
691 
692  if (lev == 0) {
693  Real zmax = z_phys_nd[0]->max(0,0,false);
694  Real rel_diff = (zmax - zlevels_stag[0][zlevels_stag[0].size()-1]) / zmax;
695  if (rel_diff < 1.e-8) {
696  amrex::Print() << "max of zphys_nd " << zmax << std::endl;
697  amrex::Print() << "max of zlevels " << zlevels_stag[0][zlevels_stag[0].size()-1] << std::endl;
698  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(rel_diff < 1.e-8, "Terrain is taller than domain top!");
699  }
700  } // lev == 0
701 
702  } // init_type
703 
704  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
705  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
706  terrain_blanking[lev]->setVal(1.0);
707  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ComputeGhostCells(solverChoice) + 2);
708  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
709  init_immersed_forcing(lev); // needed for real cases
710  }
711 
712  // Compute the min dz and pass to the micro model
713  Real dzmin = get_dzmin_terrain(*z_phys_nd[lev]);
714  micro->Set_dzmin(lev, dzmin);
715 }
Real get_dzmin_terrain(MultiFab &z_phys_nd)
Definition: ERF_TerrainMetrics.cpp:649
void make_terrain_fitted_coords(int lev, const Geometry &geom, MultiFab &z_phys_nd, Vector< Real > const &z_levels_h, GpuArray< ERF_BC, AMREX_SPACEDIM *2 > &phys_bc_type)
Definition: ERF_TerrainMetrics.cpp:46
Here is the call graph for this function:

◆ InitData()

void ERF::InitData ( )
919 {
920  BL_PROFILE_VAR("ERF::InitData()", InitData);
921  InitData_pre();
922  InitData_post();
923  BL_PROFILE_VAR_STOP(InitData);
924 }
void InitData_pre()
Definition: ERF.cpp:927
void InitData_post()
Definition: ERF.cpp:1006
void InitData()
Definition: ERF.cpp:918

Referenced by main().

Here is the caller graph for this function:

◆ InitData_post()

void ERF::InitData_post ( )
1007 {
1009  {
1010  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(finest_level == 0,
1011  "Thin immersed body with refinement not currently supported.");
1012  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1013  amrex::Print() << "NOTE: Thin immersed body with non-constant dz has not been tested." << std::endl;
1014  }
1015  }
1016 
1017  if (!restart_chkfile.empty()) {
1018  restart();
1019  }
1020  //
1021  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one and if two way coupling
1022  //
1023  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1024  if (solverChoice.coupling_type == CouplingType::TwoWay) {
1025  for (int crse_lev = finest_level-1; crse_lev >= 0; crse_lev--) {
1026  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
1027  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
1028  }
1029  }
1030  for (int crse_lev = finest_level-1; crse_lev >= 0; crse_lev--) {
1031  detJ_cc[crse_lev]->FillBoundary(geom[crse_lev].periodicity());
1032  z_phys_cc[crse_lev]->FillBoundary(geom[crse_lev].periodicity());
1033  }
1034  }
1035 
1036 #ifdef ERF_IMPLICIT_W
1037  if (SolverChoice::mesh_type == MeshType::VariableDz &&
1038  (solverChoice.vert_implicit_fac[0] > 0 ||
1040  solverChoice.vert_implicit_fac[2] > 0 ) &&
1042  {
1043  amrex::Warning("Doing implicit solve for u, v, and w with terrain -- this has not been tested");
1044  }
1045 #endif
1046 
1047  //
1048  // Copy vars_new into vars_old, then use vars_old to fill covered cells in vars_new during AverageDown
1049  //
1050  if (SolverChoice::terrain_type == TerrainType::EB) {
1051  for (int lev = 0; lev <= finest_level; lev++) {
1052  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
1053  MultiFab::Copy(vars_old[lev][Vars::cons],vars_new[lev][Vars::cons],0,0,ncomp_cons,vars_new[lev][Vars::cons].nGrowVect());
1054  }
1055  }
1056 
1057  if (restart_chkfile.empty()) {
1058  if (solverChoice.coupling_type == CouplingType::TwoWay) {
1059  AverageDown();
1060  }
1061  }
1062 
1063 #ifdef ERF_USE_PARTICLES
1064  if (restart_chkfile.empty()) {
1065  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1067  Warning("Tight coupling has not been tested with Lagrangian microphysics");
1068  }
1069 
1070  for (int lev = 0; lev <= finest_level; lev++) {
1071  dynamic_cast<LagrangianMicrophysics&>(*micro).initParticles(z_phys_nd[lev]);
1072  }
1073  }
1074  }
1075 #endif
1076 
1077  if (!restart_chkfile.empty()) { // Restart from a checkpoint
1078 
1079  // Create the physbc objects for {cons, u, v, w, base state}
1080  // We fill the additional base state ghost cells just in case we have read the old format
1081  for (int lev(0); lev <= finest_level; ++lev) {
1082  make_physbcs(lev);
1083  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
1084  }
1085 
1087  for (int lev(0); lev <= finest_level; ++lev) {
1088  m_forest_drag[lev]->define_drag_field(grids[lev], dmap[lev], geom[lev],
1089  z_phys_cc[lev].get(), z_phys_nd[lev].get());
1090  }
1091  }
1092 
1093 #ifdef ERF_USE_NETCDF
1094  //
1095  // Create the needed bdy_data_xlo etc ... since we don't read it in from checkpoint any more
1096  // This follows init_from_wrfinput()
1097  //
1098  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
1099  if (solverChoice.use_real_bcs) {
1100 
1101  if ( geom[0].isPeriodic(0) || geom[0].isPeriodic(1) ) {
1102  amrex::Error("Cannot set periodic lateral boundary conditions when reading in real boundary values");
1103  }
1104 
1105  bdy_time_interval = read_times_from_wrfbdy(nc_bdy_file,
1106  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
1107  start_bdy_time);
1108  Real dT = bdy_time_interval;
1109 
1110  int n_time_old = static_cast<int>(t_new[0] / dT);
1111 
1112  int lev = 0;
1113 
1114  int ntimes = std::min(n_time_old+3, static_cast<int>(bdy_data_xlo.size()));
1115 
1116  for (int itime = n_time_old; itime < ntimes; itime++)
1117  {
1118  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
1119  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
1120  real_width);
1121  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
1122  *mf_MUB, *mf_C1H, *mf_C2H,
1124  geom[lev], use_moist);
1125  } // itime
1126  } // use_real_bcs
1127 
1128  if (!nc_low_file.empty())
1129  {
1130  low_time_interval = read_times_from_wrflow(nc_low_file,
1131  low_data_zlo,
1132  start_low_time);
1133  Real dT = low_time_interval;
1134 
1135  int lev = 0;
1136  sst_lev[lev].resize(low_data_zlo.size());
1137  tsk_lev[lev].resize(low_data_zlo.size());
1138 
1139  int n_time_old = static_cast<int>(t_new[0] / dT);
1140 
1141  int ntimes = std::min(n_time_old+2, static_cast<int>(low_data_zlo.size()));
1142 
1143  for (int itime = n_time_old; itime < ntimes; itime++)
1144  {
1145  read_from_wrflow(itime, nc_low_file, geom[lev].Domain(), low_data_zlo);
1146 
1147  // Need to read PSFC
1148  FArrayBox NC_fab_var_file;
1149  for (int idx = 0; idx < num_boxes_at_level[lev]; idx++) {
1150  int success, use_theta_m;
1151  read_from_wrfinput(lev, boxes_at_level[lev][idx], nc_init_file[lev][0],
1152  NC_fab_var_file, "PSFC", geom[lev],
1153  use_theta_m, success);
1154  auto& var_fab = NC_fab_var_file;
1155 #ifdef _OPENMP
1156 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1157 #endif
1158  for ( MFIter mfi(*mf_PSFC[lev], false); mfi.isValid(); ++mfi )
1159  {
1160  FArrayBox &cur_fab = (*mf_PSFC[lev])[mfi];
1161  cur_fab.template copy<RunOn::Device>(var_fab, 0, 0, 1);
1162  }
1163  var_fab.clear();
1164  }
1165 
1166  update_sst_tsk(itime, geom[lev], ba2d[lev],
1167  sst_lev[lev], tsk_lev[lev],
1168  m_SurfaceLayer, low_data_zlo,
1169  vars_new[lev][Vars::cons], *mf_PSFC[lev],
1170  solverChoice.rdOcp, lmask_lev[lev][0], use_moist);
1171  } // itime
1172  }
1173 #endif
1174  } // end restart
1175 
1176 #ifdef ERF_USE_PARTICLES
1177  /* If using a Lagrangian microphysics model, its particle container has now been
1178  constructed and initialized (calls to micro->Init). So, add its pointer to
1179  ERF::particleData and remove its name from list of unallocated particle containers. */
1180  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1181  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1182  const auto& pc_ptr( dynamic_cast<LagrangianMicrophysics&>(*micro).getParticleContainer() );
1183  particleData.pushBack(pc_name, pc_ptr);
1184  particleData.getNamesUnalloc().remove(pc_name);
1185  }
1186 #endif
1187 
1188  if (input_bndry_planes) {
1189  // Read the "time.dat" file to know what data is available
1190  m_r2d->read_time_file();
1191 
1192  // We haven't populated dt yet, set to 0 to ensure assert doesn't crash
1193  Real dt_dummy = 0.0;
1194  m_r2d->read_input_files(t_new[0],dt_dummy,m_bc_extdir_vals);
1195  }
1196 
1198  {
1199  h_rhotheta_src.resize(max_level+1, Vector<Real>(0));
1200  d_rhotheta_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1201  for (int lev = 0; lev <= finest_level; lev++) {
1202  const int domlen = geom[lev].Domain().length(2);
1203  h_rhotheta_src[lev].resize(domlen, 0.0_rt);
1204  d_rhotheta_src[lev].resize(domlen, 0.0_rt);
1205  prob->update_rhotheta_sources(t_new[0],
1206  h_rhotheta_src[lev], d_rhotheta_src[lev],
1207  geom[lev], z_phys_cc[lev]);
1208  }
1209  }
1210 
1212  {
1213  h_u_geos.resize(max_level+1, Vector<Real>(0));
1214  d_u_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1215  h_v_geos.resize(max_level+1, Vector<Real>(0));
1216  d_v_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1217  for (int lev = 0; lev <= finest_level; lev++) {
1218  const int domlen = geom[lev].Domain().length(2);
1219  h_u_geos[lev].resize(domlen, 0.0_rt);
1220  d_u_geos[lev].resize(domlen, 0.0_rt);
1221  h_v_geos[lev].resize(domlen, 0.0_rt);
1222  d_v_geos[lev].resize(domlen, 0.0_rt);
1224  prob->update_geostrophic_profile(t_new[0],
1225  h_u_geos[lev], d_u_geos[lev],
1226  h_v_geos[lev], d_v_geos[lev],
1227  geom[lev], z_phys_cc[lev]);
1228  } else {
1229  if (SolverChoice::mesh_type == MeshType::VariableDz) {
1230  amrex::Print() << "Note: 1-D geostrophic wind profile input is not defined for real terrain" << std::endl;
1231  }
1233  h_u_geos[lev], d_u_geos[lev],
1234  h_v_geos[lev], d_v_geos[lev],
1235  geom[lev],
1236  zlevels_stag[0]);
1237  }
1238  }
1239  }
1240 
1242  {
1243  h_rhoqt_src.resize(max_level+1, Vector<Real>(0));
1244  d_rhoqt_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1245  for (int lev = 0; lev <= finest_level; lev++) {
1246  const int domlen = geom[lev].Domain().length(2);
1247  h_rhoqt_src[lev].resize(domlen, 0.0_rt);
1248  d_rhoqt_src[lev].resize(domlen, 0.0_rt);
1249  prob->update_rhoqt_sources(t_new[0],
1250  h_rhoqt_src[lev], d_rhoqt_src[lev],
1251  geom[lev], z_phys_cc[lev]);
1252  }
1253  }
1254 
1256  {
1257  h_w_subsid.resize(max_level+1, Vector<Real>(0));
1258  d_w_subsid.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1259  for (int lev = 0; lev <= finest_level; lev++) {
1260  const int domlen = geom[lev].Domain().length(2) + 1; // lives on z-faces
1261  h_w_subsid[lev].resize(domlen, 0.0_rt);
1262  d_w_subsid[lev].resize(domlen, 0.0_rt);
1263  prob->update_w_subsidence(t_new[0],
1264  h_w_subsid[lev], d_w_subsid[lev],
1265  geom[lev], z_phys_nd[lev]);
1266  }
1267  }
1268 
1271  {
1272  initRayleigh();
1273  if (solverChoice.init_type == InitType::Input_Sounding)
1274  {
1275  // Overwrite ubar, vbar, and thetabar with input profiles;
1276  // wbar is assumed to be 0. Note: the tau coefficient set by
1277  // prob->erf_init_rayleigh() is still used
1278  bool restarting = (!restart_chkfile.empty());
1279  setRayleighRefFromSounding(restarting);
1280  }
1281  }
1282 
1283  // Read in sponge data from input file
1284  if(solverChoice.spongeChoice.sponge_type == "input_sponge")
1285  {
1286  initSponge();
1287  bool restarting = (!restart_chkfile.empty());
1288  setSpongeRefFromSounding(restarting);
1289  }
1290 
1291  if (solverChoice.pert_type == PerturbationType::Source ||
1292  solverChoice.pert_type == PerturbationType::Direct ||
1293  solverChoice.pert_type == PerturbationType::CPM) {
1294  if (is_it_time_for_action(istep[0], t_new[0], dt[0], pert_interval, -1.)) {
1295  turbPert.debug(t_new[0]);
1296  }
1297  }
1298 
1299  // We only write the file at level 0 for now
1300  if (output_bndry_planes)
1301  {
1302  // Create the WriteBndryPlanes object so we can handle writing of boundary plane data
1303  m_w2d = std::make_unique<WriteBndryPlanes>(grids,geom);
1304 
1305  Real time = 0.;
1306  if (time >= bndry_output_planes_start_time) {
1307  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
1308  m_w2d->write_planes(0, time, vars_new, is_moist);
1309  }
1310  }
1311 
1312  // Fill boundary conditions in vars_new
1313  for (int lev = 0; lev <= finest_level; ++lev)
1314  {
1315  auto& lev_new = vars_new[lev];
1316 
1317  // ***************************************************************************
1318  // Physical bc's at domain boundary
1319  // ***************************************************************************
1320  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
1321  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
1322 
1323  int ncomp_cons = lev_new[Vars::cons].nComp();
1324  bool do_fb = true;
1325 
1326 #ifdef ERF_USE_NETCDF
1327  // We call this here because it is an ERF routine
1328  if (solverChoice.use_real_bcs && (lev==0)) {
1329  int icomp_cons = 0;
1330  bool cons_only = false;
1331  Vector<MultiFab*> mfs_vec = {&lev_new[Vars::cons],&lev_new[Vars::xvel],
1332  &lev_new[Vars::yvel],&lev_new[Vars::zvel]};
1334  fill_from_realbdy_upwind(mfs_vec,t_new[lev],cons_only,icomp_cons,
1335  ncomp_cons,ngvect_cons,ngvect_vels);
1336  } else {
1337  fill_from_realbdy(mfs_vec,t_new[lev],cons_only,icomp_cons,
1338  ncomp_cons,ngvect_cons,ngvect_vels);
1339  }
1340  do_fb = false;
1341  }
1342 #endif
1343 
1344  (*physbcs_cons[lev])(lev_new[Vars::cons],lev_new[Vars::xvel],lev_new[Vars::yvel],0,ncomp_cons,
1345  ngvect_cons,t_new[lev],BCVars::cons_bc,do_fb);
1346  ( *physbcs_u[lev])(lev_new[Vars::xvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1347  ngvect_vels,t_new[lev],BCVars::xvel_bc,do_fb);
1348  ( *physbcs_v[lev])(lev_new[Vars::yvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1349  ngvect_vels,t_new[lev],BCVars::yvel_bc,do_fb);
1350  ( *physbcs_w[lev])(lev_new[Vars::zvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1351  ngvect_vels,t_new[lev],BCVars::zvel_bc,do_fb);
1352  }
1353 
1354  //
1355  // If we are starting from scratch, we have the option to project the initial velocity field
1356  // regardless of how we initialized. Note that project_velocity operates on vars_new.
1357  // pp_inc is used as scratch space here; we zero it out after the projection
1358  //
1359  if (restart_chkfile == "")
1360  {
1361  for (int lev = 0; lev <= finest_level; ++lev)
1362  {
1363  if (solverChoice.project_initial_velocity[lev] == 1) {
1364  Real dummy_dt = 1.0;
1365  if (verbose > 0) {
1366  amrex::Print() << "Projecting initial velocity field at level " << lev << std::endl;
1367  }
1368  project_velocity(lev, dummy_dt);
1369  pp_inc[lev].setVal(0.);
1370  gradp[lev][GpVars::gpx].setVal(0.);
1371  gradp[lev][GpVars::gpy].setVal(0.);
1372  gradp[lev][GpVars::gpz].setVal(0.);
1373  } // project
1374  } // lev
1375  }
1376 
1377  // Copy from new into old just in case (after filling boundary conditions and possibly projecting)
1378  for (int lev = 0; lev <= finest_level; ++lev)
1379  {
1380  int nc = vars_new[lev][Vars::cons].nComp();
1381 
1382  MultiFab::Copy(vars_old[lev][Vars::cons],vars_new[lev][Vars::cons],0,0,nc,vars_new[lev][Vars::cons].nGrowVect());
1383  MultiFab::Copy(vars_old[lev][Vars::xvel],vars_new[lev][Vars::xvel],0,0, 1,vars_new[lev][Vars::xvel].nGrowVect());
1384  MultiFab::Copy(vars_old[lev][Vars::yvel],vars_new[lev][Vars::yvel],0,0, 1,vars_new[lev][Vars::yvel].nGrowVect());
1385  MultiFab::Copy(vars_old[lev][Vars::zvel],vars_new[lev][Vars::zvel],0,0, 1,vars_new[lev][Vars::zvel].nGrowVect());
1386  }
1387 
1388  // Compute the minimum dz in the domain at each level (to be used for setting the timestep)
1389  dz_min.resize(max_level+1);
1390  for (int lev = 0; lev <= finest_level; ++lev)
1391  {
1392  dz_min[lev] = geom[lev].CellSize(2);
1393  if ( SolverChoice::mesh_type != MeshType::ConstantDz ) {
1394  dz_min[lev] *= (*detJ_cc[lev]).min(0);
1395  }
1396  }
1397 
1398  // We don't need to recompute dt[lev] on restart because we read it in from the checkpoint file.
1399  if (restart_chkfile.empty()) {
1400  ComputeDt();
1401  }
1402 
1403  // Check the viscous limit
1407  Real delta = std::min({geom[finest_level].CellSize(0),
1408  geom[finest_level].CellSize(1),
1409  dz_min[finest_level]});
1410  if (dc.dynamic_viscosity == 0) {
1411  Print() << "Note: Molecular diffusion specified but dynamic_viscosity has not been specified" << std::endl;
1412  } else {
1413  Real nu = dc.dynamic_viscosity / dc.rho0_trans;
1414  Real viscous_limit = 2.0 * delta*delta / nu;
1415  Print() << "smallest grid spacing at level " << finest_level << " = " << delta << std::endl;
1416  Print() << "dt at level " << finest_level << " = " << dt[finest_level] << std::endl;
1417  Print() << "Viscous CFL is " << dt[finest_level] / viscous_limit << std::endl;
1418  if (fixed_dt[finest_level] >= viscous_limit) {
1419  Warning("Specified fixed_dt is above the viscous limit");
1420  } else if (dt[finest_level] >= viscous_limit) {
1421  Warning("Adaptive dt based on convective CFL only is above the viscous limit");
1422  }
1423  }
1424  }
1425 
1426  // Fill ghost cells/faces
1427  for (int lev = 0; lev <= finest_level; ++lev)
1428  {
1429  if (lev > 0 && cf_width >= 0) {
1431  }
1432 
1433  auto& lev_new = vars_new[lev];
1434 
1435  //
1436  // Fill boundary conditions -- not sure why we need this here
1437  //
1438  bool fillset = false;
1439  if (lev == 0) {
1440  FillPatchCrseLevel(lev, t_new[lev],
1441  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]});
1442  } else {
1443  FillPatchFineLevel(lev, t_new[lev],
1444  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]},
1445  {&lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
1446  base_state[lev], base_state[lev],
1447  fillset);
1448  }
1449 
1450  //
1451  // We do this here to make sure level (lev-1) boundary conditions are filled
1452  // before we interpolate to level (lev) ghost cells
1453  //
1454  if (lev < finest_level) {
1455  auto& lev_old = vars_old[lev];
1456  MultiFab::Copy(lev_old[Vars::cons],lev_new[Vars::cons],0,0,lev_old[Vars::cons].nComp(),lev_old[Vars::cons].nGrowVect());
1457  MultiFab::Copy(lev_old[Vars::xvel],lev_new[Vars::xvel],0,0,lev_old[Vars::xvel].nComp(),lev_old[Vars::xvel].nGrowVect());
1458  MultiFab::Copy(lev_old[Vars::yvel],lev_new[Vars::yvel],0,0,lev_old[Vars::yvel].nComp(),lev_old[Vars::yvel].nGrowVect());
1459  MultiFab::Copy(lev_old[Vars::zvel],lev_new[Vars::zvel],0,0,lev_old[Vars::zvel].nComp(),lev_old[Vars::zvel].nGrowVect());
1460  }
1461 
1462  //
1463  // We fill the ghost cell values of the base state in case it wasn't done in the initialization
1464  //
1465  base_state[lev].FillBoundary(geom[lev].periodicity());
1466 
1467  // For moving terrain only
1468  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
1469  MultiFab::Copy(base_state_new[lev],base_state[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
1470  base_state_new[lev].FillBoundary(geom[lev].periodicity());
1471  }
1472 
1473  }
1474 
1475  // Allow idealized cases over water, used to set lmask
1476  ParmParse pp("erf");
1477  int is_land;
1478  for (int lev = 0; lev <= finest_level; ++lev)
1479  {
1480  if (pp.query("is_land", is_land, lev)) {
1481  if (is_land == 1) {
1482  amrex::Print() << "Level " << lev << " is land" << std::endl;
1483  } else if (is_land == 0) {
1484  amrex::Print() << "Level " << lev << " is water" << std::endl;
1485  } else {
1486  Error("is_land should be 0 or 1");
1487  }
1488  lmask_lev[lev][0]->setVal(is_land);
1489  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
1490  }
1491  }
1492 
1493  // If lev > 0, we need to fill bc's by interpolation from coarser grid
1494  for (int lev = 1; lev <= finest_level; ++lev)
1495  {
1496  Real time_for_fp = 0.; // This is not actually used
1497  Vector<Real> ftime = {time_for_fp, time_for_fp};
1498  Vector<Real> ctime = {time_for_fp, time_for_fp};
1499  if (lat_m[lev]) {
1500  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1501  Vector<MultiFab*> fmf = {lat_m[lev ].get(), lat_m[lev ].get()};
1502  Vector<MultiFab*> cmf = {lat_m[lev-1].get(), lat_m[lev-1].get()};
1503  IntVect ngv = lat_m[lev]->nGrowVect(); ngv[2] = 0;
1504  Interpolater* mapper = &cell_cons_interp;
1505  FillPatchTwoLevels(*lat_m[lev].get(), ngv, IntVect(0,0,0),
1506  time_for_fp, cmf, ctime, fmf, ftime,
1507  0, 0, 1, geom[lev-1], geom[lev],
1508  refRatio(lev-1), mapper, domain_bcs_type,
1509  BCVars::cons_bc);
1510  }
1511  if (lon_m[lev]) {
1512  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1513  Vector<MultiFab*> fmf = {lon_m[lev ].get(), lon_m[lev ].get()};
1514  Vector<MultiFab*> cmf = {lon_m[lev-1].get(), lon_m[lev-1].get()};
1515  IntVect ngv = lon_m[lev]->nGrowVect(); ngv[2] = 0;
1516  Interpolater* mapper = &cell_cons_interp;
1517  FillPatchTwoLevels(*lon_m[lev].get(), ngv, IntVect(0,0,0),
1518  time_for_fp, cmf, ctime, fmf, ftime,
1519  0, 0, 1, geom[lev-1], geom[lev],
1520  refRatio(lev-1), mapper, domain_bcs_type,
1521  BCVars::cons_bc);
1522  } // lon_m
1523  if (sinPhi_m[lev]) {
1524  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1525  Vector<MultiFab*> fmf = {sinPhi_m[lev ].get(), sinPhi_m[lev ].get()};
1526  Vector<MultiFab*> cmf = {sinPhi_m[lev-1].get(), sinPhi_m[lev-1].get()};
1527  IntVect ngv = sinPhi_m[lev]->nGrowVect(); ngv[2] = 0;
1528  Interpolater* mapper = &cell_cons_interp;
1529  FillPatchTwoLevels(*sinPhi_m[lev].get(), ngv, IntVect(0,0,0),
1530  time_for_fp, cmf, ctime, fmf, ftime,
1531  0, 0, 1, geom[lev-1], geom[lev],
1532  refRatio(lev-1), mapper, domain_bcs_type,
1533  BCVars::cons_bc);
1534  } // sinPhi
1535  if (cosPhi_m[lev]) {
1536  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1537  Vector<MultiFab*> fmf = {cosPhi_m[lev ].get(), cosPhi_m[lev ].get()};
1538  Vector<MultiFab*> cmf = {cosPhi_m[lev-1].get(), cosPhi_m[lev-1].get()};
1539  IntVect ngv = cosPhi_m[lev]->nGrowVect(); ngv[2] = 0;
1540  Interpolater* mapper = &cell_cons_interp;
1541  FillPatchTwoLevels(*cosPhi_m[lev].get(), ngv, IntVect(0,0,0),
1542  time_for_fp, cmf, ctime, fmf, ftime,
1543  0, 0, 1, geom[lev-1], geom[lev],
1544  refRatio(lev-1), mapper, domain_bcs_type,
1545  BCVars::cons_bc);
1546  } // cosPhi
1547  } // lev
1548 
1549 #ifdef ERF_USE_WW3_COUPLING
1550  int my_lev = 0;
1551  amrex::Print() << " About to call send_to_ww3 from ERF.cpp" << std::endl;
1552  send_to_ww3(my_lev);
1553  amrex::Print() << " About to call read_waves from ERF.cpp" << std::endl;
1554  read_waves(my_lev);
1555  // send_to_ww3(my_lev);
1556 #endif
1557 
1558  // Configure SurfaceLayer params if used
1559  // NOTE: we must set up the MOST routine after calling FillPatch
1560  // in order to have lateral ghost cells filled (MOST + terrain interp).
1561  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1562  {
1564  (solverChoice.turbChoice[0].les_type != LESType::None) ||
1565  (solverChoice.turbChoice[0].rans_type != RANSType::None) ||
1566  (solverChoice.turbChoice[0].pbl_type != PBLType::None) );
1567  AMREX_ALWAYS_ASSERT(has_diff);
1568 
1569  bool rotate = solverChoice.use_rotate_surface_flux;
1570  if (rotate) {
1571  Print() << "Using surface layer model with stress rotations" << std::endl;
1572  }
1573 
1574  //
1575  // This constructor will make the SurfaceLayer object but not allocate the arrays at each level.
1576  //
1577  m_SurfaceLayer = std::make_unique<SurfaceLayer>(geom, rotate, pp_prefix, Qv_prim,
1578  z_phys_nd,
1582 #ifdef ERF_USE_NETCDF
1583  , bdy_time_interval
1584 #endif
1585  );
1586  // This call will allocate the arrays at each level. If we regrid later, either changing
1587  // the number of levels or just the grids at each existing level, we will call an update routine
1588  // to redefine the internal arrays in m_SurfaceLayer.
1589  for (int lev = 0; lev <= finest_level; lev++)
1590  {
1591  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
1592  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
1593  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,finest_level+1,
1594  mfv_old, Theta_prim[lev], Qv_prim[lev],
1595  Qr_prim[lev], z_phys_nd[lev],
1596  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
1598  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
1599  }
1600 
1601  // If initializing from an input_sounding, make sure the surface layer
1602  // is using the same surface conditions
1603  if (solverChoice.init_type == InitType::Input_Sounding) {
1606  for (int lev = 0; lev <= finest_level; lev++) {
1607  m_SurfaceLayer->set_t_surf(lev, theta0);
1608  m_SurfaceLayer->set_q_surf(lev, qv0);
1609  }
1610  }
1611 
1612  if (restart_chkfile != "") {
1613  // Update surface fields if needed (and available)
1615  }
1616 
1617  // We now configure ABLMost params here so that we can print the averages at t=0
1618  // Note we don't fill ghost cells here because this is just for diagnostics
1619  for (int lev = 0; lev <= finest_level; ++lev)
1620  {
1621  Real time = t_new[lev];
1622  IntVect ng = Theta_prim[lev]->nGrowVect();
1623 
1624  MultiFab::Copy( *Theta_prim[lev], vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, ng);
1625  MultiFab::Divide(*Theta_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1626 
1627  if (solverChoice.moisture_type != MoistureType::None) {
1628  ng = Qv_prim[lev]->nGrowVect();
1629 
1630  MultiFab::Copy( *Qv_prim[lev], vars_new[lev][Vars::cons], RhoQ1_comp, 0, 1, ng);
1631  MultiFab::Divide(*Qv_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1632 
1633  int rhoqr_comp = solverChoice.moisture_indices.qr;
1634  if (rhoqr_comp > -1) {
1635  MultiFab::Copy( *Qr_prim[lev], vars_new[lev][Vars::cons], rhoqr_comp, 0, 1, ng);
1636  MultiFab::Divide(*Qr_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1637  } else {
1638  Qr_prim[lev]->setVal(0.0);
1639  }
1640  }
1641  m_SurfaceLayer->update_mac_ptrs(lev, vars_new, Theta_prim, Qv_prim, Qr_prim);
1642 
1643  if (restart_chkfile == "") {
1644  // Only do this if starting from scratch; if restarting, then
1645  // we don't want to call update_fluxes multiple times because
1646  // it will change u* and theta* from their previous values
1647  m_SurfaceLayer->update_pblh(lev, vars_new, z_phys_cc[lev].get(),
1649  m_SurfaceLayer->update_fluxes(lev, time, vars_new[lev][Vars::cons], z_phys_nd[lev]);
1650 
1651  // Initialize tke(x,y,z) as a function of u*(x,y)
1652  if (solverChoice.turbChoice[lev].init_tke_from_ustar) {
1653  Real qkefac = 1.0;
1654  if (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25 ||
1655  solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF)
1656  {
1657  // https://github.com/NCAR/MYNN-EDMF/blob/90f36c25259ec1960b24325f5b29ac7c5adeac73/module_bl_mynnedmf.F90#L1325-L1333
1658  const Real B1 = solverChoice.turbChoice[lev].pbl_mynn.B1;
1659  qkefac = 1.5 * std::pow(B1, 2.0/3.0);
1660  }
1661  m_SurfaceLayer->init_tke_from_ustar(lev, vars_new[lev][Vars::cons], z_phys_nd[lev], qkefac);
1662  }
1663  }
1664  }
1665  } // end if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1666 
1667  // Update micro vars before first plot file
1668  if (solverChoice.moisture_type != MoistureType::None) {
1669  for (int lev = 0; lev <= finest_level; ++lev) micro->Update_Micro_Vars_Lev(lev, vars_new[lev][Vars::cons]);
1670  }
1671 
1672  // Fill time averaged velocities before first plot file
1673  if (solverChoice.time_avg_vel) {
1674  for (int lev = 0; lev <= finest_level; ++lev) {
1675  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(),
1676  vars_new[lev][Vars::xvel],
1677  vars_new[lev][Vars::yvel],
1678  vars_new[lev][Vars::zvel]);
1679  }
1680  }
1681 
1682  // check for additional plotting variables that are available after particle containers
1683  // are setup.
1684  const std::string& pv3d_1 = "plot_vars_1" ; appendPlotVariables(pv3d_1,plot3d_var_names_1);
1685  const std::string& pv3d_2 = "plot_vars_2" ; appendPlotVariables(pv3d_2,plot3d_var_names_2);
1686  const std::string& pv2d_1 = "plot2d_vars_1"; appendPlotVariables(pv2d_1,plot2d_var_names_1);
1687  const std::string& pv2d_2 = "plot2d_vars_2"; appendPlotVariables(pv2d_2,plot2d_var_names_2);
1688 
1689  if ( restart_chkfile.empty() && (m_check_int > 0 || m_check_per > 0.) )
1690  {
1694  }
1695 
1696  if ( (restart_chkfile.empty()) ||
1697  (!restart_chkfile.empty() && plot_file_on_restart) )
1698  {
1699  if (m_plot3d_int_1 > 0 || m_plot3d_per_1 > 0.)
1700  {
1704  }
1705  if (m_plot3d_int_2 > 0 || m_plot3d_per_2 > 0.)
1706  {
1710  }
1711  if (m_plot2d_int_1 > 0 || m_plot2d_per_1 > 0.)
1712  {
1716  }
1717  if (m_plot2d_int_2 > 0 || m_plot2d_per_2 > 0.)
1718  {
1722  }
1723  for (int i = 0; i < m_subvol_int.size(); i++) {
1724  if (m_subvol_int[i] > 0 || m_subvol_per[i] > 0.) {
1726  last_subvol_step[i] = istep[0];
1727  if (m_subvol_per[i] > 0.) {last_subvol_time[i] += m_subvol_per[i];}
1728  }
1729  }
1730  }
1731 
1732  // Set these up here because we need to know which MPI rank "cell" is on...
1733  if (pp.contains("data_log"))
1734  {
1735  int num_datalogs = pp.countval("data_log");
1736  datalog.resize(num_datalogs);
1737  datalogname.resize(num_datalogs);
1738  pp.queryarr("data_log",datalogname,0,num_datalogs);
1739  for (int i = 0; i < num_datalogs; i++) {
1741  }
1742  }
1743 
1744  if (pp.contains("der_data_log"))
1745  {
1746  int num_der_datalogs = pp.countval("der_data_log");
1747  der_datalog.resize(num_der_datalogs);
1748  der_datalogname.resize(num_der_datalogs);
1749  pp.queryarr("der_data_log",der_datalogname,0,num_der_datalogs);
1750  for (int i = 0; i < num_der_datalogs; i++) {
1752  }
1753  }
1754 
1755  if (pp.contains("energy_data_log"))
1756  {
1757  int num_energy_datalogs = pp.countval("energy_data_log");
1758  tot_e_datalog.resize(num_energy_datalogs);
1759  tot_e_datalogname.resize(num_energy_datalogs);
1760  pp.queryarr("energy_data_log",tot_e_datalogname,0,num_energy_datalogs);
1761  for (int i = 0; i < num_energy_datalogs; i++) {
1763  }
1764  }
1765 
1766  if (solverChoice.rad_type != RadiationType::None)
1767  {
1768  // Create data log for radiation model if requested
1769  rad[0]->setupDataLog();
1770  }
1771 
1772 
1773  if (restart_chkfile.empty() && profile_int > 0) {
1774  if (destag_profiles) {
1775  // all variables cell-centered
1777  } else {
1778  // some variables staggered
1780  }
1781  }
1782 
1783  if (pp.contains("sample_point_log") && pp.contains("sample_point"))
1784  {
1785  int lev = 0;
1786 
1787  int num_samplepts = pp.countval("sample_point") / AMREX_SPACEDIM;
1788  if (num_samplepts > 0) {
1789  Vector<int> index; index.resize(num_samplepts*AMREX_SPACEDIM);
1790  samplepoint.resize(num_samplepts);
1791 
1792  pp.queryarr("sample_point",index,0,num_samplepts*AMREX_SPACEDIM);
1793  for (int i = 0; i < num_samplepts; i++) {
1794  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1795  samplepoint[i] = iv;
1796  }
1797  }
1798 
1799  int num_sampleptlogs = pp.countval("sample_point_log");
1800  AMREX_ALWAYS_ASSERT(num_sampleptlogs == num_samplepts);
1801  if (num_sampleptlogs > 0) {
1802  sampleptlog.resize(num_sampleptlogs);
1803  sampleptlogname.resize(num_sampleptlogs);
1804  pp.queryarr("sample_point_log",sampleptlogname,0,num_sampleptlogs);
1805 
1806  for (int i = 0; i < num_sampleptlogs; i++) {
1808  }
1809  }
1810 
1811  }
1812 
1813  if (pp.contains("sample_line_log") && pp.contains("sample_line"))
1814  {
1815  int lev = 0;
1816 
1817  int num_samplelines = pp.countval("sample_line") / AMREX_SPACEDIM;
1818  if (num_samplelines > 0) {
1819  Vector<int> index; index.resize(num_samplelines*AMREX_SPACEDIM);
1820  sampleline.resize(num_samplelines);
1821 
1822  pp.queryarr("sample_line",index,0,num_samplelines*AMREX_SPACEDIM);
1823  for (int i = 0; i < num_samplelines; i++) {
1824  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1825  sampleline[i] = iv;
1826  }
1827  }
1828 
1829  int num_samplelinelogs = pp.countval("sample_line_log");
1830  AMREX_ALWAYS_ASSERT(num_samplelinelogs == num_samplelines);
1831  if (num_samplelinelogs > 0) {
1832  samplelinelog.resize(num_samplelinelogs);
1833  samplelinelogname.resize(num_samplelinelogs);
1834  pp.queryarr("sample_line_log",samplelinelogname,0,num_samplelinelogs);
1835 
1836  for (int i = 0; i < num_samplelinelogs; i++) {
1838  }
1839  }
1840 
1841  }
1842 
1847  }
1848 
1849  // Create object to do line and plane sampling if needed
1850  bool do_line = false; bool do_plane = false;
1851  pp.query("do_line_sampling",do_line); pp.query("do_plane_sampling",do_plane);
1852  if (do_line) {
1853  if (line_sampling_interval < 0 && line_sampling_per < 0) {
1854  Abort("Need to specify line_sampling_interval or line_sampling_per");
1855  }
1856  line_sampler = std::make_unique<LineSampler>();
1857  line_sampler->write_coords(z_phys_cc);
1858  }
1859  if (do_plane) {
1861  Abort("Need to specify plane_sampling_interval or plane_sampling_per");
1862  }
1863  plane_sampler = std::make_unique<PlaneSampler>();
1864  }
1865 
1866  if ( solverChoice.terrain_type == TerrainType::EB ||
1867  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
1868  solverChoice.buildings_type == BuildingsType::ImmersedForcing )
1869  {
1870  bool write_eb_surface = false;
1871  pp.query("write_eb_surface", write_eb_surface);
1872  if (write_eb_surface) {
1873  if (verbose > 0) {
1874  amrex::Print() << "Writing the geometry to a vtp file.\n" << std::endl;
1875  }
1876  WriteEBSurface(grids[finest_level],dmap[finest_level],Geom(finest_level),&EBFactory(finest_level));
1877  }
1878  }
1879 
1880 }
void initRayleigh()
Initialize Rayleigh damping profiles.
Definition: ERF_InitRayleigh.cpp:14
amrex::Vector< std::string > samplelinelogname
Definition: ERF.H:1612
void setRayleighRefFromSounding(bool restarting)
Set Rayleigh mean profiles from input sounding.
Definition: ERF_InitRayleigh.cpp:94
amrex::Vector< amrex::IntVect > sampleline
Definition: ERF.H:1613
amrex::Real plane_sampling_per
Definition: ERF.H:1596
static amrex::Real sum_per
Definition: ERF.H:1212
void setRecordDataInfo(int i, const std::string &filename)
Definition: ERF.H:1519
static bool plot_file_on_restart
Definition: ERF.H:1024
amrex::Vector< std::string > lsm_flux_name
Definition: ERF.H:877
void write_1D_profiles_stag(amrex::Real time)
Definition: ERF_Write1DProfiles_stag.cpp:25
void sum_energy_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:312
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
Definition: ERF.H:1611
static int sum_interval
Definition: ERF.H:1210
static int pert_interval
Definition: ERF.H:1211
amrex::Real line_sampling_per
Definition: ERF.H:1595
void restart()
Definition: ERF.cpp:1919
void write_1D_profiles(amrex::Real time)
Definition: ERF_Write1DProfiles.cpp:17
int profile_int
Definition: ERF.H:1093
bool destag_profiles
Definition: ERF.H:1094
void appendPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:229
amrex::Vector< std::string > tot_e_datalogname
Definition: ERF.H:1605
static int output_bndry_planes
Definition: ERF.H:1273
static std::string nc_bdy_file
Definition: ERF.H:1233
void AverageDown()
Definition: ERF_AverageDown.cpp:16
static amrex::Real bndry_output_planes_start_time
Definition: ERF.H:1276
void project_velocity(int lev, amrex::Real dt)
Definition: ERF_PoissonSolve.cpp:10
std::string restart_chkfile
Definition: ERF.H:1046
amrex::Vector< std::string > sampleptlogname
Definition: ERF.H:1608
void sum_derived_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:177
void sum_integrated_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:15
void setRecordDerDataInfo(int i, const std::string &filename)
Definition: ERF.H:1532
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
Definition: ERF.H:1607
std::unique_ptr< WriteBndryPlanes > m_w2d
Definition: ERF.H:1339
void init_geo_wind_profile(const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
Definition: ERF_InitGeowind.cpp:10
amrex::Vector< std::string > lsm_data_name
Definition: ERF.H:875
void initSponge()
Initialize sponge profiles.
Definition: ERF_InitSponge.cpp:35
std::unique_ptr< PlaneSampler > plane_sampler
Definition: ERF.H:1598
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
Definition: ERF.H:1602
int real_width
Definition: ERF.H:1234
void setRecordEnergyDataInfo(int i, const std::string &filename)
Definition: ERF.H:1545
int plane_sampling_interval
Definition: ERF.H:1594
static bool is_it_time_for_action(int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
Definition: ERF_WriteScalarProfiles.cpp:653
static std::string nc_low_file
Definition: ERF.H:1239
void Construct_ERFFillPatchers(int lev)
Definition: ERF.cpp:2802
void setRecordSampleLineInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1575
void setSpongeRefFromSounding(bool restarting)
Set sponge mean profiles from input sounding.
Definition: ERF_InitSponge.cpp:65
int line_sampling_interval
Definition: ERF.H:1593
amrex::Vector< amrex::IntVect > samplepoint
Definition: ERF.H:1609
std::unique_ptr< LineSampler > line_sampler
Definition: ERF.H:1597
void setRecordSamplePointInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1558
void ReadCheckpointFileSurfaceLayer()
Definition: ERF_Checkpoint.cpp:1039
static MoistureModelType modelType(const MoistureType a_moisture_type)
query if a specified moisture model is Eulerian or Lagrangian
Definition: ERF_Microphysics.H:90
@ nc
Definition: ERF_Morrison.H:44
bool have_zero_flux_faces
Definition: ERF_AdvStruct.H:440
amrex::Real rho0_trans
Definition: ERF_DiffStruct.H:91
amrex::Real dynamic_viscosity
Definition: ERF_DiffStruct.H:96
amrex::Real theta_ref_inp_sound
Definition: ERF_InputSoundingData.H:401
amrex::Real qv_ref_inp_sound
Definition: ERF_InputSoundingData.H:401
bool have_geo_wind_profile
Definition: ERF_DataStruct.H:1111
amrex::Vector< amrex::Real > vert_implicit_fac
Definition: ERF_DataStruct.H:1016
std::string abl_geo_wind_table
Definition: ERF_DataStruct.H:1110
bool implicit_momentum_diffusion
Definition: ERF_DataStruct.H:1019
bool use_rotate_surface_flux
Definition: ERF_DataStruct.H:1082
bool do_forest_drag
Definition: ERF_DataStruct.H:1132
void debug(amrex::Real)
Definition: ERF_TurbPertStruct.H:613
Here is the call graph for this function:

◆ InitData_pre()

void ERF::InitData_pre ( )
928 {
929  // Initialize the start time for our CPU-time tracker
930  startCPUTime = ParallelDescriptor::second();
931 
932  // Create the ReadBndryPlanes object so we can read boundary plane data
933  // m_r2d is used by init_bcs so we must instantiate this class before
934  if (input_bndry_planes) {
935  Print() << "Defining r2d for the first time " << std::endl;
936  m_r2d = std::make_unique<ReadBndryPlanes>(geom[0], solverChoice.rdOcp);
937  }
938 
939  if (restart_chkfile.empty()) {
940  // Start simulation from the beginning
941  InitFromScratch(0.0);
942  } else {
943  // For initialization this is done in init_only; it is done here for restart
944  init_bcs();
945  }
946 
947  // Verify solver choices
948  for (int lev(0); lev <= max_level; ++lev) {
949  // BC compatibility
950  if ( ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
951  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ||
952  (solverChoice.turbChoice[lev].pbl_type == PBLType::YSU) ||
953  (solverChoice.turbChoice[lev].pbl_type == PBLType::MRF)
954  ) &&
955  phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::surface_layer ) {
956  Abort("MYNN2.5/MYNNEDMF/YSU/MRF PBL Model requires MOST at lower boundary");
957  }
958  if ( (solverChoice.turbChoice[lev].les_type == LESType::Deardorff) &&
959  (solverChoice.turbChoice[lev].Ce_wall > 0) &&
960  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::surface_layer) &&
961  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::slip_wall) &&
962  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::no_slip_wall) )
963  {
964  Warning("Deardorff LES assumes wall at zlo when applying Ce_wall");
965  }
966 
967  if ( (solverChoice.const_massflux_u != 0) &&
968  (phys_bc_type[Orientation(Direction::x,Orientation::low)] != ERF_BC::periodic ) )
969  {
970  Abort("Constant mass flux (in x) should be used with periodic boundaries");
971  }
972  if ( (solverChoice.const_massflux_v != 0) &&
973  (phys_bc_type[Orientation(Direction::y,Orientation::low)] != ERF_BC::periodic ) )
974  {
975  Abort("Constant mass flux (in y) should be used with periodic boundaries");
976  }
977 
978  // mesoscale diffusion
979  if ((geom[lev].CellSize(0) > 2000.) || (geom[lev].CellSize(1) > 2000.))
980  {
981  if ( (solverChoice.turbChoice[lev].les_type == LESType::Smagorinsky) &&
982  (!solverChoice.turbChoice[lev].smag2d)) {
983  Warning("Should use 2-D Smagorinsky for mesoscale resolution");
984  } else if (solverChoice.turbChoice[lev].les_type == LESType::Deardorff) {
985  Warning("Should not use Deardorff LES for mesoscale resolution");
986  }
987  }
988 
989  // Turn off implicit solve if we have no diffusion
990  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
991  bool l_use_diff = ( (solverChoice.diffChoice.molec_diff_type != MolecDiffType::None) ||
992  l_use_kturb );
993  bool l_implicit_diff = (solverChoice.vert_implicit_fac[0] > 0 ||
996  if (l_implicit_diff && !l_use_diff) {
997  Print() << "No molecular or turbulent diffusion, turning off implicit solve" << std::endl;
1001  }
1002  }
1003 }
void init_bcs()
Definition: ERF_InitBCs.cpp:20

◆ initHSE() [1/2]

void ERF::initHSE ( )
private

Initialize HSE.

147 {
148  for (int lev = 0; lev <= finest_level; lev++)
149  {
150  initHSE(lev);
151  }
152 }

◆ initHSE() [2/2]

void ERF::initHSE ( int  lev)
private

Initialize density and pressure base state in hydrostatic equilibrium.

21 {
22  // This integrates up through column to update p_hse, pi_hse, th_hse;
23  // r_hse is not const b/c FillBoundary is called at the end for r_hse and p_hse
24 
25  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
26  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
27  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
28  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
29  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
30 
31  bool all_boxes_touch_bottom = true;
32  Box domain(geom[lev].Domain());
33 
34  int icomp = 0; int ncomp = BaseState::num_comps;
35 
36  if (lev == 0) {
37  BoxArray ba(base_state[lev].boxArray());
38  for (int i = 0; i < ba.size(); i++) {
39  if (ba[i].smallEnd(2) != domain.smallEnd(2)) {
40  all_boxes_touch_bottom = false;
41  }
42  }
43  }
44  else
45  {
46  //
47  // We need to do this interp from coarse level in order to set the values of
48  // the base state inside the domain but outside of the fine region
49  //
50  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
51  //
52  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
53  // have been pre-filled - this includes ghost cells both inside and outside
54  // the domain
55  //
56  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
57  IntVect(0,0,0), // do not fill ghost cells outside the domain
58  base_state[lev-1], icomp, icomp, ncomp,
59  geom[lev-1], geom[lev],
60  refRatio(lev-1), &cell_cons_interp,
62 
63  // We need to do this here because the interpolation above may leave corners unfilled
64  // when the corners need to be filled by, for example, reflection of the fine ghost
65  // cell outside the fine region but inide the domain.
66  (*physbcs_base[lev])(base_state[lev],icomp,ncomp,base_state[lev].nGrowVect());
67  }
68 
69  if (all_boxes_touch_bottom || lev > 0) {
70 
71  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
73  prob->erf_init_dens_hse_moist(r_hse, z_phys_nd[lev], geom[lev]);
74  } else {
75  prob->erf_init_dens_hse(r_hse, z_phys_nd[lev], z_phys_cc[lev], geom[lev]);
76  }
77 
78  erf_enforce_hse(lev, r_hse, p_hse, pi_hse, th_hse, qv_hse, z_phys_cc[lev]);
79 
80  //
81  // Impose physical bc's on the base state
82  //
83  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
84 
85  } else {
86 
87  BoxArray ba_new(domain);
88 
89  ChopGrids2D(ba_new, domain, ParallelDescriptor::NProcs());
90 
91  DistributionMapping dm_new(ba_new);
92 
93  MultiFab new_base_state(ba_new, dm_new, BaseState::num_comps, base_state[lev].nGrowVect());
94  new_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
95  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
96 
97  MultiFab new_r_hse (new_base_state, make_alias, BaseState::r0_comp, 1);
98  MultiFab new_p_hse (new_base_state, make_alias, BaseState::p0_comp, 1);
99  MultiFab new_pi_hse(new_base_state, make_alias, BaseState::pi0_comp, 1);
100  MultiFab new_th_hse(new_base_state, make_alias, BaseState::th0_comp, 1);
101  MultiFab new_qv_hse(new_base_state, make_alias, BaseState::qv0_comp, 1);
102 
103  std::unique_ptr<MultiFab> new_z_phys_cc;
104  std::unique_ptr<MultiFab> new_z_phys_nd;
105  if (solverChoice.mesh_type != MeshType::ConstantDz) {
106  new_z_phys_cc = std::make_unique<MultiFab>(ba_new,dm_new,1,1);
107  new_z_phys_cc->ParallelCopy(*z_phys_cc[lev],0,0,1,1,1);
108 
109  BoxArray ba_new_nd(ba_new);
110  ba_new_nd.surroundingNodes();
111  new_z_phys_nd = std::make_unique<MultiFab>(ba_new_nd,dm_new,1,1);
112  new_z_phys_nd->ParallelCopy(*z_phys_nd[lev],0,0,1,1,1);
113  }
114 
115  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
117  prob->erf_init_dens_hse_moist(new_r_hse, new_z_phys_nd, geom[lev]);
118  } else {
119  prob->erf_init_dens_hse(new_r_hse, new_z_phys_nd, new_z_phys_cc, geom[lev]);
120  }
121 
122  erf_enforce_hse(lev, new_r_hse, new_p_hse, new_pi_hse, new_th_hse, new_qv_hse, new_z_phys_cc);
123 
124  //
125  // Impose physical bc's on the base state (we must make new, temporary bcs object because the z_phys_nd is different)
126  //
127  ERFPhysBCFunct_base* temp_physbcs_base =
128  new ERFPhysBCFunct_base(lev, geom[lev], domain_bcs_type, domain_bcs_type_d, new_z_phys_nd,
129  (solverChoice.terrain_type == TerrainType::MovingFittedMesh));
130  (*temp_physbcs_base)(new_base_state,0,new_base_state.nComp(),new_base_state.nGrowVect());
131  delete temp_physbcs_base;
132 
133  // Now copy back into the original arrays
134  base_state[lev].ParallelCopy(new_base_state,0,0,base_state[lev].nComp(),
135  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
136  }
137 
138  //
139  // Impose physical bc's on the base state -- the values outside the fine region
140  // but inside the domain have already been filled in the call above to InterpFromCoarseLevel
141  //
142  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
143 }
void ChopGrids2D(BoxArray &ba, const Box &domain, int target_size)
Definition: ERF_ChopGrids.cpp:21
Definition: ERF_PhysBCFunct.H:286
void erf_enforce_hse(int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
Definition: ERF_Init1D.cpp:164
bool use_moist_background
Definition: ERF_DataStruct.H:1119
Here is the call graph for this function:

◆ initialize_integrator()

void ERF::initialize_integrator ( int  lev,
amrex::MultiFab &  cons_mf,
amrex::MultiFab &  vel_mf 
)
private
776 {
777  const BoxArray& ba(cons_mf.boxArray());
778  const DistributionMapping& dm(cons_mf.DistributionMap());
779 
780  int ncomp_cons = cons_mf.nComp();
781 
782  // Initialize the integrator memory
783  Vector<MultiFab> int_state; // integration state data structure example
784  int_state.push_back(MultiFab(cons_mf, make_alias, 0, ncomp_cons)); // cons
785  int_state.push_back(MultiFab(convert(ba,IntVect(1,0,0)), dm, 1, vel_mf.nGrow())); // xmom
786  int_state.push_back(MultiFab(convert(ba,IntVect(0,1,0)), dm, 1, vel_mf.nGrow())); // ymom
787  int_state.push_back(MultiFab(convert(ba,IntVect(0,0,1)), dm, 1, vel_mf.nGrow())); // zmom
788 
789  mri_integrator_mem[lev] = std::make_unique<MRISplitIntegrator<Vector<MultiFab> > >(int_state);
790  mri_integrator_mem[lev]->setNoSubstepping((solverChoice.substepping_type[lev] == SubsteppingType::None));
791  mri_integrator_mem[lev]->setAnelastic(solverChoice.anelastic[lev]);
792  mri_integrator_mem[lev]->setNcompCons(ncomp_cons);
793  mri_integrator_mem[lev]->setForceFirstStageSingleSubstep(solverChoice.force_stage1_single_substep);
794 }

◆ InitializeFromFile()

void ERF::InitializeFromFile ( )
private

◆ InitializeLevelFromData()

void ERF::InitializeLevelFromData ( int  lev,
const amrex::MultiFab &  initial_data 
)
private

◆ initializeMicrophysics()

void ERF::initializeMicrophysics ( const int &  a_nlevsmax)
private
Parameters
a_nlevsmaxnumber of AMR levels
1885 {
1886  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Eulerian) {
1887 
1888  micro = std::make_unique<EulerianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1889 
1890  } else if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1891 #ifdef ERF_USE_PARTICLES
1892 
1893  micro = std::make_unique<LagrangianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1894  /* Lagrangian microphysics models will have a particle container; it needs to be added
1895  to ERF::particleData */
1896  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1897  /* The particle container has not yet been constructed and initialized, so just add
1898  its name here for now (so that functions to set plotting variables can see it). */
1899  particleData.addName( pc_name );
1900 
1901 #else
1902  Abort("Lagrangian microphysics can be used when compiled with ERF_USE_PARTICLES");
1903 #endif
1904  }
1905 
1906  qmoist.resize(a_nlevsmax);
1907  return;
1908 }
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
Definition: ERF.H:859
Here is the call graph for this function:

◆ initRayleigh()

void ERF::initRayleigh ( )
private

Initialize Rayleigh damping profiles.

Initialization function for host and device vectors used to store averaged quantities when calculating the effects of Rayleigh Damping.

15 {
16  const int khi = geom[0].Domain().bigEnd(2);
17  solverChoice.dampingChoice.rayleigh_ztop = (solverChoice.terrain_type == TerrainType::None) ? geom[0].ProbHi(2) : zlevels_stag[0][khi+1];
18 
19  h_rayleigh_ptrs.resize(max_level+1);
20  d_rayleigh_ptrs.resize(max_level+1);
21 
22  h_sinesq_ptrs.resize(max_level+1);
23  d_sinesq_ptrs.resize(max_level+1);
24 
25  h_sinesq_stag_ptrs.resize(max_level+1);
26  d_sinesq_stag_ptrs.resize(max_level+1);
27 
28  for (int lev = 0; lev <= finest_level; lev++)
29  {
30  // These have 4 components: ubar, vbar, wbar, thetabar
31  h_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
32  d_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
33 
34  const int zlen_rayleigh = geom[lev].Domain().length(2);
35 
36  // Allocate space for these 1D vectors
37  for (int n = 0; n < Rayleigh::nvars; n++) {
38  h_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
39  d_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
40  }
41 
42  h_sinesq_ptrs[lev].resize(zlen_rayleigh);
43  d_sinesq_ptrs[lev].resize(zlen_rayleigh);
44 
45  h_sinesq_stag_ptrs[lev].resize(zlen_rayleigh+1);
46  d_sinesq_stag_ptrs[lev].resize(zlen_rayleigh+1);
47 
50 
51  for (int k = 0; k < zlen_rayleigh; k++) {
52  Real z = 0.5 * (zlevels_stag[lev][k] + zlevels_stag[lev][k+1]);
53  if (z > (ztop - zdamp)) {
54  Real zfrac = 1.0 - (ztop - z) / zdamp;
55  Real s = std::sin(PIoTwo*zfrac);
56  h_sinesq_ptrs[lev][k] = s*s;
57  } else {
58  h_sinesq_ptrs[lev][k] = 0.0;
59  }
60  }
61 
62  for (int k = 0; k < zlen_rayleigh+1; k++) {
63  Real z = zlevels_stag[lev][k];
64  if (z > (ztop - zdamp)) {
65  Real zfrac = 1.0 - (ztop - z) / zdamp;
66  Real s = std::sin(PIoTwo*zfrac);
67  h_sinesq_stag_ptrs[lev][k] = s*s;
68  } else {
69  h_sinesq_stag_ptrs[lev][k] = 0.0;
70  }
71  }
72 
73  // Init the host vectors for the reference states
74  prob->erf_init_rayleigh(h_rayleigh_ptrs[lev], geom[lev], z_phys_nd[lev], solverChoice.dampingChoice.rayleigh_zdamp);
75 
76  // Copy from host vectors to device vectors
77  for (int n = 0; n < Rayleigh::nvars; n++) {
78  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][n].begin(), h_rayleigh_ptrs[lev][n].end(),
79  d_rayleigh_ptrs[lev][n].begin());
80  }
81  Gpu::copy(Gpu::hostToDevice, h_sinesq_ptrs[lev].begin(), h_sinesq_ptrs[lev].end(), d_sinesq_ptrs[lev].begin());
82  Gpu::copy(Gpu::hostToDevice, h_sinesq_stag_ptrs[lev].begin(), h_sinesq_stag_ptrs[lev].end(), d_sinesq_stag_ptrs[lev].begin());
83  }
84 }
constexpr amrex::Real PIoTwo
Definition: ERF_Constants.H:7
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_ptrs
Definition: ERF.H:1314
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_stag_ptrs
Definition: ERF.H:1315
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
Definition: ERF.H:1310
amrex::Real rayleigh_ztop
Definition: ERF_DampingStruct.H:90
amrex::Real rayleigh_zdamp
Definition: ERF_DampingStruct.H:89

◆ initSponge()

void ERF::initSponge ( )
private

Initialize sponge profiles.

Initialization function for host and device vectors used to store the effects of sponge Damping.

36 {
37  h_sponge_ptrs.resize(max_level+1);
38  d_sponge_ptrs.resize(max_level+1);
39 
40  for (int lev = 0; lev <= finest_level; lev++)
41  {
42  // These have 2 components: ubar, vbar
45 
46  const int zlen_sponge = geom[lev].Domain().length(2);
47 
48  // Allocate space for these 1D vectors
49  for (int n = 0; n < Sponge::nvars_sponge; n++) {
50  h_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
51  d_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
52  }
53 
54  }
55 }
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
Definition: ERF.H:1311

◆ input_sponge()

void ERF::input_sponge ( int  lev)

High level wrapper for sponge x and y velocities level data from input sponge data.

Parameters
levInteger specifying the current level
18 {
19  // We only want to read the file once
20  if (lev == 0) {
22  Error("input_sounding file name must be provided via input");
23 
24  // this will interpolate the input profiles to the nominal height levels
25  // (ranging from 0 to the domain top)
27  }
28 }
InputSpongeData input_sponge_data
Definition: ERF.H:766
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag)
Definition: ERF_InputSpongeData.H:28
std::string input_sponge_file
Definition: ERF_InputSpongeData.H:108

◆ is_it_time_for_action()

bool ERF::is_it_time_for_action ( int  nstep,
amrex::Real  time,
amrex::Real  dt,
int  action_interval,
amrex::Real  action_per 
)
static

Helper function which uses the current step number, time, and timestep to determine whether it is time to take an action specified at every interval of timesteps.

Parameters
nstepTimestep number
timeCurrent time
dtlevTimestep for the current level
action_intervalInterval in number of timesteps for taking action
action_perInterval in simulation time for taking action
654 {
655  bool int_test = (action_interval > 0 && nstep % action_interval == 0);
656 
657  bool per_test = false;
658  if (action_per > 0.0) {
659  const int num_per_old = static_cast<int>(amrex::Math::floor((time - dtlev) / action_per));
660  const int num_per_new = static_cast<int>(amrex::Math::floor((time) / action_per));
661 
662  if (num_per_old != num_per_new) {
663  per_test = true;
664  }
665  }
666 
667  return int_test || per_test;
668 }

◆ make_eb_box()

void ERF::make_eb_box ( )

◆ make_eb_regular()

void ERF::make_eb_regular ( )

◆ make_physbcs()

void ERF::make_physbcs ( int  lev)
private
798 {
799  if (SolverChoice::mesh_type == MeshType::VariableDz) {
800  AMREX_ALWAYS_ASSERT(z_phys_nd[lev] != nullptr);
801  }
802 
803  physbcs_cons[lev] = std::make_unique<ERFPhysBCFunct_cons> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
805  z_phys_nd[lev], solverChoice.use_real_bcs, th_bc_data[lev].data());
806  physbcs_u[lev] = std::make_unique<ERFPhysBCFunct_u> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
808  z_phys_nd[lev], solverChoice.use_real_bcs, xvel_bc_data[lev].data());
809  physbcs_v[lev] = std::make_unique<ERFPhysBCFunct_v> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
811  z_phys_nd[lev], solverChoice.use_real_bcs, yvel_bc_data[lev].data());
812  physbcs_w[lev] = std::make_unique<ERFPhysBCFunct_w> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
815  solverChoice.use_real_bcs, zvel_bc_data[lev].data());
816  physbcs_base[lev] = std::make_unique<ERFPhysBCFunct_base> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d, z_phys_nd[lev],
817  (solverChoice.terrain_type == TerrainType::MovingFittedMesh));
818 }

◆ make_subdomains()

void ERF::make_subdomains ( const amrex::BoxList &  ba,
amrex::Vector< amrex::BoxArray > &  bins 
)
7 {
8  Vector<BoxList> bins_bl;
9 
10  // Clear out any old bins
11  bins.clear();
12 
13  // Iterate over boxes
14  for (auto bx : bl)
15  {
16  bool added = false;
17 
18  // Try to add box to existing bin
19  for (int j = 0; j < bins_bl.size(); ++j) {
20  BoxList& bin = bins_bl[j];
21  bool touches = false;
22 
23  for (auto& b : bin)
24  {
25  Box gbx(bx); gbx.grow(1);
26  if (gbx.intersects(b)) {
27  touches = true;
28  break;
29  }
30  }
31 
32  if (touches) {
33  bin.push_back(bx);
34  added = true;
35  break;
36  }
37  }
38 
39  // If box couldn't be added to existing bin, create new bin
40  if (!added) {
41  BoxList new_bin;
42  new_bin.push_back(bx);
43  bins_bl.push_back(new_bin);
44  }
45  }
46 
47  // Convert the BoxLists to BoxArrays
48  for (int i = 0; i < bins_bl.size(); ++i) {
49  bins.push_back(BoxArray(bins_bl[i]));
50  }
51 }

◆ MakeDiagnosticAverage()

void ERF::MakeDiagnosticAverage ( amrex::Vector< amrex::Real > &  h_havg,
amrex::MultiFab &  S,
int  n 
)
2757 {
2758  // Get the number of cells in z at level 0
2759  int dir_z = AMREX_SPACEDIM-1;
2760  auto domain = geom[0].Domain();
2761  int size_z = domain.length(dir_z);
2762  int start_z = domain.smallEnd()[dir_z];
2763  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2764 
2765  // resize the level 0 horizontal average vectors
2766  h_havg.resize(size_z, 0.0_rt);
2767 
2768  // Get the cell centered data and construct sums
2769 #ifdef _OPENMP
2770 #pragma omp parallel if (Gpu::notInLaunchRegion())
2771 #endif
2772  for (MFIter mfi(S); mfi.isValid(); ++mfi) {
2773  const Box& box = mfi.validbox();
2774  const IntVect& se = box.smallEnd();
2775  const IntVect& be = box.bigEnd();
2776 
2777  auto fab_arr = S[mfi].array();
2778 
2779  FArrayBox fab_reduce(box, 1, The_Async_Arena());
2780  auto arr_reduce = fab_reduce.array();
2781 
2782  ParallelFor(box, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2783  arr_reduce(i, j, k, 0) = fab_arr(i,j,k,n);
2784  });
2785 
2786  for (int k=se[dir_z]; k <= be[dir_z]; ++k) {
2787  Box kbox(box); kbox.setSmall(dir_z,k); kbox.setBig(dir_z,k);
2788  h_havg[k-start_z] += fab_reduce.sum<RunOn::Device>(kbox,0);
2789  }
2790  }
2791 
2792  // combine sums from different MPI ranks
2793  ParallelDescriptor::ReduceRealSum(h_havg.dataPtr(), h_havg.size());
2794 
2795  // divide by the total number of cells we are averaging over
2796  for (int k = 0; k < size_z; ++k) {
2797  h_havg[k] /= area_z;
2798  }
2799 }

◆ MakeEBGeometry()

void ERF::MakeEBGeometry ( )

◆ MakeFilename_EyeTracker_latlon()

std::string ERF::MakeFilename_EyeTracker_latlon ( int  nstep)
615  {
616  // Ensure output directory exists
617  const std::string dir = "Output_HurricaneTracker/latlon";
618  if (!fs::exists(dir)) {
619  fs::create_directories(dir);
620  }
621 
622  // Construct filename with zero-padded step
623  std::ostringstream oss;
624  oss << dir << "/hurricane_track_latlon" << std::setw(7) << std::setfill('0') << nstep << ".txt";
625  return oss.str();
626 }

◆ MakeFilename_EyeTracker_maxvel()

std::string ERF::MakeFilename_EyeTracker_maxvel ( int  nstep)
629  {
630  // Ensure output directory exists
631  const std::string dir = "Output_HurricaneTracker/maxvel";
632  if (!fs::exists(dir)) {
633  fs::create_directories(dir);
634  }
635 
636  // Construct filename with zero-padded step
637  std::ostringstream oss;
638  oss << dir << "/hurricane_maxvel_" << std::setw(7) << std::setfill('0') << nstep << ".txt";
639  return oss.str();
640 }

◆ MakeHorizontalAverages()

void ERF::MakeHorizontalAverages ( )
2651 {
2652  int lev = 0;
2653 
2654  // First, average down all levels (if doing two-way coupling)
2655  if (solverChoice.coupling_type == CouplingType::TwoWay) {
2656  AverageDown();
2657  }
2658 
2659  MultiFab mf(grids[lev], dmap[lev], 5, 0);
2660 
2661  int zdir = 2;
2662  auto domain = geom[0].Domain();
2663 
2664  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
2665  bool is_anelastic = (solverChoice.anelastic[lev] == 1);
2666 
2667  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2668  const Box& bx = mfi.validbox();
2669  auto fab_arr = mf.array(mfi);
2670  auto const hse_arr = base_state[lev].const_array(mfi);
2671  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2672  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2673  Real dens = cons_arr(i, j, k, Rho_comp);
2674  fab_arr(i, j, k, 0) = dens;
2675  fab_arr(i, j, k, 1) = cons_arr(i, j, k, RhoTheta_comp) / dens;
2676  if (!use_moisture) {
2677  if (is_anelastic) {
2678  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2679  } else {
2680  fab_arr(i,j,k,2) = getPgivenRTh(cons_arr(i,j,k,RhoTheta_comp));
2681  }
2682  }
2683  });
2684  }
2685 
2686  if (use_moisture)
2687  {
2688  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2689  const Box& bx = mfi.validbox();
2690  auto fab_arr = mf.array(mfi);
2691  auto const hse_arr = base_state[lev].const_array(mfi);
2692  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2693  int ncomp = vars_new[lev][Vars::cons].nComp();
2694 
2695  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2696  Real dens = cons_arr(i, j, k, Rho_comp);
2697  if (is_anelastic) {
2698  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2699  } else {
2700  Real qv = cons_arr(i, j, k, RhoQ1_comp) / dens;
2701  fab_arr(i, j, k, 2) = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
2702  }
2703  fab_arr(i, j, k, 3) = (ncomp > RhoQ1_comp ? cons_arr(i, j, k, RhoQ1_comp) / dens : 0.0);
2704  fab_arr(i, j, k, 4) = (ncomp > RhoQ2_comp ? cons_arr(i, j, k, RhoQ2_comp) / dens : 0.0);
2705  });
2706  }
2707 
2708  Gpu::HostVector<Real> h_avg_qv = sumToLine(mf,3,1,domain,zdir);
2709  Gpu::HostVector<Real> h_avg_qc = sumToLine(mf,4,1,domain,zdir);
2710  }
2711 
2712  // Sum in the horizontal plane
2713  Gpu::HostVector<Real> h_avg_density = sumToLine(mf,0,1,domain,zdir);
2714  Gpu::HostVector<Real> h_avg_temperature = sumToLine(mf,1,1,domain,zdir);
2715  Gpu::HostVector<Real> h_avg_pressure = sumToLine(mf,2,1,domain,zdir);
2716 
2717  // Divide by the total number of cells we are averaging over
2718  int size_z = domain.length(zdir);
2719  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2720  int klen = static_cast<int>(h_avg_density.size());
2721 
2722  for (int k = 0; k < klen; ++k) {
2723  h_havg_density[k] /= area_z;
2724  h_havg_temperature[k] /= area_z;
2725  h_havg_pressure[k] /= area_z;
2726  if (solverChoice.moisture_type != MoistureType::None)
2727  {
2728  h_havg_qc[k] /= area_z;
2729  h_havg_qv[k] /= area_z;
2730  }
2731  } // k
2732 
2733  // resize device vectors
2734  d_havg_density.resize(size_z, 0.0_rt);
2735  d_havg_temperature.resize(size_z, 0.0_rt);
2736  d_havg_pressure.resize(size_z, 0.0_rt);
2737 
2738  // copy host vectors to device vectors
2739  Gpu::copy(Gpu::hostToDevice, h_havg_density.begin(), h_havg_density.end(), d_havg_density.begin());
2740  Gpu::copy(Gpu::hostToDevice, h_havg_temperature.begin(), h_havg_temperature.end(), d_havg_temperature.begin());
2741  Gpu::copy(Gpu::hostToDevice, h_havg_pressure.begin(), h_havg_pressure.end(), d_havg_pressure.begin());
2742 
2743  if (solverChoice.moisture_type != MoistureType::None)
2744  {
2745  d_havg_qv.resize(size_z, 0.0_rt);
2746  d_havg_qc.resize(size_z, 0.0_rt);
2747  Gpu::copy(Gpu::hostToDevice, h_havg_qv.begin(), h_havg_qv.end(), d_havg_qv.begin());
2748  Gpu::copy(Gpu::hostToDevice, h_havg_qc.begin(), h_havg_qc.end(), d_havg_qc.begin());
2749  }
2750 }
amrex::Gpu::DeviceVector< amrex::Real > d_havg_temperature
Definition: ERF.H:1332
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qv
Definition: ERF.H:1334
amrex::Vector< amrex::Real > h_havg_pressure
Definition: ERF.H:1327
amrex::Vector< amrex::Real > h_havg_qc
Definition: ERF.H:1329
amrex::Vector< amrex::Real > h_havg_density
Definition: ERF.H:1325
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qc
Definition: ERF.H:1335
amrex::Gpu::DeviceVector< amrex::Real > d_havg_density
Definition: ERF.H:1331
amrex::Vector< amrex::Real > h_havg_temperature
Definition: ERF.H:1326
amrex::Gpu::DeviceVector< amrex::Real > d_havg_pressure
Definition: ERF.H:1333
amrex::Vector< amrex::Real > h_havg_qv
Definition: ERF.H:1328
Here is the call graph for this function:

◆ MakeNewLevelFromCoarse()

void ERF::MakeNewLevelFromCoarse ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
294 {
295  AMREX_ALWAYS_ASSERT(lev > 0);
296 
297  if (verbose) {
298  amrex::Print() <<" NEW BA FROM COARSE AT LEVEL " << lev << " " << ba << std::endl;
299  }
300 
301  //
302  // Grow the subdomains vector and build the subdomains vector at this level
303  //
304  subdomains.resize(lev+1);
305  //
306  // Create subdomains at each level within the domain such that
307  // 1) all boxes in a given subdomain are "connected"
308  // 2) no boxes in a subdomain touch any boxes in any other subdomain
309  //
310  if ( (solverChoice.anelastic[lev] == 0) && (solverChoice.project_initial_velocity[lev] == 0) ) {
311  BoxArray dom(geom[lev].Domain());
312  subdomains[lev].push_back(dom);
313  } else {
314  make_subdomains(ba.simplified_list(), subdomains[lev]);
315  }
316 
317  if (lev == 0) init_bcs();
318 
319  //********************************************************************************************
320  // This allocates all kinds of things, including but not limited to: solution arrays,
321  // terrain arrays, metric terms and base state.
322  // *******************************************************************************************
323  init_stuff(lev, ba, dm, vars_new[lev], vars_old[lev], base_state[lev], z_phys_nd[lev]);
324 
325  t_new[lev] = time;
326  t_old[lev] = time - 1.e200;
327 
328  // ********************************************************************************************
329  // Build the data structures for metric quantities used with terrain-fitted coordinates
330  // ********************************************************************************************
331  if ( solverChoice.terrain_type == TerrainType::EB ||
332  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
333  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
334  {
335  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
336  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
337  if (solverChoice.terrain_type == TerrainType::EB) {
338  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
339  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
340  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
341  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
342  }
343  }
344  init_zphys(lev, time);
346 
347  //
348  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
349  // *and* if there is two-way coupling
350  //
351  if ( (SolverChoice::mesh_type != MeshType::ConstantDz) && (solverChoice.coupling_type == CouplingType::TwoWay) ) {
352  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
353  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
354  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
355  }
356  }
357 
358  // ********************************************************************************************
359  // Build the data structures for canopy model (depends upon z_phys)
360  // ********************************************************************************************
362  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
363  }
364 
365  //********************************************************************************************
366  // Microphysics
367  // *******************************************************************************************
368  int q_size = micro->Get_Qmoist_Size(lev);
369  qmoist[lev].resize(q_size);
370  micro->Define(lev, solverChoice);
371  if (solverChoice.moisture_type != MoistureType::None)
372  {
373  micro->Init(lev, vars_new[lev][Vars::cons],
374  grids[lev], Geom(lev), 0.0,
375  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
376  }
377  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
378  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
379  }
380 
381  //********************************************************************************************
382  // Radiation
383  // *******************************************************************************************
384  if (solverChoice.rad_type != RadiationType::None)
385  {
386  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
387  }
388 
389  // *****************************************************************************************************
390  // Initialize the boundary conditions (after initializing the terrain but before calling
391  // initHSE or FillCoarsePatch)
392  // *****************************************************************************************************
393  make_physbcs(lev);
394 
395  // ********************************************************************************************
396  // Update the base state at this level by interpolation from coarser level
397  // ********************************************************************************************
398  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
399  IntVect(0,0,0), // do not fill ghost cells outside the domain
400  base_state[lev-1], 0, 0, base_state[lev].nComp(),
401  geom[lev-1], geom[lev],
402  refRatio(lev-1), &cell_cons_interp,
404 
405  // Impose bc's outside the domain
406  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
407 
408  // ********************************************************************************************
409  // Build the data structures for calculating diffusive/turbulent terms
410  // ********************************************************************************************
411  update_diffusive_arrays(lev, ba, dm);
412 
413  // ********************************************************************************************
414  // Build the data structures for holding sea surface temps and skin temps
415  // ********************************************************************************************
416  sst_lev[lev].resize(1); sst_lev[lev][0] = nullptr;
417  tsk_lev[lev].resize(1); tsk_lev[lev][0] = nullptr;
418 
419  // ********************************************************************************************
420  // Fill data at the new level by interpolation from the coarser level
421  // Note that internal to FillCoarsePatch we will convert velocity to momentum,
422  // then interpolate momentum, then convert momentum back to velocity
423  // Also note that FillCoarsePatch is hard-wired to act only on lev_new at coarse and fine
424  // ********************************************************************************************
425 
426 #ifdef ERF_USE_NETCDF
427  if ( (solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid) )
428  {
429  // Just making sure that ghost cells aren't uninitialized...
430  vars_new[lev][Vars::cons].setVal(0.0); vars_old[lev][Vars::cons].setVal(0.0);
431  vars_new[lev][Vars::xvel].setVal(0.0); vars_old[lev][Vars::xvel].setVal(0.0);
432  vars_new[lev][Vars::yvel].setVal(0.0); vars_old[lev][Vars::yvel].setVal(0.0);
433  vars_new[lev][Vars::zvel].setVal(0.0); vars_old[lev][Vars::zvel].setVal(0.0);
434 
435  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type == TerrainType::StaticFittedMesh);
436  if (solverChoice.init_type == InitType::Metgrid) {
437  init_from_metgrid(lev);
438  } else if (solverChoice.init_type == InitType::WRFInput) {
439  init_from_wrfinput(lev, *mf_C1H, *mf_C2H, *mf_MUB, *mf_PSFC[lev]);
440  }
441  init_zphys(lev, time);
443  make_physbcs(lev);
444 
445  dz_min[lev] = (*detJ_cc[lev]).min(0) * geom[lev].CellSize(2);
446 
447  } else {
448 #endif
449  FillCoarsePatch(lev, time);
450 #ifdef ERF_USE_NETCDF
451  }
452 #endif
453 
454  // ********************************************************************************************
455  // Initialize the integrator class
456  // ********************************************************************************************
457  dt_mri_ratio[lev] = dt_mri_ratio[lev-1];
459 
460  // ********************************************************************************************
461  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
462  // ********************************************************************************************
463  if (lev > 0 && cf_width >= 0) {
466  }
467 
468  //********************************************************************************************
469  // Land Surface Model
470  // *******************************************************************************************
471  int lsm_data_size = lsm.Get_Data_Size();
472  int lsm_flux_size = lsm.Get_Flux_Size();
473  lsm_data[lev].resize(lsm_data_size);
474  lsm_data_name.resize(lsm_data_size);
475  lsm_flux[lev].resize(lsm_flux_size);
476  lsm_flux_name.resize(lsm_flux_size);
477  lsm.Define(lev, solverChoice);
478  if (solverChoice.lsm_type != LandSurfaceType::None)
479  {
480  lsm.Init(lev, vars_new[lev][Vars::cons], Geom(lev), 0.0); // dummy dt value
481  }
482  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
483  lsm_data[lev][mvar] = lsm.Get_Data_Ptr(lev,mvar);
484  lsm_data_name[mvar] = lsm.Get_DataName(mvar);
485  }
486  for (int mvar(0); mvar<lsm_flux[lev].size(); ++mvar) {
487  lsm_flux[lev][mvar] = lsm.Get_Flux_Ptr(lev,mvar);
488  lsm_flux_name[mvar] = lsm.Get_FluxName(mvar);
489  }
490 
491  // ********************************************************************************************
492  // Create the SurfaceLayer arrays at this (new) level
493  // ********************************************************************************************
494  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
495  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
496  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
497  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,lev+1,
498  mfv_old, Theta_prim[lev], Qv_prim[lev],
499  Qr_prim[lev], z_phys_nd[lev],
500  Hwave[lev].get(), Lwave[lev].get(), eddyDiffs_lev[lev].get(),
502  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
503  }
504 
505 #ifdef ERF_USE_PARTICLES
506  // particleData.Redistribute();
507 #endif
508 }
void update_diffusive_arrays(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewArrays.cpp:516
void initialize_integrator(int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
Definition: ERF_MakeNewArrays.cpp:775
void make_subdomains(const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
Definition: ERF_MakeSubdomains.cpp:6
void update_terrain_arrays(int lev)
Definition: ERF_MakeNewArrays.cpp:758
void init_zphys(int lev, amrex::Real time)
Definition: ERF_MakeNewArrays.cpp:641
void init_stuff(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:24
void Define_ERFFillPatchers(int lev)
Definition: ERF.cpp:2828
int Get_Data_Size()
Definition: ERF_LandSurface.H:98
std::string Get_DataName(const int &varIdx)
Definition: ERF_LandSurface.H:104
std::string Get_FluxName(const int &varIdx)
Definition: ERF_LandSurface.H:110
amrex::MultiFab * Get_Flux_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:92
void Init(const int &lev, const amrex::MultiFab &cons_in, const amrex::Geometry &geom, const amrex::Real &dt_advance)
Definition: ERF_LandSurface.H:43
void Define(const int &lev, SolverChoice &sc)
Definition: ERF_LandSurface.H:36
int Get_Flux_Size()
Definition: ERF_LandSurface.H:101

◆ MakeNewLevelFromScratch()

void ERF::MakeNewLevelFromScratch ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
27 {
28  BoxArray ba;
29  DistributionMapping dm;
30  Box domain(Geom(0).Domain());
31  if (lev == 0 && restart_chkfile.empty() &&
32  (max_grid_size[0][0] >= domain.length(0)) &&
33  (max_grid_size[0][1] >= domain.length(1)) &&
34  ba_in.size() != ParallelDescriptor::NProcs())
35  {
36  // We only decompose in z if max_grid_size_z indicates we should
37  bool decompose_in_z = (max_grid_size[0][2] < domain.length(2));
38 
39  ba = ERFPostProcessBaseGrids(Geom(0).Domain(),decompose_in_z);
40  dm = DistributionMapping(ba);
41  } else {
42  ba = ba_in;
43  dm = dm_in;
44  }
45 
46  // ********************************************************************************************
47  // Define grids[lev] to be ba
48  // ********************************************************************************************
49  SetBoxArray(lev, ba);
50 
51  // ********************************************************************************************
52  // Define dmap[lev] to be dm
53  // ********************************************************************************************
54  SetDistributionMap(lev, dm);
55 
56  if (verbose) {
57  amrex::Print() << "BA FROM SCRATCH AT LEVEL " << lev << " " << ba << std::endl;
58  // amrex::Print() <<" SIMPLIFIED BA FROM SCRATCH AT LEVEL " << lev << " " << ba.simplified_list() << std::endl;
59  }
60 
61  subdomains.resize(lev+1);
62  if ( (lev == 0) || (
63  (solverChoice.anelastic[lev] == 0) && (solverChoice.project_initial_velocity[lev] == 0) &&
64  (solverChoice.init_type != InitType::WRFInput) && (solverChoice.init_type != InitType::Metgrid) ) ) {
65  BoxArray dom(geom[lev].Domain());
66  subdomains[lev].push_back(dom);
67  } else {
68  //
69  // Create subdomains at each level within the domain such that
70  // 1) all boxes in a given subdomain are "connected"
71  // 2) no boxes in a subdomain touch any boxes in any other subdomain
72  //
73  make_subdomains(ba.simplified_list(), subdomains[lev]);
74  }
75 
76  if (lev == 0) init_bcs();
77 
78  if ( solverChoice.terrain_type == TerrainType::EB ||
79  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
80  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
81  {
82  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
83  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
84  if (solverChoice.terrain_type == TerrainType::EB) {
85  eb[lev]->make_all_factories(lev, geom[lev], grids[lev], dmap[lev], eb_level);
86  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
87  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
88  eb[lev]->make_cc_factory(lev, geom[lev], grids[lev], dmap[lev], eb_level);
89  }
90  } else {
91  // m_factory[lev] = std::make_unique<FabFactory<FArrayBox>>();
92  }
93 
94  auto& lev_new = vars_new[lev];
95  auto& lev_old = vars_old[lev];
96 
97  //********************************************************************************************
98  // This allocates all kinds of things, including but not limited to: solution arrays,
99  // terrain arrays, metric terms and base state.
100  // *******************************************************************************************
101  init_stuff(lev, ba, dm, lev_new, lev_old, base_state[lev], z_phys_nd[lev]);
102 
103  //********************************************************************************************
104  // Land Surface Model
105  // *******************************************************************************************
106  int lsm_data_size = lsm.Get_Data_Size();
107  int lsm_flux_size = lsm.Get_Flux_Size();
108  lsm_data[lev].resize(lsm_data_size);
109  lsm_data_name.resize(lsm_data_size);
110  lsm_flux[lev].resize(lsm_flux_size);
111  lsm_flux_name.resize(lsm_flux_size);
112  lsm.Define(lev, solverChoice);
113  if (solverChoice.lsm_type != LandSurfaceType::None)
114  {
115  lsm.Init(lev, vars_new[lev][Vars::cons], Geom(lev), 0.0); // dummy dt value
116  }
117  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
118  lsm_data[lev][mvar] = lsm.Get_Data_Ptr(lev,mvar);
119  lsm_data_name[mvar] = lsm.Get_DataName(mvar);
120  }
121  for (int mvar(0); mvar<lsm_flux[lev].size(); ++mvar) {
122  lsm_flux[lev][mvar] = lsm.Get_Flux_Ptr(lev,mvar);
123  lsm_flux_name[mvar] = lsm.Get_FluxName(mvar);
124  }
125 
126 
127 
128  // ********************************************************************************************
129  // Build the data structures for calculating diffusive/turbulent terms
130  // ********************************************************************************************
131  update_diffusive_arrays(lev, ba, dm);
132 
133  // ********************************************************************************************
134  // Build the data structures for holding sea surface temps and skin temps
135  // ********************************************************************************************
136  sst_lev[lev].resize(1); sst_lev[lev][0] = nullptr;
137  tsk_lev[lev].resize(1); tsk_lev[lev][0] = nullptr;
138 
139  // ********************************************************************************************
140  // Thin immersed body
141  // *******************************************************************************************
142  init_thin_body(lev, ba, dm);
143 
144  // ********************************************************************************************
145  // Initialize the integrator class
146  // ********************************************************************************************
147  initialize_integrator(lev, lev_new[Vars::cons],lev_new[Vars::xvel]);
148 
149  // ********************************************************************************************
150  // Initialize the data itself
151  // If (init_type == InitType::WRFInput) then we are initializing terrain and the initial data in
152  // the same call so we must call init_only before update_terrain_arrays
153  // If (init_type != InitType::WRFInput) then we want to initialize the terrain before the initial data
154  // since we may need to use the grid information before constructing
155  // initial idealized data
156  // ********************************************************************************************
157  if (restart_chkfile.empty()) {
158  if ( (solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid) )
159  {
160  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type == TerrainType::StaticFittedMesh);
161  init_only(lev, time);
162  init_zphys(lev, time);
164  make_physbcs(lev);
165  } else {
166  init_zphys(lev, time);
168  // Note that for init_type != InitType::WRFInput and != InitType::Metgrid,
169  // make_physbcs is called inside init_only
170  init_only(lev, time);
171  }
172  } else {
173  // if restarting and nudging from input sounding, load the input sounding files
174  if (lev == 0 && solverChoice.init_type == InitType::Input_Sounding && solverChoice.nudging_from_input_sounding)
175  {
177  Error("input_sounding file name must be provided via input");
178  }
179 
181 
182  // this will interpolate the input profiles to the nominal height levels
183  // (ranging from 0 to the domain top)
184  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
185  input_sounding_data.read_from_file(geom[lev], zlevels_stag[lev], n);
186  }
187 
188  // this will calculate the hydrostatically balanced density and pressure
189  // profiles following WRF ideal.exe
190  if (solverChoice.sounding_type == SoundingType::Ideal) {
192  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
193  solverChoice.sounding_type == SoundingType::DryIsentropic) {
194  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
196  }
197  }
198 
199  // We re-create terrain_blanking on restart rather than storing it in the checkpoint
200  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
201  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
202  int ngrow = ComputeGhostCells(solverChoice) + 2;
203  terrain_blanking[lev]->setVal(1.0);
204  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ngrow);
205  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
206  }
207  }
208 
209  // Read in tables needed for windfarm simulations
210  // fill in Nturb multifab - number of turbines in each mesh cell
211  // write out the vtk files for wind turbine location and/or
212  // actuator disks
213  #ifdef ERF_USE_WINDFARM
214  init_windfarm(lev);
215  #endif
216 
217  // ********************************************************************************************
218  // Build the data structures for canopy model (depends upon z_phys)
219  // ********************************************************************************************
220  if (restart_chkfile.empty()) {
222  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
223  }
224  }
225 
226  //********************************************************************************************
227  // Create wall distance field for RANS model (depends upon z_phys)
228  // *******************************************************************************************
229  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
230  // Handle bottom boundary
231  poisson_wall_dist(lev);
232 
233  // Correct the wall distance for immersed bodies
239  geom[lev],
240  z_phys_cc[lev]);
241  }
242  }
243 
244  //********************************************************************************************
245  // Microphysics
246  // *******************************************************************************************
247  int q_size = micro->Get_Qmoist_Size(lev);
248  qmoist[lev].resize(q_size);
249  micro->Define(lev, solverChoice);
250  if (solverChoice.moisture_type != MoistureType::None)
251  {
252  micro->Init(lev, vars_new[lev][Vars::cons],
253  grids[lev], Geom(lev), 0.0,
254  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
255  }
256  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
257  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
258  }
259 
260  //********************************************************************************************
261  // Radiation
262  // *******************************************************************************************
263  if (solverChoice.rad_type != RadiationType::None)
264  {
265  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
266  }
267 
268  // ********************************************************************************************
269  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
270  // ********************************************************************************************
271  if (lev > 0 && cf_width >= 0) {
274  }
275 
276 #ifdef ERF_USE_PARTICLES
277  if (restart_chkfile.empty()) {
278  if (lev == 0) {
279  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,time);
280  } else {
281  particleData.Redistribute();
282  }
283  }
284 #endif
285 }
BoxArray ERFPostProcessBaseGrids(const Box &domain, bool decompose_in_z)
Definition: ERF_ChopGrids.cpp:6
void thinbody_wall_dist(std::unique_ptr< MultiFab > &wdist, Vector< IntVect > &xfaces, Vector< IntVect > &yfaces, Vector< IntVect > &zfaces, const Geometry &geomdata, std::unique_ptr< MultiFab > &z_phys_cc)
Definition: ERF_ThinBodyWallDist.cpp:12
void init_only(int lev, amrex::Real time)
Definition: ERF.cpp:1981
void poisson_wall_dist(int lev)
Definition: ERF_PoissonWallDist.cpp:20
void init_thin_body(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewLevel.cpp:787
bool nudging_from_input_sounding
Definition: ERF_DataStruct.H:1079
Here is the call graph for this function:

◆ MakeVTKFilename()

std::string ERF::MakeVTKFilename ( int  nstep)
574  {
575  // Ensure output directory exists
576  const std::string dir = "Output_HurricaneTracker";
577  if (!fs::exists(dir)) {
578  fs::create_directory(dir);
579  }
580 
581  std::ostringstream oss;
582  oss << dir << "/hurricane_track_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
583  return oss.str();
584 }

◆ MakeVTKFilename_EyeTracker_xy()

std::string ERF::MakeVTKFilename_EyeTracker_xy ( int  nstep)
601  {
602  // Ensure output directory exists
603  const std::string dir = "Output_HurricaneTracker/xy";
604  if (!fs::exists(dir)) {
605  fs::create_directories(dir);
606  }
607 
608  // Construct filename with zero-padded step
609  std::ostringstream oss;
610  oss << dir << "/hurricane_track_xy_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
611  return oss.str();
612 }

◆ MakeVTKFilename_TrackerCircle()

std::string ERF::MakeVTKFilename_TrackerCircle ( int  nstep)
587  {
588  // Ensure output directory exists
589  const std::string dir = "Output_HurricaneTracker/tracker_circle";
590  if (!fs::exists(dir)) {
591  fs::create_directories(dir);
592  }
593 
594  // Construct filename with zero-padded step
595  std::ostringstream oss;
596  oss << dir << "/hurricane_tracker_circle_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
597  return oss.str();
598 }

◆ nghost_eb_basic()

static int ERF::nghost_eb_basic ( )
inlinestaticprivate
1639  { return 5; }

◆ nghost_eb_full()

static int ERF::nghost_eb_full ( )
inlinestaticprivate
1646  { return 4; }

◆ nghost_eb_volume()

static int ERF::nghost_eb_volume ( )
inlinestaticprivate
1643  { return 5; }

◆ NumDataLogs()

AMREX_FORCE_INLINE int ERF::NumDataLogs ( )
inlineprivatenoexcept
1435  {
1436  return datalog.size();
1437  }

◆ NumDerDataLogs()

AMREX_FORCE_INLINE int ERF::NumDerDataLogs ( )
inlineprivatenoexcept
1442  {
1443  return der_datalog.size();
1444  }

◆ NumSampleLineLogs()

AMREX_FORCE_INLINE int ERF::NumSampleLineLogs ( )
inlineprivatenoexcept
1471  {
1472  return samplelinelog.size();
1473  }

◆ NumSampleLines()

AMREX_FORCE_INLINE int ERF::NumSampleLines ( )
inlineprivatenoexcept
1497  {
1498  return sampleline.size();
1499  }

◆ NumSamplePointLogs()

AMREX_FORCE_INLINE int ERF::NumSamplePointLogs ( )
inlineprivatenoexcept
1457  {
1458  return sampleptlog.size();
1459  }

◆ NumSamplePoints()

AMREX_FORCE_INLINE int ERF::NumSamplePoints ( )
inlineprivatenoexcept
1484  {
1485  return samplepoint.size();
1486  }

◆ operator=() [1/2]

ERF& ERF::operator= ( const ERF other)
delete

◆ operator=() [2/2]

ERF& ERF::operator= ( ERF &&  other)
deletenoexcept

◆ ParameterSanityChecks()

void ERF::ParameterSanityChecks ( )
private
2584 {
2585  AMREX_ALWAYS_ASSERT(cfl > 0. || fixed_dt[0] > 0.);
2586 
2587  // We don't allow use_real_bcs to be true if init_type is not either InitType::WRFInput or InitType::Metgrid
2588  AMREX_ALWAYS_ASSERT( !solverChoice.use_real_bcs ||
2589  ((solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid)) );
2590 
2591  AMREX_ALWAYS_ASSERT(real_width >= 0);
2592  AMREX_ALWAYS_ASSERT(real_set_width >= 0);
2593  AMREX_ALWAYS_ASSERT(real_width >= real_set_width);
2594 
2595  if (cf_width < 0 || cf_set_width < 0 || cf_width < cf_set_width) {
2596  Abort("You must set cf_width >= cf_set_width >= 0");
2597  }
2598  if (max_level > 0 && cf_set_width > 0) {
2599  for (int lev = 1; lev <= max_level; lev++) {
2600  if (cf_set_width%ref_ratio[lev-1][0] != 0 ||
2601  cf_set_width%ref_ratio[lev-1][1] != 0 ||
2602  cf_set_width%ref_ratio[lev-1][2] != 0 ) {
2603  Abort("You must set cf_width to be a multiple of ref_ratio");
2604  }
2605  }
2606  }
2607 
2608  // If fixed_mri_dt_ratio is set, it must be even
2609  if (fixed_mri_dt_ratio > 0 && (fixed_mri_dt_ratio%2 != 0) )
2610  {
2611  Abort("If you specify fixed_mri_dt_ratio, it must be even");
2612  }
2613 
2614  for (int lev = 0; lev <= max_level; lev++)
2615  {
2616  // We ignore fixed_fast_dt if not substepping
2617  if (solverChoice.substepping_type[lev] == SubsteppingType::None) {
2618  fixed_fast_dt[lev] = -1.0;
2619  }
2620 
2621  // If both fixed_dt and fast_dt are specified, their ratio must be an even integer
2622  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio <= 0)
2623  {
2624  Real eps = 1.e-12;
2625  int ratio = static_cast<int>( ( (1.0+eps) * fixed_dt[lev] ) / fixed_fast_dt[lev] );
2626  if (fixed_dt[lev] / fixed_fast_dt[lev] != ratio)
2627  {
2628  Abort("Ratio of fixed_dt to fixed_fast_dt must be an even integer");
2629  }
2630  }
2631 
2632  // If all three are specified, they must be consistent
2633  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio > 0)
2634  {
2635  if (fixed_dt[lev] / fixed_fast_dt[lev] != fixed_mri_dt_ratio)
2636  {
2637  Abort("Dt is over-specfied");
2638  }
2639  }
2640  } // lev
2641 
2642  if (solverChoice.coupling_type == CouplingType::TwoWay && cf_width > 0) {
2643  Abort("For two-way coupling you must set cf_width = 0");
2644  }
2645 }
int real_set_width
Definition: ERF.H:1235

◆ PlotFileName()

std::string ERF::PlotFileName ( int  lev) const
private

◆ PlotFileVarNames()

Vector< std::string > ERF::PlotFileVarNames ( amrex::Vector< std::string >  plot_var_names)
staticprivate
297 {
298  Vector<std::string> names;
299 
300  names.insert(names.end(), plot_var_names.begin(), plot_var_names.end());
301 
302  return names;
303 
304 }

◆ poisson_wall_dist()

void ERF::poisson_wall_dist ( int  lev)

Calculate wall distances using the Poisson equation

The zlo boundary is assumed to correspond to the land surface. If there are no boundary walls, then the other use case is to calculate wall distances for immersed boundaries (embedded or thin body).

See Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248. https://doi.org/10.1016/S0021-9991(03)00272-9

21 {
22  BL_PROFILE("ERF::poisson_wall_dist()");
23 
24  bool havewall{false};
25  Orientation zlo(Direction::z, Orientation::low);
26  if ( ( phys_bc_type[zlo] == ERF_BC::surface_layer ) ||
27  ( phys_bc_type[zlo] == ERF_BC::no_slip_wall ) )/*||
28  ((phys_bc_type[zlo] == ERF_BC::slip_wall) && (dom_hi.z > dom_lo.z)) )*/
29  {
30  havewall = true;
31  }
32 
33  auto const& geomdata = geom[lev];
34 
35  if (havewall) {
36  if (solverChoice.mesh_type == MeshType::ConstantDz) {
37 // Comment this out to test the wall dist calc in the trivial case:
38 //#if 0
39  Print() << "Directly calculating direct wall distance for constant dz" << std::endl;
40  const Real* prob_lo = geomdata.ProbLo();
41  const Real* dx = geomdata.CellSize();
42  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
43  const Box& bx = mfi.validbox();
44  auto dist_arr = walldist[lev]->array(mfi);
45  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
46  dist_arr(i, j, k) = prob_lo[2] + (k + 0.5) * dx[2];
47  });
48  }
49  return;
50 //#endif
51  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
52  // TODO: Handle this trivial case
53  Error("Wall dist calc not implemented with grid stretching yet");
54  } else {
55  // TODO
56  Error("Wall dist calc not implemented over terrain yet");
57  }
58  }
59 
60  Print() << "Calculating Poisson wall distance" << std::endl;
61 
62  // Make sure the solver only sees the levels over which we are solving
63  BoxArray nba = walldist[lev]->boxArray();
64  nba.surroundingNodes();
65  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
66  Vector<BoxArray> ba_tmp; ba_tmp.push_back(nba);
67  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(walldist[lev]->DistributionMap());
68 
69  Vector<MultiFab> rhs;
70  Vector<MultiFab> phi;
71 
72  if (solverChoice.terrain_type == TerrainType::EB) {
73  amrex::Error("Wall dist calc not implemented for EB");
74  } else {
75  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
76  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
77  }
78 
79  rhs[0].setVal(-1.0);
80 
81  // Define an overset mask to set dirichlet nodes on walls
82  iMultiFab mask(ba_tmp[0], dm_tmp[0], 1, 0);
83  Vector<const iMultiFab*> overset_mask = {&mask};
84 
85  auto const dom_lo = lbound(geom[lev].Domain());
86  auto const dom_hi = ubound(geom[lev].Domain());
87 
88  // ****************************************************************************
89  // Initialize phi
90  // (It is essential that we do this in order to fill the corners; this is
91  // used if we include blanking.)
92  // ****************************************************************************
93  phi[0].setVal(0.0);
94 
95  // ****************************************************************************
96  // Interior boundaries are marked with phi=0
97  // ****************************************************************************
98  // Overset mask is 0/1: 1 means the node is an unknown. 0 means it's known.
99  mask.setVal(1);
101  Warning("Poisson distance is inaccurate for bodies in open domains that are small compared to the domain size, skipping");
102  return;
103 #if 0
104  Gpu::DeviceVector<IntVect> xfacelist, yfacelist, zfacelist;
105 
106  xfacelist.resize(solverChoice.advChoice.zero_xflux.size());
107  yfacelist.resize(solverChoice.advChoice.zero_yflux.size());
108  zfacelist.resize(solverChoice.advChoice.zero_zflux.size());
109 
110  if (xfacelist.size() > 0) {
111  Gpu::copy(amrex::Gpu::hostToDevice,
114  xfacelist.begin());
115  Print() << " masking interior xfaces" << std::endl;
116  }
117  if (yfacelist.size() > 0) {
118  Gpu::copy(amrex::Gpu::hostToDevice,
121  yfacelist.begin());
122  Print() << " masking interior yfaces" << std::endl;
123  }
124  if (zfacelist.size() > 0) {
125  Gpu::copy(amrex::Gpu::hostToDevice,
128  zfacelist.begin());
129  Print() << " masking interior zfaces" << std::endl;
130  }
131 
132  for (MFIter mfi(phi[0]); mfi.isValid(); ++mfi) {
133  const Box& bx = mfi.validbox();
134 
135  auto phi_arr = phi[0].array(mfi);
136  auto mask_arr = mask.array(mfi);
137 
138  if (xfacelist.size() > 0) {
139  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
140  for (int iface=0; iface < xfacelist.size(); ++iface) {
141  if ((i == xfacelist[iface][0]) &&
142  (j == xfacelist[iface][1]) &&
143  (k == xfacelist[iface][2]))
144  {
145  mask_arr(i, j , k ) = 0;
146  mask_arr(i, j , k+1) = 0;
147  mask_arr(i, j+1, k ) = 0;
148  mask_arr(i, j+1, k+1) = 0;
149  }
150  }
151  });
152  }
153 
154  if (yfacelist.size() > 0) {
155  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
156  for (int iface=0; iface < yfacelist.size(); ++iface) {
157  if ((i == yfacelist[iface][0]) &&
158  (j == yfacelist[iface][1]) &&
159  (k == yfacelist[iface][2]))
160  {
161  mask_arr(i , j, k ) = 0;
162  mask_arr(i , j, k+1) = 0;
163  mask_arr(i+1, j, k ) = 0;
164  mask_arr(i+1, j, k+1) = 0;
165  }
166  }
167  });
168  }
169 
170  if (zfacelist.size() > 0) {
171  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
172  for (int iface=0; iface < zfacelist.size(); ++iface) {
173  if ((i == xfacelist[iface][0]) &&
174  (j == xfacelist[iface][1]) &&
175  (k == xfacelist[iface][2]))
176  {
177  mask_arr(i , j , k) = 0;
178  mask_arr(i , j+1, k) = 0;
179  mask_arr(i+1, j , k) = 0;
180  mask_arr(i+1, j+1, k) = 0;
181  }
182  }
183  });
184  }
185  }
186 #endif
187  }
188 
189  // ****************************************************************************
190  // Setup BCs, with solid domain boundaries being dirichlet
191  // ****************************************************************************
192  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> bc3d_lo, bc3d_hi;
193  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
194  if (geom[0].isPeriodic(dir)) {
195  bc3d_lo[dir] = LinOpBCType::Periodic;
196  bc3d_hi[dir] = LinOpBCType::Periodic;
197  } else {
198  bc3d_lo[dir] = LinOpBCType::Neumann;
199  bc3d_hi[dir] = LinOpBCType::Neumann;
200  }
201  }
202  if (havewall) {
203  Print() << " Poisson zlo BC is dirichlet" << std::endl;
204  bc3d_lo[2] = LinOpBCType::Dirichlet;
205  }
206  Print() << " bc lo : " << bc3d_lo << std::endl;
207  Print() << " bc hi : " << bc3d_hi << std::endl;
208 
209  if (!solverChoice.advChoice.have_zero_flux_faces && !havewall) {
210  Error("No solid boundaries in the computational domain");
211  }
212 
213  LPInfo info;
214 /* Nodal solver cannot have hidden dimensions */
215 #if 0
216  // Allow a hidden direction if the domain is one cell wide
217  if (dom_lo.x == dom_hi.x) {
218  info.setHiddenDirection(0);
219  Print() << " domain is 2D in yz" << std::endl;
220  } else if (dom_lo.y == dom_hi.y) {
221  info.setHiddenDirection(1);
222  Print() << " domain is 2D in xz" << std::endl;
223  } else if (dom_lo.z == dom_hi.z) {
224  info.setHiddenDirection(2);
225  Print() << " domain is 2D in xy" << std::endl;
226  }
227 #endif
228 
229  // ****************************************************************************
230  // Solve nodal masked Poisson problem with MLMG
231  // TODO: different solver for terrain?
232  // ****************************************************************************
233  const Real reltol = solverChoice.poisson_reltol;
234  const Real abstol = solverChoice.poisson_abstol;
235 
236  Real sigma = 1.0;
237  Vector<EBFArrayBoxFactory const*> factory_vec = { &EBFactory(lev) };
238  MLNodeLaplacian mlpoisson(geom_tmp, ba_tmp, dm_tmp, info, factory_vec, sigma);
239 
240  mlpoisson.setDomainBC(bc3d_lo, bc3d_hi);
241 
242  if (lev > 0) {
243  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
244  }
245 
246  mlpoisson.setLevelBC(0, nullptr);
247 
248  mlpoisson.setOversetMask(0, mask);
249 
250  // Solve
251  MLMG mlmg(mlpoisson);
252  int max_iter = 100;
253  mlmg.setMaxIter(max_iter);
254 
255  mlmg.setVerbose(mg_verbose);
256  mlmg.setBottomVerbose(0);
257 
258  mlmg.solve(GetVecOfPtrs(phi),
259  GetVecOfConstPtrs(rhs),
260  reltol, abstol);
261 
262  // Now overwrite with periodic fill outside domain and fine-fine fill inside
263  phi[0].FillBoundary(geom[lev].periodicity());
264 
265  // ****************************************************************************
266  // Compute grad(phi) to get distances
267  // - Note that phi is nodal and walldist is cell-centered
268  // - TODO: include terrain metrics for dphi/dz
269  // ****************************************************************************
270  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
271  const Box& bx = mfi.validbox();
272 
273  const auto invCellSize = geomdata.InvCellSizeArray();
274 
275  auto const& phi_arr = phi[0].const_array(mfi);
276  auto dist_arr = walldist[lev]->array(mfi);
277 
278  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
279  Real dpdx{0}, dpdy{0}, dpdz{0};
280 
281  // dphi/dx
282  if (dom_lo.x != dom_hi.x) {
283  dpdx = 0.25 * invCellSize[0] * (
284  (phi_arr(i+1, j , k ) - phi_arr(i, j , k ))
285  + (phi_arr(i+1, j , k+1) - phi_arr(i, j , k+1))
286  + (phi_arr(i+1, j+1, k ) - phi_arr(i, j+1, k ))
287  + (phi_arr(i+1, j+1, k+1) - phi_arr(i, j+1, k+1)) );
288  }
289 
290  // dphi/dy
291  if (dom_lo.y != dom_hi.y) {
292  dpdy = 0.25 * invCellSize[1] * (
293  (phi_arr(i , j+1, k ) - phi_arr(i , j, k ))
294  + (phi_arr(i , j+1, k+1) - phi_arr(i , j, k+1))
295  + (phi_arr(i+1, j+1, k ) - phi_arr(i+1, j, k ))
296  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j, k+1)) );
297  }
298 
299  // dphi/dz
300  if (dom_lo.z != dom_hi.z) {
301  dpdz = 0.25 * invCellSize[2] * (
302  (phi_arr(i , j , k+1) - phi_arr(i , j , k))
303  + (phi_arr(i , j+1, k+1) - phi_arr(i , j+1, k))
304  + (phi_arr(i+1, j , k+1) - phi_arr(i+1, j , k))
305  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j+1, k)) );
306  }
307 
308  Real dp_dot_dp = dpdx*dpdx + dpdy*dpdy + dpdz*dpdz;
309  Real phi_avg = 0.125 * (
310  phi_arr(i , j , k ) + phi_arr(i , j , k+1) + phi_arr(i , j+1, k ) + phi_arr(i , j+1, k+1)
311  + phi_arr(i+1, j , k ) + phi_arr(i+1, j , k+1) + phi_arr(i+1, j+1, k ) + phi_arr(i+1, j+1, k+1) );
312  dist_arr(i, j, k) = -std::sqrt(dp_dot_dp) + std::sqrt(dp_dot_dp + 2*phi_avg);
313 
314  // DEBUG: output phi instead
315  //dist_arr(i, j, k) = phi_arr(i, j, k);
316  });
317  }
318 }
if(l_use_mynn &&start_comp<=RhoKE_comp &&end_comp >=RhoKE_comp)
Definition: ERF_AddQKESources.H:2
static int mg_verbose
Definition: ERF.H:1204
amrex::Real poisson_reltol
Definition: ERF_DataStruct.H:1024
amrex::Real poisson_abstol
Definition: ERF_DataStruct.H:1023
Here is the call graph for this function:

◆ post_timestep()

void ERF::post_timestep ( int  nstep,
amrex::Real  time,
amrex::Real  dt_lev 
)
716 {
717  BL_PROFILE("ERF::post_timestep()");
718 
719 #ifdef ERF_USE_PARTICLES
720  particleData.Redistribute();
721 #endif
722 
723  if (solverChoice.coupling_type == CouplingType::TwoWay)
724  {
725  int ncomp = vars_new[0][Vars::cons].nComp();
726  for (int lev = finest_level-1; lev >= 0; lev--)
727  {
728  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
729  // m is the map scale factor at cell centers
730  // Here we pre-divide (rho S) by m^2 before refluxing
731  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
732  const Box& bx = mfi.tilebox();
733  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
734  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
735  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
736  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
737  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
738  {
739  cons_arr(i,j,k,n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
740  });
741  } else {
742  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
743  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
744  {
745  cons_arr(i,j,k,n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
746  });
747  }
748  } // mfi
749 
750  // This call refluxes all "slow" cell-centered variables
751  // (i.e. not density or (rho theta) or velocities) from the lev/lev+1 interface onto lev
752  getAdvFluxReg(lev+1)->Reflux(vars_new[lev][Vars::cons], 2, 2, ncomp-2);
753 
754  // Here we multiply (rho S) by m^2 after refluxing
755  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
756  const Box& bx = mfi.tilebox();
757  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
758  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
759  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
760  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
761  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
762  {
763  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
764  });
765  } else {
766  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
767  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
768  {
769  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
770  });
771  }
772  } // mfi
773 
774  // We need to do this before anything else because refluxing changes the
775  // values of coarse cells underneath fine grids with the assumption they'll
776  // be over-written by averaging down
777  int src_comp;
778  if (solverChoice.anelastic[lev]) {
779  src_comp = 1;
780  } else {
781  src_comp = 0;
782  }
783  int num_comp = ncomp - src_comp;
784  AverageDownTo(lev,src_comp,num_comp);
785  }
786  }
787 
788  if (is_it_time_for_action(nstep, time, dt_lev0, sum_interval, sum_per)) {
791  sum_energy_quantities(time);
792  }
793 
794  if (solverChoice.pert_type == PerturbationType::Source ||
795  solverChoice.pert_type == PerturbationType::Direct ||
796  solverChoice.pert_type == PerturbationType::CPM) {
797  if (is_it_time_for_action(nstep, time, dt_lev0, pert_interval, -1.)) {
798  turbPert.debug(time);
799  }
800  }
801 
802  if (profile_int > 0 && (nstep+1) % profile_int == 0) {
803  if (destag_profiles) {
804  // all variables cell-centered
805  write_1D_profiles(time);
806  } else {
807  // some variables staggered
809  }
810  }
811 
812  if (solverChoice.rad_type != RadiationType::None)
813  {
814  if ( rad_datalog_int > 0 &&
815  (((nstep+1) % rad_datalog_int == 0) || (nstep==0)) ) {
816  if (rad[0]->hasDatalog()) {
817  rad[0]->WriteDataLog(time+start_time);
818  }
819  }
820  }
821 
822  if (output_1d_column) {
823 #ifdef ERF_USE_NETCDF
824  if (is_it_time_for_action(nstep, time, dt_lev0, column_interval, column_per))
825  {
826  int lev_column = 0;
827  for (int lev = finest_level; lev >= 0; lev--)
828  {
829  Real dx_lev = geom[lev].CellSize(0);
830  Real dy_lev = geom[lev].CellSize(1);
831  int i_lev = static_cast<int>(std::floor(column_loc_x / dx_lev));
832  int j_lev = static_cast<int>(std::floor(column_loc_y / dy_lev));
833  if (grids[lev].contains(IntVect(i_lev,j_lev,0))) lev_column = lev;
834  }
835  writeToNCColumnFile(lev_column, column_file_name, column_loc_x, column_loc_y, time);
836  }
837 #else
838  Abort("To output 1D column files ERF must be compiled with NetCDF");
839 #endif
840  }
841 
843  {
846  {
847  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
848  m_w2d->write_planes(istep[0], time, vars_new, is_moist);
849  }
850  }
851 
852  // Write plane/line sampler data
854  line_sampler->get_sample_data(geom, vars_new);
855  line_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
856  }
858  plane_sampler->get_sample_data(geom, vars_new);
859  plane_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
860  }
861 
862  // Moving terrain
863  if ( solverChoice.terrain_type == TerrainType::MovingFittedMesh )
864  {
865  for (int lev = finest_level; lev >= 0; lev--)
866  {
867  // Copy z_phs_nd and detJ_cc at end of timestep
868  MultiFab::Copy(*z_phys_nd[lev], *z_phys_nd_new[lev], 0, 0, 1, z_phys_nd[lev]->nGrowVect());
869  MultiFab::Copy( *detJ_cc[lev], *detJ_cc_new[lev], 0, 0, 1, detJ_cc[lev]->nGrowVect());
870  MultiFab::Copy(base_state[lev],base_state_new[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
871 
872  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
873  }
874  }
875 
876  if(solverChoice.io_hurricane_eye_tracker and (nstep == 0 or (nstep+1)%m_plot3d_int_1 == 0)) {
877  int levc=finest_level;
878 
879  HurricaneEyeTracker(geom[levc],
880  vars_new[levc],
888 
889  MultiFab& U_new = vars_new[levc][Vars::xvel];
890  MultiFab& V_new = vars_new[levc][Vars::yvel];
891  MultiFab& W_new = vars_new[levc][Vars::zvel];
892 
893  MultiFab mf_cc_vel(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
894  average_face_to_cellcenter(mf_cc_vel,0,{AMREX_D_DECL(&U_new,&V_new,&W_new)},0);
895 
896  HurricaneMaxVelTracker(geom[levc],
897  mf_cc_vel,
898  t_new[0],
901 
902  std::string filename_tracker = MakeVTKFilename_TrackerCircle(nstep);
903  std::string filename_xy = MakeVTKFilename_EyeTracker_xy(nstep);
904  std::string filename_latlon = MakeFilename_EyeTracker_latlon(nstep);
905  std::string filename_maxvel = MakeFilename_EyeTracker_maxvel(nstep);
906  if (ParallelDescriptor::IOProcessor()) {
907  WriteVTKPolyline(filename_tracker, hurricane_tracker_circle);
909  WriteLinePlot(filename_latlon, hurricane_eye_track_latlon);
910  WriteLinePlot(filename_maxvel, hurricane_maxvel_vs_time);
911  }
912  }
913 
914 } // post_timestep
void HurricaneMaxVelTracker(const amrex::Geometry &geom, const amrex::MultiFab &mf_cc_vel, const amrex::Real &time, const amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_xy, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_maxvel_vs_time)
Definition: ERF_HurricaneDiagnostics.H:281
void HurricaneEyeTracker(const amrex::Geometry &geom, const amrex::Vector< amrex::MultiFab > &S_data, MoistureType moisture_type, const amrex::Vector< amrex::MultiFab > *forecast_state_at_lev, const amrex::Real &hurricane_eye_latitude, const amrex::Real &hurricane_eye_longitude, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_xy, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_latlon, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_tracker_circle)
Definition: ERF_HurricaneDiagnostics.H:255
void make_zcc(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:624
std::string MakeFilename_EyeTracker_maxvel(int nstep)
Definition: ERF_Write1DProfiles.cpp:629
static amrex::Real column_loc_y
Definition: ERF.H:1269
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_tracker_circle
Definition: ERF.H:166
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_maxvel_vs_time
Definition: ERF.H:165
static std::string column_file_name
Definition: ERF.H:1270
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg(int lev)
Definition: ERF.H:1413
static amrex::Real bndry_output_planes_per
Definition: ERF.H:1275
static amrex::Real column_per
Definition: ERF.H:1267
static amrex::Real column_loc_x
Definition: ERF.H:1268
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_latlon
Definition: ERF.H:164
std::string MakeVTKFilename_TrackerCircle(int nstep)
Definition: ERF_Write1DProfiles.cpp:587
std::string MakeVTKFilename_EyeTracker_xy(int nstep)
Definition: ERF_Write1DProfiles.cpp:601
static int bndry_output_planes_interval
Definition: ERF.H:1274
void WriteLinePlot(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_Write1DProfiles.cpp:690
static int output_1d_column
Definition: ERF.H:1265
void WriteVTKPolyline(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_Write1DProfiles.cpp:643
std::string MakeFilename_EyeTracker_latlon(int nstep)
Definition: ERF_Write1DProfiles.cpp:615
static int column_interval
Definition: ERF.H:1266
amrex::Real hurricane_eye_latitude
Definition: ERF_DataStruct.H:1151
amrex::Real hurricane_eye_longitude
Definition: ERF_DataStruct.H:1151
bool io_hurricane_eye_tracker
Definition: ERF_DataStruct.H:1150
Here is the call graph for this function:

◆ post_update()

void ERF::post_update ( amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ print_banner()

void ERF::print_banner ( MPI_Comm  comm,
std::ostream &  out 
)
static
65  : " << msg << std::endl;
66 }
67 
68 void ERF::print_banner (MPI_Comm comm, std::ostream& out)
69 {
70 #ifdef AMREX_USE_MPI
71  int irank = 0;
72  int num_ranks = 1;
73  MPI_Comm_size(comm, &num_ranks);
74  MPI_Comm_rank(comm, &irank);
75 
76  // Only root process does the printing
77  if (irank != 0) return;
78 #else
79  amrex::ignore_unused(comm);
80 #endif
81 
82  auto etime = std::chrono::system_clock::now();
83  auto etimet = std::chrono::system_clock::to_time_t(etime);
84 #ifndef _WIN32
85  char time_buf[64];
86  ctime_r(&etimet, time_buf);
87  const std::string tstamp(time_buf);
88 #else
89  char* time_buf = new char[64];
90  ctime_s(time_buf, 64, &etimet);
91  const std::string tstamp(time_buf);
92 #endif
93 
94  const char* githash1 = amrex::buildInfoGetGitHash(1);
95  const char* githash2 = amrex::buildInfoGetGitHash(2);
96 
97  // clang-format off
98  out << dbl_line
99  << " ERF (https://github.com/erf-model/ERF)"
100  << std::endl << std::endl
101  << " ERF Git SHA :: " << githash1 << std::endl
102  << " AMReX Git SHA :: " << githash2 << std::endl
103  << " AMReX version :: " << amrex::Version() << std::endl << std::endl
104  << " Exec. time :: " << tstamp
105  << " Build time :: " << amrex::buildInfoGetBuildDate() << std::endl
106  << " C++ compiler :: " << amrex::buildInfoGetComp()
107  << " " << amrex::buildInfoGetCompVersion() << std::endl << std::endl
108  << " MPI :: "
109 #ifdef AMREX_USE_MPI
110  << "ON (Num. ranks = " << num_ranks << ")" << std::endl
111 #else
112  << "OFF " << std::endl
113 #endif
114  << " GPU :: "
115 #ifdef AMREX_USE_GPU
116  << "ON "
117 #if defined(AMREX_USE_CUDA)
118  << "(Backend: CUDA)"
119 #elif defined(AMREX_USE_HIP)
120  << "(Backend: HIP)"
121 #elif defined(AMREX_USE_SYCL)
122  << "(Backend: SYCL)"
123 #endif
124  << std::endl
125 #else
126  << "OFF" << std::endl
127 #endif
128  << " OpenMP :: "
129 #ifdef AMREX_USE_OMP
130  << "ON (Num. threads = " << omp_get_max_threads() << ")" << std::endl
131 #else
132  << "OFF" << std::endl
133 #endif
134  << std::endl;
135 
ERF()
Definition: ERF.cpp:130
const char * buildInfoGetBuildDate()
const char * buildInfoGetComp()
const char * buildInfoGetCompVersion()

Referenced by main().

Here is the caller graph for this function:

◆ print_error()

void ERF::print_error ( MPI_Comm  comm,
const std::string &  msg 
)
static
43  :
44  input_file : Input file with simulation settings
45 
46 Optional:
47  param=value : Overrides for parameters during runtime
48 )doc" << std::endl;
49 }
50 
51 void ERF::print_error (MPI_Comm comm, const std::string& msg)
52 {
53 #ifdef AMREX_USE_MPI
54  int irank = 0;
55  int num_ranks = 1;
56  MPI_Comm_size(comm, &num_ranks);
57  MPI_Comm_rank(comm, &irank);
58 
amrex::Real value
Definition: ERF_HurricaneDiagnostics.H:20

Referenced by main().

Here is the caller graph for this function:

◆ print_summary()

static void ERF::print_summary ( std::ostream &  )
static

◆ print_tpls()

void ERF::print_tpls ( std::ostream &  out)
static
140  ://github.com/erf-model/ERF/blob/development/LICENSE for details. "
141  << dash_line << std::endl;
142  // clang-format on
143 }
144 
145 void ERF::print_tpls (std::ostream& out)
146 {
147  amrex::Vector<std::string> tpls;
148 
149 #ifdef ERF_USE_NETCDF
150  tpls.push_back(std::string("NetCDF ") + NC_VERSION);
151 #endif
152 #ifdef AMREX_USE_SUNDIALS
153  tpls.push_back(std::string("SUNDIALS ") + SUNDIALS_VERSION);
154 #endif
155 
156  if (!tpls.empty()) {
157  out << " Enabled third-party libraries: ";
158  for (const auto& val : tpls) {
struct @19 out
static void print_tpls(std::ostream &)
Definition: ERF_ConsoleIO.cpp:137

◆ print_usage()

void ERF::print_usage ( MPI_Comm  comm,
std::ostream &  out 
)
static
27 {
28 #ifdef AMREX_USE_MPI
29  int irank = 0;
30  int num_ranks = 1;
31  MPI_Comm_size(comm, &num_ranks);
32  MPI_Comm_rank(comm, &irank);
33 
34  // Only root process does the printing
35  if (irank != 0) return;
36 #else
37  amrex::ignore_unused(comm);
38 #endif
39 
40  out << R"doc(Usage:
41  ERF3d.*.ex <input_file> [param=value] [param=value] ...

Referenced by main().

Here is the caller graph for this function:

◆ project_momenta()

void ERF::project_momenta ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level momenta to enforce the anelastic constraint Note that the level may or may not be level 0.

45 {
46  BL_PROFILE("ERF::project_momenta()");
47 
48  // Make sure the solver only sees the levels over which we are solving
49  Vector<BoxArray> ba_tmp; ba_tmp.push_back(mom_mf[Vars::cons].boxArray());
50  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(mom_mf[Vars::cons].DistributionMap());
51  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
52 
53  Box domain = geom[lev].Domain();
54 
55  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
56 
57  Vector<MultiFab> rhs;
58  Vector<MultiFab> phi;
59 
60  if (solverChoice.terrain_type == TerrainType::EB)
61  {
62  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
63  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1, MFInfo(), EBFactory(lev));
64  } else {
65  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
66  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
67  }
68 
69  MultiFab rhs_lev(rhs[0], make_alias, 0, 1);
70  MultiFab phi_lev(phi[0], make_alias, 0, 1);
71 
72  auto dx = geom[lev].CellSizeArray();
73  auto dxInv = geom[lev].InvCellSizeArray();
74 
75  // Inflow on an x-face -- note only the normal velocity is used in the projection
76  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow") {
78  IntVect{1,0,0},t_new[lev],BCVars::xvel_bc,false);
79  }
80 
81  // Inflow on a y-face -- note only the normal velocity is used in the projection
82  if (domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
84  IntVect{0,1,0},t_new[lev],BCVars::yvel_bc,false);
85  }
86 
87  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow" ||
88  domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
89  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
90  vars_new[lev][Vars::yvel], IntVect{0},
91  vars_new[lev][Vars::zvel], IntVect{0},
92  vars_new[lev][Vars::cons],
93  mom_mf[IntVars::xmom],
94  mom_mf[IntVars::ymom],
95  mom_mf[IntVars::zmom],
96  Geom(lev).Domain(),
98  }
99 
100  // If !fixed_density, we must convert (rho u) which came in
101  // to (rho0 u) which is what we will project
102  if (!solverChoice.fixed_density[lev]) {
103  ConvertForProjection(mom_mf[Vars::cons], r_hse,
104  mom_mf[IntVars::xmom],
105  mom_mf[IntVars::ymom],
106  mom_mf[IntVars::zmom],
107  Geom(lev).Domain(),
109  }
110 
111  //
112  // ****************************************************************************
113  // Now convert the rho0w MultiFab to hold Omega rather than rhow
114  // ****************************************************************************
115  //
116  if (solverChoice.mesh_type == MeshType::VariableDz)
117  {
118  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
119  {
120  const Array4<Real const>& rho0u_arr = mom_mf[IntVars::xmom].const_array(mfi);
121  const Array4<Real const>& rho0v_arr = mom_mf[IntVars::ymom].const_array(mfi);
122  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
123 
124  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
125  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
126  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
127 
128  //
129  // Define Omega from (rho0 W) but store it in the same array
130  //
131  Box tbz = mfi.nodaltilebox(2);
132  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
133  if (k == 0) {
134  rho0w_arr(i,j,k) = Real(0.0);
135  } else {
136  Real rho0w = rho0w_arr(i,j,k);
137  rho0w_arr(i,j,k) = OmegaFromW(i,j,k,rho0w,
138  rho0u_arr,rho0v_arr,
139  mf_u,mf_v,z_nd,dxInv);
140  }
141  });
142  } // mfi
143  }
144 
145  // ****************************************************************************
146  // Allocate fluxes
147  // ****************************************************************************
148  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
149  fluxes.resize(1);
150  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
151  if (solverChoice.terrain_type == TerrainType::EB) {
152  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
153  } else {
154  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
155  }
156  }
157 
158  // ****************************************************************************
159  // Initialize phi to 0
160  // (It is essential that we do this in order to fill the corners; these are never
161  // used but the Saxpy requires the values to be initialized.)
162  // ****************************************************************************
163  phi_lev.setVal(0.0);
164 
165  // ****************************************************************************
166  // Break into subdomains
167  // ****************************************************************************
168 
169  std::map<int,int> index_map;
170 
171  BoxArray ba(grids[lev]);
172 
173  Vector<MultiFab> rhs_sub; rhs_sub.resize(1);
174  Vector<MultiFab> phi_sub; phi_sub.resize(1);
175  Vector<Array<MultiFab,AMREX_SPACEDIM>> fluxes_sub; fluxes_sub.resize(1);
176 
177  MultiFab ax_sub, ay_sub, az_sub, dJ_sub, znd_sub;
178  MultiFab mfmx_sub, mfmy_sub;
179 
180  Array<MultiFab,AMREX_SPACEDIM> rho0_u_sub;
181  Array<MultiFab const*, AMREX_SPACEDIM> rho0_u_const;
182 
183  // If we are going to solve with MLMG then we do not need to break this into subdomains
184  bool will_solve_with_mlmg = false;
185  if (solverChoice.mesh_type == MeshType::ConstantDz) {
186  will_solve_with_mlmg = true;
187 #ifdef ERF_USE_FFT
188  if (use_fft) {
189  bool all_boxes_ok = true;
190  for (int isub = 0; isub < subdomains[lev].size(); ++isub) {
191  Box my_region(subdomains[lev][isub].minimalBox());
192  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][isub].numPts());
193  if (!boxes_make_rectangle) {
194  all_boxes_ok = false;
195  }
196  } // isub
197  if (all_boxes_ok) {
198  will_solve_with_mlmg = false;
199  }
200  } // use_fft
201 #else
202  if (use_fft) {
203  amrex::Warning("You set use_fft=true but didn't build with USE_FFT = TRUE; defaulting to MLMG");
204  }
205 #endif
206  } // No terrain or grid stretching
207 
208  for (int isub = 0; isub < subdomains[lev].size(); ++isub)
209  {
210  BoxList bl_sub;
211  Vector<int> dm_sub;
212 
213  for (int j = 0; j < ba.size(); j++)
214  {
215  if (subdomains[lev][isub].intersects(ba[j]))
216  {
217  //
218  // Note that bl_sub.size() is effectively a counter which is
219  // incremented above
220  //
221  // if (ParallelDescriptor::MyProc() == j) {
222  // }
223  index_map[bl_sub.size()] = j;
224 
225  bl_sub.push_back(grids[lev][j]);
226  dm_sub.push_back(dmap[lev][j]);
227  } // intersects
228  } // loop over ba (j)
229 
230  BoxArray ba_sub(bl_sub);
231 
232  BoxList bl2d_sub = ba_sub.boxList();
233  for (auto& b : bl2d_sub) {
234  b.setRange(2,0);
235  }
236  BoxArray ba2d_sub(std::move(bl2d_sub));
237 
238  // Define MultiFabs that hold only the data in this particular subdomain
239  if (solverChoice.terrain_type == TerrainType::EB) {
240  if (ba_sub != ba) {
241  amrex::Print() << "EB Solves with multiple regions is not yet supported" << std::endl;
242  }
243  rhs_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, rhs_lev.nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
244  phi_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, phi_lev.nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
245 
246  mfmx_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_x]->nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
247  mfmy_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_y]->nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
248  dJ_sub.define(ba_sub, DistributionMapping(dm_sub), 1, detJ_cc[lev]->nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
249 
250  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
251  fluxes_sub[0][idim].define(convert(ba_sub, IntVect::TheDimensionVector(idim)), DistributionMapping(dm_sub), 1,
252  IntVect::TheZeroVector(), MFInfo{}.SetAlloc(false), EBFactory(lev));
253  }
254  rho0_u_sub[0].define(convert(ba_sub, IntVect::TheDimensionVector(0)), DistributionMapping(dm_sub), 1,
255  mom_mf[IntVars::xmom].nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
256  rho0_u_sub[1].define(convert(ba_sub, IntVect::TheDimensionVector(1)), DistributionMapping(dm_sub), 1,
257  mom_mf[IntVars::ymom].nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
258  rho0_u_sub[2].define(convert(ba_sub, IntVect::TheDimensionVector(2)), DistributionMapping(dm_sub), 1,
259  mom_mf[IntVars::zmom].nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
260  } else {
261  rhs_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, rhs_lev.nGrowVect(), MFInfo{}.SetAlloc(false));
262  phi_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, phi_lev.nGrowVect(), MFInfo{}.SetAlloc(false));
263 
264  mfmx_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_x]->nGrowVect(), MFInfo{}.SetAlloc(false));
265  mfmy_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_y]->nGrowVect(), MFInfo{}.SetAlloc(false));
266  dJ_sub.define(ba_sub, DistributionMapping(dm_sub), 1, detJ_cc[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
267 
268  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
269  fluxes_sub[0][idim].define(convert(ba_sub, IntVect::TheDimensionVector(idim)), DistributionMapping(dm_sub), 1,
270  IntVect::TheZeroVector(), MFInfo{}.SetAlloc(false));
271  }
272  rho0_u_sub[0].define(convert(ba_sub, IntVect::TheDimensionVector(0)), DistributionMapping(dm_sub), 1,
273  mom_mf[IntVars::xmom].nGrowVect(), MFInfo{}.SetAlloc(false));
274  rho0_u_sub[1].define(convert(ba_sub, IntVect::TheDimensionVector(1)), DistributionMapping(dm_sub), 1,
275  mom_mf[IntVars::ymom].nGrowVect(), MFInfo{}.SetAlloc(false));
276  rho0_u_sub[2].define(convert(ba_sub, IntVect::TheDimensionVector(2)), DistributionMapping(dm_sub), 1,
277  mom_mf[IntVars::zmom].nGrowVect(), MFInfo{}.SetAlloc(false));
278  }
279 
280  // Link the new MultiFabs to the FABs in the original MultiFabs (no copy required)
281  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi)
282  {
283  int orig_index = index_map[mfi.index()];
284  rhs_sub[0].setFab(mfi, FArrayBox(rhs_lev[orig_index], amrex::make_alias, 0, 1));
285  phi_sub[0].setFab(mfi, FArrayBox(phi_lev[orig_index], amrex::make_alias, 0, 1));
286 
287  mfmx_sub.setFab(mfi, FArrayBox((*mapfac[lev][MapFacType::m_x])[orig_index], amrex::make_alias, 0, 1));
288  mfmy_sub.setFab(mfi, FArrayBox((*mapfac[lev][MapFacType::m_y])[orig_index], amrex::make_alias, 0, 1));
289 
290  fluxes_sub[0][0].setFab(mfi,FArrayBox(fluxes[0][0][orig_index], amrex::make_alias, 0, 1));
291  fluxes_sub[0][1].setFab(mfi,FArrayBox(fluxes[0][1][orig_index], amrex::make_alias, 0, 1));
292  fluxes_sub[0][2].setFab(mfi,FArrayBox(fluxes[0][2][orig_index], amrex::make_alias, 0, 1));
293 
294  rho0_u_sub[0].setFab(mfi,FArrayBox(mom_mf[IntVars::xmom][orig_index], amrex::make_alias, 0, 1));
295  rho0_u_sub[1].setFab(mfi,FArrayBox(mom_mf[IntVars::ymom][orig_index], amrex::make_alias, 0, 1));
296  rho0_u_sub[2].setFab(mfi,FArrayBox(mom_mf[IntVars::zmom][orig_index], amrex::make_alias, 0, 1));
297  }
298 
299  rho0_u_const[0] = &rho0_u_sub[0];
300  rho0_u_const[1] = &rho0_u_sub[1];
301  rho0_u_const[2] = &rho0_u_sub[2];
302 
303  if (solverChoice.mesh_type != MeshType::ConstantDz) {
304  ax_sub.define(convert(ba_sub,IntVect(1,0,0)), DistributionMapping(dm_sub), 1,
305  ax[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
306  ay_sub.define(convert(ba_sub,IntVect(0,1,0)), DistributionMapping(dm_sub), 1,
307  ay[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
308  az_sub.define(convert(ba_sub,IntVect(0,0,1)), DistributionMapping(dm_sub), 1,
309  az[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
310  znd_sub.define(convert(ba_sub,IntVect(1,1,1)), DistributionMapping(dm_sub), 1,
311  z_phys_nd[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
312 
313  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi) {
314  int orig_index = index_map[mfi.index()];
315  ax_sub.setFab(mfi, FArrayBox((*ax[lev])[orig_index], amrex::make_alias, 0, 1));
316  ay_sub.setFab(mfi, FArrayBox((*ay[lev])[orig_index], amrex::make_alias, 0, 1));
317  az_sub.setFab(mfi, FArrayBox((*az[lev])[orig_index], amrex::make_alias, 0, 1));
318  znd_sub.setFab(mfi, FArrayBox((*z_phys_nd[lev])[orig_index], amrex::make_alias, 0, 1));
319  dJ_sub.setFab(mfi, FArrayBox((*detJ_cc[lev])[orig_index], amrex::make_alias, 0, 1));
320  }
321  }
322 
323  // ****************************************************************************
324  // Compute divergence which will form RHS
325  // Note that we replace "rho0w" with the contravariant momentum, Omega
326  // ****************************************************************************
327 
328  compute_divergence(lev, rhs_sub[0], rho0_u_const, geom_tmp[0]);
329 
330  Real rhsnorm;
331 
332  // Max norm over the entire MultiFab
333  rhsnorm = rhs_sub[0].norm0();
334 
335  if (mg_verbose > 0) {
336  bool local = false;
337  Real sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
338  Print() << "Max/L2 norm of divergence before solve in subdomain " << isub << " at level " << lev << " : " << rhsnorm << " " <<
339  rhs_sub[0].norm2() << " and volume-weighted sum " << sum << std::endl;
340  }
341 
342  if (lev == 0 && solverChoice.use_real_bcs)
343  {
344  // We always use VariableDz if use_real_bcs is true
345  AMREX_ALWAYS_ASSERT(solverChoice.mesh_type == MeshType::VariableDz);
346 
347  // Note that we always impose the projections one level at a time so this will always be a vector of length 1
348  Array<MultiFab*, AMREX_SPACEDIM> rho0_u_vec =
349  {&mom_mf[IntVars::xmom], &mom_mf[IntVars::ymom], &mom_mf[IntVars::zmom]};
350  Array<MultiFab*, AMREX_SPACEDIM> area_vec = {ax[lev].get(), ay[lev].get(), az[lev].get()};
351  //
352  // Modify ax,ay,ax to include the map factors as used in the divergence calculation
353  // We do this here so that it is seen in the call to enforceInOutSolvability
354  //
355  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
356  {
357  Box xbx = mfi.nodaltilebox(0);
358  Box ybx = mfi.nodaltilebox(1);
359  Box zbx = mfi.nodaltilebox(2);
360  const Array4<Real >& ax_ar = ax[lev]->array(mfi);
361  const Array4<Real >& ay_ar = ay[lev]->array(mfi);
362  const Array4<Real >& az_ar = az[lev]->array(mfi);
363  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
364  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
365  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
366  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
367  ParallelFor(xbx,ybx,zbx,
368  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
369  {
370  ax_ar(i,j,k) /= mf_uy(i,j,0);
371  },
372  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
373  {
374  ay_ar(i,j,k) /= mf_vx(i,j,0);
375  },
376  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
377  {
378  az_ar(i,j,k) /= (mf_mx(i,j,0)*mf_my(i,j,0));
379  });
380  } // mfi
381 
382  if (mg_verbose > 0) {
383  Print() << "Calling enforceInOutSolvability" << std::endl;
384  }
385  enforceInOutSolvability(lev, rho0_u_vec, area_vec, geom[lev]);
386 
387  //
388  // Return ax,ay,ax to their original definition
389  //
390  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
391  {
392  Box xbx = mfi.nodaltilebox(0);
393  Box ybx = mfi.nodaltilebox(1);
394  Box zbx = mfi.nodaltilebox(2);
395  const Array4<Real >& ax_ar = ax[lev]->array(mfi);
396  const Array4<Real >& ay_ar = ay[lev]->array(mfi);
397  const Array4<Real >& az_ar = az[lev]->array(mfi);
398  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
399  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
400  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
401  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
402  ParallelFor(xbx,ybx,zbx,
403  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
404  {
405  ax_ar(i,j,k) *= mf_uy(i,j,0);
406  },
407  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
408  {
409  ay_ar(i,j,k) *= mf_vx(i,j,0);
410  },
411  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
412  {
413  az_ar(i,j,k) *= (mf_mx(i,j,0)*mf_my(i,j,0));
414  });
415  } // mfi
416 
417  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
418 
419  // Re-define max norm over the entire MultiFab
420  rhsnorm = rhs_lev.norm0();
421 
422  if (mg_verbose > 0)
423  {
424  bool local = false;
425  Real sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
426  Print() << "Max/L2 norm of divergence before solve at level " << lev << " : " << rhsnorm << " " <<
427  rhs_lev.norm2() << " and volume-weighted sum " << sum << std::endl;
428  }
429  } // lev 0 && use_real_bcs
430 
431  // *******************************************************************************************
432  // Enforce solvability if the problem is singular (i.e all sides Neumann or periodic)
433  // Note that solves at lev > 0 are always singular because we impose Neumann bc's on all sides
434  // *******************************************************************************************
435  bool is_singular = true;
436  if (lev == 0) {
437  if ( (domain_bc_type[0] == "Outflow" || domain_bc_type[0] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
438  if ( (domain_bc_type[1] == "Outflow" || domain_bc_type[1] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
439  if ( (domain_bc_type[3] == "Outflow" || domain_bc_type[3] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
440  if ( (domain_bc_type[4] == "Outflow" || domain_bc_type[4] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
441  if ( (domain_bc_type[5] == "Outflow" || domain_bc_type[5] == "Open") ) is_singular = false;
442  } else {
443  Box my_region(subdomains[lev][isub].minimalBox());
444  if ( (domain_bc_type[5] == "Outflow" || domain_bc_type[5] == "Open") && (my_region.bigEnd(2) == domain.bigEnd(2)) ) is_singular = false;
445  }
446 
447  if (is_singular)
448  {
449  bool local = false;
450  Real sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
451 
452  Real vol;
453  if (solverChoice.mesh_type == MeshType::ConstantDz) {
454  vol = rhs_sub[0].boxArray().numPts();
455  } else {
456  vol = dJ_sub.sum();
457  }
458 
459  sum /= (vol * dx[0] * dx[1] * dx[2]);
460 
461  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi)
462  {
463  rhs_sub[0][mfi.index()].template minus<RunOn::Device>(sum);
464  }
465  if (mg_verbose > 0) {
466  amrex::Print() << " Subtracting " << sum << " from rhs in subdomain " << isub << std::endl;
467 
468  sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
469  Print() << "Sum after subtraction " << sum << " in subdomain " << isub << std::endl;
470  }
471 
472  } // if is_singular
473 
474  rhsnorm = rhs_sub[0].norm0();
475 
476  // ****************************************************************************
477  // No need to build the solver if RHS == 0
478  // ****************************************************************************
479  if (rhsnorm <= solverChoice.poisson_abstol) return;
480 
481  Real start_step = static_cast<Real>(ParallelDescriptor::second());
482 
483  if (mg_verbose > 0) {
484  amrex::Print() << " Solving in subdomain " << isub << " of " << subdomains[lev].size() << " bins at level " << lev << std::endl;
485  }
486 
487  if (solverChoice.mesh_type == MeshType::VariableDz) {
488  //
489  // Modify ax,ay,ax to include the map factors as used in the divergence calculation
490  // We do this here to set the coefficients used in the stencil -- the extra factor
491  // of the mapfac comes from the gradient
492  //
493  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi)
494  {
495  Box xbx = mfi.nodaltilebox(0);
496  Box ybx = mfi.nodaltilebox(1);
497  Box zbx = mfi.nodaltilebox(2);
498  const Array4<Real >& ax_ar = ax_sub.array(mfi);
499  const Array4<Real >& ay_ar = ay_sub.array(mfi);
500  const Array4<Real >& az_ar = az_sub.array(mfi);
501  const Array4<Real const>& mf_ux = mapfac[lev][MapFacType::u_x]->const_array(mfi);
502  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
503  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
504  const Array4<Real const>& mf_vy = mapfac[lev][MapFacType::v_y]->const_array(mfi);
505  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
506  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
507  ParallelFor(xbx,ybx,zbx,
508  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
509  {
510  ax_ar(i,j,k) *= (mf_ux(i,j,0) / mf_uy(i,j,0));
511  },
512  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
513  {
514  ay_ar(i,j,k) *= (mf_vy(i,j,0) / mf_vx(i,j,0));
515  },
516  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
517  {
518  az_ar(i,j,k) /= (mf_mx(i,j,0)*mf_my(i,j,0));
519  });
520  } // mfi
521  }
522 
523  // ****************************************************************************
524  // EB
525  // ****************************************************************************
526  if (solverChoice.terrain_type == TerrainType::EB) {
527  solve_with_EB_mlmg(lev, rhs_sub, phi_sub, fluxes_sub);
528  } else {
529 
530  // ****************************************************************************
531  // No terrain or grid stretching
532  // ****************************************************************************
533  if (solverChoice.mesh_type == MeshType::ConstantDz) {
534  if (will_solve_with_mlmg) {
535  solve_with_mlmg(lev, rhs_sub, phi_sub, fluxes_sub);
536  } else {
537 #ifdef ERF_USE_FFT
538  Box my_region(subdomains[lev][isub].minimalBox());
539  solve_with_fft(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0]);
540 #endif
541  }
542  } // No terrain or grid stretching
543  // ****************************************************************************
544  // Grid stretching (flat terrain)
545  // ****************************************************************************
546  else if (solverChoice.mesh_type == MeshType::StretchedDz) {
547 #ifndef ERF_USE_FFT
548  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT solver");
549 #else
550  Box my_region(subdomains[lev][isub].minimalBox());
551  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][isub].numPts());
552  if (!boxes_make_rectangle) {
553  amrex::Abort("FFT won't work unless the union of boxes is rectangular");
554  } else {
555  if (!use_fft) {
556  amrex::Warning("Using FFT even though you didn't set use_fft to true; it's the best choice");
557  }
558  solve_with_fft(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0]);
559  }
560 #endif
561  } // grid stretching
562 
563  // ****************************************************************************
564  // General terrain
565  // ****************************************************************************
566  else if (solverChoice.mesh_type == MeshType::VariableDz) {
567 #ifdef ERF_USE_FFT
568  Box my_region(subdomains[lev][isub].minimalBox());
569  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][isub].numPts());
570  if (!boxes_make_rectangle) {
571  amrex::Abort("FFT preconditioner for GMRES won't work unless the union of boxes is rectangular");
572  } else {
573  solve_with_gmres(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0], ax_sub, ay_sub, az_sub, dJ_sub, znd_sub);
574  }
575 #else
576  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT preconditioner for GMRES");
577 #endif
578 
579  //
580  // Restore ax,ay,ax to their original definitions
581  //
582  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
583  {
584  Box xbx = mfi.nodaltilebox(0);
585  Box ybx = mfi.nodaltilebox(1);
586  Box zbx = mfi.nodaltilebox(2);
587  const Array4<Real >& ax_ar = ax_sub.array(mfi);
588  const Array4<Real >& ay_ar = ay_sub.array(mfi);
589  const Array4<Real >& az_ar = az_sub.array(mfi);
590  const Array4<Real const>& mf_ux = mapfac[lev][MapFacType::u_x]->const_array(mfi);
591  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
592  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
593  const Array4<Real const>& mf_vy = mapfac[lev][MapFacType::v_y]->const_array(mfi);
594  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
595  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
596  ParallelFor(xbx,ybx,zbx,
597  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
598  {
599  ax_ar(i,j,k) *= (mf_uy(i,j,0) / mf_ux(i,j,0));
600  },
601  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
602  {
603  ay_ar(i,j,k) *= (mf_vx(i,j,0) / mf_vy(i,j,0));
604  },
605  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
606  {
607  az_ar(i,j,k) *= (mf_mx(i,j,0)*mf_my(i,j,0));
608  });
609  } // mfi
610 
611  } // MeshType::VariableDz
612 
613  } // not EB
614 
615  // ****************************************************************************
616  // Print time in solve
617  // ****************************************************************************
618  Real end_step = static_cast<Real>(ParallelDescriptor::second());
619  if (mg_verbose > 0) {
620  amrex::Print() << "Time in solve " << end_step - start_step << std::endl;
621  }
622  } // loop over subdomains (i)
623 
624  // ****************************************************************************
625  // Subtract dt grad(phi) from the momenta (rho0u, rho0v, Omega)
626  // ****************************************************************************
627  MultiFab::Add(mom_mf[IntVars::xmom],fluxes[0][0],0,0,1,0);
628  MultiFab::Add(mom_mf[IntVars::ymom],fluxes[0][1],0,0,1,0);
629  MultiFab::Add(mom_mf[IntVars::zmom],fluxes[0][2],0,0,1,0);
630 
631  // ****************************************************************************
632  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
633  // (weighted by map factor!)
634  // ****************************************************************************
635  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
636  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
637  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
638 
639  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
640  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
641  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
642 
643  //
644  // This call is only to verify the divergence after the solve
645  // It is important we do this before computing the rho0w_arr from Omega back to rho0w
646  //
647  // ****************************************************************************
648  // THIS IS SIMPLY VERIFYING THE DIVERGENCE AFTER THE SOLVE
649  // ****************************************************************************
650  //
651  if (mg_verbose > 0)
652  {
653  rho0_u_const[0] = &mom_mf[IntVars::xmom];
654  rho0_u_const[1] = &mom_mf[IntVars::ymom];
655  rho0_u_const[2] = &mom_mf[IntVars::zmom];
656 
657  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
658 
659  bool local = false;
660  Real sum = volWgtSumMF(lev,rhs_lev,0,*detJ_cc[lev],*mapfac[lev][MapFacType::m_x],*mapfac[lev][MapFacType::m_y],false,local);
661 
662  if (mg_verbose > 0) {
663  Print() << "Max/L2 norm of divergence after solve at level " << lev << " : " << rhs_lev.norm0() << " " <<
664  rhs_lev.norm2() << " and volume-weighted sum " << sum << std::endl;
665  }
666 
667 #if 0
668  // FOR DEBUGGING ONLY
669  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
670  {
671  const Array4<Real const>& rhs_arr = rhs_lev.const_array(mfi);
672  Box bx = mfi.validbox();
673  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
674  if (std::abs(rhs_arr(i,j,k)) > 1.e-10) {
675  amrex::AllPrint() << "RHS after solve at " <<
676  IntVect(i,j,k) << " " << rhs_arr(i,j,k) << std::endl;
677  }
678  });
679  } // mfi
680 #endif
681 
682  } // mg_verbose
683 
684  //
685  // ****************************************************************************
686  // Now convert the rho0w MultiFab back to holding (rho0w) rather than Omega
687  // ****************************************************************************
688  //
689  if (solverChoice.mesh_type == MeshType::VariableDz)
690  {
691  for (MFIter mfi(mom_mf[Vars::cons],TilingIfNotGPU()); mfi.isValid(); ++mfi)
692  {
693  Box tbz = mfi.nodaltilebox(2);
694  const Array4<Real >& rho0u_arr = mom_mf[IntVars::xmom].array(mfi);
695  const Array4<Real >& rho0v_arr = mom_mf[IntVars::ymom].array(mfi);
696  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
697  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
698  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
699  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
700  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
701  Real omega = rho0w_arr(i,j,k);
702  rho0w_arr(i,j,k) = WFromOmega(i,j,k,omega,
703  rho0u_arr,rho0v_arr,
704  mf_u,mf_v,z_nd,dxInv);
705  });
706  } // mfi
707  }
708 
709  // If !fixed_density, we must convert (rho0 u) back
710  // to (rho0 u) which is what we will pass back out
711  if (!solverChoice.fixed_density[lev]) {
712  ConvertForProjection(r_hse, mom_mf[Vars::cons],
713  mom_mf[IntVars::xmom],
714  mom_mf[IntVars::ymom],
715  mom_mf[IntVars::zmom],
716  Geom(lev).Domain(),
718  }
719 
720  // ****************************************************************************
721  // Update pressure variable with phi -- note that phi is dt * change in pressure
722  // ****************************************************************************
723  MultiFab::Saxpy(pp_inc[lev], 1.0/l_dt, phi_lev,0,0,1,1);
724 }
void ConvertForProjection(const MultiFab &den_div, const MultiFab &den_mlt, MultiFab &xmom, MultiFab &ymom, MultiFab &zmom, const Box &domain, const Vector< BCRec > &domain_bcs_type_h)
Definition: ERF_ConvertForProjection.cpp:25
void enforceInOutSolvability(int, Array< MultiFab *, AMREX_SPACEDIM > &vels_vec, Array< MultiFab *, AMREX_SPACEDIM > &area_vec, const Geometry &geom)
Definition: ERF_ConvertForProjection.cpp:326
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real OmegaFromW(int &i, int &j, int &k, amrex::Real w, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:412
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real WFromOmega(int &i, int &j, int &k, amrex::Real omega, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:462
static bool use_fft
Definition: ERF.H:1205
void solve_with_gmres(int lev, const amrex::Box &subdomain, amrex::MultiFab &rhs, amrex::MultiFab &p, amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &fluxes, amrex::MultiFab &ax_sub, amrex::MultiFab &ay_sub, amrex::MultiFab &az_sub, amrex::MultiFab &, amrex::MultiFab &znd_sub)
Definition: ERF_SolveWithGMRES.cpp:12
void compute_divergence(int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
Definition: ERF_ComputeDivergence.cpp:10
void solve_with_mlmg(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithMLMG.cpp:40
amrex::Real volWgtSumMF(int lev, const amrex::MultiFab &mf, int comp, const amrex::MultiFab &dJ, const amrex::MultiFab &mfx, const amrex::MultiFab &mfy, bool finemask, bool local=true)
Definition: ERF_VolWgtSum.cpp:20
void solve_with_EB_mlmg(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithEBMLMG.cpp:19
@ omega
Definition: ERF_Morrison.H:53
Here is the call graph for this function:

◆ project_velocity()

void ERF::project_velocity ( int  lev,
amrex::Real  dt 
)

Project the single-level velocity field to enforce the anelastic constraint Note that the level may or may not be level 0.

11 {
12  // Impose FillBoundary on density since we use it in the conversion of velocity to momentum
13  vars_new[lev][Vars::cons].FillBoundary(geom[lev].periodicity());
14 
15  BL_PROFILE("ERF::project_velocity()");
16  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
17  vars_new[lev][Vars::yvel], IntVect{0},
18  vars_new[lev][Vars::zvel], IntVect{0},
19  vars_new[lev][Vars::cons],
20  rU_new[lev], rV_new[lev], rW_new[lev],
21  Geom(lev).Domain(), domain_bcs_type);
22 
23  Vector<MultiFab> tmp_mom;
24 
25  tmp_mom.push_back(MultiFab(vars_new[lev][Vars::cons],make_alias,0,1));
26  tmp_mom.push_back(MultiFab(rU_new[lev],make_alias,0,1));
27  tmp_mom.push_back(MultiFab(rV_new[lev],make_alias,0,1));
28  tmp_mom.push_back(MultiFab(rW_new[lev],make_alias,0,1));
29 
30  project_momenta(lev, l_dt, tmp_mom);
31 
33  vars_new[lev][Vars::yvel],
34  vars_new[lev][Vars::zvel],
35  vars_new[lev][Vars::cons],
36  rU_new[lev], rV_new[lev], rW_new[lev],
37  Geom(lev).Domain(), domain_bcs_type);
38  }
void project_momenta(int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
Definition: ERF_PoissonSolve.cpp:44
Here is the call graph for this function:

◆ project_velocity_tb()

void ERF::project_velocity_tb ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level velocity field to enforce incompressibility with a thin body

21 {
22  BL_PROFILE("ERF::project_velocity_tb()");
23  AMREX_ALWAYS_ASSERT(solverChoice.mesh_type == MeshType::ConstantDz);
24 
25  // Make sure the solver only sees the levels over which we are solving
26  Vector<BoxArray> ba_tmp; ba_tmp.push_back(vmf[Vars::cons].boxArray());
27  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(vmf[Vars::cons].DistributionMap());
28  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
29 
30  // Use the default settings
31  LPInfo info;
32  std::unique_ptr<MLPoisson> p_mlpoisson;
33 #if 0
34  if (overset_imask[0]) {
35  // Add overset mask around thin body
36  p_mlpoisson = std::make_unique<MLPoisson>(geom, grids, dmap, GetVecOfConstPtrs(overset_imask), info);
37  }
38  else
39 #endif
40  {
41  // Use the default settings
42  p_mlpoisson = std::make_unique<MLPoisson>(geom_tmp, ba_tmp, dm_tmp, info);
43  }
44 
45  auto bclo = get_projection_bc(Orientation::low);
46  auto bchi = get_projection_bc(Orientation::high);
47  bool need_adjust_rhs = (projection_has_dirichlet(bclo) || projection_has_dirichlet(bchi)) ? false : true;
48  p_mlpoisson->setDomainBC(bclo, bchi);
49 
50  if (lev > 0) {
51  p_mlpoisson->setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
52  }
53 
54  p_mlpoisson->setLevelBC(0, nullptr);
55 
56  Vector<MultiFab> rhs;
57  Vector<MultiFab> phi;
58  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
59  Vector<Array<MultiFab,AMREX_SPACEDIM> > deltaf; // f^* - f^{n-1}
60  Vector<Array<MultiFab,AMREX_SPACEDIM> > u_plus_dtdf; // u + dt*deltaf
61 
62  // Used to pass array of const MFs to ComputeDivergence
63  Array<MultiFab const*, AMREX_SPACEDIM> u;
64 
65  rhs.resize(1);
66  phi.resize(1);
67  fluxes.resize(1);
68  deltaf.resize(1);
69  u_plus_dtdf.resize(1);
70 
71  rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
72  phi[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
73  rhs[0].setVal(0.0);
74  phi[0].setVal(0.0);
75 
76  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
77  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
78  u_plus_dtdf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
79 
80  deltaf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
81  deltaf[0][idim].setVal(0.0); // start with f^* == f^{n-1}
82  }
83 
84 #if 0
85  // DEBUG
86  u[0] = &(vmf[Vars::xvel]);
87  u[1] = &(vmf[Vars::yvel]);
88  u[2] = &(vmf[Vars::zvel]);
89  computeDivergence(rhs[0], u, geom[0]);
90  Print() << "Max norm of divergence before solve at level 0 : " << rhs[0].norm0() << std::endl;
91 #endif
92 
93  for (int itp = 0; itp < solverChoice.ncorr; ++itp)
94  {
95  // Calculate u + dt*deltaf
96  for (int idim = 0; idim < 3; ++idim) {
97  MultiFab::Copy(u_plus_dtdf[0][idim], deltaf[0][idim], 0, 0, 1, 0);
98  u_plus_dtdf[0][0].mult(-l_dt,0,1,0);
99  }
100  MultiFab::Add(u_plus_dtdf[0][0], vmf[Vars::xvel], 0, 0, 1, 0);
101  MultiFab::Add(u_plus_dtdf[0][1], vmf[Vars::yvel], 0, 0, 1, 0);
102  MultiFab::Add(u_plus_dtdf[0][2], vmf[Vars::zvel], 0, 0, 1, 0);
103 
104  u[0] = &(u_plus_dtdf[0][0]);
105  u[1] = &(u_plus_dtdf[0][1]);
106  u[2] = &(u_plus_dtdf[0][2]);
107  computeDivergence(rhs[0], u, geom_tmp[0]);
108 
109 #if 0
110  // DEBUG
111  if (itp==0) {
112  for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
113  {
114  const Box& bx = mfi.tilebox();
115  const Array4<Real const>& divU = rhs[0].const_array(mfi);
116  const Array4<Real const>& uarr = vmf[Vars::xvel].const_array(mfi);
117  const Array4<Real const>& varr = vmf[Vars::yvel].const_array(mfi);
118  const Array4<Real const>& warr = vmf[Vars::zvel].const_array(mfi);
119  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
120  {
121  if ((i>=120) && (i<=139) && (j==0) && ((k>=127)&&(k<=128))) {
122  amrex::AllPrint() << "before project div"<<IntVect(i,j,k)<<" = "<< divU(i,j,k)
123  << " u: " << uarr(i,j,k) << " " << uarr(i+1,j,k)
124  << " v: " << varr(i,j,k) << " " << varr(i,j+1,k)
125  << " w: " << warr(i,j,k) << " " << warr(i,j,k+1)
126  << std::endl;
127  }
128  });
129  }
130  }
131 #endif
132 
133  // If all Neumann BCs, adjust RHS to make sure we can converge
134  if (need_adjust_rhs) {
135  bool local = false;
136  Real offset = volWgtSumMF(lev,rhs[0],0,*detJ_cc[lev],*mapfac[lev][MapFacType::m_x],*mapfac[lev][MapFacType::m_y],false,local);
137  // amrex::Print() << "Poisson solvability offset = " << offset << std::endl;
138  rhs[0].plus(-offset, 0, 1);
139  }
140 
141  // Initialize phi to 0
142  phi[0].setVal(0.0);
143 
144  MLMG mlmg(*p_mlpoisson);
145  int max_iter = 100;
146  mlmg.setMaxIter(max_iter);
147 
148  mlmg.setVerbose(mg_verbose);
149  //mlmg.setBottomVerbose(mg_verbose);
150 
151  // solve for dt*p
152  mlmg.solve(GetVecOfPtrs(phi),
153  GetVecOfConstPtrs(rhs),
156 
157  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
158 
159  // Calculate new intermediate body force with updated gradp
160  if (thin_xforce[lev]) {
161  MultiFab::Copy( deltaf[0][0], fluxes[0][0], 0, 0, 1, 0);
162  ApplyInvertedMask(deltaf[0][0], *xflux_imask[0]);
163  }
164  if (thin_yforce[lev]) {
165  MultiFab::Copy( deltaf[0][1], fluxes[0][1], 0, 0, 1, 0);
166  ApplyInvertedMask(deltaf[0][1], *yflux_imask[0]);
167  }
168  if (thin_zforce[lev]) {
169  MultiFab::Copy( deltaf[0][2], fluxes[0][2], 0, 0, 1, 0);
170  ApplyInvertedMask(deltaf[0][2], *zflux_imask[0]);
171  }
172 
173  // DEBUG
174  // for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
175  // {
176  // const Box& bx = mfi.tilebox();
177  // const Array4<Real const>& dfz_arr = deltaf[0][2].const_array(mfi);
178  // ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
179  // {
180  // if ((i>=120) && (i<=139) && (j==0) && (k==128)) {
181  // amrex::AllPrint()
182  // << " piter" << itp
183  // << " dfz"<<IntVect(i,j,k)<<" = "<< dfz_arr(i,j,k)
184  // << std::endl;
185  // }
186  // });
187  // }
188 
189  // Update pressure variable with phi -- note that phi is change in pressure, not the full pressure
190  MultiFab::Saxpy(pp_inc[lev], 1.0, phi[0],0,0,1,0);
191 
192  // Subtract grad(phi) from the velocity components
193  Real beta = 1.0;
194  MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
195  MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
196  MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
197  if (thin_xforce[lev]) {
198  ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
199  }
200  if (thin_yforce[lev]) {
201  ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
202  }
203  if (thin_zforce[lev]) {
204  ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
205  }
206  } // itp: pressure-force iterations
207 
208  // ****************************************************************************
209  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
210  // ****************************************************************************
211  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
212  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
213  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
214 
215  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
216  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
217  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
218 
219  // Subtract grad(phi) from the velocity components
220 // Real beta = 1.0;
221 // for (int ilev = lev_min; ilev <= lev_max; ++ilev) {
222 // MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
223 // MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
224 // MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
225 // if (thin_xforce[lev]) {
226 // ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
227 // }
228 // if (thin_yforce[lev]) {
229 // ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
230 // }
231 // if (thin_zforce[lev]) {
232 // ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
233 // }
234 // }
235 
236 #if 0
237  // Confirm that the velocity is now divergence free
238  u[0] = &(vmf[Vars::xvel]);
239  u[1] = &(vmf[Vars::yvel]);
240  u[2] = &(vmf[Vars::zvel]);
241  computeDivergence(rhs[0], u, geom_tmp[0]);
242  Print() << "Max norm of divergence after solve at level " << lev << " : " << rhs[0].norm0() << std::endl;
243 
244 #endif
245 }
AMREX_FORCE_INLINE IntVect offset(const int face_dir, const int normal)
Definition: ERF_ReadBndryPlanes.cpp:28
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyInvertedMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:430
amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > get_projection_bc(amrex::Orientation::Side side) const noexcept
Definition: ERF_SolveWithMLMG.cpp:17
bool projection_has_dirichlet(amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > bcs) const
Definition: ERF_PoissonSolve_tb.cpp:8
int ncorr
Definition: ERF_DataStruct.H:1022
Here is the call graph for this function:

◆ projection_has_dirichlet()

bool ERF::projection_has_dirichlet ( amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM >  bcs) const
9 {
10  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
11  if (bcs[dir] == LinOpBCType::Dirichlet) return true;
12  }
13  return false;
14 }

◆ ReadCheckpointFile()

void ERF::ReadCheckpointFile ( )

ERF function for reading data from a checkpoint file during restart.

448 {
449  Print() << "Restart from native checkpoint " << restart_chkfile << "\n";
450 
451  // Header
452  std::string File(restart_chkfile + "/Header");
453 
454  VisMF::IO_Buffer io_buffer(VisMF::GetIOBufferSize());
455 
456  Vector<char> fileCharPtr;
457  ParallelDescriptor::ReadAndBcastFile(File, fileCharPtr);
458  std::string fileCharPtrString(fileCharPtr.dataPtr());
459  std::istringstream is(fileCharPtrString, std::istringstream::in);
460 
461  std::string line, word;
462 
463  int chk_ncomp_cons, chk_ncomp;
464 
465  // read in title line
466  std::getline(is, line);
467 
468  // read in finest_level
469  is >> finest_level;
470  GotoNextLine(is);
471 
472  // read the number of components
473  // for each variable we store
474 
475  // conservative, cell-centered vars
476  is >> chk_ncomp_cons;
477  GotoNextLine(is);
478 
479  // x-velocity on faces
480  is >> chk_ncomp;
481  GotoNextLine(is);
482  AMREX_ASSERT(chk_ncomp == 1);
483 
484  // y-velocity on faces
485  is >> chk_ncomp;
486  GotoNextLine(is);
487  AMREX_ASSERT(chk_ncomp == 1);
488 
489  // z-velocity on faces
490  is >> chk_ncomp;
491  GotoNextLine(is);
492  AMREX_ASSERT(chk_ncomp == 1);
493 
494  // read in array of istep
495  std::getline(is, line);
496  {
497  std::istringstream lis(line);
498  int i = 0;
499  while (lis >> word) {
500  istep[i++] = std::stoi(word);
501  }
502  }
503 
504  // read in array of dt
505  std::getline(is, line);
506  {
507  std::istringstream lis(line);
508  int i = 0;
509  while (lis >> word) {
510  dt[i++] = std::stod(word);
511  }
512  }
513 
514  // read in array of t_new
515  std::getline(is, line);
516  {
517  std::istringstream lis(line);
518  int i = 0;
519  while (lis >> word) {
520  t_new[i++] = std::stod(word);
521  }
522  }
523 
524  for (int lev = 0; lev <= finest_level; ++lev) {
525  // read in level 'lev' BoxArray from Header
526  BoxArray ba;
527  ba.readFrom(is);
528  GotoNextLine(is);
529 
530  // create a distribution mapping
531  DistributionMapping dm { ba, ParallelDescriptor::NProcs() };
532 
533  MakeNewLevelFromScratch (lev, t_new[lev], ba, dm);
534  }
535 
536  // ncomp is only valid after we MakeNewLevelFromScratch (asks micro how many vars)
537  // NOTE: Data is written over ncomp, so check that we match the header file
538  int ncomp_cons = vars_new[0][Vars::cons].nComp();
539 
540  // NOTE: QKE was removed so this is for backward compatibility
541  AMREX_ASSERT((chk_ncomp_cons==ncomp_cons) || ((chk_ncomp_cons-1)==ncomp_cons));
542  //
543  // See if we have a written separate file that tells how many components and how many ghost cells
544  // we have of the base state
545  //
546  // If we can't find the file, then set the number of components to the original number = 3
547  //
548  int ncomp_base_to_read = 3;
549  IntVect ng_base = IntVect{1};
550  {
551  std::string BaseStateFile(restart_chkfile + "/num_base_state_comps");
552 
553  if (amrex::FileExists(BaseStateFile))
554  {
555  Vector<char> BaseStatefileCharPtr;
556  ParallelDescriptor::ReadAndBcastFile(BaseStateFile, BaseStatefileCharPtr);
557  std::string BaseStatefileCharPtrString(BaseStatefileCharPtr.dataPtr());
558 
559  // We set this to the default value of 3 but allow it be larger if th0 and qv0 were written
560  std::istringstream isb(BaseStatefileCharPtrString, std::istringstream::in);
561  isb >> ncomp_base_to_read;
562  isb >> ng_base;
563  }
564  }
565 
566  // read in the MultiFab data
567  for (int lev = 0; lev <= finest_level; ++lev)
568  {
569  // NOTE: For backward compatibility (chk file has QKE)
570  if ((chk_ncomp_cons-1)==ncomp_cons) {
571  MultiFab cons(grids[lev],dmap[lev],chk_ncomp_cons,0);
572  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
573 
574  // Copy up to RhoKE_comp
575  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,(RhoKE_comp+1),0);
576 
577  // Only if we have a PBL model do we need to copy QKE is src to KE in dst
578  if ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
579  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ) {
580  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+1),RhoKE_comp,1,0);
581  vars_new[lev][Vars::cons].mult(0.5,RhoKE_comp,1,0);
582  }
583 
584  // Copy other components
585  int ncomp_remainder = ncomp_cons - (RhoKE_comp + 1);
586  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+2),(RhoKE_comp+1),ncomp_remainder,0);
587 
588  vars_new[lev][Vars::cons].setBndry(1.0e34);
589  } else {
590  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
591  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
592  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,ncomp_cons,0);
593  vars_new[lev][Vars::cons].setBndry(1.0e34);
594  }
595 
596  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
597  VisMF::Read(xvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "XFace"));
598  MultiFab::Copy(vars_new[lev][Vars::xvel],xvel,0,0,1,0);
599  vars_new[lev][Vars::xvel].setBndry(1.0e34);
600 
601  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
602  VisMF::Read(yvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "YFace"));
603  MultiFab::Copy(vars_new[lev][Vars::yvel],yvel,0,0,1,0);
604  vars_new[lev][Vars::yvel].setBndry(1.0e34);
605 
606  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
607  VisMF::Read(zvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "ZFace"));
608  MultiFab::Copy(vars_new[lev][Vars::zvel],zvel,0,0,1,0);
609  vars_new[lev][Vars::zvel].setBndry(1.0e34);
610 
611  if (solverChoice.anelastic[lev] == 1) {
612  MultiFab ppinc(grids[lev],dmap[lev],1,0);
613  VisMF::Read(ppinc, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PP_Inc"));
614  MultiFab::Copy(pp_inc[lev],ppinc,0,0,1,0);
615  pp_inc[lev].FillBoundary(geom[lev].periodicity());
616 
617  MultiFab gpx(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
618  VisMF::Read(gpx, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpx"));
619  MultiFab::Copy(gradp[lev][GpVars::gpx],gpx,0,0,1,0);
620  gradp[lev][GpVars::gpx].FillBoundary(geom[lev].periodicity());
621 
622  MultiFab gpy(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
623  VisMF::Read(gpy, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpy"));
624  MultiFab::Copy(gradp[lev][GpVars::gpy],gpy,0,0,1,0);
625  gradp[lev][GpVars::gpy].FillBoundary(geom[lev].periodicity());
626 
627  MultiFab gpz(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
628  VisMF::Read(gpz, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpz"));
629  MultiFab::Copy(gradp[lev][GpVars::gpz],gpz,0,0,1,0);
630  gradp[lev][GpVars::gpz].FillBoundary(geom[lev].periodicity());
631  }
632 
633  // Note that we read the ghost cells of the base state (unlike above)
634 
635  // The original base state only had 3 components and 1 ghost cell -- we read this
636  // here to be consistent with the old style
637  MultiFab base(grids[lev],dmap[lev],ncomp_base_to_read,ng_base);
638  VisMF::Read(base, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "BaseState"));
639 
640  MultiFab::Copy(base_state[lev],base,0,0,ncomp_base_to_read,ng_base);
641 
642  // Create theta0 from p0, rh0
643  if (ncomp_base_to_read < 4) {
644  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
645  {
646  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
647  const Box& bx = mfi.tilebox();
648  Array4<Real> const& fab = base_state[lev].array(mfi);
649  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
650  {
652  / fab(i,j,k,BaseState::r0_comp);
653  });
654  }
655  }
656  // Default theta0 to 0
657  if (ncomp_base_to_read < 5) {
658  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
659  {
660  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
661  const Box& bx = mfi.tilebox();
662  Array4<Real> const& fab = base_state[lev].array(mfi);
663  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
664  {
665  fab(i,j,k,BaseState::qv0_comp) = 0.0;
666  });
667  }
668  }
669  base_state[lev].FillBoundary(geom[lev].periodicity());
670 
671  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
672  // Note that we also read the ghost cells of z_phys_nd
673  IntVect ng = z_phys_nd[lev]->nGrowVect();
674  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
675  VisMF::Read(z_height, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z_Phys_nd"));
676  MultiFab::Copy(*z_phys_nd[lev],z_height,0,0,1,ng);
678 
679  // Compute the min dz and pass to the micro model
680  Real dzmin = get_dzmin_terrain(*z_phys_nd[lev]);
681  micro->Set_dzmin(lev, dzmin);
682 
683  if (SolverChoice::mesh_type == MeshType::VariableDz) {
684  MultiFab z_slab(convert(ba2d[lev],IntVect(1,1,1)),dmap[lev],1,0);
685  int klo = geom[lev].Domain().smallEnd(2);
686  for (MFIter mfi(z_slab); mfi.isValid(); ++mfi) {
687  Box nbx = mfi.tilebox();
688  Array4<Real const> const& z_arr = z_phys_nd[lev]->const_array(mfi);
689  Array4<Real > const& z_slab_arr = z_slab.array(mfi);
690  ParallelFor(nbx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
691  {
692  z_slab_arr(i,j,k) = z_arr(i,j,klo);
693  });
694  }
695  Real z_min = z_slab.min(0);
696  Real z_max = z_slab.max(0);
697 
698  auto dz = geom[lev].CellSize()[2];
699  if (z_max - z_min < 1.e-8 * dz) {
700  SolverChoice::set_mesh_type(MeshType::StretchedDz);
701  if (verbose > 0) {
702  amrex::Print() << "Resetting mesh type to StretchedDz since terrain is flat" << std::endl;
703  }
704  }
705  }
706  }
707 
708  // Read in the moisture model restart variables
709  std::vector<int> qmoist_indices;
710  std::vector<std::string> qmoist_names;
711  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
712  int qmoist_nvar = qmoist_indices.size();
713  for (int var = 0; var < qmoist_nvar; var++) {
714  const int ncomp = 1;
715  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
716  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
717  VisMF::Read(moist_vars, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", qmoist_names[var]));
718  MultiFab::Copy(*(qmoist[lev][qmoist_indices[var]]),moist_vars,0,0,ncomp,ng_moist);
719  }
720 
721 #if defined(ERF_USE_WINDFARM)
722  if(solverChoice.windfarm_type == WindFarmType::Fitch or
723  solverChoice.windfarm_type == WindFarmType::EWP or
724  solverChoice.windfarm_type == WindFarmType::SimpleAD){
725  IntVect ng = Nturb[lev].nGrowVect();
726  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng);
727  VisMF::Read(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "NumTurb"));
728  MultiFab::Copy(Nturb[lev],mf_Nturb,0,0,1,ng);
729  }
730 #endif
731 
732  if (solverChoice.lsm_type != LandSurfaceType::None) {
733  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
734  BoxArray ba = lsm_data[lev][mvar]->boxArray();
735  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
736  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
737  int nvar = lsm_data[lev][mvar]->nComp();
738  MultiFab lsm_vars(ba,dm,nvar,ng);
739  VisMF::Read(lsm_vars, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LsmVars"));
740  MultiFab::Copy(*(lsm_data[lev][mvar]),lsm_vars,0,0,nvar,ng);
741  }
742  }
743 
744 
745  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
746  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
747 
748  std::string MapFacMFileName(restart_chkfile + "/Level_0/MapFactor_mx_H");
749  if (amrex::FileExists(MapFacMFileName)) {
750  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_mx"));
751  } else {
752  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_m"));
753  }
754  MultiFab::Copy(*mapfac[lev][MapFacType::m_x],mf_m,0,0,1,ng);
755 
756 #if 0
758  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_my"));
759  MultiFab::Copy(*mapfac[lev][MapFacType::m_y],mf_m,0,0,1,ng);
760  }
761 #endif
762 
763  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
764  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
765 
766  std::string MapFacUFileName(restart_chkfile + "/Level_0/MapFactor_ux_H");
767  if (amrex::FileExists(MapFacUFileName)) {
768  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_ux"));
769  } else {
770  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_u"));
771  }
772  MultiFab::Copy(*mapfac[lev][MapFacType::u_x],mf_u,0,0,1,ng);
773 
774 #if 0
776  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_uy"));
777  MultiFab::Copy(*mapfac[lev][MapFacType::u_y],mf_u,0,0,1,ng);
778  }
779 #endif
780 
781  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
782  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
783 
784  std::string MapFacVFileName(restart_chkfile + "/Level_0/MapFactor_vx_H");
785  if (amrex::FileExists(MapFacVFileName)) {
786  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vx"));
787  } else {
788  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_v"));
789  }
790  MultiFab::Copy(*mapfac[lev][MapFacType::v_x],mf_v,0,0,1,ng);
791 
792 #if 0
794  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vy"));
795  MultiFab::Copy(*mapfac[lev][MapFacType::v_y],mf_v,0,0,1,ng);
796  }
797 #endif
798 
799 
800  // NOTE: We read MOST data in ReadCheckpointFileMOST (see below)!
801 
802  // See if we wrote out SST data
803  std::string FirstSSTFileName(restart_chkfile + "/Level_0/SST_0_H");
804  if (amrex::FileExists(FirstSSTFileName))
805  {
806  amrex::Print() << "Reading SST data" << std::endl;
807  int ntimes = 1;
808  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
809  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
810  sst_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
811  for (int nt(0); nt<ntimes; ++nt) {
812  VisMF::Read(sst_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
813  "SST_" + std::to_string(nt)));
814  MultiFab::Copy(*sst_lev[lev][nt],sst_at_t,0,0,1,ng);
815  }
816  }
817 
818  // See if we wrote out TSK data
819  std::string FirstTSKFileName(restart_chkfile + "/Level_0/TSK_0_H");
820  if (amrex::FileExists(FirstTSKFileName))
821  {
822  amrex::Print() << "Reading TSK data" << std::endl;
823  int ntimes = 1;
824  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
825  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
826  tsk_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
827  for (int nt(0); nt<ntimes; ++nt) {
828  VisMF::Read(tsk_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
829  "TSK_" + std::to_string(nt)));
830  MultiFab::Copy(*tsk_lev[lev][nt],tsk_at_t,0,0,1,ng);
831  }
832  }
833 
834  std::string LMaskFileName(restart_chkfile + "/Level_0/LMASK_0_H");
835  if (amrex::FileExists(LMaskFileName))
836  {
837  amrex::Print() << "Reading LMASK data" << std::endl;
838  int ntimes = 1;
839  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
840  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
841  for (int nt(0); nt<ntimes; ++nt) {
842  VisMF::Read(lmask_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
843  "LMASK_" + std::to_string(nt)));
844  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
845  const Box& bx = mfi.growntilebox();
846  Array4<int> const& dst_arr = lmask_lev[lev][nt]->array(mfi);
847  Array4<Real> const& src_arr = lmask_at_t.array(mfi);
848  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
849  {
850  dst_arr(i,j,k) = int(src_arr(i,j,k));
851  });
852  }
853  }
854  } else {
855  // Allow idealized cases over water, used to set lmask
856  ParmParse pp("erf");
857  int is_land;
858  if (pp.query("is_land", is_land, lev)) {
859  if (is_land == 1) {
860  amrex::Print() << "Level " << lev << " is land" << std::endl;
861  } else if (is_land == 0) {
862  amrex::Print() << "Level " << lev << " is water" << std::endl;
863  } else {
864  Error("is_land should be 0 or 1");
865  }
866  lmask_lev[lev][0]->setVal(is_land);
867  } else {
868  // Default to land everywhere if not specified
869  lmask_lev[lev][0]->setVal(1);
870  }
871  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
872  }
873 
874  IntVect ngv = ng; ngv[2] = 0;
875 
876  // Read lat/lon if it exists
878  amrex::Print() << "Reading Lat/Lon variables" << std::endl;
879  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
880  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
881  VisMF::Read(lat, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LAT"));
882  VisMF::Read(lon, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LON"));
883  lat_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
884  lon_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
885  MultiFab::Copy(*lat_m[lev],lat,0,0,1,ngv);
886  MultiFab::Copy(*lon_m[lev],lon,0,0,1,ngv);
887  }
888 
889 #ifdef ERF_USE_NETCDF
890  // Read sinPhi and cosPhi if it exists
892  amrex::Print() << "Reading Coriolis factors" << std::endl;
893  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
894  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
895  VisMF::Read(sphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "SinPhi"));
896  VisMF::Read(cphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "CosPhi"));
897  sinPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
898  cosPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
899  MultiFab::Copy(*sinPhi_m[lev],sphi,0,0,1,ngv);
900  MultiFab::Copy(*cosPhi_m[lev],cphi,0,0,1,ngv);
901  }
902 
903  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
904 
905  if (lev == 0) {
906  MultiFab tmp1d(ba1d[0],dmap[0],1,0);
907 
908  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C1H"));
909  MultiFab::Copy(*mf_C1H,tmp1d,0,0,1,0);
910 
911  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C2H"));
912  MultiFab::Copy(*mf_C2H,tmp1d,0,0,1,0);
913 
914  MultiFab tmp2d(ba2d[0],dmap[0],1,mf_MUB->nGrowVect());
915 
916  VisMF::Read(tmp2d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MUB"));
917  MultiFab::Copy(*mf_MUB,tmp2d,0,0,1,mf_MUB->nGrowVect());
918  }
919  }
920 #endif
921 
922  } // for lev
923 
924 #ifdef ERF_USE_PARTICLES
925  restartTracers((ParGDBBase*)GetParGDB(),restart_chkfile);
926  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
927  dynamic_cast<LagrangianMicrophysics&>(*micro).restartParticles((ParGDBBase*)GetParGDB(),restart_chkfile);
928  }
929 #endif
930 
931 #if 0
932 #ifdef ERF_USE_NETCDF
933  // Read bdy_data files
934  if ( ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
936  {
937  int ioproc = ParallelDescriptor::IOProcessorNumber(); // I/O rank
938  int num_time;
939  int num_var;
940  Vector<Box> bx_v;
941  if (ParallelDescriptor::IOProcessor()) {
942  // Open header file and read from it
943  std::ifstream bdy_h_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_H"));
944  bdy_h_file >> num_time;
945  bdy_h_file >> num_var;
946  bdy_h_file >> start_bdy_time;
947  bdy_h_file >> bdy_time_interval;
948  bdy_h_file >> real_width;
949  bx_v.resize(4*num_var);
950  for (int ivar(0); ivar<num_var; ++ivar) {
951  bdy_h_file >> bx_v[4*ivar ];
952  bdy_h_file >> bx_v[4*ivar+1];
953  bdy_h_file >> bx_v[4*ivar+2];
954  bdy_h_file >> bx_v[4*ivar+3];
955  }
956 
957  // IO size the FABs
958  bdy_data_xlo.resize(num_time);
959  bdy_data_xhi.resize(num_time);
960  bdy_data_ylo.resize(num_time);
961  bdy_data_yhi.resize(num_time);
962  for (int itime(0); itime<num_time; ++itime) {
963  bdy_data_xlo[itime].resize(num_var);
964  bdy_data_xhi[itime].resize(num_var);
965  bdy_data_ylo[itime].resize(num_var);
966  bdy_data_yhi[itime].resize(num_var);
967  for (int ivar(0); ivar<num_var; ++ivar) {
968  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
969  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
970  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
971  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
972  }
973  }
974 
975  // Open data file and read from it
976  std::ifstream bdy_d_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_D"));
977  for (int itime(0); itime<num_time; ++itime) {
978  for (int ivar(0); ivar<num_var; ++ivar) {
979  bdy_data_xlo[itime][ivar].readFrom(bdy_d_file);
980  bdy_data_xhi[itime][ivar].readFrom(bdy_d_file);
981  bdy_data_ylo[itime][ivar].readFrom(bdy_d_file);
982  bdy_data_yhi[itime][ivar].readFrom(bdy_d_file);
983  }
984  }
985  } // IO
986 
987  // Broadcast the data
988  ParallelDescriptor::Barrier();
989  ParallelDescriptor::Bcast(&start_bdy_time,1,ioproc);
990  ParallelDescriptor::Bcast(&bdy_time_interval,1,ioproc);
991  ParallelDescriptor::Bcast(&real_width,1,ioproc);
992  ParallelDescriptor::Bcast(&num_time,1,ioproc);
993  ParallelDescriptor::Bcast(&num_var,1,ioproc);
994 
995  // Everyone size their boxes
996  bx_v.resize(4*num_var);
997 
998  ParallelDescriptor::Bcast(bx_v.dataPtr(),bx_v.size(),ioproc);
999 
1000  // Everyone but IO size their FABs
1001  if (!ParallelDescriptor::IOProcessor()) {
1002  bdy_data_xlo.resize(num_time);
1003  bdy_data_xhi.resize(num_time);
1004  bdy_data_ylo.resize(num_time);
1005  bdy_data_yhi.resize(num_time);
1006  for (int itime(0); itime<num_time; ++itime) {
1007  bdy_data_xlo[itime].resize(num_var);
1008  bdy_data_xhi[itime].resize(num_var);
1009  bdy_data_ylo[itime].resize(num_var);
1010  bdy_data_yhi[itime].resize(num_var);
1011  for (int ivar(0); ivar<num_var; ++ivar) {
1012  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
1013  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
1014  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
1015  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
1016  }
1017  }
1018  }
1019 
1020  for (int itime(0); itime<num_time; ++itime) {
1021  for (int ivar(0); ivar<num_var; ++ivar) {
1022  ParallelDescriptor::Bcast(bdy_data_xlo[itime][ivar].dataPtr(),bdy_data_xlo[itime][ivar].box().numPts(),ioproc);
1023  ParallelDescriptor::Bcast(bdy_data_xhi[itime][ivar].dataPtr(),bdy_data_xhi[itime][ivar].box().numPts(),ioproc);
1024  ParallelDescriptor::Bcast(bdy_data_ylo[itime][ivar].dataPtr(),bdy_data_ylo[itime][ivar].box().numPts(),ioproc);
1025  ParallelDescriptor::Bcast(bdy_data_yhi[itime][ivar].dataPtr(),bdy_data_yhi[itime][ivar].box().numPts(),ioproc);
1026  }
1027  }
1028  } // init_type == WRFInput or Metgrid
1029 #endif
1030 #endif
1031 }
struct @19 in
static void GotoNextLine(std::istream &is)
Definition: ERF_Checkpoint.cpp:16
void MakeNewLevelFromScratch(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:25
bool variable_coriolis
Definition: ERF_DataStruct.H:1114
bool has_lat_lon
Definition: ERF_DataStruct.H:1113
static void set_mesh_type(MeshType new_mesh_type)
Definition: ERF_DataStruct.H:985
Here is the call graph for this function:

◆ ReadCheckpointFileSurfaceLayer()

void ERF::ReadCheckpointFileSurfaceLayer ( )

ERF function for reading additional data for MOST from a checkpoint file during restart.

This is called after the ABLMost object is instantiated.

1040 {
1041  for (int lev = 0; lev <= finest_level; ++lev)
1042  {
1043  amrex::Print() << "Reading MOST variables" << std::endl;
1044 
1045  IntVect ng(1,1,0);
1046  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
1047  MultiFab* dst = nullptr;
1048 
1049  // U*
1050  std::string UstarFileName(restart_chkfile + "/Level_0/Ustar_H");
1051  if (amrex::FileExists(UstarFileName)) {
1052  dst = m_SurfaceLayer->get_u_star(lev);
1053  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Ustar"));
1054  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1055  }
1056 
1057  // W*
1058  std::string WstarFileName(restart_chkfile + "/Level_0/Wstar_H");
1059  if (amrex::FileExists(WstarFileName)) {
1060  dst = m_SurfaceLayer->get_w_star(lev);
1061  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Wstar"));
1062  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1063  }
1064 
1065  // T*
1066  std::string TstarFileName(restart_chkfile + "/Level_0/Tstar_H");
1067  if (amrex::FileExists(TstarFileName)) {
1068  dst = m_SurfaceLayer->get_t_star(lev);
1069  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Tstar"));
1070  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1071  }
1072 
1073  // Q*
1074  std::string QstarFileName(restart_chkfile + "/Level_0/Qstar_H");
1075  if (amrex::FileExists(QstarFileName)) {
1076  dst = m_SurfaceLayer->get_q_star(lev);
1077  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qstar"));
1078  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1079  }
1080 
1081  // Olen
1082  std::string OlenFileName(restart_chkfile + "/Level_0/Olen_H");
1083  if (amrex::FileExists(OlenFileName)) {
1084  dst = m_SurfaceLayer->get_olen(lev);
1085  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Olen"));
1086  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1087  }
1088 
1089  // Qsurf
1090  std::string QsurfFileName(restart_chkfile + "/Level_0/Qsurf_H");
1091  if (amrex::FileExists(QsurfFileName)) {
1092  dst = m_SurfaceLayer->get_q_surf(lev);
1093  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qsurf"));
1094  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1095  }
1096 
1097  // PBLH
1098  std::string PBLHFileName(restart_chkfile + "/Level_0/PBLH_H");
1099  if (amrex::FileExists(PBLHFileName)) {
1100  dst = m_SurfaceLayer->get_pblh(lev);
1101  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PBLH"));
1102  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1103  }
1104 
1105  // Z0
1106  std::string Z0FileName(restart_chkfile + "/Level_0/Z0_H");
1107  if (amrex::FileExists(Z0FileName)) {
1108  dst = m_SurfaceLayer->get_z0(lev);
1109  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z0"));
1110  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1111  }
1112  }
1113 }

◆ ReadParameters()

void ERF::ReadParameters ( )
private
2119 {
2120  {
2121  ParmParse pp; // Traditionally, max_step and stop_time do not have prefix.
2122  pp.query("max_step", max_step);
2123  if (max_step < 0) {
2124  max_step = std::numeric_limits<int>::max();
2125  }
2126 
2127  // TODO: more robust general datetime parsing
2128  std::string start_datetime, stop_datetime;
2129  if (pp.query("start_datetime", start_datetime)) {
2130  if (start_datetime.length() == 16) { // YYYY-MM-DD HH:MM
2131  start_datetime += ":00"; // add seconds
2132  }
2133  if (start_datetime.length() != 19) {
2134  Print() << "Got start_datetime = \"" << start_datetime
2135  << "\", format should be " << datetime_format << std::endl;
2136  exit(0);
2137  }
2138  start_time = getEpochTime(start_datetime, datetime_format);
2139  Print() << "Start datetime : " << start_datetime << std::endl;
2140 
2141  if (pp.query("stop_datetime", stop_datetime)) {
2142  if (stop_datetime.length() == 16) { // YYYY-MM-DD HH:MM
2143  stop_datetime += ":00"; // add seconds
2144  }
2145  if (stop_datetime.length() != 19) {
2146  Print() << "Got stop_datetime = \"" << stop_datetime
2147  << "\", format should be " << datetime_format << std::endl;
2148  exit(0);
2149  }
2150  stop_time = getEpochTime(stop_datetime, datetime_format);
2151  Print() << "Stop datetime : " << start_datetime << std::endl;
2152  } else if (pp.query("stop_time", stop_time)) {
2153  Print() << "Sim length : " << stop_time << " s" << std::endl;
2154  stop_time += start_time;
2155  }
2156 
2157  use_datetime = true;
2158 
2159  } else {
2160  pp.query("stop_time", stop_time);
2161  pp.query("start_time", start_time); // This is optional, it defaults to 0
2162  }
2163  }
2164 
2165  ParmParse pp(pp_prefix);
2166  ParmParse pp_amr("amr");
2167  {
2168  pp.query("regrid_level_0_on_restart", regrid_level_0_on_restart);
2169  pp.query("regrid_int", regrid_int);
2170  pp.query("check_file", check_file);
2171 
2172  // The regression tests use "amr.restart" and "amr.m_check_int" so we allow
2173  // for those or "erf.restart" / "erf.m_check_int" with the former taking
2174  // precedence if both are specified
2175  pp.query("check_int", m_check_int);
2176  pp.query("check_per", m_check_per);
2177  pp_amr.query("check_int", m_check_int);
2178  pp_amr.query("check_per", m_check_per);
2179 
2180  pp.query("restart", restart_chkfile);
2181  pp_amr.query("restart", restart_chkfile);
2182 
2183  // Verbosity
2184  pp.query("v", verbose);
2185  pp.query("mg_v", mg_verbose);
2186  pp.query("use_fft", use_fft);
2187 #ifndef ERF_USE_FFT
2188  if (use_fft) {
2189  amrex::Abort("You must build with USE_FFT in order to set use_fft = true in your inputs file");
2190  }
2191 #endif
2192 
2193  // Check for NaNs?
2194  pp.query("check_for_nans", check_for_nans);
2195 
2196  // Frequency of diagnostic output
2197  pp.query("sum_interval", sum_interval);
2198  pp.query("sum_period" , sum_per);
2199 
2200  pp.query("pert_interval", pert_interval);
2201 
2202  // Time step controls
2203  pp.query("cfl", cfl);
2204  pp.query("substepping_cfl", sub_cfl);
2205  pp.query("init_shrink", init_shrink);
2206  pp.query("change_max", change_max);
2207  pp.query("dt_max_initial", dt_max_initial);
2208  pp.query("dt_max", dt_max);
2209 
2210  fixed_dt.resize(max_level+1,-1.);
2211  fixed_fast_dt.resize(max_level+1,-1.);
2212 
2213  pp.query("fixed_dt", fixed_dt[0]);
2214  pp.query("fixed_fast_dt", fixed_fast_dt[0]);
2215 
2216  int nlevs_max = max_level + 1;
2217  istep.resize(nlevs_max, 0);
2218  nsubsteps.resize(nlevs_max, 1);
2219  // This is the default
2220  for (int lev = 1; lev <= max_level; ++lev) {
2221  nsubsteps[lev] = MaxRefRatio(lev-1);
2222  }
2223 
2224  if (max_level > 0) {
2225  ParmParse pp_erf("erf");
2226  int count = pp_erf.countval("dt_ref_ratio");
2227  if (count > 0) {
2228  Vector<int> nsub;
2229  nsub.resize(nlevs_max, 0);
2230  if (count == 1) {
2231  pp_erf.queryarr("dt_ref_ratio", nsub, 0, 1);
2232  for (int lev = 1; lev <= max_level; ++lev) {
2233  nsubsteps[lev] = nsub[0];
2234  }
2235  } else {
2236  pp_erf.queryarr("dt_ref_ratio", nsub, 0, max_level);
2237  for (int lev = 1; lev <= max_level; ++lev) {
2238  nsubsteps[lev] = nsub[lev-1];
2239  }
2240  }
2241  }
2242  }
2243 
2244  // Make sure we do this after we have defined nsubsteps above
2245  for (int lev = 1; lev <= max_level; lev++)
2246  {
2247  fixed_dt[lev] = fixed_dt[lev-1] / static_cast<Real>(nsubsteps[lev]);
2248  fixed_fast_dt[lev] = fixed_fast_dt[lev-1] / static_cast<Real>(nsubsteps[lev]);
2249  }
2250 
2251  pp.query("fixed_mri_dt_ratio", fixed_mri_dt_ratio);
2252 
2253  // We use this to keep track of how many boxes we read in from WRF initialization
2254  num_files_at_level.resize(max_level+1,0);
2255 
2256  // We use this to keep track of how many boxes are specified thru the refinement indicators
2257  num_boxes_at_level.resize(max_level+1,0);
2258  boxes_at_level.resize(max_level+1);
2259 
2260  // We always have exactly one file at level 0
2261  num_boxes_at_level[0] = 1;
2262  boxes_at_level[0].resize(1);
2263  boxes_at_level[0][0] = geom[0].Domain();
2264 
2265 #ifdef ERF_USE_NETCDF
2266  nc_init_file.resize(max_level+1);
2267  have_read_nc_init_file.resize(max_level+1);
2268 
2269  // NetCDF wrfinput initialization files -- possibly multiple files at each of multiple levels
2270  // but we always have exactly one file at level 0
2271  for (int lev = 0; lev <= max_level; lev++) {
2272  const std::string nc_file_names = Concatenate("nc_init_file_",lev,1);
2273  if (pp.contains(nc_file_names.c_str())) {
2274  int num_files = pp.countval(nc_file_names.c_str());
2275  num_files_at_level[lev] = num_files;
2276  nc_init_file[lev].resize(num_files);
2277  have_read_nc_init_file[lev].resize(num_files);
2278  pp.queryarr(nc_file_names.c_str(), nc_init_file[lev],0,num_files);
2279  for (int j = 0; j < num_files; j++) {
2280  Print() << "Reading NC init file names at level " << lev << " and index " << j << " : " << nc_init_file[lev][j] << std::endl;
2281  have_read_nc_init_file[lev][j] = 0;
2282  } // j
2283  } // if pp.contains
2284  } // lev
2285 
2286  // NetCDF wrfbdy lateral boundary file
2287  if (pp.query("nc_bdy_file", nc_bdy_file)) {
2288  Print() << "Reading NC bdy file name " << nc_bdy_file << std::endl;
2289  }
2290 
2291  // NetCDF wrflow lateral boundary file
2292  if (pp.query("nc_low_file", nc_low_file)) {
2293  Print() << "Reading NC low file name " << nc_low_file << std::endl;
2294  }
2295 
2296 #endif
2297 
2298  // Options for vertical interpolation of met_em*.nc data.
2299  pp.query("metgrid_debug_quiescent", metgrid_debug_quiescent);
2300  pp.query("metgrid_debug_isothermal", metgrid_debug_isothermal);
2301  pp.query("metgrid_debug_dry", metgrid_debug_dry);
2302  pp.query("metgrid_debug_psfc", metgrid_debug_psfc);
2303  pp.query("metgrid_debug_msf", metgrid_debug_msf);
2304  pp.query("metgrid_interp_theta", metgrid_interp_theta);
2305  pp.query("metgrid_basic_linear", metgrid_basic_linear);
2306  pp.query("metgrid_use_below_sfc", metgrid_use_below_sfc);
2307  pp.query("metgrid_use_sfc", metgrid_use_sfc);
2308  pp.query("metgrid_retain_sfc", metgrid_retain_sfc);
2309  pp.query("metgrid_proximity", metgrid_proximity);
2310  pp.query("metgrid_order", metgrid_order);
2311  pp.query("metgrid_force_sfc_k", metgrid_force_sfc_k);
2312 
2313  // Set default to FullState for now ... later we will try Perturbation
2314  interpolation_type = StateInterpType::FullState;
2315  pp.query_enum_case_insensitive("interpolation_type" ,interpolation_type);
2316 
2317  PlotFileType plotfile3d_type_temp = PlotFileType::None;
2318  pp.query_enum_case_insensitive("plotfile_type" ,plotfile3d_type_temp);
2319  pp.query_enum_case_insensitive("plotfile_type_1",plotfile3d_type_1);
2320  pp.query_enum_case_insensitive("plotfile_type_2",plotfile3d_type_2);
2321 
2322  PlotFileType plotfile2d_type_temp = PlotFileType::None;
2323  pp.query_enum_case_insensitive("plotfile2d_type" ,plotfile2d_type_temp);
2324  pp.query_enum_case_insensitive("plotfile2d_type_1",plotfile2d_type_1);
2325  pp.query_enum_case_insensitive("plotfile2d_type_2",plotfile2d_type_2);
2326  //
2327  // This option is for backward consistency -- if only plotfile_type is set,
2328  // then it will be used for both 1 and 2 if and only if they are not set
2329  //
2330  // Default is native amrex if no type is specified
2331  //
2332  if (plotfile3d_type_temp == PlotFileType::None) {
2333  if (plotfile3d_type_1 == PlotFileType::None) {
2334  plotfile3d_type_1 = PlotFileType::Amrex;
2335  }
2336  if (plotfile3d_type_2 == PlotFileType::None) {
2337  plotfile3d_type_2 = PlotFileType::Amrex;
2338  }
2339  } else {
2340  if (plotfile3d_type_1 == PlotFileType::None) {
2341  plotfile3d_type_1 = plotfile3d_type_temp;
2342  } else {
2343  amrex::Abort("You must set either plotfile_type or plotfile_type_1, not both");
2344  }
2345  if (plotfile3d_type_2 == PlotFileType::None) {
2346  plotfile3d_type_2 = plotfile3d_type_temp;
2347  } else {
2348  amrex::Abort("You must set either plotfile_type or plotfile_type_2, not both");
2349  }
2350  }
2351  if (plotfile2d_type_temp == PlotFileType::None) {
2352  if (plotfile2d_type_1 == PlotFileType::None) {
2353  plotfile2d_type_1 = PlotFileType::Amrex;
2354  }
2355  if (plotfile2d_type_2 == PlotFileType::None) {
2356  plotfile2d_type_2 = PlotFileType::Amrex;
2357  }
2358  } else {
2359  if (plotfile2d_type_1 == PlotFileType::None) {
2360  plotfile2d_type_1 = plotfile2d_type_temp;
2361  } else {
2362  amrex::Abort("You must set either plotfile2d_type or plotfile2d_type_1, not both");
2363  }
2364  if (plotfile2d_type_2 == PlotFileType::None) {
2365  plotfile2d_type_2 = plotfile2d_type_temp;
2366  } else {
2367  amrex::Abort("You must set either plotfile2d_type or plotfile2d_type_2, not both");
2368  }
2369  }
2370 #ifndef ERF_USE_NETCDF
2371  if (plotfile3d_type_1 == PlotFileType::Netcdf ||
2372  plotfile3d_type_2 == PlotFileType::Netcdf ||
2373  plotfile2d_type_1 == PlotFileType::Netcdf ||
2374  plotfile2d_type_2 == PlotFileType::Netcdf) {
2375  amrex::Abort("Plotfile type = Netcdf is not allowed without USE_NETCDF = TRUE");
2376  }
2377 #endif
2378 
2379  pp.query("plot_file_1" , plot3d_file_1);
2380  pp.query("plot_file_2" , plot3d_file_2);
2381  pp.query("plot2d_file_1", plot2d_file_1);
2382  pp.query("plot2d_file_2", plot2d_file_2);
2383 
2384  pp.query("plot_int_1" , m_plot3d_int_1);
2385  pp.query("plot_int_2" , m_plot3d_int_2);
2386  pp.query("plot_per_1" , m_plot3d_per_1);
2387  pp.query("plot_per_2" , m_plot3d_per_2);
2388 
2389  pp.query("plot2d_int_1" , m_plot2d_int_1);
2390  pp.query("plot2d_int_2" , m_plot2d_int_2);
2391  pp.query("plot2d_per_1", m_plot2d_per_1);
2392  pp.query("plot2d_per_2", m_plot2d_per_2);
2393 
2394  pp.query("subvol_file", subvol_file);
2395 
2396  // Should we use format like plt1970-01-01_00:00:00.000000 (if true) or plt00001 (if false)
2397  pp.query("use_real_time_in_pltname", use_real_time_in_pltname);
2398 
2399  // If use_real_time_in_pltname is false, how many digits should we use for the timestep?
2400  pp.query("file_name_digits", file_name_digits);
2401 
2402  // Default if subvol_int not specified
2403  m_subvol_int.resize(1); m_subvol_int[0] = -1;
2404  m_subvol_per.resize(1); m_subvol_per[0] = -1.0;
2405  last_subvol_step.resize(1);
2406  last_subvol_time.resize(1);
2407 
2408  int nsi = pp.countval("subvol_int");
2409  int nsr = pp.countval("subvol_per");
2410 
2411  // We must specify only subvol_int OR subvol_per
2412  AMREX_ALWAYS_ASSERT (!(nsi > 0 && nsr > 0));
2413 
2414  int nsub = -1;
2415  if (nsi > 0 || nsr > 0) {
2416  ParmParse pp_sv("erf.subvol");
2417  int n1 = pp_sv.countval("origin"); int n2 = pp_sv.countval("nxnynz"); int n3 = pp_sv.countval("dxdydz");
2418  if (n1 != n2 || n1 != n3 || n2 != n3) {
2419  amrex::Abort("WriteSubvolume: must have same number of entries in origin, nxnynz, and dxdydz.");
2420  }
2421  if ( n1%AMREX_SPACEDIM != 0) {
2422  amrex::Abort("WriteSubvolume: origin, nxnynz, and dxdydz must have multiples of AMReX_SPACEDIM");
2423  }
2424  nsub = n1/AMREX_SPACEDIM;
2425  m_subvol_int.resize(nsub);
2426  last_subvol_step.resize(nsub);
2427  last_subvol_time.resize(nsub);
2428  m_subvol_int.resize(nsub);
2429  m_subvol_per.resize(nsub);
2430  }
2431 
2432  if (nsi > 0) {
2433  for (int i = 1; i < nsub; i++) m_subvol_per[i] = -1.0;
2434  if ( nsi == 1) {
2435  m_subvol_int[0] = -1;
2436  pp.get("subvol_int" , m_subvol_int[0]);
2437  } else if ( nsi == nsub) {
2438  pp.getarr("subvol_int" , m_subvol_int);
2439  } else {
2440  amrex::Abort("There must either be a single value of subvol_int or one for every subdomain");
2441  }
2442  }
2443 
2444  if (nsr > 0) {
2445  for (int i = 1; i < nsub; i++) m_subvol_int[i] = -1.0;
2446  if ( nsr == 1) {
2447  m_subvol_per[0] = -1.0;
2448  pp.get("subvol_per" , m_subvol_per[0]);
2449  } else if ( nsr == nsub) {
2450  pp.getarr("subvol_per" , m_subvol_per);
2451  } else {
2452  amrex::Abort("There must either be a single value of subvol_per or one for every subdomain");
2453  }
2454  }
2455 
2456  setSubVolVariables("subvol_sampling_vars",subvol3d_var_names);
2457 
2458  pp.query("expand_plotvars_to_unif_rr",m_expand_plotvars_to_unif_rr);
2459 
2460  pp.query("plot_face_vels",m_plot_face_vels);
2461 
2462  if ( (m_plot3d_int_1 > 0 && m_plot3d_per_1 > 0) ||
2463  (m_plot3d_int_2 > 0 && m_plot3d_per_2 > 0.) ) {
2464  Abort("Must choose only one of plot_int or plot_per");
2465  }
2466  if ( (m_plot2d_int_1 > 0 && m_plot2d_per_1 > 0) ||
2467  (m_plot2d_int_2 > 0 && m_plot2d_per_2 > 0.) ) {
2468  Abort("Must choose only one of plot_int or plot_per");
2469  }
2470 
2471  pp.query("profile_int", profile_int);
2472  pp.query("destag_profiles", destag_profiles);
2473 
2474  pp.query("plot_lsm", plot_lsm);
2475 #ifdef ERF_USE_RRTMGP
2476  pp.query("plot_rad", plot_rad);
2477 #endif
2478  pp.query("profile_rad_int", rad_datalog_int);
2479 
2480  pp.query("output_1d_column", output_1d_column);
2481  pp.query("column_per", column_per);
2482  pp.query("column_interval", column_interval);
2483  pp.query("column_loc_x", column_loc_x);
2484  pp.query("column_loc_y", column_loc_y);
2485  pp.query("column_file_name", column_file_name);
2486 
2487  // Sampler output frequency
2488  pp.query("line_sampling_per", line_sampling_per);
2489  pp.query("line_sampling_interval", line_sampling_interval);
2490  pp.query("plane_sampling_per", plane_sampling_per);
2491  pp.query("plane_sampling_interval", plane_sampling_interval);
2492 
2493  // Specify information about outputting planes of data
2494  pp.query("output_bndry_planes", output_bndry_planes);
2495  pp.query("bndry_output_planes_interval", bndry_output_planes_interval);
2496  pp.query("bndry_output_planes_per", bndry_output_planes_per);
2497  pp.query("bndry_output_start_time", bndry_output_planes_start_time);
2498 
2499  // Specify whether ingest boundary planes of data
2500  pp.query("input_bndry_planes", input_bndry_planes);
2501 
2502  // Query the set and total widths for wrfbdy interior ghost cells
2503  pp.query("real_width", real_width);
2504  pp.query("real_set_width", real_set_width);
2505 
2506  // If using real boundaries, do we extrapolate w (or set to 0)
2507  pp.query("real_extrap_w", real_extrap_w);
2508 
2509  // Query the set and total widths for crse-fine interior ghost cells
2510  pp.query("cf_width", cf_width);
2511  pp.query("cf_set_width", cf_set_width);
2512 
2513  // AmrMesh iterate on grids?
2514  bool iterate(true);
2515  pp_amr.query("iterate_grids",iterate);
2516  if (!iterate) SetIterateToFalse();
2517  }
2518 
2519 #ifdef ERF_USE_PARTICLES
2520  readTracersParams();
2521 #endif
2522 
2523  solverChoice.init_params(max_level,pp_prefix);
2524 
2525 #ifndef ERF_USE_NETCDF
2526  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(( (solverChoice.init_type != InitType::WRFInput) &&
2527  (solverChoice.init_type != InitType::Metgrid ) &&
2528  (solverChoice.init_type != InitType::NCFile ) ),
2529  "init_type cannot be 'WRFInput', 'MetGrid' or 'NCFile' if we don't build with netcdf!");
2530 #endif
2531 
2532  // Query the canopy model file name
2533  std::string forestfile;
2534  solverChoice.do_forest_drag = pp.query("forest_file", forestfile);
2536  for (int lev = 0; lev <= max_level; ++lev) {
2537  m_forest_drag[lev] = std::make_unique<ForestDrag>(forestfile);
2538  }
2539  }
2540 
2541  // If init from WRFInput or Metgrid make sure a valid file name is present
2542  if ((solverChoice.init_type == InitType::WRFInput) ||
2543  (solverChoice.init_type == InitType::Metgrid) ||
2544  (solverChoice.init_type == InitType::NCFile) ) {
2545  for (int lev = 0; lev <= max_level; lev++) {
2546  int num_files = nc_init_file[lev].size();
2547  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(num_files>0, "A file name must be present for init type WRFInput, Metgrid or NCFile.");
2548  for (int j = 0; j < num_files; j++) {
2549  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!nc_init_file[lev][j].empty(), "Valid file name must be present for init type WRFInput, Metgrid or NCFile.");
2550  } //j
2551  } // lev
2552  } // InitType
2553 
2554  // What type of land surface model to use
2555  // NOTE: Must be checked after init_params
2556  if (solverChoice.lsm_type == LandSurfaceType::SLM) {
2557  lsm.SetModel<SLM>();
2558  Print() << "SLM land surface model!\n";
2559  } else if (solverChoice.lsm_type == LandSurfaceType::MM5) {
2560  lsm.SetModel<MM5>();
2561  Print() << "MM5 land surface model!\n";
2562 #ifdef ERF_USE_NOAHMP
2563  } else if (solverChoice.lsm_type == LandSurfaceType::NOAHMP) {
2564  lsm.SetModel<NOAHMP>();
2565  Print() << "Noah-MP land surface model!\n";
2566 #endif
2567  } else if (solverChoice.lsm_type == LandSurfaceType::None) {
2568  lsm.SetModel<NullSurf>();
2569  Print() << "Null land surface model!\n";
2570  } else {
2571  Abort("Dont know this LandSurfaceType!") ;
2572  }
2573 
2574  if (verbose > 0) {
2575  solverChoice.display(max_level,pp_prefix);
2576  }
2577 
2579 }
AMREX_GPU_HOST AMREX_FORCE_INLINE std::time_t getEpochTime(const std::string &dateTime, const std::string &dateTimeFormat)
Definition: ERF_EpochTime.H:15
bool metgrid_basic_linear
Definition: ERF.H:1248
bool metgrid_debug_msf
Definition: ERF.H:1246
std::string plot2d_file_2
Definition: ERF.H:1073
std::string plot3d_file_1
Definition: ERF.H:1070
bool plot_rad
Definition: ERF.H:895
bool m_plot_face_vels
Definition: ERF.H:1088
std::string plot3d_file_2
Definition: ERF.H:1071
int regrid_int
Definition: ERF.H:1063
bool metgrid_retain_sfc
Definition: ERF.H:1251
int file_name_digits
Definition: ERF.H:1220
bool metgrid_use_sfc
Definition: ERF.H:1250
amrex::Vector< int > num_files_at_level
Definition: ERF.H:798
bool metgrid_debug_quiescent
Definition: ERF.H:1242
bool metgrid_interp_theta
Definition: ERF.H:1247
bool regrid_level_0_on_restart
Definition: ERF.H:1067
int metgrid_force_sfc_k
Definition: ERF.H:1254
void setSubVolVariables(const std::string &pp_subvol_var_names, amrex::Vector< std::string > &subvol_var_names)
Definition: ERF_WriteSubvolume.cpp:9
bool real_extrap_w
Definition: ERF.H:1236
bool metgrid_use_below_sfc
Definition: ERF.H:1249
std::string subvol_file
Definition: ERF.H:1074
amrex::Real metgrid_proximity
Definition: ERF.H:1252
std::string plot2d_file_1
Definition: ERF.H:1072
bool metgrid_debug_dry
Definition: ERF.H:1244
bool metgrid_debug_isothermal
Definition: ERF.H:1243
bool use_real_time_in_pltname
Definition: ERF.H:1221
bool metgrid_debug_psfc
Definition: ERF.H:1245
void ParameterSanityChecks()
Definition: ERF.cpp:2583
bool m_expand_plotvars_to_unif_rr
Definition: ERF.H:1075
std::string check_file
Definition: ERF.H:1097
int metgrid_order
Definition: ERF.H:1253
bool plot_lsm
Definition: ERF.H:1090
void SetModel()
Definition: ERF_LandSurface.H:28
Definition: ERF_MM5.H:26
Definition: ERF_NOAHMP.H:49
Definition: ERF_NullSurf.H:8
Definition: ERF_SLM.H:26
void display(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:769
void init_params(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:131
Here is the call graph for this function:

◆ refinement_criteria_setup()

void ERF::refinement_criteria_setup ( )
private

Function to define the refinement criteria based on user input

275 {
276  if (max_level > 0)
277  {
278  ParmParse pp(pp_prefix);
279  Vector<std::string> refinement_indicators;
280  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
281 
282  for (int i=0; i<refinement_indicators.size(); ++i)
283  {
284  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
285 
286  ParmParse ppr(ref_prefix);
287  RealBox realbox;
288  int lev_for_box;
289 
290  int num_real_lo = ppr.countval("in_box_lo");
291  int num_indx_lo = ppr.countval("in_box_lo_indices");
292  int num_real_hi = ppr.countval("in_box_hi");
293  int num_indx_hi = ppr.countval("in_box_hi_indices");
294 
295  AMREX_ALWAYS_ASSERT(num_real_lo == num_real_hi);
296  AMREX_ALWAYS_ASSERT(num_indx_lo == num_indx_hi);
297 
298  if ( !((num_real_lo >= AMREX_SPACEDIM-1 && num_indx_lo == 0) ||
299  (num_indx_lo >= AMREX_SPACEDIM-1 && num_real_lo == 0) ||
300  (num_indx_lo == 0 && num_real_lo == 0)) )
301  {
302  amrex::Abort("Must only specify box for refinement using real OR index space");
303  }
304 
305  if (num_real_lo > 0) {
306  std::vector<Real> rbox_lo(3), rbox_hi(3);
307  ppr.get("max_level",lev_for_box);
308  if (lev_for_box <= max_level)
309  {
310  if (n_error_buf[0] != IntVect::TheZeroVector()) {
311  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
312  }
313 
314  const Real* plo = geom[lev_for_box].ProbLo();
315  const Real* phi = geom[lev_for_box].ProbHi();
316 
317  ppr.getarr("in_box_lo",rbox_lo,0,num_real_lo);
318  ppr.getarr("in_box_hi",rbox_hi,0,num_real_hi);
319 
320  if (rbox_lo[0] < plo[0]) rbox_lo[0] = plo[0];
321  if (rbox_lo[1] < plo[1]) rbox_lo[1] = plo[1];
322  if (rbox_hi[0] > phi[0]) rbox_hi[0] = phi[0];
323  if (rbox_hi[1] > phi[1]) rbox_hi[1] = phi[1];
324  if (num_real_lo < AMREX_SPACEDIM) {
325  rbox_lo[2] = plo[2];
326  rbox_hi[2] = phi[2];
327  }
328 
329  realbox = RealBox(&(rbox_lo[0]),&(rbox_hi[0]));
330 
331  Print() << "Realbox read in and intersected laterally with domain is " << realbox << std::endl;
332 
333  num_boxes_at_level[lev_for_box] += 1;
334 
335  int ilo, jlo, klo;
336  int ihi, jhi, khi;
337  const auto* dx = geom[lev_for_box].CellSize();
338  ilo = static_cast<int>((rbox_lo[0] - plo[0])/dx[0]);
339  jlo = static_cast<int>((rbox_lo[1] - plo[1])/dx[1]);
340  ihi = static_cast<int>((rbox_hi[0] - plo[0])/dx[0]-1);
341  jhi = static_cast<int>((rbox_hi[1] - plo[1])/dx[1]-1);
342  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
343  // Search for k indices corresponding to nominal grid
344  // AGL heights
345  const Box& domain = geom[lev_for_box].Domain();
346  klo = domain.smallEnd(2) - 1;
347  khi = domain.smallEnd(2) - 1;
348 
349  if (rbox_lo[2] <= zlevels_stag[lev_for_box][domain.smallEnd(2)])
350  {
351  klo = domain.smallEnd(2);
352  }
353  else
354  {
355  for (int k=domain.smallEnd(2); k<=domain.bigEnd(2)+1; ++k) {
356  if (zlevels_stag[lev_for_box][k] > rbox_lo[2]) {
357  klo = k-1;
358  break;
359  }
360  }
361  }
362  AMREX_ASSERT(klo >= domain.smallEnd(2));
363 
364  if (rbox_hi[2] >= zlevels_stag[lev_for_box][domain.bigEnd(2)+1])
365  {
366  khi = domain.bigEnd(2);
367  }
368  else
369  {
370  for (int k=klo+1; k<=domain.bigEnd(2)+1; ++k) {
371  if (zlevels_stag[lev_for_box][k] > rbox_hi[2]) {
372  khi = k-1;
373  break;
374  }
375  }
376  }
377  AMREX_ASSERT((khi <= domain.bigEnd(2)) && (khi > klo));
378 
379  // Need to update realbox because tagging is based on
380  // the initial _un_deformed grid
381  realbox = RealBox(plo[0]+ ilo *dx[0], plo[1]+ jlo *dx[1], plo[2]+ klo *dx[2],
382  plo[0]+(ihi+1)*dx[0], plo[1]+(jhi+1)*dx[1], plo[2]+(khi+1)*dx[2]);
383  } else {
384  klo = static_cast<int>((rbox_lo[2] - plo[2])/dx[2]);
385  khi = static_cast<int>((rbox_hi[2] - plo[2])/dx[2]-1);
386  }
387 
388  Box bx(IntVect(ilo,jlo,klo),IntVect(ihi,jhi,khi));
389  if ( (ilo%ref_ratio[lev_for_box-1][0] != 0) || ((ihi+1)%ref_ratio[lev_for_box-1][0] != 0) ||
390  (jlo%ref_ratio[lev_for_box-1][1] != 0) || ((jhi+1)%ref_ratio[lev_for_box-1][1] != 0) ||
391  (klo%ref_ratio[lev_for_box-1][2] != 0) || ((khi+1)%ref_ratio[lev_for_box-1][2] != 0) )
392  {
393  amrex::Print() << "Box : " << bx << std::endl;
394  amrex::Print() << "RealBox : " << realbox << std::endl;
395  amrex::Print() << "ilo, ihi+1, jlo, jhi+1, klo, khi+1 by ref_ratio : "
396  << ilo%ref_ratio[lev_for_box-1][0] << " " << (ihi+1)%ref_ratio[lev_for_box-1][0] << " "
397  << jlo%ref_ratio[lev_for_box-1][1] << " " << (jhi+1)%ref_ratio[lev_for_box-1][1] << " "
398  << klo%ref_ratio[lev_for_box-1][2] << " " << (khi+1)%ref_ratio[lev_for_box-1][2] << std::endl;
399  amrex::Error("Fine box is not legit with this ref_ratio");
400  }
401  boxes_at_level[lev_for_box].push_back(bx);
402  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
403  } // lev
404 
405  if (solverChoice.init_type == InitType::WRFInput) {
406  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
407  amrex::Error("Number of boxes doesn't match number of input files");
408 
409  }
410  }
411 
412  } else if (num_indx_lo > 0) {
413 
414  std::vector<int> box_lo(3), box_hi(3);
415  ppr.get("max_level",lev_for_box);
416  if (lev_for_box <= max_level)
417  {
418  if (n_error_buf[0] != IntVect::TheZeroVector()) {
419  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
420  }
421 
422  ppr.getarr("in_box_lo_indices",box_lo,0,AMREX_SPACEDIM);
423  ppr.getarr("in_box_hi_indices",box_hi,0,AMREX_SPACEDIM);
424 
425  Box bx(IntVect(box_lo[0],box_lo[1],box_lo[2]),IntVect(box_hi[0],box_hi[1],box_hi[2]));
426  amrex::Print() << "BOX " << bx << std::endl;
427 
428  const auto* dx = geom[lev_for_box].CellSize();
429  const Real* plo = geom[lev_for_box].ProbLo();
430  realbox = RealBox(plo[0]+ box_lo[0] *dx[0], plo[1]+ box_lo[1] *dx[1], plo[2]+ box_lo[2] *dx[2],
431  plo[0]+(box_hi[0]+1)*dx[0], plo[1]+(box_hi[1]+1)*dx[1], plo[2]+(box_hi[2]+1)*dx[2]);
432 
433  Print() << "Reading " << bx << " at level " << lev_for_box << std::endl;
434  num_boxes_at_level[lev_for_box] += 1;
435 
436  if ( (box_lo[0]%ref_ratio[lev_for_box-1][0] != 0) || ((box_hi[0]+1)%ref_ratio[lev_for_box-1][0] != 0) ||
437  (box_lo[1]%ref_ratio[lev_for_box-1][1] != 0) || ((box_hi[1]+1)%ref_ratio[lev_for_box-1][1] != 0) ||
438  (box_lo[2]%ref_ratio[lev_for_box-1][2] != 0) || ((box_hi[2]+1)%ref_ratio[lev_for_box-1][2] != 0) )
439  amrex::Error("Fine box is not legit with this ref_ratio");
440  boxes_at_level[lev_for_box].push_back(bx);
441  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
442  } // lev
443 
444  if (solverChoice.init_type == InitType::WRFInput) {
445  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
446  amrex::Error("Number of boxes doesn't match number of input files");
447 
448  }
449  }
450  }
451 
452  AMRErrorTagInfo info;
453 
454  if (realbox.ok()) {
455  info.SetRealBox(realbox);
456  }
457  if (ppr.countval("start_time") > 0) {
458  Real ref_min_time; ppr.get("start_time",ref_min_time);
459  info.SetMinTime(ref_min_time);
460  }
461  if (ppr.countval("end_time") > 0) {
462  Real ref_max_time; ppr.get("end_time",ref_max_time);
463  info.SetMaxTime(ref_max_time);
464  }
465  if (ppr.countval("max_level") > 0) {
466  int ref_max_level; ppr.get("max_level",ref_max_level);
467  info.SetMaxLevel(ref_max_level);
468  }
469 
470  if (ppr.countval("value_greater")) {
471  int num_val = ppr.countval("value_greater");
472  Vector<Real> value(num_val);
473  ppr.getarr("value_greater",value,0,num_val);
474  std::string field; ppr.get("field_name",field);
475  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GREATER,field,info));
476  }
477  else if (ppr.countval("value_less")) {
478  int num_val = ppr.countval("value_less");
479  Vector<Real> value(num_val);
480  ppr.getarr("value_less",value,0,num_val);
481  std::string field; ppr.get("field_name",field);
482  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::LESS,field,info));
483  }
484  else if (ppr.countval("adjacent_difference_greater")) {
485  int num_val = ppr.countval("adjacent_difference_greater");
486  Vector<Real> value(num_val);
487  ppr.getarr("adjacent_difference_greater",value,0,num_val);
488  std::string field; ppr.get("field_name",field);
489  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GRAD,field,info));
490  }
491  else if (realbox.ok())
492  {
493  ref_tags.push_back(AMRErrorTag(info));
494  } else {
495  Abort(std::string("Unrecognized refinement indicator for " + refinement_indicators[i]).c_str());
496  }
497  } // loop over criteria
498  } // if max_level > 0
499 }
Here is the call graph for this function:

◆ remake_zphys()

void ERF::remake_zphys ( int  lev,
amrex::Real  time,
std::unique_ptr< amrex::MultiFab > &  temp_zphys_nd 
)
719 {
720  if (lev > 0)
721  {
722  //
723  // First interpolate from coarser level
724  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
725  // have been pre-filled - this includes ghost cells both inside and outside
726  // the domain
727  //
728  InterpFromCoarseLevel(*temp_zphys_nd, z_phys_nd[lev]->nGrowVect(),
729  IntVect(0,0,0), // do not fill ghost cells outside the domain
730  *z_phys_nd[lev-1], 0, 0, 1,
731  geom[lev-1], geom[lev],
732  refRatio(lev-1), &node_bilinear_interp,
734 
735  // This recomputes the fine values using the bottom terrain at the fine resolution,
736  // and also fills values of z_phys_nd outside the domain
737  make_terrain_fitted_coords(lev,geom[lev],*temp_zphys_nd,zlevels_stag[lev],phys_bc_type);
738 
739  std::swap(temp_zphys_nd, z_phys_nd[lev]);
740 
741  } // lev > 0
742 
743  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
744  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
745  //
746  // This assumes we have already remade the EBGeometry
747  //
748  terrain_blanking[lev]->setVal(1.0);
749  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, z_phys_nd[lev]->nGrowVect());
750  }
751 
752  // Compute the min dz and pass to the micro model
753  Real dzmin = get_dzmin_terrain(*z_phys_nd[lev]);
754  micro->Set_dzmin(lev, dzmin);
755 }
Here is the call graph for this function:

◆ RemakeLevel()

void ERF::RemakeLevel ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
516 {
517  if (verbose) {
518  amrex::Print() <<" REMAKING WITH NEW BA AT LEVEL " << lev << " " << ba << std::endl;
519  }
520 
521  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::MovingFittedMesh);
522 
523  BoxArray ba_old(vars_new[lev][Vars::cons].boxArray());
524  DistributionMapping dm_old(vars_new[lev][Vars::cons].DistributionMap());
525 
526  if (verbose) {
527  amrex::Print() <<" OLD BA AT LEVEL " << lev << " " << ba_old << std::endl;
528  }
529 
530  //
531  // Re-define subdomain at this level within the domain such that
532  // 1) all boxes in a given subdomain are "connected"
533  // 2) no boxes in a subdomain touch any boxes in any other subdomain
534  //
535  if (solverChoice.anelastic[lev] == 1) {
536  make_subdomains(ba.simplified_list(), subdomains[lev]);
537  }
538 
539  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
540  IntVect ngrow_state = vars_new[lev][Vars::cons].nGrowVect();
541 
542  int ngrow_vels = ComputeGhostCells(solverChoice);
543 
544  Vector<MultiFab> temp_lev_new(Vars::NumTypes);
545  Vector<MultiFab> temp_lev_old(Vars::NumTypes);
546  MultiFab temp_base_state;
547 
548  std::unique_ptr<MultiFab> temp_zphys_nd;
549 
550  //********************************************************************************************
551  // This allocates all kinds of things, including but not limited to: solution arrays,
552  // terrain arrays and metrics, and base state.
553  // *******************************************************************************************
554  init_stuff(lev, ba, dm, temp_lev_new, temp_lev_old, temp_base_state, temp_zphys_nd);
555 
556  // ********************************************************************************************
557  // Build the data structures for terrain-related quantities
558  // ********************************************************************************************
559  if ( solverChoice.terrain_type == TerrainType::EB ||
560  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
561  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
562  {
563  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
564  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
565  if (solverChoice.terrain_type == TerrainType::EB) {
566  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
567  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
568  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
569  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
570  }
571  }
572  remake_zphys(lev, time, temp_zphys_nd);
574 
575  // ********************************************************************************************
576  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
577  // Note that this shouldn't be necessary because the fine grid is created by interpolation
578  // from the coarse ... but just in case ...
579  // ********************************************************************************************
580  if ( (SolverChoice::mesh_type != MeshType::ConstantDz) && (solverChoice.coupling_type == CouplingType::TwoWay) ) {
581  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
582  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
583  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
584  }
585  }
586 
587  // ********************************************************************************************
588  // Build the data structures for canopy model (depends upon z_phys)
589  // ********************************************************************************************
591  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
592  }
593 
594  // *****************************************************************************************************
595  // Create the physbcs objects (after initializing the terrain but before calling FillCoarsePatch
596  // *****************************************************************************************************
597  make_physbcs(lev);
598 
599  // ********************************************************************************************
600  // Update the base state at this level by interpolation from coarser level AND copy
601  // from previous (pre-regrid) base_state array
602  // ********************************************************************************************
603  if (lev > 0) {
604  Interpolater* mapper = &cell_cons_interp;
605 
606  Vector<MultiFab*> fmf = {&base_state[lev ], &base_state[lev ]};
607  Vector<MultiFab*> cmf = {&base_state[lev-1], &base_state[lev-1]};
608  Vector<Real> ftime = {time, time};
609  Vector<Real> ctime = {time, time};
610 
611  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
612  FillPatchTwoLevels(temp_base_state, temp_base_state.nGrowVect(), IntVect(0,0,0),
613  time, cmf, ctime, fmf, ftime,
614  0, 0, temp_base_state.nComp(), geom[lev-1], geom[lev],
615  refRatio(lev-1), mapper, domain_bcs_type,
617 
618  // Impose bc's outside the domain
619  (*physbcs_base[lev])(temp_base_state,0,temp_base_state.nComp(),base_state[lev].nGrowVect());
620 
621  // *************************************************************************************************
622  // This will fill the temporary MultiFabs with data from vars_new
623  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
624  // NOTE: we must create the new base state before calling FillPatch because we will
625  // interpolate perturbational quantities
626  // *************************************************************************************************
627  FillPatchFineLevel(lev, time, {&temp_lev_new[Vars::cons],&temp_lev_new[Vars::xvel],
628  &temp_lev_new[Vars::yvel],&temp_lev_new[Vars::zvel]},
629  {&temp_lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
630  base_state[lev], temp_base_state, false);
631  } else {
632  temp_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
633  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
634  temp_lev_new[Vars::cons].ParallelCopy(vars_new[lev][Vars::cons],0,0,ncomp_cons,ngrow_state,ngrow_state);
635  temp_lev_new[Vars::xvel].ParallelCopy(vars_new[lev][Vars::xvel],0,0, 1,ngrow_vels,ngrow_vels);
636  temp_lev_new[Vars::yvel].ParallelCopy(vars_new[lev][Vars::yvel],0,0, 1,ngrow_vels,ngrow_vels);
637 
638  temp_lev_new[Vars::zvel].setVal(0.);
639  temp_lev_new[Vars::zvel].ParallelCopy(vars_new[lev][Vars::zvel],0,0, 1,
640  IntVect(ngrow_vels,ngrow_vels,0),IntVect(ngrow_vels,ngrow_vels,0));
641  }
642 
643  // Now swap the pointers since we needed both old and new in the FillPatch
644  std::swap(temp_base_state, base_state[lev]);
645 
646  // ********************************************************************************************
647  // Copy from new into old just in case
648  // ********************************************************************************************
649  MultiFab::Copy(temp_lev_old[Vars::cons],temp_lev_new[Vars::cons],0,0,ncomp_cons,ngrow_state);
650  MultiFab::Copy(temp_lev_old[Vars::xvel],temp_lev_new[Vars::xvel],0,0, 1,ngrow_vels);
651  MultiFab::Copy(temp_lev_old[Vars::yvel],temp_lev_new[Vars::yvel],0,0, 1,ngrow_vels);
652  MultiFab::Copy(temp_lev_old[Vars::zvel],temp_lev_new[Vars::zvel],0,0, 1,IntVect(ngrow_vels,ngrow_vels,0));
653 
654  // ********************************************************************************************
655  // Now swap the pointers
656  // ********************************************************************************************
657  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
658  std::swap(temp_lev_new[var_idx], vars_new[lev][var_idx]);
659  std::swap(temp_lev_old[var_idx], vars_old[lev][var_idx]);
660  }
661 
662  t_new[lev] = time;
663  t_old[lev] = time - 1.e200;
664 
665  // ********************************************************************************************
666  // Build the data structures for calculating diffusive/turbulent terms
667  // ********************************************************************************************
668  update_diffusive_arrays(lev, ba, dm);
669 
670  //********************************************************************************************
671  // Microphysics
672  // *******************************************************************************************
673  int q_size = micro->Get_Qmoist_Size(lev);
674  qmoist[lev].resize(q_size);
675  micro->Define(lev, solverChoice);
676  if (solverChoice.moisture_type != MoistureType::None)
677  {
678  micro->Init(lev, vars_new[lev][Vars::cons],
679  grids[lev], Geom(lev), 0.0,
680  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
681  }
682  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
683  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
684  }
685 
686  //********************************************************************************************
687  // Radiation
688  // *******************************************************************************************
689  if (solverChoice.rad_type != RadiationType::None)
690  {
691  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
692  }
693 
694  // ********************************************************************************************
695  // Initialize the integrator class
696  // ********************************************************************************************
698 
699  // We need to re-define the FillPatcher if the grids have changed
700  if (lev > 0 && cf_width >= 0) {
701  bool ba_changed = (ba != ba_old);
702  bool dm_changed = (dm != dm_old);
703  if (ba_changed || dm_changed) {
705  }
706  }
707 
708  // ********************************************************************************************
709  // Update the SurfaceLayer arrays at this level
710  // ********************************************************************************************
711  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
712  int nlevs = finest_level+1;
713  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
714  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
715  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
716  mfv_old, Theta_prim[lev], Qv_prim[lev],
717  Qr_prim[lev], z_phys_nd[lev],
718  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
720  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
721  }
722 
723  // These calls are done in AmrCore::regrid if this is a regrid at lev > 0
724  // For a level 0 regrid we must explicitly do them here
725  if (lev == 0) {
726  // Define grids[lev] to be ba
727  SetBoxArray(lev, ba);
728 
729  // Define dmap[lev] to be dm
730  SetDistributionMap(lev, dm);
731  }
732 
733 #ifdef ERF_USE_PARTICLES
734  particleData.Redistribute();
735 #endif
736 }
void remake_zphys(int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:718

◆ restart()

void ERF::restart ( )
1920 {
1921  auto dRestartTime0 = amrex::second();
1922 
1924 
1926  //
1927  // Coarsening before we split the grids ensures that each resulting
1928  // grid will have an even number of cells in each direction.
1929  //
1930  BoxArray new_ba(amrex::coarsen(Geom(0).Domain(),2));
1931  //
1932  // Now split up into list of grids within max_grid_size[0] limit.
1933  //
1934  new_ba.maxSize(max_grid_size[0]/2);
1935  //
1936  // Now refine these boxes back to level 0.
1937  //
1938  new_ba.refine(2);
1939 
1940  if (refine_grid_layout) {
1941  ChopGrids(0, new_ba, ParallelDescriptor::NProcs());
1942  }
1943 
1944  if (new_ba != grids[0]) {
1945  DistributionMapping new_dm(new_ba);
1946  RemakeLevel(0,t_new[0],new_ba,new_dm);
1947  }
1948  }
1949 
1950 #ifdef ERF_USE_PARTICLES
1951  // We call this here without knowing whether the particles have already been initialized or not
1952  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,t_new[0]);
1953 #endif
1954 
1955  Real cur_time = t_new[0];
1956  if (m_check_per > 0.) {last_check_file_time = cur_time;}
1957  if (m_plot2d_per_1 > 0.) {last_plot2d_file_time_1 = std::floor(cur_time/m_plot2d_per_1) * m_plot2d_per_1;}
1958  if (m_plot2d_per_2 > 0.) {last_plot2d_file_time_2 = std::floor(cur_time/m_plot2d_per_2) * m_plot2d_per_2;}
1959  if (m_plot3d_per_1 > 0.) {last_plot3d_file_time_1 = std::floor(cur_time/m_plot3d_per_1) * m_plot3d_per_1;}
1960  if (m_plot3d_per_2 > 0.) {last_plot3d_file_time_2 = std::floor(cur_time/m_plot3d_per_2) * m_plot3d_per_2;}
1961 
1962  if (m_check_int > 0.) {last_check_file_step = istep[0];}
1963  if (m_plot2d_int_1 > 0.) {last_plot2d_file_step_1 = istep[0];}
1964  if (m_plot2d_int_2 > 0.) {last_plot2d_file_step_2 = istep[0];}
1965  if (m_plot3d_int_1 > 0.) {last_plot3d_file_step_1 = istep[0];}
1966  if (m_plot3d_int_2 > 0.) {last_plot3d_file_step_2 = istep[0];}
1967 
1968  if (verbose > 0)
1969  {
1970  auto dRestartTime = amrex::second() - dRestartTime0;
1971  ParallelDescriptor::ReduceRealMax(dRestartTime,ParallelDescriptor::IOProcessorNumber());
1972  amrex::Print() << "Restart time = " << dRestartTime << " seconds." << '\n';
1973  }
1974 }
void RemakeLevel(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:515
void ReadCheckpointFile()
Definition: ERF_Checkpoint.cpp:447

◆ sample_lines()

void ERF::sample_lines ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling data along a line along the z-dimension at the (x,y) indices specified and writes it to an output file.

Parameters
levCurrent level
timeCurrent time
cellIntVect containing the x,y-dimension indices to sample along z
mfMultiFab from which we sample the data
564 {
565  int ifile = 0;
566 
567  const int ncomp = mf.nComp(); // cell-centered state vars
568 
569  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
570  average_face_to_cellcenter(mf_vels, 0,
571  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
572 
573  //
574  // Sample the data at a line (in direction "dir") in space
575  // In this case we sample in the vertical direction so dir = 2
576  // The "k" value of "cell" is ignored
577  //
578  int dir = 2;
579  MultiFab my_line = get_line_data(mf, dir, cell);
580  MultiFab my_line_vels = get_line_data(mf_vels, dir, cell);
581  MultiFab my_line_tau11 = get_line_data(*Tau[lev][TauType::tau11], dir, cell);
582  MultiFab my_line_tau12 = get_line_data(*Tau[lev][TauType::tau12], dir, cell);
583  MultiFab my_line_tau13 = get_line_data(*Tau[lev][TauType::tau13], dir, cell);
584  MultiFab my_line_tau22 = get_line_data(*Tau[lev][TauType::tau22], dir, cell);
585  MultiFab my_line_tau23 = get_line_data(*Tau[lev][TauType::tau23], dir, cell);
586  MultiFab my_line_tau33 = get_line_data(*Tau[lev][TauType::tau33], dir, cell);
587 
588  for (MFIter mfi(my_line, false); mfi.isValid(); ++mfi)
589  {
590  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
591 
592  std::ostream& sample_log = SampleLineLog(ifile);
593  if (sample_log.good()) {
594  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << time;
595  const auto& my_line_arr = my_line[0].const_array();
596  const auto& my_line_vels_arr = my_line_vels[0].const_array();
597  const auto& my_line_tau11_arr = my_line_tau11[0].const_array();
598  const auto& my_line_tau12_arr = my_line_tau12[0].const_array();
599  const auto& my_line_tau13_arr = my_line_tau13[0].const_array();
600  const auto& my_line_tau22_arr = my_line_tau22[0].const_array();
601  const auto& my_line_tau23_arr = my_line_tau23[0].const_array();
602  const auto& my_line_tau33_arr = my_line_tau33[0].const_array();
603  const Box& my_box = my_line[0].box();
604  const int klo = my_box.smallEnd(2);
605  const int khi = my_box.bigEnd(2);
606  int i = cell[0];
607  int j = cell[1];
608  for (int n = 0; n < ncomp; n++) {
609  for (int k = klo; k <= khi; k++) {
610  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_arr(i,j,k,n);
611  }
612  }
613  for (int n = 0; n < AMREX_SPACEDIM; n++) {
614  for (int k = klo; k <= khi; k++) {
615  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_vels_arr(i,j,k,n);
616  }
617  }
618  for (int k = klo; k <= khi; k++) {
619  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau11_arr(i,j,k);
620  }
621  for (int k = klo; k <= khi; k++) {
622  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau12_arr(i,j,k);
623  }
624  for (int k = klo; k <= khi; k++) {
625  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau13_arr(i,j,k);
626  }
627  for (int k = klo; k <= khi; k++) {
628  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau22_arr(i,j,k);
629  }
630  for (int k = klo; k <= khi; k++) {
631  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau23_arr(i,j,k);
632  }
633  for (int k = klo; k <= khi; k++) {
634  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau33_arr(i,j,k);
635  }
636  sample_log << std::endl;
637  } // if good
638  } // mfi
639 }
const int datwidth
Definition: ERF.H:1027
AMREX_FORCE_INLINE std::ostream & SampleLineLog(int i)
Definition: ERF.H:1463
const int datprecision
Definition: ERF.H:1028

◆ sample_points()

void ERF::sample_points ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling MultiFab data at a specified cell index.

Parameters
levLevel for the associated MultiFab data
timeCurrent time
cellIntVect containing the indexes for the cell where we want to sample
mfMultiFab from which we wish to sample data
528 {
529  int ifile = 0;
530 
531  //
532  // Sample the data at a single point in space
533  //
534  int ncomp = mf.nComp();
535  Vector<Real> my_point = get_cell_data(mf, cell);
536 
537  if (!my_point.empty()) {
538 
539  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
540 
541  std::ostream& sample_log = SamplePointLog(ifile);
542  if (sample_log.good()) {
543  sample_log << std::setw(datwidth) << time;
544  for (int i = 0; i < ncomp; ++i)
545  {
546  sample_log << std::setw(datwidth) << my_point[i];
547  }
548  sample_log << std::endl;
549  } // if good
550  } // only write from processor that holds the cell
551 }
AMREX_FORCE_INLINE std::ostream & SamplePointLog(int i)
Definition: ERF.H:1449

◆ SampleLine()

amrex::IntVect& ERF::SampleLine ( int  i)
inlineprivate
1490  {
1491  return sampleline[i];
1492  }

◆ SampleLineLog()

AMREX_FORCE_INLINE std::ostream& ERF::SampleLineLog ( int  i)
inlineprivate
1464  {
1465  return *samplelinelog[i];
1466  }

◆ SampleLineLogName()

std::string ERF::SampleLineLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith samplelinelog file.

1623 { return samplelinelogname[i]; }

◆ SamplePoint()

amrex::IntVect& ERF::SamplePoint ( int  i)
inlineprivate
1477  {
1478  return samplepoint[i];
1479  }

◆ SamplePointLog()

AMREX_FORCE_INLINE std::ostream& ERF::SamplePointLog ( int  i)
inlineprivate
1450  {
1451  return *sampleptlog[i];
1452  }

◆ SamplePointLogName()

std::string ERF::SamplePointLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith sampleptlog file.

1620 { return sampleptlogname[i]; }

◆ setPlotVariables()

void ERF::setPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
26 {
27  ParmParse pp(pp_prefix);
28 
29  if (pp.contains(pp_plot_var_names.c_str()))
30  {
31  std::string nm;
32 
33  int nPltVars = pp.countval(pp_plot_var_names.c_str());
34 
35  for (int i = 0; i < nPltVars; i++)
36  {
37  pp.get(pp_plot_var_names.c_str(), nm, i);
38 
39  // Add the named variable to our list of plot variables
40  // if it is not already in the list
41  if (!containerHasElement(plot_var_names, nm)) {
42  plot_var_names.push_back(nm);
43  }
44  }
45  } else {
46  //
47  // The default is to add none of the variables to the list
48  //
49  plot_var_names.clear();
50  }
51 
52  // Get state variables in the same order as we define them,
53  // since they may be in any order in the input list
54  Vector<std::string> tmp_plot_names;
55 
56  for (int i = 0; i < cons_names.size(); ++i) {
57  if ( containerHasElement(plot_var_names, cons_names[i]) ) {
58  if (solverChoice.moisture_type == MoistureType::None) {
59  if (cons_names[i] != "rhoQ1" && cons_names[i] != "rhoQ2" && cons_names[i] != "rhoQ3" &&
60  cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
61  {
62  tmp_plot_names.push_back(cons_names[i]);
63  }
64  } else if (solverChoice.moisture_type == MoistureType::Kessler) { // allow rhoQ1, rhoQ2, rhoQ3
65  if (cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
66  {
67  tmp_plot_names.push_back(cons_names[i]);
68  }
69  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
70  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
71  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow rhoQ1, rhoQ2
72  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ4" &&
73  cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
74  {
75  tmp_plot_names.push_back(cons_names[i]);
76  }
77  } else if ( (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
78  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow rhoQ1, rhoQ2, rhoQ4
79  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
80  {
81  tmp_plot_names.push_back(cons_names[i]);
82  }
83  } else
84  {
85  // For moisture_type SAM and Morrison we have all six variables
86  tmp_plot_names.push_back(cons_names[i]);
87  }
88  }
89  }
90 
91  // check for velocity since it's not in cons_names
92  // if we are asked for any velocity component, we will need them all
93  if (containerHasElement(plot_var_names, "x_velocity") ||
94  containerHasElement(plot_var_names, "y_velocity") ||
95  containerHasElement(plot_var_names, "z_velocity")) {
96  tmp_plot_names.push_back("x_velocity");
97  tmp_plot_names.push_back("y_velocity");
98  tmp_plot_names.push_back("z_velocity");
99  }
100 
101  //
102  // If the model we are running doesn't have the variable listed in the inputs file,
103  // just ignore it rather than aborting
104  //
105  for (int i = 0; i < derived_names.size(); ++i) {
106  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
107  bool ok_to_add = ( (solverChoice.terrain_type == TerrainType::ImmersedForcing || solverChoice.buildings_type == BuildingsType::ImmersedForcing ) ||
108  (derived_names[i] != "terrain_IB_mask") );
109  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
110  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
111  (derived_names[i] != "detJ") );
112  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
113  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
114  (derived_names[i] != "z_phys") );
115 #ifndef ERF_USE_WINDFARM
116  ok_to_add &= (derived_names[i] != "SMark0" && derived_names[i] != "SMark1");
117 #endif
118  if (ok_to_add)
119  {
120  if (solverChoice.moisture_type == MoistureType::None) { // no moist quantities allowed
121  if (derived_names[i] != "qv" && derived_names[i] != "qc" && derived_names[i] != "qrain" &&
122  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
123  derived_names[i] != "qt" && derived_names[i] != "qn" && derived_names[i] != "qp" &&
124  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
125  {
126  tmp_plot_names.push_back(derived_names[i]);
127  }
128  } else if ( (solverChoice.moisture_type == MoistureType::Kessler ) ||
129  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
130  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow qv, qc, qrain
131  if (derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
132  derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
133  {
134  tmp_plot_names.push_back(derived_names[i]);
135  }
136  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
137  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
138  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow qv, qc
139  if (derived_names[i] != "qrain" &&
140  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
141  derived_names[i] != "qp" &&
142  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
143  {
144  tmp_plot_names.push_back(derived_names[i]);
145  }
146  } else
147  {
148  // For moisture_type SAM and Morrison we have all moist quantities
149  tmp_plot_names.push_back(derived_names[i]);
150  }
151  } // use_terrain?
152  } // hasElement
153  }
154 
155 #ifdef ERF_USE_WINDFARM
156  for (int i = 0; i < derived_names.size(); ++i) {
157  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
158  if(solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP) {
159  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0") {
160  tmp_plot_names.push_back(derived_names[i]);
161  }
162  }
163  if( solverChoice.windfarm_type == WindFarmType::SimpleAD or
164  solverChoice.windfarm_type == WindFarmType::GeneralAD ) {
165  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0" or derived_names[i] == "SMark1") {
166  tmp_plot_names.push_back(derived_names[i]);
167  }
168  }
169  }
170  }
171 #endif
172 
173 #ifdef ERF_USE_PARTICLES
174  const auto& particles_namelist( particleData.getNamesUnalloc() );
175  for (auto it = particles_namelist.cbegin(); it != particles_namelist.cend(); ++it) {
176  std::string tmp( (*it)+"_count" );
177  if (containerHasElement(plot_var_names, tmp) ) {
178  tmp_plot_names.push_back(tmp);
179  }
180  }
181 #endif
182 
183  plot_var_names = tmp_plot_names;
184 }
const amrex::Vector< std::string > derived_names
Definition: ERF.H:1114
const amrex::Vector< std::string > cons_names
Definition: ERF.H:1107
Here is the call graph for this function:

◆ setPlotVariables2D()

void ERF::setPlotVariables2D ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
188 {
189  ParmParse pp(pp_prefix);
190 
191  if (pp.contains(pp_plot_var_names.c_str()))
192  {
193  std::string nm;
194 
195  int nPltVars = pp.countval(pp_plot_var_names.c_str());
196 
197  for (int i = 0; i < nPltVars; i++)
198  {
199  pp.get(pp_plot_var_names.c_str(), nm, i);
200 
201  // Add the named variable to our list of plot variables
202  // if it is not already in the list
203  if (!containerHasElement(plot_var_names, nm)) {
204  plot_var_names.push_back(nm);
205  }
206  }
207  } else {
208  //
209  // The default is to add none of the variables to the list
210  //
211  plot_var_names.clear();
212  }
213 
214  // Get state variables in the same order as we define them,
215  // since they may be in any order in the input list
216  Vector<std::string> tmp_plot_names;
217 
218  // 2D plot variables
219  for (int i = 0; i < derived_names_2d.size(); ++i) {
220  if (containerHasElement(plot_var_names, derived_names_2d[i]) ) {
221  tmp_plot_names.push_back(derived_names_2d[i]);
222  }
223  }
224 
225  plot_var_names = tmp_plot_names;
226 }
const amrex::Vector< std::string > derived_names_2d
Definition: ERF.H:1155
Here is the call graph for this function:

◆ setRayleighRefFromSounding()

void ERF::setRayleighRefFromSounding ( bool  restarting)
private

Set Rayleigh mean profiles from input sounding.

Sets the Rayleigh Damping averaged quantities from an externally supplied input sounding data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
95 {
96  // If we are restarting then we haven't read the input_sounding file yet
97  // so we need to read it here
98  // TODO: should we store this information in the checkpoint file instead?
99  if (restarting) {
101  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
103  }
104  }
105 
106  const Real* z_inp_sound = input_sounding_data.z_inp_sound[0].dataPtr();
107  const Real* U_inp_sound = input_sounding_data.U_inp_sound[0].dataPtr();
108  const Real* V_inp_sound = input_sounding_data.V_inp_sound[0].dataPtr();
109  const Real* theta_inp_sound = input_sounding_data.theta_inp_sound[0].dataPtr();
110  const int inp_sound_size = input_sounding_data.size(0);
111 
112  int refine_fac{1};
113  for (int lev = 0; lev <= finest_level; lev++)
114  {
115  const int klo = geom[lev].Domain().smallEnd(2);
116  const int khi = geom[lev].Domain().bigEnd(2);
117  const int Nz = khi - klo + 1;
118 
119  Vector<Real> zcc(Nz);
120  Vector<Real> zlevels_sub(zlevels_stag[0].begin()+klo/refine_fac,
121  zlevels_stag[0].begin()+khi/refine_fac+2);
122  expand_and_interpolate_1d(zcc, zlevels_sub, refine_fac, true);
123 #if 0
124  amrex::AllPrint() << "lev="<<lev<<" : (refine_fac="<<refine_fac<<",klo="<<klo<<",khi="<<khi<<") ";
125  for (int k = 0; k < zlevels_sub.size(); k++) { amrex::AllPrint() << zlevels_sub[k] << " "; }
126  amrex::AllPrint() << " --> ";
127  for (int k = 0; k < Nz; k++) { amrex::AllPrint() << zcc[k] << " "; }
128  amrex::AllPrint() << std::endl;
129 #endif
130 
131  for (int k = 0; k < Nz; k++)
132  {
133  h_rayleigh_ptrs[lev][Rayleigh::ubar][k] = interpolate_1d(z_inp_sound, U_inp_sound, zcc[k], inp_sound_size);
134  h_rayleigh_ptrs[lev][Rayleigh::vbar][k] = interpolate_1d(z_inp_sound, V_inp_sound, zcc[k], inp_sound_size);
135  h_rayleigh_ptrs[lev][Rayleigh::wbar][k] = Real(0.0);
136  h_rayleigh_ptrs[lev][Rayleigh::thetabar][k] = interpolate_1d(z_inp_sound, theta_inp_sound, zcc[k], inp_sound_size);
137  }
138 
139  // Copy from host version to device version
140  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::ubar].begin(), h_rayleigh_ptrs[lev][Rayleigh::ubar].end(),
141  d_rayleigh_ptrs[lev][Rayleigh::ubar].begin());
142  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::vbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::vbar].end(),
143  d_rayleigh_ptrs[lev][Rayleigh::vbar].begin());
144  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::wbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::wbar].end(),
145  d_rayleigh_ptrs[lev][Rayleigh::wbar].begin());
146  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::thetabar].begin(), h_rayleigh_ptrs[lev][Rayleigh::thetabar].end(),
147  d_rayleigh_ptrs[lev][Rayleigh::thetabar].begin());
148 
149  refine_fac *= ref_ratio[lev][2];
150  }
151 }
AMREX_FORCE_INLINE void expand_and_interpolate_1d(amrex::Vector< amrex::Real > &znew, const amrex::Vector< amrex::Real > &zorig, int refine_fac, bool destag=false)
Definition: ERF_Interpolation_1D.H:85
amrex::Vector< amrex::Vector< amrex::Real > > theta_inp_sound
Definition: ERF_InputSoundingData.H:404
amrex::Vector< amrex::Vector< amrex::Real > > z_inp_sound
Definition: ERF_InputSoundingData.H:404
amrex::Vector< amrex::Vector< amrex::Real > > U_inp_sound
Definition: ERF_InputSoundingData.H:404
amrex::Vector< amrex::Vector< amrex::Real > > V_inp_sound
Definition: ERF_InputSoundingData.H:404
int size(int itime) const
Definition: ERF_InputSoundingData.H:379
Here is the call graph for this function:

◆ setRecordDataInfo()

void ERF::setRecordDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1520  {
1521  if (amrex::ParallelDescriptor::IOProcessor())
1522  {
1523  datalog[i] = std::make_unique<std::fstream>();
1524  datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1525  if (!datalog[i]->good()) {
1526  amrex::FileOpenFailed(filename);
1527  }
1528  }
1529  amrex::ParallelDescriptor::Barrier("ERF::setRecordDataInfo");
1530  }

◆ setRecordDerDataInfo()

void ERF::setRecordDerDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1533  {
1534  if (amrex::ParallelDescriptor::IOProcessor())
1535  {
1536  der_datalog[i] = std::make_unique<std::fstream>();
1537  der_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1538  if (!der_datalog[i]->good()) {
1539  amrex::FileOpenFailed(filename);
1540  }
1541  }
1542  amrex::ParallelDescriptor::Barrier("ERF::setRecordDerDataInfo");
1543  }

◆ setRecordEnergyDataInfo()

void ERF::setRecordEnergyDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1546  {
1547  if (amrex::ParallelDescriptor::IOProcessor())
1548  {
1549  tot_e_datalog[i] = std::make_unique<std::fstream>();
1550  tot_e_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1551  if (!tot_e_datalog[i]->good()) {
1552  amrex::FileOpenFailed(filename);
1553  }
1554  }
1555  amrex::ParallelDescriptor::Barrier("ERF::setRecordEnergyDataInfo");
1556  }

◆ setRecordSampleLineInfo()

void ERF::setRecordSampleLineInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1576  {
1577  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1578  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1579  {
1580  const amrex::Box& bx = mfi.validbox();
1581  if (bx.contains(cell)) {
1582  samplelinelog[i] = std::make_unique<std::fstream>();
1583  samplelinelog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1584  if (!samplelinelog[i]->good()) {
1585  amrex::FileOpenFailed(filename);
1586  }
1587  }
1588  }
1589  amrex::ParallelDescriptor::Barrier("ERF::setRecordSampleLineInfo");
1590  }

◆ setRecordSamplePointInfo()

void ERF::setRecordSamplePointInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1559  {
1560  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1561  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1562  {
1563  const amrex::Box& bx = mfi.validbox();
1564  if (bx.contains(cell)) {
1565  sampleptlog[i] = std::make_unique<std::fstream>();
1566  sampleptlog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1567  if (!sampleptlog[i]->good()) {
1568  amrex::FileOpenFailed(filename);
1569  }
1570  }
1571  }
1572  amrex::ParallelDescriptor::Barrier("ERF::setRecordSamplePointInfo");
1573  }

◆ setSpongeRefFromSounding()

void ERF::setSpongeRefFromSounding ( bool  restarting)
private

Set sponge mean profiles from input sounding.

Sets the sponge damping averaged quantities from an externally supplied input sponge data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
66 {
67  // If we are restarting then we haven't read the input_sponge file yet
68  // so we need to read it here
69  // TODO: should we store this information in the checkpoint file instead?
70  if (restarting) {
72  }
73 
74  const Real* z_inp_sponge = input_sponge_data.z_inp_sponge.dataPtr();
75  const Real* U_inp_sponge = input_sponge_data.U_inp_sponge.dataPtr();
76  const Real* V_inp_sponge = input_sponge_data.V_inp_sponge.dataPtr();
77  const int inp_sponge_size = input_sponge_data.size();
78 
79  for (int lev = 0; lev <= finest_level; lev++)
80  {
81  const int khi = geom[lev].Domain().bigEnd()[2];
82  Vector<Real> zcc(khi+1);
83 
84  if (z_phys_cc[lev]) {
85  // use_terrain=1
86  // calculate the damping strength based on the max height at each k
88  } else {
89  const auto *const prob_lo = geom[lev].ProbLo();
90  const auto *const dx = geom[lev].CellSize();
91  for (int k = 0; k <= khi; k++)
92  {
93  zcc[k] = prob_lo[2] + (k+0.5) * dx[2];
94  }
95  }
96 
97  for (int k = 0; k <= khi; k++)
98  {
99  h_sponge_ptrs[lev][Sponge::ubar_sponge][k] = interpolate_1d(z_inp_sponge, U_inp_sponge, zcc[k], inp_sponge_size);
100  h_sponge_ptrs[lev][Sponge::vbar_sponge][k] = interpolate_1d(z_inp_sponge, V_inp_sponge, zcc[k], inp_sponge_size);
101  }
102 
103  // Copy from host version to device version
104  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::ubar_sponge].begin(), h_sponge_ptrs[lev][Sponge::ubar_sponge].end(),
105  d_sponge_ptrs[lev][Sponge::ubar_sponge].begin());
106  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::vbar_sponge].begin(), h_sponge_ptrs[lev][Sponge::vbar_sponge].end(),
107  d_sponge_ptrs[lev][Sponge::vbar_sponge].begin());
108  }
109 }
AMREX_FORCE_INLINE void reduce_to_max_per_height(amrex::Vector< amrex::Real > &v, std::unique_ptr< amrex::MultiFab > &mf)
Definition: ERF_ParFunctions.H:8
amrex::Vector< amrex::Real > V_inp_sponge
Definition: ERF_InputSpongeData.H:111
amrex::Vector< amrex::Real > z_inp_sponge
Definition: ERF_InputSpongeData.H:111
amrex::Vector< amrex::Real > U_inp_sponge
Definition: ERF_InputSpongeData.H:111
int size() const
Definition: ERF_InputSpongeData.H:99
Here is the call graph for this function:

◆ setSubVolVariables()

void ERF::setSubVolVariables ( const std::string &  pp_subvol_var_names,
amrex::Vector< std::string > &  subvol_var_names 
)
private
11 {
12  ParmParse pp(pp_prefix);
13 
14  std::string nm;
15 
16  int nSubVolVars = pp.countval(pp_subvol_var_names.c_str());
17 
18  // We pre-populate the list with velocities, but allow these to be over-written
19  // by user input
20  if (nSubVolVars == 0)
21  {
22  subvol_var_names.push_back("x_velocity");
23  subvol_var_names.push_back("y_velocity");
24  subvol_var_names.push_back("z_velocity");
25 
26  } else {
27  for (int i = 0; i < nSubVolVars; i++)
28  {
29  pp.get(pp_subvol_var_names.c_str(), nm, i);
30 
31  // Add the named variable to our list of subvol variables
32  // if it is not already in the list
33  if (!containerHasElement(subvol_var_names, nm)) {
34  subvol_var_names.push_back(nm);
35  }
36  }
37  }
38 
39  // Get state variables in the same order as we define them,
40  // since they may be in any order in the input list
41  Vector<std::string> tmp_plot_names;
42 
43  for (int i = 0; i < cons_names.size(); ++i) {
44  if ( containerHasElement(subvol_var_names, cons_names[i]) ) {
45  if (solverChoice.moisture_type == MoistureType::None) {
46  if (cons_names[i] != "rhoQ1" && cons_names[i] != "rhoQ2" && cons_names[i] != "rhoQ3" &&
47  cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
48  {
49  tmp_plot_names.push_back(cons_names[i]);
50  }
51  } else if (solverChoice.moisture_type == MoistureType::Kessler) { // allow rhoQ1, rhoQ2, rhoQ3
52  if (cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
53  {
54  tmp_plot_names.push_back(cons_names[i]);
55  }
56  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
57  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
58  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow rhoQ1, rhoQ2
59  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ4" &&
60  cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
61  {
62  tmp_plot_names.push_back(cons_names[i]);
63  }
64  } else if ( (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
65  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow rhoQ1, rhoQ2, rhoQ4
66  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
67  {
68  tmp_plot_names.push_back(cons_names[i]);
69  }
70  } else
71  {
72  // For moisture_type SAM and Morrison we have all six variables
73  tmp_plot_names.push_back(cons_names[i]);
74  }
75  }
76  }
77 
78  // Check for velocity since it's not in cons_names
79  if (containerHasElement(subvol_var_names, "x_velocity")) {
80  tmp_plot_names.push_back("x_velocity");
81  }
82  if (containerHasElement(subvol_var_names, "y_velocity")) {
83  tmp_plot_names.push_back("y_velocity");
84  }
85  if (containerHasElement(subvol_var_names, "z_velocity")) {
86  tmp_plot_names.push_back("z_velocity");
87  }
88 
89  //
90  // If the model we are running doesn't have the variable listed in the inputs file,
91  // just ignore it rather than aborting
92  //
93  for (int i = 0; i < derived_subvol_names.size(); ++i) {
94  if ( containerHasElement(subvol_var_names, derived_names[i]) ) {
95  bool ok_to_add = ( (solverChoice.terrain_type == TerrainType::ImmersedForcing) ||
96  (derived_names[i] != "terrain_IB_mask") );
97  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
98  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
99  (derived_names[i] != "detJ") );
100  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
101  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
102  (derived_names[i] != "z_phys") );
103  if (ok_to_add)
104  {
105  if (solverChoice.moisture_type == MoistureType::None) { // no moist quantities allowed
106  if (derived_names[i] != "qv" && derived_names[i] != "qc" && derived_names[i] != "qrain" &&
107  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
108  derived_names[i] != "qt" && derived_names[i] != "qn" && derived_names[i] != "qp" &&
109  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
110  {
111  tmp_plot_names.push_back(derived_names[i]);
112  }
113  } else if ( (solverChoice.moisture_type == MoistureType::Kessler ) ||
114  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
115  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow qv, qc, qrain
116  if (derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
117  derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
118  {
119  tmp_plot_names.push_back(derived_names[i]);
120  }
121  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
122  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
123  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow qv, qc
124  if (derived_names[i] != "qrain" &&
125  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
126  derived_names[i] != "qp" &&
127  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
128  {
129  tmp_plot_names.push_back(derived_names[i]);
130  }
131  } else
132  {
133  // For moisture_type SAM and Morrison we have all moist quantities
134  tmp_plot_names.push_back(derived_names[i]);
135  }
136  } // use_terrain?
137  } // hasElement
138  }
139 
140  subvol_var_names = tmp_plot_names;
141 }
const amrex::Vector< std::string > derived_subvol_names
Definition: ERF.H:1165
Here is the call graph for this function:

◆ solve_with_EB_mlmg()

void ERF::solve_with_EB_mlmg ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using EB_enabled MLMG Note that the level may or may not be level 0.

20 {
21  BL_PROFILE("ERF::solve_with_EB_mlmg()");
22 
23  auto const dom_lo = lbound(geom[lev].Domain());
24  auto const dom_hi = ubound(geom[lev].Domain());
25 
26  LPInfo info;
27  // Allow a hidden direction if the domain is one cell wide in any lateral direction
28  if (dom_lo.x == dom_hi.x) {
29  info.setHiddenDirection(0);
30  } else if (dom_lo.y == dom_hi.y) {
31  info.setHiddenDirection(1);
32  }
33 
34  // Make sure the solver only sees the levels over which we are solving
35  Vector<BoxArray> ba_tmp; ba_tmp.push_back(rhs[0].boxArray());
36  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(rhs[0].DistributionMap());
37  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
38 
39  auto bclo = get_projection_bc(Orientation::low);
40  auto bchi = get_projection_bc(Orientation::high);
41 
42  // amrex::Print() << "BCLO " << bclo[0] << " " << bclo[1] << " " << bclo[2] << std::endl;
43  // amrex::Print() << "BCHI " << bchi[0] << " " << bchi[1] << " " << bchi[2] << std::endl;
44 
47 
48  // ****************************************************************************
49  // Multigrid solve
50  // ****************************************************************************
51 
52  MLEBABecLap mleb (geom_tmp, ba_tmp, dm_tmp, info, {&EBFactory(lev)});
53 
54  mleb.setMaxOrder(2);
55  mleb.setDomainBC(bclo, bchi);
56  mleb.setLevelBC(0, nullptr);
57 
58  //
59  // This sets A = 0, B = 1 so that
60  // the operator A alpha - b del dot beta grad to b
61  // becomes - del dot beta grad
62  //
63  mleb.setScalars(0.0, 1.0);
64 
65  Array<MultiFab,AMREX_SPACEDIM> bcoef;
66  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
67  bcoef[idim].define(convert(ba_tmp[0],IntVect::TheDimensionVector(idim)),
68  dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
69  bcoef[idim].setVal(-1.0);
70  }
71  mleb.setBCoeffs(0, amrex::GetArrOfConstPtrs(bcoef));
72 
73  MLMG mlmg(mleb);
74 
75  int max_iter = 100;
76  mlmg.setMaxIter(max_iter);
77  mlmg.setVerbose(mg_verbose);
78  mlmg.setBottomVerbose(0);
79 
80  mlmg.solve(GetVecOfPtrs(phi), GetVecOfConstPtrs(rhs), reltol, abstol);
81 
82  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
83 
84  ImposeBCsOnPhi(lev,phi[0], geom[lev].Domain());
85 
86  //
87  // This arises because we solve MINUS del dot beta grad phi = div (rho u)
88  //
89  fluxes[0][0].mult(-1.);
90  fluxes[0][1].mult(-1.);
91  fluxes[0][2].mult(-1.);
92 }
void ImposeBCsOnPhi(int lev, amrex::MultiFab &phi, const amrex::Box &subdomain)
Definition: ERF_ImposeBCsOnPhi.cpp:12

◆ solve_with_gmres()

void ERF::solve_with_gmres ( int  lev,
const amrex::Box &  subdomain,
amrex::MultiFab &  rhs,
amrex::MultiFab &  p,
amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &  fluxes,
amrex::MultiFab &  ax_sub,
amrex::MultiFab &  ay_sub,
amrex::MultiFab &  az_sub,
amrex::MultiFab &  ,
amrex::MultiFab &  znd_sub 
)

Solve the Poisson equation using FFT-preconditioned GMRES

16 {
17 #ifdef ERF_USE_FFT
18  BL_PROFILE("ERF::solve_with_gmres()");
19 
22 
23  auto const dom_lo = lbound(Geom(lev).Domain());
24  auto const dom_hi = ubound(Geom(lev).Domain());
25 
26  auto const sub_lo = lbound(subdomain);
27  auto const sub_hi = ubound(subdomain);
28 
29  auto dx = Geom(lev).CellSizeArray();
30 
31  Geometry my_geom;
32 
33  Array<int,AMREX_SPACEDIM> is_per; is_per[0] = 0; is_per[1] = 0; is_per[2] = 0;
34  if (Geom(lev).isPeriodic(0) && sub_lo.x == dom_lo.x && sub_hi.x == dom_hi.x) { is_per[0] = 1;}
35  if (Geom(lev).isPeriodic(1) && sub_lo.y == dom_lo.y && sub_hi.y == dom_hi.y) { is_per[1] = 1;}
36 
37  int coord_sys = 0;
38 
39  // If subdomain == domain then we pass Geom(lev) to the FFT solver
40  if (subdomain == Geom(lev).Domain()) {
41  my_geom.define(Geom(lev).Domain(), Geom(lev).ProbDomain(), coord_sys, is_per);
42  } else {
43  // else we create a new geometry based only on the subdomain
44  // The information in my_geom used by the FFT routines is:
45  // 1) my_geom.Domain()
46  // 2) my_geom.CellSize()
47  // 3) my_geom.isAllPeriodic() / my_geom.periodicity()
48  RealBox rb( sub_lo.x *dx[0], sub_lo.y *dx[1], sub_lo.z *dx[2],
49  (sub_hi.x+1)*dx[0], (sub_hi.y+1)*dx[1], (sub_hi.z+1)*dx[2]);
50  my_geom.define(subdomain, rb, coord_sys, is_per);
51  }
52 
53  amrex::GMRES<MultiFab, TerrainPoisson> gmsolver;
54 
55  TerrainPoisson tp(my_geom, rhs.boxArray(), rhs.DistributionMap(), domain_bc_type,
56  stretched_dz_d[lev], ax_sub, ay_sub, az_sub, dJ_sub, &znd_sub,
58 
59  gmsolver.define(tp);
60 
61  gmsolver.setVerbose(mg_verbose);
62 
63  gmsolver.setRestartLength(50);
64 
65  tp.usePrecond(true);
66 
67  gmsolver.solve(phi, rhs, reltol, abstol);
68 
69  tp.getFluxes(phi, fluxes);
70 
71  for (MFIter mfi(phi); mfi.isValid(); ++mfi)
72  {
73  Box xbx = mfi.nodaltilebox(0);
74  Box ybx = mfi.nodaltilebox(1);
75  const Array4<Real >& fx_ar = fluxes[0].array(mfi);
76  const Array4<Real >& fy_ar = fluxes[1].array(mfi);
77  const Array4<Real const>& mf_ux = mapfac[lev][MapFacType::u_x]->const_array(mfi);
78  const Array4<Real const>& mf_vy = mapfac[lev][MapFacType::v_y]->const_array(mfi);
79  ParallelFor(xbx,ybx,
80  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
81  {
82  fx_ar(i,j,k) *= mf_ux(i,j,0);
83  },
84  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
85  {
86  fy_ar(i,j,k) *= mf_vy(i,j,0);
87  });
88  } // mfi
89 #else
90  amrex::ignore_unused(lev, rhs, phi, fluxes, ax_sub, ay_sub, az_sub, dJ_sub, znd_sub);
91 #endif
92 
93  // ****************************************************************************
94  // Impose bc's on pprime
95  // ****************************************************************************
96  ImposeBCsOnPhi(lev, phi, subdomain);
97 }

◆ solve_with_mlmg()

void ERF::solve_with_mlmg ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using MLMG Note that the level may or may not be level 0.

41 {
42  BL_PROFILE("ERF::solve_with_mlmg()");
43 
44  auto const dom_lo = lbound(geom[lev].Domain());
45  auto const dom_hi = ubound(geom[lev].Domain());
46 
47  LPInfo info;
48  // Allow a hidden direction if the domain is one cell wide in any lateral direction
49  if (dom_lo.x == dom_hi.x) {
50  info.setHiddenDirection(0);
51  } else if (dom_lo.y == dom_hi.y) {
52  info.setHiddenDirection(1);
53  }
54 
55  // Make sure the solver only sees the levels over which we are solving
56  Vector<BoxArray> ba_tmp; ba_tmp.push_back(rhs[0].boxArray());
57  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(rhs[0].DistributionMap());
58  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
59 
60  auto bclo = get_projection_bc(Orientation::low);
61  auto bchi = get_projection_bc(Orientation::high);
62 
63  // amrex::Print() << "BCLO " << bclo[0] << " " << bclo[1] << " " << bclo[2] << std::endl;
64  // amrex::Print() << "BCHI " << bchi[0] << " " << bchi[1] << " " << bchi[2] << std::endl;
65 
68 
69  // ****************************************************************************
70  // Multigrid solve
71  // ****************************************************************************
72 
73  MLPoisson mlpoisson(geom_tmp, ba_tmp, dm_tmp, info);
74  mlpoisson.setDomainBC(bclo, bchi);
75  if (lev > 0) {
76  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
77  }
78  mlpoisson.setLevelBC(0, nullptr);
79 
80  // Use low order for outflow at physical boundaries
81  mlpoisson.setMaxOrder(2);
82 
83  MLMG mlmg(mlpoisson);
84  int max_iter = 100;
85  mlmg.setMaxIter(max_iter);
86 
87  mlmg.setVerbose(mg_verbose);
88  mlmg.setBottomVerbose(0);
89 
90  mlmg.solve(GetVecOfPtrs(phi),
91  GetVecOfConstPtrs(rhs),
92  reltol, abstol);
93  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
94 
95  // ****************************************************************************
96  // Impose bc's on pprime
97  // ****************************************************************************
98  ImposeBCsOnPhi(lev, phi[0], geom[lev].Domain());
99 }

◆ sum_derived_quantities()

void ERF::sum_derived_quantities ( amrex::Real  time)
178 {
179  if (verbose <= 0 || NumDerDataLogs() <= 0) return;
180 
181  int lev = 0;
182 
183  AMREX_ALWAYS_ASSERT(lev == 0);
184 
185  auto& mfx0 = *mapfac[0][MapFacType::m_x];
186  auto& mfy0 = *mapfac[0][MapFacType::m_x];
187  auto& dJ0 = *detJ_cc[0];
188 
189  // ************************************************************************
190  // WARNING: we are not filling ghost cells other than periodic outside the domain
191  // ************************************************************************
192 
193  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
194  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
195 
196  // Average all three components of velocity (on faces) to the cell center
197  average_face_to_cellcenter(mf_cc_vel,0,
198  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
199  &vars_new[lev][Vars::yvel],
200  &vars_new[lev][Vars::zvel]});
201  mf_cc_vel.FillBoundary(geom[lev].periodicity());
202 
203  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
204  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
205  }
206 
207  MultiFab r_wted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
208  MultiFab unwted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
209  MultiFab enstrophysq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
210  MultiFab theta_mf(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
211 
212 #ifdef _OPENMP
213 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
214 #endif
215  for (MFIter mfi(unwted_magvelsq, TilingIfNotGPU()); mfi.isValid(); ++mfi)
216  {
217  const Box& bx = mfi.tilebox();
218  auto& src_fab = mf_cc_vel[mfi];
219 
220  auto& dest1_fab = unwted_magvelsq[mfi];
221  derived::erf_dermagvelsq(bx, dest1_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
222 
223  auto& dest2_fab = enstrophysq[mfi];
224  derived::erf_derenstrophysq(bx, dest2_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
225  }
226 
227  // Copy the MF holding 1/2(u^2 + v^2 + w^2) into the MF that will hold 1/2 rho (u^2 + v^2 + w^2)d
228  MultiFab::Copy(r_wted_magvelsq, unwted_magvelsq, 0, 0, 1, 0);
229 
230  // Multiply the MF holding 1/2(u^2 + v^2 + w^2) by rho to get 1/2 rho (u^2 + v^2 + w^2)
231  MultiFab::Multiply(r_wted_magvelsq, vars_new[lev][Vars::cons], 0, 0, 1, 0);
232 
233  // Copy the MF holding (rho theta) into "theta_mf"
234  MultiFab::Copy(theta_mf, vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, 0);
235 
236  // Divide (rho theta) by rho to get theta in the MF "theta_mf"
237  MultiFab::Divide(theta_mf, vars_new[lev][Vars::cons], Rho_comp, 0, 1, 0);
238 
239  Real unwted_avg = volWgtSumMF(lev, unwted_magvelsq, 0, dJ0, mfx0, mfy0, false);
240  Real r_wted_avg = volWgtSumMF(lev, r_wted_magvelsq, 0, dJ0, mfx0, mfy0, false);
241  Real enstrsq_avg = volWgtSumMF(lev, enstrophysq, 0, dJ0, mfx0, mfy0, false);
242  Real theta_avg = volWgtSumMF(lev, theta_mf, 0, dJ0, mfx0, mfy0, false);
243 
244  // Get volume including terrain (consistent with volWgtSumMF routine)
245  MultiFab volume(grids[lev], dmap[lev], 1, 0);
246  auto const& dx = geom[lev].CellSizeArray();
247  Real cell_vol = dx[0]*dx[1]*dx[2];
248  volume.setVal(cell_vol);
249  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
250  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
251  }
252 #ifdef _OPENMP
253 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
254 #endif
255  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
256  {
257  const Box& tbx = mfi.tilebox();
258  auto dst = volume.array(mfi);
259  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
260  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
261  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
262  {
263  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
264  });
265  }
266  Real vol = volume.sum();
267 
268  unwted_avg /= vol;
269  r_wted_avg /= vol;
270  enstrsq_avg /= vol;
271  theta_avg /= vol;
272 
273  const int nfoo = 4;
274  Real foo[nfoo] = {unwted_avg,r_wted_avg,enstrsq_avg,theta_avg};
275 #ifdef AMREX_LAZY
276  Lazy::QueueReduction([=]() mutable {
277 #endif
278  ParallelDescriptor::ReduceRealSum(
279  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
280 
281  if (ParallelDescriptor::IOProcessor()) {
282  int i = 0;
283  unwted_avg = foo[i++];
284  r_wted_avg = foo[i++];
285  enstrsq_avg = foo[i++];
286  theta_avg = foo[i++];
287 
288  std::ostream& data_log_der = DerDataLog(0);
289 
290  if (time == 0.0) {
291  data_log_der << std::setw(datwidth) << " time";
292  data_log_der << std::setw(datwidth) << " ke_den";
293  data_log_der << std::setw(datwidth) << " velsq";
294  data_log_der << std::setw(datwidth) << " enstrophy";
295  data_log_der << std::setw(datwidth) << " int_energy";
296  data_log_der << std::endl;
297  }
298  data_log_der << std::setw(datwidth) << std::setprecision(timeprecision) << time;
299  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << unwted_avg;
300  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << r_wted_avg;
301  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << enstrsq_avg;
302  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << theta_avg;
303  data_log_der << std::endl;
304 
305  } // if IOProcessor
306 #ifdef AMREX_LAZY
307  }
308 #endif
309 }
AMREX_FORCE_INLINE std::ostream & DerDataLog(int i)
Definition: ERF.H:1427
AMREX_FORCE_INLINE int NumDerDataLogs() noexcept
Definition: ERF.H:1441
void erf_dermagvelsq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:346
void erf_derenstrophysq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:284
Here is the call graph for this function:

◆ sum_energy_quantities()

void ERF::sum_energy_quantities ( amrex::Real  time)
313 {
314  if ( (verbose <= 0) || (tot_e_datalog.size() < 1) ) { return; }
315 
316  int lev = 0;
317 
318  auto& mfx0 = *mapfac[0][MapFacType::m_x];
319  auto& mfy0 = *mapfac[0][MapFacType::m_x];
320  auto& dJ0 = *detJ_cc[0];
321 
322  AMREX_ALWAYS_ASSERT(lev == 0);
323 
324  bool local = true;
325 
326  // ************************************************************************
327  // WARNING: we are not filling ghost cells other than periodic outside the domain
328  // ************************************************************************
329 
330  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
331  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
332 
333  // Average all three components of velocity (on faces) to the cell center
334  average_face_to_cellcenter(mf_cc_vel,0,
335  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
336  &vars_new[lev][Vars::yvel],
337  &vars_new[lev][Vars::zvel]});
338  mf_cc_vel.FillBoundary(geom[lev].periodicity());
339 
340  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
341  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
342  }
343 
344  MultiFab tot_mass (grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
345  MultiFab tot_energy(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
346 
347  auto const& dx = geom[lev].CellSizeArray();
348  bool is_moist = (solverChoice.moisture_type != MoistureType::None);
349 
350 #ifdef _OPENMP
351 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
352 #endif
353  for (MFIter mfi(tot_mass, TilingIfNotGPU()); mfi.isValid(); ++mfi)
354  {
355  const Box& bx = mfi.tilebox();
356 
357  const Array4<Real>& cc_vel_arr = mf_cc_vel.array(mfi);
358  const Array4<Real>& tot_mass_arr = tot_mass.array(mfi);
359  const Array4<Real>& tot_energy_arr = tot_energy.array(mfi);
360  const Array4<const Real>& cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
361  const Array4<const Real>& z_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) :
362  Array4<const Real>{};
363  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
364  {
365  Real Qv = (is_moist) ? cons_arr(i,j,k,RhoQ1_comp) : 0.0;
366  Real Qc = (is_moist) ? cons_arr(i,j,k,RhoQ2_comp) : 0.0;
367  Real Qt = Qv + Qc;
368  Real Rhod = cons_arr(i,j,k,Rho_comp);
369  Real Rhot = Rhod * (1.0 + Qt);
370  Real Temp = getTgivenRandRTh(Rhod, cons_arr(i,j,k,RhoTheta_comp), Qv);
371  Real TKE = 0.5 * ( cc_vel_arr(i,j,k,0)*cc_vel_arr(i,j,k,0)
372  + cc_vel_arr(i,j,k,1)*cc_vel_arr(i,j,k,1)
373  + cc_vel_arr(i,j,k,2)*cc_vel_arr(i,j,k,2) );
374  Real zval = (z_arr) ? z_arr(i,j,k) : Real(k)*dx[2];
375 
376  Real Cv = Cp_d - R_d;
377  Real Cvv = Cp_v - R_v;
378  Real Cpv = Cp_v;
379 
380  tot_mass_arr(i,j,k) = Rhot;
381  tot_energy_arr(i,j,k) = Rhod * ( (Cv + Cvv*Qv + Cpv*Qc)*Temp - L_v*Qc
382  + (1.0 + Qt)*TKE + (1.0 + Qt)*CONST_GRAV*zval );
383 
384  });
385 
386  }
387 
388  Real tot_mass_avg = volWgtSumMF(lev, tot_mass , 0, dJ0, mfx0, mfy0, false, local);
389  Real tot_energy_avg = volWgtSumMF(lev, tot_energy, 0, dJ0, mfx0, mfy0, false, local);
390 
391  // Get volume including terrain (consistent with volWgtSumMF routine)
392  MultiFab volume(grids[lev], dmap[lev], 1, 0);
393  Real cell_vol = dx[0]*dx[1]*dx[2];
394  volume.setVal(cell_vol);
395  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
396  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
397  }
398 #ifdef _OPENMP
399 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
400 #endif
401  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
402  {
403  const Box& tbx = mfi.tilebox();
404  auto dst = volume.array(mfi);
405  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
406  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
407  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
408  {
409  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
410  });
411  }
412  Real vol = volume.sum();
413 
414  // Divide by the volume
415  tot_mass_avg /= vol;
416  tot_energy_avg /= vol;
417 
418  const int nfoo = 2;
419  Real foo[nfoo] = {tot_mass_avg,tot_energy_avg};
420 #ifdef AMREX_LAZY
421  Lazy::QueueReduction([=]() mutable {
422 #endif
423  ParallelDescriptor::ReduceRealSum(
424  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
425 
426  if (ParallelDescriptor::IOProcessor()) {
427  int i = 0;
428  tot_mass_avg = foo[i++];
429  tot_energy_avg = foo[i++];
430 
431  std::ostream& data_log_energy = *tot_e_datalog[0];
432 
433  if (time == 0.0) {
434  data_log_energy << std::setw(datwidth) << " time";
435  data_log_energy << std::setw(datwidth) << " tot_mass";
436  data_log_energy << std::setw(datwidth) << " tot_energy";
437  data_log_energy << std::endl;
438  }
439  data_log_energy << std::setw(datwidth) << std::setprecision(timeprecision) << time;
440  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_mass_avg;
441  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_energy_avg;
442  data_log_energy << std::endl;
443 
444  } // if IOProcessor
445 #ifdef AMREX_LAZY
446  }
447 #endif
448 }
constexpr amrex::Real R_v
Definition: ERF_Constants.H:11
constexpr amrex::Real Cp_d
Definition: ERF_Constants.H:12
constexpr amrex::Real CONST_GRAV
Definition: ERF_Constants.H:21
constexpr amrex::Real Cp_v
Definition: ERF_Constants.H:13
constexpr amrex::Real R_d
Definition: ERF_Constants.H:10
constexpr amrex::Real L_v
Definition: ERF_Constants.H:16
Here is the call graph for this function:

◆ sum_integrated_quantities()

void ERF::sum_integrated_quantities ( amrex::Real  time)

Computes the integrated quantities on the grid such as the total scalar and total mass quantities. Prints and writes to output file.

Parameters
timeCurrent time
16 {
17  BL_PROFILE("ERF::sum_integrated_quantities()");
18 
19  if (verbose <= 0)
20  return;
21 
22  // Single level sum
23  Real mass_sl;
24 
25  // Multilevel sums
26  Real mass_ml = 0.0;
27  Real rhth_ml = 0.0;
28  Real scal_ml = 0.0;
29  Real mois_ml = 0.0;
30 
31  bool local = true;
32 
33  auto& mfx0 = *mapfac[0][MapFacType::m_x];
34  auto& mfy0 = *mapfac[0][MapFacType::m_x];
35  auto& dJ0 = *detJ_cc[0];
36 
37  mass_sl = volWgtSumMF(0,vars_new[0][Vars::cons],Rho_comp,dJ0,mfx0,mfy0,false,local);
38 
39  for (int lev = 0; lev <= finest_level; lev++) {
40  auto& mfx = *mapfac[lev][MapFacType::m_x];
41  auto& mfy = *mapfac[lev][MapFacType::m_x];
42  auto& dJ = *detJ_cc[lev];
43  mass_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],Rho_comp,dJ,mfx,mfy,true);
44  }
45 
46  Real rhth_sl = volWgtSumMF(0,vars_new[0][Vars::cons], RhoTheta_comp,dJ0,mfx0,mfy0,false);
47  Real scal_sl = volWgtSumMF(0,vars_new[0][Vars::cons],RhoScalar_comp,dJ0,mfx0,mfy0,false);
48  Real mois_sl = 0.0;
49  if (solverChoice.moisture_type != MoistureType::None) {
50  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
51  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
52  mois_sl += volWgtSumMF(0,vars_new[0][Vars::cons],RhoQ1_comp+qoff,dJ0,mfx0,mfy0,false);
53  }
54  }
55 
56  for (int lev = 0; lev <= finest_level; lev++) {
57  auto& mfx = *mapfac[lev][MapFacType::m_x];
58  auto& mfy = *mapfac[lev][MapFacType::m_x];
59  auto& dJ = *detJ_cc[lev];
60  rhth_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons], RhoTheta_comp,dJ,mfx,mfy,true);
61  scal_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoScalar_comp,dJ,mfx,mfy,true);
62  if (solverChoice.moisture_type != MoistureType::None) {
63  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
64  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
65  mois_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoQ1_comp+qoff,dJ,mfx,mfy,false);
66  }
67  }
68  }
69 
70  Gpu::HostVector<Real> h_avg_ustar; h_avg_ustar.resize(1);
71  Gpu::HostVector<Real> h_avg_tstar; h_avg_tstar.resize(1);
72  Gpu::HostVector<Real> h_avg_olen; h_avg_olen.resize(1);
73  if ((m_SurfaceLayer != nullptr) && (NumDataLogs() > 0)) {
74  Box domain = geom[0].Domain();
75  int zdir = 2;
76  h_avg_ustar = sumToLine(*m_SurfaceLayer->get_u_star(0),0,1,domain,zdir);
77  h_avg_tstar = sumToLine(*m_SurfaceLayer->get_t_star(0),0,1,domain,zdir);
78  h_avg_olen = sumToLine(*m_SurfaceLayer->get_olen(0) ,0,1,domain,zdir);
79 
80  // Divide by the total number of cells we are averaging over
81  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
82  h_avg_ustar[0] /= area_z;
83  h_avg_tstar[0] /= area_z;
84  h_avg_olen[0] /= area_z;
85 
86  } else {
87  h_avg_ustar[0] = 0.;
88  h_avg_tstar[0] = 0.;
89  h_avg_olen[0] = 0.;
90  }
91 
92  const int nfoo = 8;
93  Real foo[nfoo] = {mass_sl,rhth_sl,scal_sl,mois_sl,mass_ml,rhth_ml,scal_ml,mois_ml};
94 #ifdef AMREX_LAZY
95  Lazy::QueueReduction([=]() mutable {
96 #endif
97  ParallelDescriptor::ReduceRealSum(
98  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
99 
100  if (ParallelDescriptor::IOProcessor()) {
101  int i = 0;
102  mass_sl = foo[i++];
103  rhth_sl = foo[i++];
104  scal_sl = foo[i++];
105  mois_sl = foo[i++];
106  mass_ml = foo[i++];
107  rhth_ml = foo[i++];
108  scal_ml = foo[i++];
109  mois_ml = foo[i++];
110 
111  Print() << '\n';
112  Print() << "TIME= " << std::setw(datwidth) << std::setprecision(timeprecision) << std::left << time << '\n';
113  if (finest_level == 0) {
114 #if 1
115  Print() << " MASS = " << mass_sl << '\n';
116 #else
117  Print() << " PERT MASS = " << mass_sl << '\n';
118 #endif
119  Print() << " RHO THETA = " << rhth_sl << '\n';
120  Print() << " RHO SCALAR = " << scal_sl << '\n';
121  Print() << " RHO QTOTAL = " << mois_sl << '\n';
122  } else {
123 #if 1
124  Print() << " MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
125 #else
126  Print() << " PERT MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
127 #endif
128  Print() << " RHO THETA SL/ML = " << rhth_sl << " " << rhth_ml << '\n';
129  Print() << " RHO SCALAR SL/ML = " << scal_sl << " " << scal_ml << '\n';
130  Print() << " RHO QTOTAL SL/ML = " << mois_sl << " " << mois_ml << '\n';
131  }
132 
133  // The first data log only holds scalars
134  if (NumDataLogs() > 0)
135  {
136  int n_d = 0;
137  std::ostream& data_log1 = DataLog(n_d);
138  if (data_log1.good()) {
139  if (time == 0.0) {
140  data_log1 << std::setw(datwidth) << " time";
141  data_log1 << std::setw(datwidth) << " u_star";
142  data_log1 << std::setw(datwidth) << " t_star";
143  data_log1 << std::setw(datwidth) << " olen";
144  data_log1 << std::endl;
145  } // time = 0
146 
147  // Write the quantities at this time
148  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time;
149  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_ustar[0];
150  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_tstar[0];
151  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_olen[0];
152  data_log1 << std::endl;
153  } // if good
154  } // loop over i
155  } // if IOProcessor
156 #ifdef AMREX_LAZY
157  });
158 #endif
159 
160  // This is just an alias for convenience
161  int lev = 0;
162  if (NumSamplePointLogs() > 0 && NumSamplePoints() > 0) {
163  for (int i = 0; i < NumSamplePoints(); ++i)
164  {
165  sample_points(lev, time, SamplePoint(i), vars_new[lev][Vars::cons]);
166  }
167  }
168  if (NumSampleLineLogs() > 0 && NumSampleLines() > 0) {
169  for (int i = 0; i < NumSampleLines(); ++i)
170  {
171  sample_lines(lev, time, SampleLine(i), vars_new[lev][Vars::cons]);
172  }
173  }
174 }
AMREX_FORCE_INLINE int NumSampleLineLogs() noexcept
Definition: ERF.H:1470
AMREX_FORCE_INLINE int NumSamplePointLogs() noexcept
Definition: ERF.H:1456
amrex::IntVect & SampleLine(int i)
Definition: ERF.H:1489
AMREX_FORCE_INLINE int NumSamplePoints() noexcept
Definition: ERF.H:1483
AMREX_FORCE_INLINE int NumSampleLines() noexcept
Definition: ERF.H:1496
amrex::IntVect & SamplePoint(int i)
Definition: ERF.H:1476
void sample_points(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:527
AMREX_FORCE_INLINE std::ostream & DataLog(int i)
Definition: ERF.H:1420
AMREX_FORCE_INLINE int NumDataLogs() noexcept
Definition: ERF.H:1434
void sample_lines(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:563

◆ timeStep()

void ERF::timeStep ( int  lev,
amrex::Real  time,
int  iteration 
)
private

Function that coordinates the evolution across levels – this calls Advance to do the actual advance at this level, then recursively calls itself at finer levels

Parameters
[in]levlevel of refinement (coarsest level is 0)
[in]timestart time for time advance
[in]iterationtime step counter
18 {
19  //
20  // We need to FillPatch the coarse level before assessing whether to regrid
21  // We have not done the swap yet so we fill the "new" which will become the "old"
22  //
23  MultiFab& S_new = vars_new[lev][Vars::cons];
24  MultiFab& U_new = vars_new[lev][Vars::xvel];
25  MultiFab& V_new = vars_new[lev][Vars::yvel];
26  MultiFab& W_new = vars_new[lev][Vars::zvel];
27 
28 #ifdef ERF_USE_NETCDF
29  //
30  // Since we now only read in a subset of the time slices in wrfbdy and
31  // wrflowinp, we need to check whether it's time to read in more.
32  //
33  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
34  if (solverChoice.use_real_bcs && (lev==0)) {
35  Real dT = bdy_time_interval;
36 
37  int n_time_old = static_cast<int>( (time ) / dT);
38  int n_time_new = static_cast<int>( (time+dt[lev]) / dT);
39 
40  int ntimes = bdy_data_xlo.size();
41  for (int itime = 0; itime < ntimes; itime++)
42  {
43  //if (bdy_data_xlo[itime].size() > 0) {
44  // amrex::Print() << "HAVE DATA AT TIME " << itime << std::endl;
45  //} else {
46  // amrex::Print() << " NO DATA AT TIME " << itime << std::endl;
47  //}
48 
49  bool clear_itime = (itime < n_time_old);
50 
51  if (clear_itime && bdy_data_xlo[itime].size() > 0) {
52  bdy_data_xlo[itime].clear();
53  bdy_data_xhi[itime].clear();
54  bdy_data_ylo[itime].clear();
55  bdy_data_yhi[itime].clear();
56  //amrex::Print() << "CLEAR BDY DATA AT TIME " << itime << std::endl;
57  }
58 
59  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
60  //if (need_itime) amrex::Print() << "NEED BDY DATA AT TIME " << itime << std::endl;
61 
62  if (bdy_data_xlo[itime].size() == 0 && need_itime) {
63  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
64  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
65  real_width);
66 
67  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
68  *mf_MUB, *mf_C1H, *mf_C2H,
70  geom[lev], use_moist);
71  }
72  } // itime
73  } // use_real_bcs && lev == 0
74 
75  if (!nc_low_file.empty() && (lev==0)) {
76  Real dT = low_time_interval;
77 
78  int n_time_old = static_cast<int>( (time ) / dT);
79  int n_time_new = static_cast<int>( (time+dt[lev]) / dT);
80 
81  int ntimes = bdy_data_xlo.size();
82  for (int itime = 0; itime < ntimes; itime++)
83  {
84  bool clear_itime = (itime < n_time_old);
85 
86  if (clear_itime && low_data_zlo[itime].size() > 0) {
87  low_data_zlo[itime].clear();
88  //amrex::Print() << "CLEAR LOW DATA AT TIME " << itime << std::endl;
89  }
90 
91  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
92  //if (need_itime) amrex::Print() << "NEED LOW DATA AT TIME " << itime << std::endl;
93 
94  if (low_data_zlo[itime].size() == 0 && need_itime) {
95  read_from_wrflow(itime, nc_low_file, geom[lev].Domain(), low_data_zlo);
96 
97  update_sst_tsk(itime, geom[lev], ba2d[lev],
98  sst_lev[lev], tsk_lev[lev],
99  m_SurfaceLayer, low_data_zlo,
100  S_new, *mf_PSFC[lev],
101  solverChoice.rdOcp, lmask_lev[lev][0], use_moist);
102  }
103  } // itime
104  } // have nc_low_file && lev == 0
105 #endif
106 
107  //
108  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
109  //
110  if (lev == 0) {
111  FillPatchCrseLevel(lev, time, {&S_new, &U_new, &V_new, &W_new});
112  } else if (lev < finest_level) {
113  FillPatchFineLevel(lev, time, {&S_new, &U_new, &V_new, &W_new},
114  {&S_new, &rU_new[lev], &rV_new[lev], &rW_new[lev]},
115  base_state[lev], base_state[lev]);
116  }
117 
118  if (regrid_int > 0) // We may need to regrid
119  {
120  // help keep track of whether a level was already regridded
121  // from a coarser level call to regrid
122  static Vector<int> last_regrid_step(max_level+1, 0);
123 
124  // regrid changes level "lev+1" so we don't regrid on max_level
125  // also make sure we don't regrid fine levels again if
126  // it was taken care of during a coarser regrid
127  if (lev < max_level)
128  {
129  if ( (istep[lev] % regrid_int == 0) && (istep[lev] > last_regrid_step[lev]) )
130  {
131  // regrid could add newly refine levels (if finest_level < max_level)
132  // so we save the previous finest level index
133  int old_finest = finest_level;
134 
135  regrid(lev, time);
136 
137 #ifdef ERF_USE_PARTICLES
138  if (finest_level != old_finest) {
139  particleData.Redistribute();
140  }
141 #endif
142 
143  // mark that we have regridded this level already
144  for (int k = lev; k <= finest_level; ++k) {
145  last_regrid_step[k] = istep[k];
146  }
147 
148  // if there are newly created levels, set the time step
149  for (int k = old_finest+1; k <= finest_level; ++k) {
150  dt[k] = dt[k-1] / static_cast<Real>(nsubsteps[k]);
151  }
152  } // if
153  } // lev
154  }
155 
156  // Update what we call "old" and "new" time
157  t_old[lev] = t_new[lev];
158  t_new[lev] += dt[lev];
159 
160  if (Verbose()) {
161  amrex::Print() << "[Level " << lev << " step " << istep[lev]+1 << "] ";
162  amrex::Print() << std::setprecision(timeprecision)
163  << "ADVANCE from elapsed time = " << t_old[lev] << " to " << t_new[lev]
164  << " with dt = " << dt[lev] << std::endl;
165  }
166 
167 #ifdef ERF_USE_WW3_COUPLING
168  amrex::Print() << " About to call send_to_ww3 from ERF_Timestep" << std::endl;
169  send_to_ww3(lev);
170  amrex::Print() << " About to call read_waves from ERF_Timestep" << std::endl;
171  read_waves(lev);
172  //send_to_ww3(lev);
173  //read_waves(lev);
174  //send_to_ww3(lev);
175 #endif
176 
177  // Advance a single level for a single time step
178  Advance(lev, time, dt[lev], istep[lev], nsubsteps[lev]);
179 
180  ++istep[lev];
181 
182  if (Verbose()) {
183  amrex::Print() << "[Level " << lev << " step " << istep[lev] << "] ";
184  amrex::Print() << "Advanced " << CountCells(lev) << " cells" << std::endl;
185  }
186 
187  if (lev < finest_level)
188  {
189  // recursive call for next-finer level
190  for (int i = 1; i <= nsubsteps[lev+1]; ++i)
191  {
192  Real strt_time_for_fine = time + (i-1)*dt[lev+1];
193  timeStep(lev+1, strt_time_for_fine, i);
194  }
195  }
196 
197  if (verbose && lev == 0 && solverChoice.moisture_type != MoistureType::None) {
198  amrex::Print() << "Cloud fraction " << time << " " << cloud_fraction(time) << std::endl;
199  }
200 }
amrex::Real cloud_fraction(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:451
void Advance(int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
Definition: ERF_Advance.cpp:20

◆ turbPert_amplitude()

void ERF::turbPert_amplitude ( const int  lev)
private
33 {
34  // Accessing data
35  auto& lev_new = vars_new[lev];
36 
37  // Creating local data
38  int ncons = lev_new[Vars::cons].nComp();
39  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
40 
41  // Defining BoxArray type
42  auto m_ixtype = cons_data.boxArray().ixType();
43 
44 #ifdef _OPENMP
45 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
46 #endif
47  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi) {
48  const Box &bx = mfi.validbox();
49  const auto &cons_pert_arr = cons_data.array(mfi); // Address of perturbation array
50  const amrex::Array4<const amrex::Real> &pert_cell = turbPert.pb_cell[lev].array(mfi); // per-cell perturbation stored in structure
51 
52  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cons_pert_arr, pert_cell);
53  } // mfi
54 }
Here is the call graph for this function:

◆ turbPert_update()

void ERF::turbPert_update ( const int  lev,
const amrex::Real  dt 
)
private
13 {
14  // Accessing data
15  auto& lev_new = vars_new[lev];
16 
17  // Create aliases to state data to pass to calc_tpi_update
18  int ncons = lev_new[Vars::cons].nComp();
19  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
20  MultiFab xvel_data(lev_new[Vars::xvel], make_alias, 0, 1);
21  MultiFab yvel_data(lev_new[Vars::yvel], make_alias, 0, 1);
22 
23  // Computing perturbation update time
24  turbPert.calc_tpi_update(lev, local_dt, xvel_data, yvel_data, cons_data);
25 
26  Print() << "Successfully initialized turbulent perturbation update time and amplitude with type: "<< turbPert.pt_type <<"\n";
27 }
int pt_type
Definition: ERF_TurbPertStruct.H:631

◆ update_diffusive_arrays()

void ERF::update_diffusive_arrays ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
private
517 {
518  // ********************************************************************************************
519  // Diffusive terms
520  // ********************************************************************************************
521  bool l_use_terrain = (SolverChoice::terrain_type != TerrainType::None);
522  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
523  bool l_use_diff = ( (solverChoice.diffChoice.molec_diff_type != MolecDiffType::None) ||
524  l_use_kturb );
525  bool l_need_SmnSmn = solverChoice.turbChoice[lev].use_keqn;
526  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
527  bool l_rotate = ( solverChoice.use_rotate_surface_flux );
528 
529  bool l_implicit_diff = (solverChoice.vert_implicit_fac[0] > 0 ||
532 
533  BoxArray ba12 = convert(ba, IntVect(1,1,0));
534  BoxArray ba13 = convert(ba, IntVect(1,0,1));
535  BoxArray ba23 = convert(ba, IntVect(0,1,1));
536 
537  Tau[lev].resize(9);
538  Tau_corr[lev].resize(3);
539 
540  if (l_use_diff) {
541  //
542  // NOTE: We require ghost cells in the vertical when allowing grids that don't
543  // cover the entire vertical extent of the domain at this level
544  //
545  for (int i = 0; i < 3; i++) {
546  Tau[lev][i] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
547  }
548  Tau[lev][TauType::tau12] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
549  Tau[lev][TauType::tau13] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
550  Tau[lev][TauType::tau23] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
551  Tau[lev][TauType::tau12]->setVal(0.);
552  Tau[lev][TauType::tau13]->setVal(0.);
553  Tau[lev][TauType::tau23]->setVal(0.);
554  if (l_use_terrain) {
555  Tau[lev][TauType::tau21] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
556  Tau[lev][TauType::tau31] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
557  Tau[lev][TauType::tau32] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
558  Tau[lev][TauType::tau21]->setVal(0.);
559  Tau[lev][TauType::tau31]->setVal(0.);
560  Tau[lev][TauType::tau32]->setVal(0.);
561  } else if (l_implicit_diff) {
562  Tau[lev][TauType::tau31] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
563  Tau[lev][TauType::tau32] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
564  Tau[lev][TauType::tau31]->setVal(0.);
565  Tau[lev][TauType::tau32]->setVal(0.);
566  } else {
567  Tau[lev][TauType::tau21] = nullptr;
568  Tau[lev][TauType::tau31] = nullptr;
569  Tau[lev][TauType::tau32] = nullptr;
570  }
571 
572  if (l_implicit_diff && solverChoice.implicit_momentum_diffusion)
573  {
574  Tau_corr[lev][0] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) ); // Tau31
575  Tau_corr[lev][1] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) ); // Tau32
576  Tau_corr[lev][0]->setVal(0.);
577  Tau_corr[lev][1]->setVal(0.);
578 #ifdef ERF_IMPLICIT_W
579  Tau_corr[lev][2] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) ); // Tau33
580  Tau_corr[lev][2]->setVal(0.);
581 #else
582  Tau_corr[lev][2] = nullptr;
583 #endif
584  } else {
585  Tau_corr[lev][0] = nullptr;
586  Tau_corr[lev][1] = nullptr;
587  Tau_corr[lev][2] = nullptr;
588  }
589 
590  SFS_hfx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
591  SFS_hfx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
592  SFS_hfx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
593  SFS_diss_lev[lev] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
594  SFS_hfx1_lev[lev]->setVal(0.);
595  SFS_hfx2_lev[lev]->setVal(0.);
596  SFS_hfx3_lev[lev]->setVal(0.);
597  SFS_diss_lev[lev]->setVal(0.);
598  if (l_use_moist) {
599  SFS_q1fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
600  SFS_q2fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
601  SFS_q1fx3_lev[lev]->setVal(0.0);
602  SFS_q2fx3_lev[lev]->setVal(0.0);
603  if (l_rotate) {
604  SFS_q1fx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
605  SFS_q1fx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
606  SFS_q1fx1_lev[lev]->setVal(0.0);
607  SFS_q1fx2_lev[lev]->setVal(0.0);
608  } else {
609  SFS_q1fx1_lev[lev] = nullptr;
610  SFS_q1fx2_lev[lev] = nullptr;
611  }
612  } else {
613  SFS_q1fx1_lev[lev] = nullptr;
614  SFS_q1fx2_lev[lev] = nullptr;
615  SFS_q1fx3_lev[lev] = nullptr;
616  SFS_q2fx3_lev[lev] = nullptr;
617  }
618  } else {
619  for (int i = 0; i < 9; i++) {
620  Tau[lev][i] = nullptr;
621  }
622  SFS_hfx1_lev[lev] = nullptr; SFS_hfx2_lev[lev] = nullptr; SFS_hfx3_lev[lev] = nullptr;
623  SFS_diss_lev[lev] = nullptr;
624  }
625 
626  if (l_use_kturb) {
627  eddyDiffs_lev[lev] = std::make_unique<MultiFab>(ba, dm, EddyDiff::NumDiffs, 2);
628  eddyDiffs_lev[lev]->setVal(0.0);
629  if(l_need_SmnSmn) {
630  SmnSmn_lev[lev] = std::make_unique<MultiFab>( ba, dm, 1, 0 );
631  } else {
632  SmnSmn_lev[lev] = nullptr;
633  }
634  } else {
635  eddyDiffs_lev[lev] = nullptr;
636  SmnSmn_lev[lev] = nullptr;
637  }
638 }
@ NumDiffs
Definition: ERF_IndexDefines.H:181

◆ update_terrain_arrays()

void ERF::update_terrain_arrays ( int  lev)
759 {
760  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
761  SolverChoice::mesh_type == MeshType::VariableDz) {
762  make_J(geom[lev],*z_phys_nd[lev],*detJ_cc[lev]);
763  make_areas(geom[lev],*z_phys_nd[lev],*ax[lev],*ay[lev],*az[lev]);
764  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
765  } else { // MeshType::ConstantDz
766  if (SolverChoice::terrain_type == TerrainType::EB) {
767  const auto& ebfact = *eb[lev]->get_const_factory();
768  const MultiFab& volfrac = ebfact.getVolFrac();
769  detJ_cc[lev] = std::make_unique<MultiFab>(volfrac, amrex::make_alias, 0, volfrac.nComp());
770  }
771  }
772 }
void make_areas(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &ax, MultiFab &ay, MultiFab &az)
Definition: ERF_TerrainMetrics.cpp:559
void make_J(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &detJ_cc)
Definition: ERF_TerrainMetrics.cpp:521
Here is the call graph for this function:

◆ volWgtSumMF()

Real ERF::volWgtSumMF ( int  lev,
const amrex::MultiFab &  mf,
int  comp,
const amrex::MultiFab &  dJ,
const amrex::MultiFab &  mfx,
const amrex::MultiFab &  mfy,
bool  finemask,
bool  local = true 
)

Utility function for computing a volume weighted sum of MultiFab data for a single component

Parameters
levCurrent level
mf_to_be_summed: MultiFab on which we do the volume weighted sum
dJ: volume weighting due to metric terms
mfmx: map factor in x-direction at cell centers
mfmy: map factor in y-direction at cell centers
comp: Index of the component we want to sum
finemask: If a finer level is available, determines whether we mask fine data
local: Boolean sets whether or not to reduce the sum over the domain (false) or compute sums local to each MPI rank (true)
25 {
26  BL_PROFILE("ERF::volWgtSumMF()");
27 
28  Real sum = 0.0;
29  MultiFab tmp(mf_to_be_summed.boxArray(), mf_to_be_summed.DistributionMap(), 1, 0);
30 
31  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
32  // m is the map scale factor at cell centers
33 #ifdef _OPENMP
34 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
35 #endif
36  for (MFIter mfi(tmp, TilingIfNotGPU()); mfi.isValid(); ++mfi) {
37  const Box& bx = mfi.tilebox();
38  const auto dst_arr = tmp.array(mfi);
39  const auto src_arr = mf_to_be_summed.array(mfi);
40  const auto& mfx_arr = mfmx.const_array(mfi);
41  const auto& mfy_arr = mfmy.const_array(mfi);
42  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
43  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
44  {
45  dst_arr(i,j,k,0) = src_arr(i,j,k,comp) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
46  });
47  } else {
48  const auto& dJ_arr = dJ.const_array(mfi);
49  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
50  {
51  dst_arr(i,j,k,0) = src_arr(i,j,k,comp) * dJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
52  });
53  }
54  } // mfi
55 
56  if (lev < finest_level && finemask) {
57  MultiFab::Multiply(tmp, *fine_mask[lev+1].get(), 0, 0, 1, 0);
58  }
59 
60  // If local = true then "sum" will be the sum only over the FABs on each rank
61  // If local = false then "sum" will be the sum over the whole MultiFab, and will be broadcast to all ranks
62  sum = tmp.sum(0,local);
63 
64  auto const& dx = geom[lev].CellSizeArray();
65 
66  sum *= dx[0]*dx[1]*dx[2];
67 
68  return sum;
69 }

◆ WeatherDataInterpolation()

void ERF::WeatherDataInterpolation ( const int  nlevs,
const amrex::Real  time,
amrex::Vector< std::unique_ptr< amrex::MultiFab >> &  z_phys_nd,
bool  regrid_forces_file_read 
)
351 {
352 
353  static amrex::Vector<Real> next_read_forecast_time;
354  static amrex::Vector<Real> last_read_forecast_time;
355 
356  const int nlevs = a_z_phys_nd.size();
357 
358  Real hindcast_data_interval = solverChoice.hindcast_data_interval_in_hrs*3600.0;
359 
360  // Initialize static vectors once
361  if (next_read_forecast_time.empty()) {
362  next_read_forecast_time.resize(nlevs, -1.0);
363  last_read_forecast_time.resize(nlevs, -1.0);
364  Print() << "Initializing the time vector values here by " << lev << std::endl;
365  }
366 
367  if (next_read_forecast_time[lev] < 0.0) {
368  int next_multiple = static_cast<int>(time / hindcast_data_interval);
369  next_read_forecast_time[lev] = next_multiple * hindcast_data_interval;
370  last_read_forecast_time[lev] = next_read_forecast_time[lev];
371  }
372 
373  if (time >= next_read_forecast_time[lev] or regrid_forces_file_read) {
374 
375  Print() << "Data reading happening at level " << lev << std::endl;
376 
377  std::string folder = solverChoice.hindcast_boundary_data_dir;
378 
379  // Check if folder exists and is a directory
380  if (!fs::exists(folder) || !fs::is_directory(folder)) {
381  throw std::runtime_error("Error: Folder '" + folder + "' does not exist or is not a directory.");
382  }
383 
384  std::vector<std::string> bin_files;
385 
386  for (const auto& entry : fs::directory_iterator(folder)) {
387  if (!entry.is_regular_file()) continue;
388 
389  std::string fname = entry.path().filename().string();
390  if (fname.size() >= 4 && fname.substr(fname.size() - 4) == ".bin") {
391  bin_files.push_back(entry.path().string());
392  }
393  }
394  std::sort(bin_files.begin(), bin_files.end());
395 
396  // Check if no .bin files were found
397  if (bin_files.empty()) {
398  throw std::runtime_error("Error: No .bin files found in folder '" + folder + "'.");
399  }
400 
401  std::string filename1, filename2;
402 
403  int idx1 = static_cast<int>(time / hindcast_data_interval);
404  int idx2 = static_cast<int>(time / hindcast_data_interval)+1;
405  std::cout << "Reading weather data " << time << " " << idx1 << " " << idx2 <<" " << bin_files.size() << std::endl;
406 
407  if (idx2 >= static_cast<int>(bin_files.size())) {
408  throw std::runtime_error("Error: Not enough .bin files to cover time " + std::to_string(time));
409  }
410 
411  filename1 = bin_files[idx1];
412  filename2 = bin_files[idx2];
413 
414  FillForecastStateMultiFabs(lev, filename1, a_z_phys_nd[lev], forecast_state_1);
415  FillForecastStateMultiFabs(lev, filename2, a_z_phys_nd[lev], forecast_state_2);
416 
417  // Create the time-interpolated forecast state
418  //CreateForecastStateMultiFabs(forecast_state_interp);
419  if(!regrid_forces_file_read){
420  last_read_forecast_time[lev] = next_read_forecast_time[lev];
421  next_read_forecast_time[lev] += hindcast_data_interval;
422  Print() << "Next forecast time getting updated here " << std::endl;
423  }
424  }
425 
426  Real prev_read_time = last_read_forecast_time[lev];
427  Real alpha1 = 1.0 - (time - prev_read_time)/hindcast_data_interval;
428  Real alpha2 = 1.0 - alpha1;
429 
430  amrex::Print()<< "The values of alpha1 and alpha2 are " << alpha1 << " "<< alpha2 <<std::endl;
431 
432  if (alpha1 < 0.0 || alpha1 > 1.0 ||
433  alpha2 < 0.0 || alpha2 > 1.0)
434  {
435  std::stringstream ss;
436  ss << "Interpolation weights for hindcast files are incorrect: "
437  << "alpha1 = " << alpha1 << ", alpha2 = " << alpha2;
438  Abort(ss.str());
439  }
440 
441  MultiFab& erf_mf_cons = forecast_state_interp[lev][Vars::cons];
442  MultiFab& erf_mf_xvel = forecast_state_interp[lev][Vars::xvel];
443  MultiFab& erf_mf_yvel = forecast_state_interp[lev][Vars::yvel];
444  //MultiFab& erf_mf_zvel = forecast_state_interp[0][Vars::zvel];
445  MultiFab& erf_mf_latlon = forecast_state_interp[lev][4];
446 
447  // Fill the time-interpolated forecast states
448  MultiFab::LinComb(forecast_state_interp[lev][Vars::cons],
449  alpha1, forecast_state_1[lev][Vars::cons], 0,
450  alpha2, forecast_state_2[lev][Vars::cons], 0,
451  0, erf_mf_cons.nComp(), forecast_state_interp[lev][Vars::cons].nGrow());
452  MultiFab::LinComb(forecast_state_interp[lev][Vars::xvel],
453  alpha1, forecast_state_1[lev][Vars::xvel], 0,
454  alpha2, forecast_state_2[lev][Vars::xvel], 0,
455  0, erf_mf_xvel.nComp(), forecast_state_interp[lev][Vars::xvel].nGrow());
456  MultiFab::LinComb(forecast_state_interp[lev][Vars::yvel],
457  alpha1, forecast_state_1[lev][Vars::yvel], 0,
458  alpha2, forecast_state_2[lev][Vars::yvel], 0,
459  0, erf_mf_yvel.nComp(), forecast_state_interp[lev][Vars::yvel].nGrow());
460  MultiFab::LinComb(forecast_state_interp[lev][4],
461  alpha1, forecast_state_1[lev][4], 0,
462  alpha2, forecast_state_2[lev][4], 0,
463  0, erf_mf_latlon.nComp(), forecast_state_interp[lev][4].nGrow());
464 
465  /*Vector<std::string> varnames_plot_mf = {
466  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel", "latitude", "longitude"
467  }; // Customize variable names
468 
469  std::string pltname = "plt_interp";
470 
471  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
472  10, 0);
473 
474  plot_mf.setVal(0.0);
475 
476  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
477  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
478  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
479  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
480  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
481  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
482  const Array4<Real> &erf_mf_latlon_arr = erf_mf_latlon.array(mfi);
483 
484  const Box& bx = mfi.validbox();
485 
486  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
487  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
488  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
489  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
490  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
491  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
492 
493  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
494  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
495  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
496 
497  plot_mf_arr(i,j,k,8) = erf_mf_latlon_arr(i,j,k,0);
498  plot_mf_arr(i,j,k,9) = erf_mf_latlon_arr(i,j,k,1);
499  });
500  }
501 
502 
503  WriteSingleLevelPlotfile(
504  pltname,
505  plot_mf,
506  varnames_plot_mf,
507  geom[0],
508  time,
509  0 // level
510  );*/
511 }
void FillForecastStateMultiFabs(const int lev, const std::string &filename, const std::unique_ptr< amrex::MultiFab > &z_phys_nd, amrex::Vector< amrex::Vector< amrex::MultiFab >> &weather_forecast_data)
Definition: ERF_WeatherDataInterpolation.cpp:64
amrex::Real hindcast_data_interval_in_hrs
Definition: ERF_DataStruct.H:1144
std::string hindcast_boundary_data_dir
Definition: ERF_DataStruct.H:1143

◆ Write2DPlotFile()

void ERF::Write2DPlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
1932 {
1933  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
1934  const int ncomp_mf = varnames.size();
1935 
1936  if (ncomp_mf == 0) return;
1937 
1938  // Vector of MultiFabs for cell-centered data
1939  Vector<MultiFab> mf(finest_level+1);
1940  for (int lev = 0; lev <= finest_level; ++lev) {
1941  mf[lev].define(ba2d[lev], dmap[lev], ncomp_mf, 0);
1942  }
1943 
1944 
1945  // **********************************************************************************************
1946  // (Effectively) 2D arrays
1947  // **********************************************************************************************
1948  for (int lev = 0; lev <= finest_level; ++lev)
1949  {
1950  // Make sure getPgivenRTh and getTgivenRandRTh don't fail
1951  if (check_for_nans) {
1953  }
1954 
1955  int mf_comp = 0;
1956 
1957  // Set all components to zero in case they aren't defined below
1958  mf[lev].setVal(0.0);
1959 
1960  // Expose domain khi and klo at each level
1961  int klo = geom[lev].Domain().smallEnd(2);
1962  int khi = geom[lev].Domain().bigEnd(2);
1963 
1964  if (containerHasElement(plot_var_names, "z_surf")) {
1965 #ifdef _OPENMP
1966 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1967 #endif
1968  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1969  {
1970  const Box& bx = mfi.tilebox();
1971  const Array4<Real>& derdat = mf[lev].array(mfi);
1972  const Array4<const Real>& z_phys_arr = z_phys_nd[lev]->const_array(mfi);
1973  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1974  derdat(i, j, k, mf_comp) = Compute_Z_AtWFace(i, j, 0, z_phys_arr);
1975  });
1976  }
1977  mf_comp++;
1978  }
1979 
1980  if (containerHasElement(plot_var_names, "landmask")) {
1981 #ifdef _OPENMP
1982 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1983 #endif
1984  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1985  {
1986  const Box& bx = mfi.tilebox();
1987  const Array4<Real>& derdat = mf[lev].array(mfi);
1988  const Array4<const int>& lmask_arr = lmask_lev[lev][0]->const_array(mfi);
1989  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1990  derdat(i, j, k, mf_comp) = lmask_arr(i, j, 0);
1991  });
1992  }
1993  mf_comp++;
1994  }
1995 
1996  if (containerHasElement(plot_var_names, "mapfac")) {
1997 #ifdef _OPENMP
1998 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1999 #endif
2000  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2001  {
2002  const Box& bx = mfi.tilebox();
2003  const Array4<Real>& derdat = mf[lev].array(mfi);
2004  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
2005  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2006  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
2007  });
2008  }
2009  mf_comp++;
2010  }
2011 
2012  if (containerHasElement(plot_var_names, "lat_m")) {
2013  if (lat_m[lev]) {
2014 #ifdef _OPENMP
2015 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2016 #endif
2017  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2018  {
2019  const Box& bx = mfi.tilebox();
2020  const Array4<Real>& derdat = mf[lev].array(mfi);
2021  const Array4<Real>& data = lat_m[lev]->array(mfi);
2022  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2023  derdat(i, j, k, mf_comp) = data(i,j,0);
2024  });
2025  }
2026  }
2027  mf_comp++;
2028  } // lat_m
2029 
2030  if (containerHasElement(plot_var_names, "lon_m")) {
2031  if (lon_m[lev]) {
2032 #ifdef _OPENMP
2033 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2034 #endif
2035  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2036  {
2037  const Box& bx = mfi.tilebox();
2038  const Array4<Real>& derdat = mf[lev].array(mfi);
2039  const Array4<Real>& data = lon_m[lev]->array(mfi);
2040  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2041  derdat(i, j, k, mf_comp) = data(i,j,0);
2042  });
2043  }
2044  } else {
2045  mf[lev].setVal(0.0,mf_comp,1,0);
2046  }
2047 
2048  mf_comp++;
2049 
2050  } // lon_m
2051 
2052  ///////////////////////////////////////////////////////////////////////
2053  // These quantities are diagnosed by the surface layer
2054  if (containerHasElement(plot_var_names, "u_star")) {
2055 #ifdef _OPENMP
2056 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2057 #endif
2058  if (m_SurfaceLayer) {
2059  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2060  {
2061  const Box& bx = mfi.tilebox();
2062  const auto& derdat = mf[lev].array(mfi);
2063  const auto& ustar = m_SurfaceLayer->get_u_star(lev)->const_array(mfi);
2064  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2065  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2066  });
2067  }
2068  } else {
2069  mf[lev].setVal(-999,mf_comp,1,0);
2070  }
2071  mf_comp++;
2072  } // ustar
2073 
2074  if (containerHasElement(plot_var_names, "w_star")) {
2075 #ifdef _OPENMP
2076 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2077 #endif
2078  if (m_SurfaceLayer) {
2079  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2080  {
2081  const Box& bx = mfi.tilebox();
2082  const auto& derdat = mf[lev].array(mfi);
2083  const auto& ustar = m_SurfaceLayer->get_w_star(lev)->const_array(mfi);
2084  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2085  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2086  });
2087  }
2088  } else {
2089  mf[lev].setVal(-999,mf_comp,1,0);
2090  }
2091  mf_comp++;
2092  } // wstar
2093 
2094  if (containerHasElement(plot_var_names, "t_star")) {
2095 #ifdef _OPENMP
2096 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2097 #endif
2098  if (m_SurfaceLayer) {
2099  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2100  {
2101  const Box& bx = mfi.tilebox();
2102  const auto& derdat = mf[lev].array(mfi);
2103  const auto& ustar = m_SurfaceLayer->get_t_star(lev)->const_array(mfi);
2104  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2105  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2106  });
2107  }
2108  } else {
2109  mf[lev].setVal(-999,mf_comp,1,0);
2110  }
2111  mf_comp++;
2112  } // tstar
2113 
2114  if (containerHasElement(plot_var_names, "q_star")) {
2115 #ifdef _OPENMP
2116 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2117 #endif
2118  if (m_SurfaceLayer) {
2119  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2120  {
2121  const Box& bx = mfi.tilebox();
2122  const auto& derdat = mf[lev].array(mfi);
2123  const auto& ustar = m_SurfaceLayer->get_q_star(lev)->const_array(mfi);
2124  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2125  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2126  });
2127  }
2128  } else {
2129  mf[lev].setVal(-999,mf_comp,1,0);
2130  }
2131  mf_comp++;
2132  } // qstar
2133 
2134  if (containerHasElement(plot_var_names, "Olen")) {
2135 #ifdef _OPENMP
2136 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2137 #endif
2138  if (m_SurfaceLayer) {
2139  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2140  {
2141  const Box& bx = mfi.tilebox();
2142  const auto& derdat = mf[lev].array(mfi);
2143  const auto& ustar = m_SurfaceLayer->get_olen(lev)->const_array(mfi);
2144  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2145  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2146  });
2147  }
2148  } else {
2149  mf[lev].setVal(-999,mf_comp,1,0);
2150  }
2151  mf_comp++;
2152  } // Olen
2153 
2154  if (containerHasElement(plot_var_names, "pblh")) {
2155 #ifdef _OPENMP
2156 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2157 #endif
2158  if (m_SurfaceLayer) {
2159  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2160  {
2161  const Box& bx = mfi.tilebox();
2162  const auto& derdat = mf[lev].array(mfi);
2163  const auto& ustar = m_SurfaceLayer->get_pblh(lev)->const_array(mfi);
2164  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2165  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2166  });
2167  }
2168  } else {
2169  mf[lev].setVal(-999,mf_comp,1,0);
2170  }
2171  mf_comp++;
2172  } // pblh
2173 
2174  if (containerHasElement(plot_var_names, "t_surf")) {
2175 #ifdef _OPENMP
2176 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2177 #endif
2178  if (m_SurfaceLayer) {
2179  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2180  {
2181  const Box& bx = mfi.tilebox();
2182  const auto& derdat = mf[lev].array(mfi);
2183  const auto& tsurf = m_SurfaceLayer->get_t_surf(lev)->const_array(mfi);
2184  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2185  derdat(i, j, k, mf_comp) = tsurf(i, j, 0);
2186  });
2187  }
2188  } else {
2189  mf[lev].setVal(-999,mf_comp,1,0);
2190  }
2191  mf_comp++;
2192  } // tsurf
2193 
2194  if (containerHasElement(plot_var_names, "q_surf")) {
2195 #ifdef _OPENMP
2196 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2197 #endif
2198  if (m_SurfaceLayer) {
2199  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2200  {
2201  const Box& bx = mfi.tilebox();
2202  const auto& derdat = mf[lev].array(mfi);
2203  const auto& ustar = m_SurfaceLayer->get_q_surf(lev)->const_array(mfi);
2204  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2205  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2206  });
2207  }
2208  } else {
2209  mf[lev].setVal(-999,mf_comp,1,0);
2210  }
2211  mf_comp++;
2212  } // qsurf
2213 
2214  if (containerHasElement(plot_var_names, "z0")) {
2215 #ifdef _OPENMP
2216 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2217 #endif
2218  if (m_SurfaceLayer) {
2219  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2220  {
2221  const Box& bx = mfi.tilebox();
2222  const auto& derdat = mf[lev].array(mfi);
2223  const auto& ustar = m_SurfaceLayer->get_z0(lev)->const_array(mfi);
2224  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2225  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2226  });
2227  }
2228  } else {
2229  mf[lev].setVal(-999,mf_comp,1,0);
2230  }
2231  mf_comp++;
2232  } // z0
2233 
2234  if (containerHasElement(plot_var_names, "OLR")) {
2235 #ifdef _OPENMP
2236 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2237 #endif
2238  if (solverChoice.rad_type != RadiationType::None) {
2239  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2240  {
2241  const Box& bx = mfi.tilebox();
2242  const auto& derdat = mf[lev].array(mfi);
2243  const auto& olr = rad_fluxes[lev]->const_array(mfi);
2244  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2245  derdat(i, j, k, mf_comp) = olr(i, j, khi, 2);
2246  });
2247  }
2248  } else {
2249  mf[lev].setVal(-999,mf_comp,1,0);
2250  }
2251  mf_comp++;
2252  } // OLR
2253 
2254  if (containerHasElement(plot_var_names, "sens_flux")) {
2255 #ifdef _OPENMP
2256 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2257 #endif
2258  if (SFS_hfx3_lev[lev]) {
2259  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2260  {
2261  const Box& bx = mfi.tilebox();
2262  const auto& derdat = mf[lev].array(mfi);
2263  const auto& hfx_arr = SFS_hfx3_lev[lev]->const_array(mfi);
2264  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2265  derdat(i, j, k, mf_comp) = hfx_arr(i, j, klo);
2266  });
2267  }
2268  } else {
2269  mf[lev].setVal(-999,mf_comp,1,0);
2270  }
2271  mf_comp++;
2272  } // sens_flux
2273 
2274  if (containerHasElement(plot_var_names, "laten_flux")) {
2275 #ifdef _OPENMP
2276 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2277 #endif
2278  if (SFS_hfx3_lev[lev]) {
2279  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2280  {
2281  const Box& bx = mfi.tilebox();
2282  const auto& derdat = mf[lev].array(mfi);
2283  const auto& qfx_arr = SFS_q1fx3_lev[lev]->const_array(mfi);
2284  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2285  derdat(i, j, k, mf_comp) = qfx_arr(i, j, klo);
2286  });
2287  }
2288  } else {
2289  mf[lev].setVal(-999,mf_comp,1,0);
2290  }
2291  mf_comp++;
2292  } // laten_flux
2293 
2294  if (containerHasElement(plot_var_names, "surf_pres")) {
2295  bool moist = (solverChoice.moisture_type != MoistureType::None);
2296 #ifdef _OPENMP
2297 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2298 #endif
2299  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2300  {
2301  const Box& bx = mfi.tilebox();
2302  const auto& derdat = mf[lev].array(mfi);
2303  const auto& cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2304  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2305  auto rt = cons_arr(i,j,klo,RhoTheta_comp);
2306  auto qv = (moist) ? cons_arr(i,j,klo,RhoQ1_comp)/cons_arr(i,j,klo,Rho_comp)
2307  : 0.0;
2308  derdat(i, j, k, mf_comp) = getPgivenRTh(rt, qv);
2309  });
2310  }
2311  mf_comp++;
2312  } // surf_pres
2313 
2314  } // lev
2315 
2316  std::string plotfilename;
2317  if (which == 1) {
2318  plotfilename = Concatenate(plot2d_file_1, istep[0], file_name_digits);
2319  } else if (which == 2) {
2320  plotfilename = Concatenate(plot2d_file_2, istep[0], file_name_digits);
2321  }
2322 
2323  Vector<Geometry> my_geom(finest_level+1);
2324 
2325  Array<int,AMREX_SPACEDIM> is_per; is_per[0] = 0; is_per[1] = 0; is_per[2] = 0;
2326  if (geom[0].isPeriodic(0)) { is_per[0] = 1;}
2327  if (geom[0].isPeriodic(1)) { is_per[1] = 1;}
2328 
2329  int coord_sys = 0;
2330 
2331  for (int lev = 0; lev <= finest_level; lev++)
2332  {
2333  Box slab = makeSlab(geom[lev].Domain(),2,0);
2334  auto const slab_lo = lbound(slab);
2335  auto const slab_hi = ubound(slab);
2336 
2337  // Create a new geometry based only on the 2D slab
2338  // We need
2339  // 1) my_geom.Domain()
2340  // 2) my_geom.CellSize()
2341  // 3) my_geom.periodicity()
2342  const auto dx = geom[lev].CellSize();
2343  RealBox rb( slab_lo.x *dx[0], slab_lo.y *dx[1], slab_lo.z *dx[2],
2344  (slab_hi.x+1)*dx[0], (slab_hi.y+1)*dx[1], (slab_hi.z+1)*dx[2]);
2345  my_geom[lev].define(slab, rb, coord_sys, is_per);
2346  }
2347 
2348  if (plotfile_type == PlotFileType::Amrex)
2349  {
2350  Print() << "Writing 2D native plotfile " << plotfilename << "\n";
2351  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
2352  GetVecOfConstPtrs(mf),
2353  varnames, my_geom, t_new[0], istep, refRatio());
2354  writeJobInfo(plotfilename);
2355 
2356 #ifdef ERF_USE_NETCDF
2357  } else if (plotfile_type == PlotFileType::Netcdf) {
2358  int lev = 0;
2359  int l_which = 0;
2360  const Real* p_lo = my_geom[lev].ProbLo();
2361  const Real* p_hi = my_geom[lev].ProbHi();
2362  const auto dx = my_geom[lev].CellSize();
2363  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
2364  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],dx[2]}, {dx[0],dx[1],dx[2]},
2365  my_geom[lev].Domain(), t_new[0], start_bdy_time);
2366 #endif
2367  } else {
2368  // Here we assume the plotfile_type is PlotFileType::None
2369  Print() << "Writing no 2D plotfile since plotfile_type is none" << std::endl;
2370  }
2371 }
void writeNCPlotFile(int lev, int which_subdomain, const std::string &dir, const Vector< const MultiFab * > &plotMF, const Vector< std::string > &plot_var_names, const Vector< int > &, Array< Real, AMREX_SPACEDIM > prob_lo, Array< Real, AMREX_SPACEDIM > prob_hi, Array< Real, AMREX_SPACEDIM > dx_in, const Box &subdomain, const Real time, const Real start_bdy_time)
Definition: ERF_NCPlotFile.cpp:14
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real Compute_Z_AtWFace(const int &i, const int &j, const int &k, const amrex::Array4< const amrex::Real > &z_nd)
Definition: ERF_TerrainMetrics.H:374
static amrex::Vector< std::string > PlotFileVarNames(amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:296
void writeJobInfo(const std::string &dir) const
Definition: ERF_WriteJobInfo.cpp:10
Here is the call graph for this function:

◆ Write3DPlotFile()

void ERF::Write3DPlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
309 {
310  auto dPlotTime0 = amrex::second();
311 
312  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
313  const int ncomp_mf = varnames.size();
314 
315  int ncomp_cons = vars_new[0][Vars::cons].nComp();
316 
317  if (ncomp_mf == 0) return;
318 
319  // We Fillpatch here because some of the derived quantities require derivatives
320  // which require ghost cells to be filled. We do not need to call FillPatcher
321  // because we don't need to set interior fine points.
322  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
323 
324  // Level 0 FillPatch
326  &vars_new[0][Vars::yvel], &vars_new[0][Vars::zvel]});
327 
328  for (int lev = 1; lev <= finest_level; ++lev) {
329  bool fillset = false;
330  FillPatchFineLevel(lev, t_new[lev], {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::xvel],
331  &vars_new[lev][Vars::yvel], &vars_new[lev][Vars::zvel]},
332  {&vars_new[lev][Vars::cons], &rU_new[lev], &rV_new[lev], &rW_new[lev]},
333  base_state[lev], base_state[lev], fillset);
334  }
335 
336  // Get qmoist pointers if using moisture
337  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
338  for (int lev = 0; lev <= finest_level; ++lev) {
339  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
340  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
341  }
342  }
343 
344  // Vector of MultiFabs for cell-centered data
345  Vector<MultiFab> mf(finest_level+1);
346  for (int lev = 0; lev <= finest_level; ++lev) {
347  mf[lev].define(grids[lev], dmap[lev], ncomp_mf, 0);
348  }
349 
350  // Vector of MultiFabs for nodal data
351  Vector<MultiFab> mf_nd(finest_level+1);
352  if ( SolverChoice::mesh_type != MeshType::ConstantDz) {
353  for (int lev = 0; lev <= finest_level; ++lev) {
354  BoxArray nodal_grids(grids[lev]); nodal_grids.surroundingNodes();
355  mf_nd[lev].define(nodal_grids, dmap[lev], 3, 0);
356  mf_nd[lev].setVal(0.);
357  }
358  }
359 
360  // Vector of MultiFabs for face-centered velocity
361  Vector<MultiFab> mf_u(finest_level+1);
362  Vector<MultiFab> mf_v(finest_level+1);
363  Vector<MultiFab> mf_w(finest_level+1);
364  if (m_plot_face_vels) {
365  for (int lev = 0; lev <= finest_level; ++lev) {
366  BoxArray grid_stag_u(grids[lev]); grid_stag_u.surroundingNodes(0);
367  BoxArray grid_stag_v(grids[lev]); grid_stag_v.surroundingNodes(1);
368  BoxArray grid_stag_w(grids[lev]); grid_stag_w.surroundingNodes(2);
369  mf_u[lev].define(grid_stag_u, dmap[lev], 1, 0);
370  mf_v[lev].define(grid_stag_v, dmap[lev], 1, 0);
371  mf_w[lev].define(grid_stag_w, dmap[lev], 1, 0);
372  MultiFab::Copy(mf_u[lev],vars_new[lev][Vars::xvel],0,0,1,0);
373  MultiFab::Copy(mf_v[lev],vars_new[lev][Vars::yvel],0,0,1,0);
374  MultiFab::Copy(mf_w[lev],vars_new[lev][Vars::zvel],0,0,1,0);
375  }
376  }
377 
378  // Array of MultiFabs for cell-centered velocity
379  Vector<MultiFab> mf_cc_vel(finest_level+1);
380 
381  if (containerHasElement(plot_var_names, "x_velocity" ) ||
382  containerHasElement(plot_var_names, "y_velocity" ) ||
383  containerHasElement(plot_var_names, "z_velocity" ) ||
384  containerHasElement(plot_var_names, "magvel" ) ||
385  containerHasElement(plot_var_names, "vorticity_x") ||
386  containerHasElement(plot_var_names, "vorticity_y") ||
387  containerHasElement(plot_var_names, "vorticity_z") ) {
388 
389  for (int lev = 0; lev <= finest_level; ++lev) {
390  mf_cc_vel[lev].define(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
391  mf_cc_vel[lev].setVal(-1.e20);
392  average_face_to_cellcenter(mf_cc_vel[lev],0,
393  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
394  &vars_new[lev][Vars::yvel],
395  &vars_new[lev][Vars::zvel]});
396  } // lev
397  } // if (vel or vort)
398 
399  // We need ghost cells if computing vorticity
400  if ( containerHasElement(plot_var_names, "vorticity_x")||
401  containerHasElement(plot_var_names, "vorticity_y") ||
402  containerHasElement(plot_var_names, "vorticity_z") )
403  {
404  amrex::Interpolater* mapper = &cell_cons_interp;
405  for (int lev = 1; lev <= finest_level; ++lev)
406  {
407  Vector<MultiFab*> fmf = {&(mf_cc_vel[lev]), &(mf_cc_vel[lev])};
408  Vector<Real> ftime = {t_new[lev], t_new[lev]};
409  Vector<MultiFab*> cmf = {&mf_cc_vel[lev-1], &mf_cc_vel[lev-1]};
410  Vector<Real> ctime = {t_new[lev], t_new[lev]};
411 
412  FillBdyCCVels(mf_cc_vel,lev-1);
413 
414  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
415  FillPatchTwoLevels(mf_cc_vel[lev], mf_cc_vel[lev].nGrowVect(), IntVect(0,0,0),
416  t_new[lev], cmf, ctime, fmf, ftime,
417  0, 0, mf_cc_vel[lev].nComp(), geom[lev-1], geom[lev],
418  refRatio(lev-1), mapper, domain_bcs_type,
420  } // lev
421  FillBdyCCVels(mf_cc_vel);
422  } // if (vort)
423 
424 
425  for (int lev = 0; lev <= finest_level; ++lev)
426  {
427  // Make sure getPgivenRTh and getTgivenRandRTh don't fail
428  if (check_for_nans) {
430  }
431 
432  int mf_comp = 0;
433 
434  BoxArray ba(vars_new[lev][Vars::cons].boxArray());
435  DistributionMapping dm = vars_new[lev][Vars::cons].DistributionMap();
436 
437  // First, copy any of the conserved state variables into the output plotfile
438  for (int i = 0; i < cons_names.size(); ++i) {
439  if (containerHasElement(plot_var_names, cons_names[i])) {
440  MultiFab::Copy(mf[lev],vars_new[lev][Vars::cons],i,mf_comp,1,0);
441  mf_comp++;
442  }
443  }
444 
445  // Next, check for velocities
446  if (containerHasElement(plot_var_names, "x_velocity")) {
447  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 0, mf_comp, 1, 0);
448  mf_comp += 1;
449  }
450  if (containerHasElement(plot_var_names, "y_velocity")) {
451  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 1, mf_comp, 1, 0);
452  mf_comp += 1;
453  }
454  if (containerHasElement(plot_var_names, "z_velocity")) {
455  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 2, mf_comp, 1, 0);
456  mf_comp += 1;
457  }
458 
459  // Create multifabs for HSE and pressure fields used to derive other quantities
460  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp , 1);
461  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp , 1);
462  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
463 
464  MultiFab pressure;
465 
466  if (solverChoice.anelastic[lev] == 0) {
467  if (containerHasElement(plot_var_names, "pressure") ||
468  containerHasElement(plot_var_names, "pert_pres") ||
469  containerHasElement(plot_var_names, "dpdx") ||
470  containerHasElement(plot_var_names, "dpdy") ||
471  containerHasElement(plot_var_names, "dpdz") ||
472  containerHasElement(plot_var_names, "eq_pot_temp") ||
473  containerHasElement(plot_var_names, "qsat"))
474  {
475  int ng = (containerHasElement(plot_var_names, "dpdx") || containerHasElement(plot_var_names, "dpdy") ||
476  containerHasElement(plot_var_names, "dpdz")) ? 1 : 0;
477 
478  // Allocate space for pressure
479  pressure.define(ba,dm,1,ng);
480 
481  if (ng > 0) {
482  // Default to p_hse as a way of filling ghost cells at domain boundaries
483  MultiFab::Copy(pressure,p_hse,0,0,1,1);
484  }
485 #ifdef _OPENMP
486 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
487 #endif
488  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
489  {
490  const Box& gbx = mfi.growntilebox(IntVect(ng,ng,0));
491 
492  const Array4<Real >& p_arr = pressure.array(mfi);
493  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
494  const int ncomp = vars_new[lev][Vars::cons].nComp();
495 
496  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
497  {
498  Real qv_for_p = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0;
499  const Real rhotheta = S_arr(i,j,k,RhoTheta_comp);
500  p_arr(i, j, k) = getPgivenRTh(rhotheta,qv_for_p);
501  });
502  } // mfi
503  pressure.FillBoundary(geom[lev].periodicity());
504  } // compute compressible pressure
505  } // not anelastic
506  else {
507  if (containerHasElement(plot_var_names, "dpdx") ||
508  containerHasElement(plot_var_names, "dpdy") ||
509  containerHasElement(plot_var_names, "dpdz") ||
510  containerHasElement(plot_var_names, "eq_pot_temp") ||
511  containerHasElement(plot_var_names, "qsat"))
512  {
513  // Copy p_hse into pressure if using anelastic
514  pressure.define(ba,dm,1,0);
515  MultiFab::Copy(pressure,p_hse,0,0,1,0);
516  }
517  }
518 
519  // Finally, check for any derived quantities and compute them, inserting
520  // them into our output multifab
521  auto calculate_derived = [&](const std::string& der_name,
522  MultiFab& src_mf,
523  decltype(derived::erf_dernull)& der_function)
524  {
525  if (containerHasElement(plot_var_names, der_name)) {
526  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
527 #ifdef _OPENMP
528 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
529 #endif
530  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
531  {
532  const Box& bx = mfi.tilebox();
533  auto& dfab = dmf[mfi];
534  auto& sfab = src_mf[mfi];
535  der_function(bx, dfab, 0, 1, sfab, Geom(lev), t_new[0], nullptr, lev);
536  }
537 
538  mf_comp++;
539  }
540  };
541 
542  // *****************************************************************************************
543  // NOTE: All derived variables computed below **MUST MATCH THE ORDER** of "derived_names"
544  // defined in ERF.H
545  // *****************************************************************************************
546 
547  calculate_derived("soundspeed", vars_new[lev][Vars::cons], derived::erf_dersoundspeed);
548  if (use_moisture) {
549  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dermoisttemp);
550  } else {
551  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dertemp);
552  }
553  calculate_derived("theta", vars_new[lev][Vars::cons], derived::erf_dertheta);
554  calculate_derived("KE", vars_new[lev][Vars::cons], derived::erf_derKE);
555  calculate_derived("scalar", vars_new[lev][Vars::cons], derived::erf_derscalar);
556  calculate_derived("vorticity_x", mf_cc_vel[lev] , derived::erf_dervortx);
557  calculate_derived("vorticity_y", mf_cc_vel[lev] , derived::erf_dervorty);
558  calculate_derived("vorticity_z", mf_cc_vel[lev] , derived::erf_dervortz);
559  calculate_derived("magvel" , mf_cc_vel[lev] , derived::erf_dermagvel);
560 
561  if (containerHasElement(plot_var_names, "divU"))
562  {
563  // TODO TODO TODO -- we need to convert w to omega here!!
564  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
565  Array<MultiFab const*, AMREX_SPACEDIM> u;
566  u[0] = &(vars_new[lev][Vars::xvel]);
567  u[1] = &(vars_new[lev][Vars::yvel]);
568  u[2] = &(vars_new[lev][Vars::zvel]);
569  compute_divergence (lev, dmf, u, geom[lev]);
570  mf_comp += 1;
571  }
572 
573  if (containerHasElement(plot_var_names, "pres_hse"))
574  {
575  MultiFab::Copy(mf[lev],p_hse,0,mf_comp,1,0);
576  mf_comp += 1;
577  }
578  if (containerHasElement(plot_var_names, "dens_hse"))
579  {
580  MultiFab::Copy(mf[lev],r_hse,0,mf_comp,1,0);
581  mf_comp += 1;
582  }
583  if (containerHasElement(plot_var_names, "theta_hse"))
584  {
585  MultiFab::Copy(mf[lev],th_hse,0,mf_comp,1,0);
586  mf_comp += 1;
587  }
588 
589  if (containerHasElement(plot_var_names, "pressure"))
590  {
591  if (solverChoice.anelastic[lev] == 1) {
592  MultiFab::Copy(mf[lev], p_hse, 0, mf_comp, 1, 0);
593  } else {
594  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
595  }
596 
597  mf_comp += 1;
598  }
599 
600  if (containerHasElement(plot_var_names, "pert_pres"))
601  {
602  if (solverChoice.anelastic[lev] == 1) {
603  MultiFab::Copy(mf[lev], pp_inc[lev], 0, mf_comp, 1, 0);
604  } else {
605  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
606  MultiFab::Subtract(mf[lev],p_hse,0,mf_comp,1,IntVect{0});
607  }
608  mf_comp += 1;
609  }
610 
611  if (containerHasElement(plot_var_names, "pert_dens"))
612  {
613 #ifdef _OPENMP
614 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
615 #endif
616  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
617  {
618  const Box& bx = mfi.tilebox();
619  const Array4<Real>& derdat = mf[lev].array(mfi);
620  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
621  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
622  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
623  derdat(i, j, k, mf_comp) = S_arr(i,j,k,Rho_comp) - r0_arr(i,j,k);
624  });
625  }
626  mf_comp ++;
627  }
628 
629  if (containerHasElement(plot_var_names, "eq_pot_temp"))
630  {
631 #ifdef _OPENMP
632 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
633 #endif
634  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
635  {
636  const Box& bx = mfi.tilebox();
637  const Array4<Real>& derdat = mf[lev].array(mfi);
638  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
639  const Array4<Real const>& p_arr = pressure.const_array(mfi);
640  const int ncomp = vars_new[lev][Vars::cons].nComp();
641  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
642  Real qv = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
643  Real qc = (use_moisture && (ncomp > RhoQ2_comp)) ? S_arr(i,j,k,RhoQ2_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
644  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
645  Real fac = Cp_d + Cp_l*(qv + qc);
646  Real pv = erf_esatw(T)*100.0;
647 
648  derdat(i, j, k, mf_comp) = T*std::pow((p_arr(i,j,k) - pv)/p_0, -R_d/fac)*std::exp(L_v*qv/(fac*T)) ;
649  });
650  }
651  mf_comp ++;
652  }
653 
654 #ifdef ERF_USE_WINDFARM
655  if ( containerHasElement(plot_var_names, "num_turb") and
656  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
657  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
658  {
659  MultiFab::Copy(mf[lev],Nturb[lev],0,mf_comp,1,0);
660  mf_comp ++;
661  }
662 
663  if ( containerHasElement(plot_var_names, "SMark0") and
664  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
665  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
666  {
667  MultiFab::Copy(mf[lev],SMark[lev],0,mf_comp,1,0);
668  mf_comp ++;
669  }
670 
671  if (containerHasElement(plot_var_names, "SMark1") and
672  (solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD))
673  {
674  MultiFab::Copy(mf[lev],SMark[lev],1,mf_comp,1,0);
675  mf_comp ++;
676  }
677 #endif
678 
679  // **********************************************************************************************
680  // Allocate space if we are computing any pressure gradients
681  // **********************************************************************************************
682 
683  Vector<MultiFab> gradp_temp; gradp_temp.resize(AMREX_SPACEDIM);
684  if (containerHasElement(plot_var_names, "dpdx") ||
685  containerHasElement(plot_var_names, "dpdy") ||
686  containerHasElement(plot_var_names, "dpdz") ||
687  containerHasElement(plot_var_names, "pres_hse_x") ||
688  containerHasElement(plot_var_names, "pres_hse_y"))
689  {
690  gradp_temp[GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp_temp[GpVars::gpx].setVal(0.);
691  gradp_temp[GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp_temp[GpVars::gpy].setVal(0.);
692  gradp_temp[GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp_temp[GpVars::gpz].setVal(0.);
693  }
694 
695  // **********************************************************************************************
696  // These are based on computing gradient of full pressure
697  // **********************************************************************************************
698 
699  if (solverChoice.anelastic[lev] == 0) {
700  if ( (containerHasElement(plot_var_names, "dpdx")) ||
701  (containerHasElement(plot_var_names, "dpdy")) ||
702  (containerHasElement(plot_var_names, "dpdz")) ) {
703  compute_gradp(pressure, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), mapfac[lev],
704  get_eb(lev), gradp_temp, solverChoice);
705  }
706  }
707 
708  if (containerHasElement(plot_var_names, "dpdx"))
709  {
710  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
711  {
712  const Box& bx = mfi.tilebox();
713  const Array4<Real >& derdat = mf[lev].array(mfi);
714  const Array4<Real const>& gpx_arr = (solverChoice.anelastic[lev] == 1) ?
715  gradp[lev][GpVars::gpx].array(mfi) : gradp_temp[GpVars::gpx].array(mfi);
716  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
717  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
718  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
719  });
720  }
721  mf_comp ++;
722  } // dpdx
723  if (containerHasElement(plot_var_names, "dpdy"))
724  {
725  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
726  {
727  const Box& bx = mfi.tilebox();
728  const Array4<Real >& derdat = mf[lev].array(mfi);
729  const Array4<Real const>& gpy_arr = (solverChoice.anelastic[lev] == 1) ?
730  gradp[lev][GpVars::gpy].array(mfi) : gradp_temp[GpVars::gpy].array(mfi);
731  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
732  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
733  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
734  });
735  }
736  mf_comp ++;
737  } // dpdy
738  if (containerHasElement(plot_var_names, "dpdz"))
739  {
740  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
741  {
742  const Box& bx = mfi.tilebox();
743  const Array4<Real >& derdat = mf[lev].array(mfi);
744  const Array4<Real const>& gpz_arr = (solverChoice.anelastic[lev] == 1) ?
745  gradp[lev][GpVars::gpz].array(mfi) : gradp_temp[GpVars::gpz].array(mfi);
746  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
747  derdat(i ,j ,k, mf_comp) = 0.5 * (gpz_arr(i,j,k+1) + gpz_arr(i,j,k));
748  });
749  }
750  mf_comp ++;
751  } // dpdz
752 
753  // **********************************************************************************************
754  // These are based on computing gradient of basestate pressure
755  // **********************************************************************************************
756 
757  if ( (containerHasElement(plot_var_names, "pres_hse_x")) ||
758  (containerHasElement(plot_var_names, "pres_hse_y")) ) {
759  compute_gradp(p_hse, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), mapfac[lev],
760  get_eb(lev), gradp_temp, solverChoice);
761  }
762 
763  if (containerHasElement(plot_var_names, "pres_hse_x"))
764  {
765  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
766  {
767  const Box& bx = mfi.tilebox();
768  const Array4<Real >& derdat = mf[lev].array(mfi);
769  const Array4<Real const>& gpx_arr = gradp_temp[0].array(mfi);
770  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
771  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
772  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
773  });
774  }
775  mf_comp += 1;
776  } // pres_hse_x
777 
778  if (containerHasElement(plot_var_names, "pres_hse_y"))
779  {
780  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
781  {
782  const Box& bx = mfi.tilebox();
783  const Array4<Real >& derdat = mf[lev].array(mfi);
784  const Array4<Real const>& gpy_arr = gradp_temp[1].array(mfi);
785  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
786  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
787  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
788  });
789  }
790  mf_comp += 1;
791  } // pres_hse_y
792 
793  // **********************************************************************************************
794  // Metric terms
795  // **********************************************************************************************
796 
797  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
798  if (containerHasElement(plot_var_names, "z_phys"))
799  {
800  MultiFab::Copy(mf[lev],*z_phys_cc[lev],0,mf_comp,1,0);
801  mf_comp ++;
802  }
803 
804  if (containerHasElement(plot_var_names, "detJ"))
805  {
806  MultiFab::Copy(mf[lev],*detJ_cc[lev],0,mf_comp,1,0);
807  mf_comp ++;
808  }
809  } // use_terrain
810 
811  if (containerHasElement(plot_var_names, "mapfac")) {
812  amrex::Print() << "You are plotting a 3D version of mapfac; we suggest using the 2D plotfile instead" << std::endl;
813 #ifdef _OPENMP
814 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
815 #endif
816  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
817  {
818  const Box& bx = mfi.tilebox();
819  const Array4<Real>& derdat = mf[lev].array(mfi);
820  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
821  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
822  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
823  });
824  }
825  mf_comp ++;
826  }
827 
828  if (containerHasElement(plot_var_names, "lat_m")) {
829  amrex::Print() << "You are plotting a 3D version of lat_m; we suggest using the 2D plotfile instead" << std::endl;
830  if (lat_m[lev]) {
831 #ifdef _OPENMP
832 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
833 #endif
834  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
835  {
836  const Box& bx = mfi.tilebox();
837  const Array4<Real>& derdat = mf[lev].array(mfi);
838  const Array4<Real>& data = lat_m[lev]->array(mfi);
839  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
840  derdat(i, j, k, mf_comp) = data(i,j,0);
841  });
842  }
843  } else {
844  mf[lev].setVal(0.0,mf_comp,1,0);
845  }
846  mf_comp++;
847  } // lat_m
848 
849  if (containerHasElement(plot_var_names, "lon_m")) {
850  amrex::Print() << "You are plotting a 3D version of lon_m; we suggest using the 2D plotfile instead" << std::endl;
851  if (lon_m[lev]) {
852 #ifdef _OPENMP
853 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
854 #endif
855  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
856  {
857  const Box& bx = mfi.tilebox();
858  const Array4<Real>& derdat = mf[lev].array(mfi);
859  const Array4<Real>& data = lon_m[lev]->array(mfi);
860  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
861  derdat(i, j, k, mf_comp) = data(i,j,0);
862  });
863  }
864  } else {
865  mf[lev].setVal(0.0,mf_comp,1,0);
866  }
867  mf_comp++;
868  } // lon_m
869 
871  if (containerHasElement(plot_var_names, "u_t_avg")) {
872 #ifdef _OPENMP
873 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
874 #endif
875  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
876  {
877  const Box& bx = mfi.tilebox();
878  const Array4<Real>& derdat = mf[lev].array(mfi);
879  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
880  const Real norm = t_avg_cnt[lev];
881  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
882  {
883  derdat(i ,j ,k, mf_comp) = data(i,j,k,0) / norm;
884  });
885  }
886  mf_comp ++;
887  }
888 
889  if (containerHasElement(plot_var_names, "v_t_avg")) {
890 #ifdef _OPENMP
891 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
892 #endif
893  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
894  {
895  const Box& bx = mfi.tilebox();
896  const Array4<Real>& derdat = mf[lev].array(mfi);
897  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
898  const Real norm = t_avg_cnt[lev];
899  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
900  {
901  derdat(i ,j ,k, mf_comp) = data(i,j,k,1) / norm;
902  });
903  }
904  mf_comp ++;
905  }
906 
907  if (containerHasElement(plot_var_names, "w_t_avg")) {
908 #ifdef _OPENMP
909 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
910 #endif
911  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
912  {
913  const Box& bx = mfi.tilebox();
914  const Array4<Real>& derdat = mf[lev].array(mfi);
915  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
916  const Real norm = t_avg_cnt[lev];
917  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
918  {
919  derdat(i ,j ,k, mf_comp) = data(i,j,k,2) / norm;
920  });
921  }
922  mf_comp ++;
923  }
924 
925  if (containerHasElement(plot_var_names, "umag_t_avg")) {
926 #ifdef _OPENMP
927 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
928 #endif
929  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
930  {
931  const Box& bx = mfi.tilebox();
932  const Array4<Real>& derdat = mf[lev].array(mfi);
933  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
934  const Real norm = t_avg_cnt[lev];
935  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
936  {
937  derdat(i ,j ,k, mf_comp) = data(i,j,k,3) / norm;
938  });
939  }
940  mf_comp ++;
941  }
942  }
943 
944  if (containerHasElement(plot_var_names, "nut")) {
945  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
946  MultiFab cmf(vars_new[lev][Vars::cons], make_alias, 0, 1); // to provide rho only
947 #ifdef _OPENMP
948 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
949 #endif
950  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
951  {
952  const Box& bx = mfi.tilebox();
953  auto prim = dmf[mfi].array();
954  auto const cons = cmf[mfi].const_array();
955  auto const diff = (*eddyDiffs_lev[lev])[mfi].const_array();
956  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
957  {
958  const Real rho = cons(i, j, k, Rho_comp);
959  const Real Kmv = diff(i, j, k, EddyDiff::Mom_v);
960  prim(i,j,k) = Kmv / rho;
961  });
962  }
963 
964  mf_comp++;
965  }
966 
967  if (containerHasElement(plot_var_names, "Kmv")) {
968  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_v,mf_comp,1,0);
969  mf_comp ++;
970  }
971  if (containerHasElement(plot_var_names, "Kmh")) {
972  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_h,mf_comp,1,0);
973  mf_comp ++;
974  }
975  if (containerHasElement(plot_var_names, "Khv")) {
976  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_v,mf_comp,1,0);
977  mf_comp ++;
978  }
979  if (containerHasElement(plot_var_names, "Khh")) {
980  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_h,mf_comp,1,0);
981  mf_comp ++;
982  }
983  if (containerHasElement(plot_var_names, "Lturb")) {
984  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Turb_lengthscale,mf_comp,1,0);
985  mf_comp ++;
986  }
987  if (containerHasElement(plot_var_names, "walldist")) {
988  MultiFab::Copy(mf[lev],*walldist[lev],0,mf_comp,1,0);
989  mf_comp ++;
990  }
991  if (containerHasElement(plot_var_names, "diss")) {
992  MultiFab::Copy(mf[lev],*SFS_diss_lev[lev],0,mf_comp,1,0);
993  mf_comp ++;
994  }
995 
996  // TODO: The size of the q variables can vary with different
997  // moisture models. Therefore, certain components may
998  // reside at different indices. For example, Kessler is
999  // warm but precipitating. This puts qp at index 3.
1000  // However, SAM is cold and precipitating so qp is index 4.
1001  // Need to built an external enum struct or a better pathway.
1002 
1003  // NOTE: Protect against accessing non-existent data
1004  if (use_moisture) {
1005  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
1006 
1007  // Moist density
1008  if(containerHasElement(plot_var_names, "moist_density"))
1009  {
1010  int n_start = RhoQ1_comp; // qv
1011  int n_end = RhoQ2_comp; // qc
1012  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1013  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1014  for (int n_comp(n_start); n_comp <= n_end; ++n_comp) {
1015  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1016  }
1017  mf_comp += 1;
1018  }
1019 
1020  if(containerHasElement(plot_var_names, "qv") && (n_qstate_moist >= 1))
1021  {
1022  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ1_comp, mf_comp, 1, 0);
1023  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1024  mf_comp += 1;
1025  }
1026 
1027  if(containerHasElement(plot_var_names, "qc") && (n_qstate_moist >= 2))
1028  {
1029  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ2_comp, mf_comp, 1, 0);
1030  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1031  mf_comp += 1;
1032  }
1033 
1034  if(containerHasElement(plot_var_names, "qi") && (n_qstate_moist >= 4))
1035  {
1036  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ3_comp, mf_comp, 1, 0);
1037  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1038  mf_comp += 1;
1039  }
1040 
1041  if(containerHasElement(plot_var_names, "qrain") && (n_qstate_moist >= 3))
1042  {
1043  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1044  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start , mf_comp, 1, 0);
1045  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1046  mf_comp += 1;
1047  }
1048 
1049  if(containerHasElement(plot_var_names, "qsnow") && (n_qstate_moist >= 5))
1050  {
1051  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ5_comp, mf_comp, 1, 0);
1052  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1053  mf_comp += 1;
1054  }
1055 
1056  if(containerHasElement(plot_var_names, "qgraup") && (n_qstate_moist >= 6))
1057  {
1058  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ6_comp, mf_comp, 1, 0);
1059  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1060  mf_comp += 1;
1061  }
1062 
1063  // Precipitating + non-precipitating components
1064  //--------------------------------------------------------------------------
1065  if(containerHasElement(plot_var_names, "qt"))
1066  {
1067  int n_start = RhoQ1_comp; // qv
1068  int n_end = n_start + n_qstate_moist;
1069  MultiFab::Copy(mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1070  for (int n_comp(n_start+1); n_comp < n_end; ++n_comp) {
1071  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1072  }
1073  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1074  mf_comp += 1;
1075  }
1076 
1077  // Non-precipitating components
1078  //--------------------------------------------------------------------------
1079  if (containerHasElement(plot_var_names, "qn"))
1080  {
1081  int n_start = RhoQ1_comp; // qv
1082  int n_end = RhoQ2_comp; // qc
1083  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1084  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1085  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1086  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1087  }
1088  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1089  mf_comp += 1;
1090  }
1091 
1092  // Precipitating components
1093  //--------------------------------------------------------------------------
1094  if(containerHasElement(plot_var_names, "qp") && (n_qstate_moist >= 3))
1095  {
1096  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1097  int n_end = ncomp_cons - 1;
1098  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1099  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1100  MultiFab::Add( mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1101  }
1102  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1103  mf_comp += 1;
1104  }
1105 
1106  if (containerHasElement(plot_var_names, "qsat"))
1107  {
1108 #ifdef _OPENMP
1109 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1110 #endif
1111  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1112  {
1113  const Box& bx = mfi.tilebox();
1114  const Array4<Real>& derdat = mf[lev].array(mfi);
1115  const Array4<Real const>& p_arr = pressure.array(mfi);
1116  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1117  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1118  {
1119  Real qv = S_arr(i,j,k,RhoQ1_comp) / S_arr(i,j,k,Rho_comp);
1120  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
1121  Real p = p_arr(i,j,k) * Real(0.01);
1122  erf_qsatw(T, p, derdat(i,j,k,mf_comp));
1123  });
1124  }
1125  mf_comp ++;
1126  }
1127 
1128  if ( (solverChoice.moisture_type == MoistureType::Kessler) ||
1129  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
1130  (solverChoice.moisture_type == MoistureType::SAM_NoIce) )
1131  {
1132  int offset = (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ? 5 : 0;
1133  if (containerHasElement(plot_var_names, "rain_accum"))
1134  {
1135  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1136  mf_comp += 1;
1137  }
1138  }
1139  else if ( (solverChoice.moisture_type == MoistureType::SAM) ||
1140  (solverChoice.moisture_type == MoistureType::Morrison) )
1141  {
1142  int offset = (solverChoice.moisture_type == MoistureType::Morrison) ? 5 : 0;
1143  if (containerHasElement(plot_var_names, "rain_accum"))
1144  {
1145  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1146  mf_comp += 1;
1147  }
1148  if (containerHasElement(plot_var_names, "snow_accum"))
1149  {
1150  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+1]),0,mf_comp,1,0);
1151  mf_comp += 1;
1152  }
1153  if (containerHasElement(plot_var_names, "graup_accum"))
1154  {
1155  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+2]),0,mf_comp,1,0);
1156  mf_comp += 1;
1157  }
1158  }
1159 
1160  if (containerHasElement(plot_var_names, "reflectivity")) {
1161  if (solverChoice.moisture_type == MoistureType::Morrison) {
1162 
1163  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1164  const Box& bx = mfi.tilebox();
1165  const Array4<Real>& derdat = mf[lev].array(mfi);
1166  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1167  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1168 
1169  Real rho = S_arr(i,j,k,Rho_comp);
1170  Real qv = std::max(0.0,S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp));
1171  Real qpr = std::max(0.0,S_arr(i,j,k,RhoQ4_comp)/S_arr(i,j,k,Rho_comp));
1172  Real qps = std::max(0.0,S_arr(i,j,k,RhoQ5_comp)/S_arr(i,j,k,Rho_comp));
1173  Real qpg = std::max(0.0,S_arr(i,j,k,RhoQ6_comp)/S_arr(i,j,k,Rho_comp));
1174 
1175  Real temp = getTgivenRandRTh(S_arr(i,j,k,Rho_comp),
1176  S_arr(i,j,k,RhoTheta_comp),
1177  qv);
1178  derdat(i, j, k, mf_comp) = compute_max_reflectivity_dbz(rho, temp, qpr, qps, qpg,
1179  1, 1, 1, 1) ;
1180  });
1181  }
1182  mf_comp ++;
1183  }
1184  }
1185 
1186  if (solverChoice.moisture_type == MoistureType::Morrison) {
1187  if (containerHasElement(plot_var_names, "max_reflectivity")) {
1188  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1189  const Box& bx = mfi.tilebox();
1190 
1191  const Array4<Real>& derdat = mf[lev].array(mfi);
1192  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1193 
1194  // collapse to i,j box (ignore vertical for now)
1195  Box b2d = bx;
1196  b2d.setSmall(2,0);
1197  b2d.setBig(2,0);
1198 
1199  ParallelFor(b2d, [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept {
1200 
1201  Real max_dbz = -1.0e30;
1202 
1203  // find max reflectivity over k
1204  for (int k = bx.smallEnd(2); k <= bx.bigEnd(2); ++k) {
1205  Real rho = S_arr(i,j,k,Rho_comp);
1206  Real qv = std::max(0.0, S_arr(i,j,k,RhoQ1_comp)/rho);
1207  Real qpr = std::max(0.0, S_arr(i,j,k,RhoQ4_comp)/rho);
1208  Real qps = std::max(0.0, S_arr(i,j,k,RhoQ5_comp)/rho);
1209  Real qpg = std::max(0.0, S_arr(i,j,k,RhoQ6_comp)/rho);
1210 
1211  Real temp = getTgivenRandRTh(rho, S_arr(i,j,k,RhoTheta_comp), qv);
1212 
1213  Real dbz = compute_max_reflectivity_dbz(rho, temp, qpr, qps, qpg,
1214  1, 1, 1, 1);
1215  max_dbz = amrex::max(max_dbz, dbz);
1216  }
1217 
1218  // store max_dbz into *all* levels for this (i,j)
1219  for (int k = bx.smallEnd(2); k <= bx.bigEnd(2); ++k) {
1220  derdat(i, j, k, mf_comp) = max_dbz;
1221  }
1222  });
1223  }
1224  mf_comp++;
1225  }
1226  }
1227  } // use_moisture
1228 
1229  if (containerHasElement(plot_var_names, "terrain_IB_mask"))
1230  {
1231  MultiFab* terrain_blank = terrain_blanking[lev].get();
1232  MultiFab::Copy(mf[lev],*terrain_blank,0,mf_comp,1,0);
1233  mf_comp ++;
1234  }
1235 
1236  if (containerHasElement(plot_var_names, "volfrac")) {
1237  if ( solverChoice.terrain_type == TerrainType::EB ||
1238  solverChoice.terrain_type == TerrainType::ImmersedForcing)
1239  {
1240  MultiFab::Copy(mf[lev], EBFactory(lev).getVolFrac(), 0, mf_comp, 1, 0);
1241  } else {
1242  mf[lev].setVal(1.0, mf_comp, 1, 0);
1243  }
1244  mf_comp += 1;
1245  }
1246 
1247 #ifdef ERF_COMPUTE_ERROR
1248  // Next, check for error in velocities and if desired, output them -- note we output none or all, not just some
1249  if (containerHasElement(plot_var_names, "xvel_err") ||
1250  containerHasElement(plot_var_names, "yvel_err") ||
1251  containerHasElement(plot_var_names, "zvel_err"))
1252  {
1253  //
1254  // Moving terrain ANALYTICAL
1255  //
1256  Real H = geom[lev].ProbHi()[2];
1257  Real Ampl = 0.16;
1258  Real wavelength = 100.;
1259  Real kp = 2. * PI / wavelength;
1260  Real g = CONST_GRAV;
1261  Real omega = std::sqrt(g * kp);
1262  Real omega_t = omega * t_new[lev];
1263 
1264  const auto dx = geom[lev].CellSizeArray();
1265 
1266 #ifdef _OPENMP
1267 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1268 #endif
1269  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1270  {
1271  const Box& bx = mfi.validbox();
1272  Box xbx(bx); xbx.surroundingNodes(0);
1273  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1274  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1275 
1276  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1277 
1278  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1279  {
1280  Real x = i * dx[0];
1281  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1282 
1283  Real z_base = Ampl * std::sin(kp * x - omega_t);
1284  z -= z_base;
1285 
1286  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1287 
1288  xvel_arr(i,j,k) -= -Ampl * omega * fac * std::sin(kp * x - omega_t);
1289  });
1290 
1291  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1292  {
1293  Real x = (i + 0.5) * dx[0];
1294  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1295 
1296  Real z_base = Ampl * std::sin(kp * x - omega_t);
1297  z -= z_base;
1298 
1299  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1300 
1301  zvel_arr(i,j,k) -= Ampl * omega * fac * std::cos(kp * x - omega_t);
1302  });
1303  }
1304 
1305  MultiFab temp_mf(mf[lev].boxArray(), mf[lev].DistributionMap(), AMREX_SPACEDIM, 0);
1306  average_face_to_cellcenter(temp_mf,0,
1307  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
1308 
1309  if (containerHasElement(plot_var_names, "xvel_err")) {
1310  MultiFab::Copy(mf[lev],temp_mf,0,mf_comp,1,0);
1311  mf_comp += 1;
1312  }
1313  if (containerHasElement(plot_var_names, "yvel_err")) {
1314  MultiFab::Copy(mf[lev],temp_mf,1,mf_comp,1,0);
1315  mf_comp += 1;
1316  }
1317  if (containerHasElement(plot_var_names, "zvel_err")) {
1318  MultiFab::Copy(mf[lev],temp_mf,2,mf_comp,1,0);
1319  mf_comp += 1;
1320  }
1321 
1322  // Now restore the velocities to what they were
1323 #ifdef _OPENMP
1324 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1325 #endif
1326  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1327  {
1328  const Box& bx = mfi.validbox();
1329  Box xbx(bx); xbx.surroundingNodes(0);
1330 
1331  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1332  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1333 
1334  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1335 
1336  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1337  {
1338  Real x = i * dx[0];
1339  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1340  Real z_base = Ampl * std::sin(kp * x - omega_t);
1341 
1342  z -= z_base;
1343 
1344  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1345  xvel_arr(i,j,k) += -Ampl * omega * fac * std::sin(kp * x - omega_t);
1346  });
1347  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1348  {
1349  Real x = (i + 0.5) * dx[0];
1350  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1351  Real z_base = Ampl * std::sin(kp * x - omega_t);
1352 
1353  z -= z_base;
1354  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1355 
1356  zvel_arr(i,j,k) += Ampl * omega * fac * std::cos(kp * x - omega_t);
1357  });
1358  }
1359  } // end xvel_err, yvel_err, zvel_err
1360 
1361  if (containerHasElement(plot_var_names, "pp_err"))
1362  {
1363  // Moving terrain ANALYTICAL
1364 #ifdef _OPENMP
1365 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1366 #endif
1367  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1368  {
1369  const Box& bx = mfi.tilebox();
1370  const Array4<Real>& derdat = mf[lev].array(mfi);
1371  const Array4<Real const>& p0_arr = p_hse.const_array(mfi);
1372  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1373 
1374  const auto dx = geom[lev].CellSizeArray();
1375  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1376  const Array4<Real const>& p_arr = pressure.const_array(mfi);
1377  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
1378 
1379  Real H = geom[lev].ProbHi()[2];
1380  Real Ampl = 0.16;
1381  Real wavelength = 100.;
1382  Real kp = 2. * PI / wavelength;
1383  Real g = CONST_GRAV;
1384  Real omega = std::sqrt(g * kp);
1385  Real omega_t = omega * t_new[lev];
1386 
1387  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1388  {
1389  derdat(i, j, k, mf_comp) = p_arr(i,j,k) - p0_arr(i,j,k);
1390 
1391  Real rho_hse = r0_arr(i,j,k);
1392 
1393  Real x = (i + 0.5) * dx[0];
1394  Real z = 0.125 * ( z_nd(i,j,k ) + z_nd(i+1,j,k ) + z_nd(i,j+1,k ) + z_nd(i+1,j+1,k )
1395  +z_nd(i,j,k+1) + z_nd(i+1,j,k+1) + z_nd(i,j+1,k+1) + z_nd(i+1,j+1,k+1) );
1396  Real z_base = Ampl * std::sin(kp * x - omega_t);
1397 
1398  z -= z_base;
1399  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1400  Real pprime_exact = -(Ampl * omega * omega / kp) * fac *
1401  std::sin(kp * x - omega_t) * r0_arr(i,j,k);
1402 
1403  derdat(i,j,k,mf_comp) -= pprime_exact;
1404  });
1405  }
1406  mf_comp += 1;
1407  }
1408 #endif
1409 
1410  if (solverChoice.rad_type != RadiationType::None) {
1411  if (containerHasElement(plot_var_names, "qsrc_sw")) {
1412  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 0, mf_comp, 1, 0);
1413  mf_comp += 1;
1414  }
1415  if (containerHasElement(plot_var_names, "qsrc_lw")) {
1416  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 1, mf_comp, 1, 0);
1417  mf_comp += 1;
1418  }
1419  }
1420 
1421  // *****************************************************************************************
1422  // End of derived variables corresponding to "derived_names" in ERF.H
1423  //
1424  // Particles and microphysics can provide additional outputs, which are handled below.
1425  // *****************************************************************************************
1426 
1427 #ifdef ERF_USE_PARTICLES
1428  const auto& particles_namelist( particleData.getNames() );
1429 
1430  if (containerHasElement(plot_var_names, "tracer_particles_count")) {
1431  if (particles_namelist.size() == 0) {
1432  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1433  temp_dat.setVal(0);
1434  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1435  mf_comp += 1;
1436  } else {
1437  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++) {
1438  if (containerHasElement(plot_var_names, std::string(particles_namelist[i]+"_count"))) {
1439  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1440  temp_dat.setVal(0);
1441  if (particleData.HasSpecies(particles_namelist[i])) {
1442  particleData[particles_namelist[i]]->Increment(temp_dat, lev);
1443  }
1444  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1445  mf_comp += 1;
1446  }
1447  }
1448  }
1449  }
1450 
1451  Vector<std::string> particle_mesh_plot_names(0);
1452  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
1453 
1454  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
1455  std::string plot_var_name(particle_mesh_plot_names[i]);
1456  if (containerHasElement(plot_var_names, plot_var_name) ) {
1457  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1458  temp_dat.setVal(0);
1459  particleData.GetMeshPlotVar(plot_var_name, temp_dat, lev);
1460  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1461  mf_comp += 1;
1462  }
1463  }
1464 #endif
1465 
1466  {
1467  Vector<std::string> microphysics_plot_names;
1468  micro->GetPlotVarNames(microphysics_plot_names);
1469  for (auto& plot_name : microphysics_plot_names) {
1470  if (containerHasElement(plot_var_names, plot_name)) {
1471  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1472  temp_dat.setVal(0);
1473  micro->GetPlotVar(plot_name, temp_dat, lev);
1474  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1475  mf_comp += 1;
1476  }
1477  }
1478  }
1479 
1480 
1481  }
1482 
1483  if (solverChoice.terrain_type == TerrainType::EB)
1484  {
1485  for (int lev = 0; lev <= finest_level; ++lev) {
1486  EB_set_covered(mf[lev], 0.0);
1487  }
1488  }
1489 
1490  // Fill terrain distortion MF (nu_nd)
1491  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1492  for (int lev(0); lev <= finest_level; ++lev) {
1493  MultiFab::Copy(mf_nd[lev],*z_phys_nd[lev],0,2,1,0);
1494  Real dz = Geom()[lev].CellSizeArray()[2];
1495  for (MFIter mfi(mf_nd[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1496  const Box& bx = mfi.tilebox();
1497  Array4<Real> mf_arr = mf_nd[lev].array(mfi);
1498  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1499  {
1500  mf_arr(i,j,k,2) -= k * dz;
1501  });
1502  }
1503  }
1504  }
1505 
1506  std::string plotfilename;
1507  std::string plotfilenameU;
1508  std::string plotfilenameV;
1509  std::string plotfilenameW;
1510 
1511  if (which == 1) {
1513  const std::string dt_format = "%Y-%m-%d_%H:%M:%S"; // ISO 8601 standard
1514  plotfilename = plot3d_file_1+"_"+getTimestamp(start_time+t_new[0], dt_format,false);
1515  } else {
1516  plotfilename = Concatenate(plot3d_file_1, istep[0], file_name_digits);
1517  }
1518  plotfilenameU = Concatenate(plot3d_file_1+"U", istep[0], file_name_digits);
1519  plotfilenameV = Concatenate(plot3d_file_1+"V", istep[0], file_name_digits);
1520  plotfilenameW = Concatenate(plot3d_file_1+"W", istep[0], file_name_digits);
1521  } else if (which == 2) {
1523  const std::string dt_format = "%Y-%m-%d_%H:%M:%S"; // ISO 8601 standard
1524  plotfilename = plot3d_file_2+"_"+getTimestamp(start_time+t_new[0], dt_format,false);
1525  } else {
1526  plotfilename = Concatenate(plot3d_file_2, istep[0], file_name_digits);
1527  }
1528  plotfilenameU = Concatenate(plot3d_file_2+"U", istep[0], file_name_digits);
1529  plotfilenameV = Concatenate(plot3d_file_2+"V", istep[0], file_name_digits);
1530  plotfilenameW = Concatenate(plot3d_file_2+"W", istep[0], file_name_digits);
1531  }
1532 
1533  // LSM writes it's own data
1534  if (which==1 && plot_lsm) {
1535  lsm.Plot_Lsm_Data(t_new[0], istep, refRatio());
1536  }
1537 
1538 #ifdef ERF_USE_RRTMGP
1539  /*
1540  // write additional RRTMGP data
1541  // TODO: currently single level only
1542  if (which==1 && plot_rad) {
1543  rad[0]->writePlotfile(plot_file_1, t_new[0], istep[0]);
1544  }
1545  */
1546 #endif
1547 
1548  // Single level
1549  if (finest_level == 0)
1550  {
1551  if (plotfile_type == PlotFileType::Amrex)
1552  {
1553  Print() << "Writing native 3D plotfile " << plotfilename << "\n";
1554  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1555  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1556  GetVecOfConstPtrs(mf),
1557  GetVecOfConstPtrs(mf_nd),
1558  varnames,
1559  Geom(), t_new[0], istep, refRatio());
1560  } else {
1561  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1562  GetVecOfConstPtrs(mf),
1563  varnames,
1564  Geom(), t_new[0], istep, refRatio());
1565  }
1566  writeJobInfo(plotfilename);
1567 
1568  if (m_plot_face_vels) {
1569  Print() << "Writing face velocities" << std::endl;
1570  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1571  GetVecOfConstPtrs(mf_u),
1572  {"x_velocity_stag"},
1573  Geom(), t_new[0], istep, refRatio());
1574  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1575  GetVecOfConstPtrs(mf_v),
1576  {"y_velocity_stag"},
1577  Geom(), t_new[0], istep, refRatio());
1578  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1579  GetVecOfConstPtrs(mf_w),
1580  {"z_velocity_stag"},
1581  Geom(), t_new[0], istep, refRatio());
1582  }
1583 
1584 #ifdef ERF_USE_PARTICLES
1585  particleData.writePlotFile(plotfilename);
1586 #endif
1587 #ifdef ERF_USE_NETCDF
1588  } else if (plotfile_type == PlotFileType::Netcdf) {
1589  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1590  int lev = 0;
1591  int l_which = 0;
1592  const Real* p_lo = geom[lev].ProbLo();
1593  const Real* p_hi = geom[lev].ProbHi();
1594  const auto dx = geom[lev].CellSize();
1595  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1596  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1597  geom[lev].Domain(), t_new[0], start_bdy_time);
1598 #endif
1599  } else {
1600  // Here we assume the plotfile_type is PlotFileType::None
1601  Print() << "Writing no 3D plotfile since plotfile_type is none" << std::endl;
1602  }
1603 
1604  } else { // Multilevel
1605 
1606  if (plotfile_type == PlotFileType::Amrex) {
1607 
1608  int lev0 = 0;
1609  int desired_ratio = std::max(std::max(ref_ratio[lev0][0],ref_ratio[lev0][1]),ref_ratio[lev0][2]);
1610  bool any_ratio_one = ( ( (ref_ratio[lev0][0] == 1) || (ref_ratio[lev0][1] == 1) ) ||
1611  (ref_ratio[lev0][2] == 1) );
1612  for (int lev = 1; lev < finest_level; lev++) {
1613  any_ratio_one = any_ratio_one ||
1614  ( ( (ref_ratio[lev][0] == 1) || (ref_ratio[lev][1] == 1) ) ||
1615  (ref_ratio[lev][2] == 1) );
1616  }
1617 
1618  if (any_ratio_one && m_expand_plotvars_to_unif_rr)
1619  {
1620  Vector<IntVect> r2(finest_level);
1621  Vector<Geometry> g2(finest_level+1);
1622  Vector<MultiFab> mf2(finest_level+1);
1623 
1624  mf2[0].define(grids[0], dmap[0], ncomp_mf, 0);
1625 
1626  // Copy level 0 as is
1627  MultiFab::Copy(mf2[0],mf[0],0,0,mf[0].nComp(),0);
1628 
1629  // Define a new multi-level array of Geometry's so that we pass the new "domain" at lev > 0
1630  Array<int,AMREX_SPACEDIM> periodicity =
1631  {Geom()[lev0].isPeriodic(0),Geom()[lev0].isPeriodic(1),Geom()[lev0].isPeriodic(2)};
1632  g2[lev0].define(Geom()[lev0].Domain(),&(Geom()[lev0].ProbDomain()),0,periodicity.data());
1633 
1634  r2[0] = IntVect(desired_ratio/ref_ratio[lev0][0],
1635  desired_ratio/ref_ratio[lev0][1],
1636  desired_ratio/ref_ratio[lev0][2]);
1637 
1638  for (int lev = 1; lev <= finest_level; ++lev) {
1639  if (lev > 1) {
1640  r2[lev-1][0] = r2[lev-2][0] * desired_ratio / ref_ratio[lev-1][0];
1641  r2[lev-1][1] = r2[lev-2][1] * desired_ratio / ref_ratio[lev-1][1];
1642  r2[lev-1][2] = r2[lev-2][2] * desired_ratio / ref_ratio[lev-1][2];
1643  }
1644 
1645  mf2[lev].define(refine(grids[lev],r2[lev-1]), dmap[lev], ncomp_mf, 0);
1646 
1647  // Set the new problem domain
1648  Box d2(Geom()[lev].Domain());
1649  d2.refine(r2[lev-1]);
1650 
1651  g2[lev].define(d2,&(Geom()[lev].ProbDomain()),0,periodicity.data());
1652  }
1653 
1654  //
1655  // We need to make a temporary that is the size of ncomp_mf
1656  // in order to not get an out of bounds error
1657  // even though the values will not be used
1658  //
1659  Vector<BCRec> temp_domain_bcs_type;
1660  temp_domain_bcs_type.resize(ncomp_mf);
1661 
1662  //
1663  // Do piecewise constant interpolation of mf into mf2
1664  //
1665  for (int lev = 1; lev <= finest_level; ++lev) {
1666  Interpolater* mapper_c = &pc_interp;
1667  InterpFromCoarseLevel(mf2[lev], t_new[lev], mf[lev],
1668  0, 0, ncomp_mf,
1669  geom[lev], g2[lev],
1671  r2[lev-1], mapper_c, temp_domain_bcs_type, 0);
1672  }
1673 
1674  // Define an effective ref_ratio which is isotropic to be passed into WriteMultiLevelPlotfile
1675  Vector<IntVect> rr(finest_level);
1676  for (int lev = 0; lev < finest_level; ++lev) {
1677  rr[lev] = IntVect(desired_ratio);
1678  }
1679 
1680  Print() << "Writing 3D plotfile " << plotfilename << "\n";
1681  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1682  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1683  GetVecOfConstPtrs(mf2),
1684  GetVecOfConstPtrs(mf_nd),
1685  varnames,
1686  g2, t_new[0], istep, rr);
1687  } else {
1688  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1689  GetVecOfConstPtrs(mf2), varnames,
1690  g2, t_new[0], istep, rr);
1691  }
1692 
1693  } else {
1694  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1695  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1696  GetVecOfConstPtrs(mf),
1697  GetVecOfConstPtrs(mf_nd),
1698  varnames,
1699  geom, t_new[0], istep, ref_ratio);
1700  } else {
1701  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1702  GetVecOfConstPtrs(mf), varnames,
1703  geom, t_new[0], istep, ref_ratio);
1704  }
1705  if (m_plot_face_vels) {
1706  Print() << "Writing face velocities" << std::endl;
1707  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1708  GetVecOfConstPtrs(mf_u),
1709  {"x_velocity_stag"},
1710  geom, t_new[0], istep, ref_ratio);
1711  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1712  GetVecOfConstPtrs(mf_v),
1713  {"y_velocity_stag"},
1714  geom, t_new[0], istep, ref_ratio);
1715  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1716  GetVecOfConstPtrs(mf_w),
1717  {"z_velocity_stag"},
1718  geom, t_new[0], istep, ref_ratio);
1719  }
1720  } // ref_ratio test
1721 
1722  writeJobInfo(plotfilename);
1723 
1724 #ifdef ERF_USE_PARTICLES
1725  particleData.writePlotFile(plotfilename);
1726 #endif
1727 
1728 #ifdef ERF_USE_NETCDF
1729  } else if (plotfile_type == PlotFileType::Netcdf) {
1730  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1731  for (int lev = 0; lev <= finest_level; ++lev) {
1732  for (int which_box = 0; which_box < num_boxes_at_level[lev]; which_box++) {
1733  Box bounding_region = (lev == 0) ? geom[lev].Domain() : boxes_at_level[lev][which_box];
1734  const Real* p_lo = geom[lev].ProbLo();
1735  const Real* p_hi = geom[lev].ProbHi();
1736  const auto dx = geom[lev].CellSizeArray();
1737  writeNCPlotFile(lev, which_box, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1738  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1739  bounding_region, t_new[0], start_bdy_time);
1740  }
1741  }
1742 #endif
1743  }
1744  } // end multi-level
1745 
1746  if (verbose > 0)
1747  {
1748  auto dPlotTime = amrex::second() - dPlotTime0;
1749  ParallelDescriptor::ReduceRealMax(dPlotTime,ParallelDescriptor::IOProcessorNumber());
1750  amrex::Print() << "3DPlotfile write time = " << dPlotTime << " seconds." << '\n';
1751  }
1752 }
constexpr amrex::Real PI
Definition: ERF_Constants.H:6
constexpr amrex::Real Cp_l
Definition: ERF_Constants.H:14
#define RhoQ4_comp
Definition: ERF_IndexDefines.H:45
void compute_gradp(const MultiFab &p, const Geometry &geom, const MultiFab &z_phys_nd, const MultiFab &z_phys_cc, Vector< std::unique_ptr< MultiFab >> &mapfac, const eb_ &ebfact, Vector< MultiFab > &gradp, const SolverChoice &solverChoice)
Definition: ERF_MakeGradP.cpp:81
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real erf_esatw(amrex::Real t)
Definition: ERF_MicrophysicsUtils.H:68
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void erf_qsatw(amrex::Real t, amrex::Real p, amrex::Real &qsatw)
Definition: ERF_MicrophysicsUtils.H:166
PhysBCFunctNoOp null_bc_for_fill
Definition: ERF_Plotfile.cpp:9
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real compute_max_reflectivity_dbz(amrex::Real rho_air, amrex::Real tmk, amrex::Real qra, amrex::Real qsn, amrex::Real qgr, int in0r, int in0s, int in0g, int iliqskin)
Definition: ERF_StormDiagnostics.H:13
void WriteMultiLevelPlotfileWithTerrain(const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
Definition: ERF_Plotfile.cpp:1755
void Plot_Lsm_Data(amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &ref_ratio)
Definition: ERF_LandSurface.H:119
@ Turb_lengthscale
Definition: ERF_IndexDefines.H:180
@ Mom_h
Definition: ERF_IndexDefines.H:170
@ Theta_h
Definition: ERF_IndexDefines.H:171
@ qpg
Definition: ERF_Morrison.H:41
@ qps
Definition: ERF_Morrison.H:40
@ qpr
Definition: ERF_Morrison.H:39
void erf_dervortx(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:200
void erf_dervorty(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:228
void erf_dernull(const Box &, FArrayBox &, int, int, const FArrayBox &, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:39
void erf_dertemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:91
void erf_derKE(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:186
void erf_dermoisttemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:113
void erf_dersoundspeed(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:58
real(c_double), parameter g
Definition: ERF_module_model_constants.F90:19
Here is the call graph for this function:

◆ write_1D_profiles()

void ERF::write_1D_profiles ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Parameters
timeCurrent time
18 {
19  BL_PROFILE("ERF::write_1D_profiles()");
20 
21  if (NumDataLogs() > 1)
22  {
23  // Define the 1d arrays we will need
24  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
25  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
26  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
27  Gpu::HostVector<Real> h_avg_wthv;
28  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
29  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
30  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
31  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
32  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
33  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
34 
35  if (NumDataLogs() > 1) {
37  h_avg_u, h_avg_v, h_avg_w,
38  h_avg_rho, h_avg_th, h_avg_ksgs,
39  h_avg_Kmv, h_avg_Khv,
40  h_avg_qv, h_avg_qc, h_avg_qr,
41  h_avg_wqv, h_avg_wqc, h_avg_wqr,
42  h_avg_qi, h_avg_qs, h_avg_qg,
43  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
44  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
45  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
46  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
47  h_avg_wthv);
48  }
49 
50  if (NumDataLogs() > 3 && time > 0.) {
51  derive_stress_profiles(h_avg_tau11, h_avg_tau12, h_avg_tau13,
52  h_avg_tau22, h_avg_tau23, h_avg_tau33,
53  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
54  h_avg_sgsdiss);
55  }
56 
57  int hu_size = h_avg_u.size();
58 
59  auto const& dx = geom[0].CellSizeArray();
60  if (ParallelDescriptor::IOProcessor()) {
61  if (NumDataLogs() > 1) {
62  std::ostream& data_log1 = DataLog(1);
63  if (data_log1.good()) {
64  // Write the quantities at this time
65  for (int k = 0; k < hu_size; k++) {
66  Real z;
67  if (zlevels_stag[0].size() > 1) {
68  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
69  } else {
70  z = (k + 0.5)* dx[2];
71  }
72  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
73  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
74  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
75  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
76  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
77  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
78  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
79  << std::endl;
80  } // loop over z
81  } // if good
82  } // NumDataLogs
83 
84  if (NumDataLogs() > 2) {
85  std::ostream& data_log2 = DataLog(2);
86  if (data_log2.good()) {
87  // Write the perturbational quantities at this time
88  for (int k = 0; k < hu_size; k++) {
89  Real z;
90  if (zlevels_stag[0].size() > 1) {
91  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
92  } else {
93  z = (k + 0.5)* dx[2];
94  }
95  Real thv = h_avg_th[k] * (1 + 0.61*h_avg_qv[k] - h_avg_qc[k] - h_avg_qr[k]);
96  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
97  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
98  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " "
99  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " "
100  << h_avg_uw[k] - h_avg_u[k]*h_avg_w[k] << " "
101  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " "
102  << h_avg_vw[k] - h_avg_v[k]*h_avg_w[k] << " "
103  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " "
104  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " "
105  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " "
106  << h_avg_wth[k] - h_avg_w[k]*h_avg_th[k] << " "
107  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " "
108  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
109  // - <u_i u_i> * <u_j>
110  // - 2*<u_i> * <u_i u_j>
111  // + 2*<u_i>*<u_i> * <u_j>
112  << h_avg_uiuiu[k]
113  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_u[k]
114  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + h_avg_w[k]*h_avg_uw[k])
115  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_u[k]
116  << " " // (u'_i u'_i)u'
117  << h_avg_uiuiv[k]
118  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_v[k]
119  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + h_avg_w[k]*h_avg_vw[k])
120  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_v[k]
121  << " " // (u'_i u'_i)v'
122  << h_avg_uiuiw[k]
123  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_w[k]
124  - 2*(h_avg_u[k]*h_avg_uw[k] + h_avg_v[k]*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
125  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
126  << " " // (u'_i u'_i)w'
127  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " "
128  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " "
129  << h_avg_pw[k] - h_avg_p[k]*h_avg_w[k] << " "
130  << h_avg_wqv[k] - h_avg_qv[k]*h_avg_w[k] << " "
131  << h_avg_wqc[k] - h_avg_qc[k]*h_avg_w[k] << " "
132  << h_avg_wqr[k] - h_avg_qr[k]*h_avg_w[k] << " "
133  << h_avg_wthv[k] - h_avg_w[k]*thv
134  << std::endl;
135  } // loop over z
136  } // if good
137  } // NumDataLogs
138 
139  if (NumDataLogs() > 3 && time > 0.) {
140  std::ostream& data_log3 = DataLog(3);
141  if (data_log3.good()) {
142  // Write the average stresses
143  for (int k = 0; k < hu_size; k++) {
144  Real z;
145  if (zlevels_stag[0].size() > 1) {
146  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
147  } else {
148  z = (k + 0.5)* dx[2];
149  }
150  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
151  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
152  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
153  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
154  << h_avg_sgshfx[k] << " "
155  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
156  << h_avg_sgsdiss[k]
157  << std::endl;
158  } // loop over z
159  } // if good
160  } // if (NumDataLogs() > 3)
161  } // if IOProcessor
162  } // if (NumDataLogs() > 1)
163 }
void derive_diag_profiles(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles.cpp:190
void derive_stress_profiles(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles.cpp:475

◆ write_1D_profiles_stag()

void ERF::write_1D_profiles_stag ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Quantities are output at their native grid locations. Therefore, w and associated flux quantities <(•)'w'>, tau13, and tau23 (where '•' includes u, v, p, theta, ...) will be output at staggered heights (i.e., coincident with z faces) rather than cell-center heights to avoid performing additional averaging. Unstaggered (i.e., cell-centered) quantities are output alongside staggered quantities at the lower cell faces in the log file; these quantities will have a zero value at the big end, corresponding to k=Nz+1.

The structure of file should follow ERF_Write1DProfiles.cpp

Parameters
timeCurrent time
26 {
27  BL_PROFILE("ERF::write_1D_profiles()");
28 
29  if (NumDataLogs() > 1)
30  {
31  // Define the 1d arrays we will need
32  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
33  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
34  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
35  Gpu::HostVector<Real> h_avg_wthv;
36  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
37  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
38  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
39  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
40  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
41  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
42 
43  if (NumDataLogs() > 1) {
45  h_avg_u, h_avg_v, h_avg_w,
46  h_avg_rho, h_avg_th, h_avg_ksgs,
47  h_avg_Kmv, h_avg_Khv,
48  h_avg_qv, h_avg_qc, h_avg_qr,
49  h_avg_wqv, h_avg_wqc, h_avg_wqr,
50  h_avg_qi, h_avg_qs, h_avg_qg,
51  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
52  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
53  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
54  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
55  h_avg_wthv);
56  }
57 
58  if (NumDataLogs() > 3 && time > 0.) {
59  derive_stress_profiles_stag(h_avg_tau11, h_avg_tau12, h_avg_tau13,
60  h_avg_tau22, h_avg_tau23, h_avg_tau33,
61  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
62  h_avg_sgsdiss);
63  }
64 
65  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
66 
67  auto const& dx = geom[0].CellSizeArray();
68  if (ParallelDescriptor::IOProcessor()) {
69  if (NumDataLogs() > 1) {
70  std::ostream& data_log1 = DataLog(1);
71  if (data_log1.good()) {
72  // Write the quantities at this time
73  for (int k = 0; k < unstag_size; k++) {
74  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
75  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
76  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
77  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
78  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
79  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
80  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
81  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
82  << std::endl;
83  } // loop over z
84  // Write top face values
85  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
86  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
87  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
88  << 0 << " " << 0 << " " << h_avg_w[unstag_size] << " "
89  << 0 << " " << 0 << " " << 0 << " " // rho, theta, ksgs
90  << 0 << " " << 0 << " " // Kmv, Khv
91  << 0 << " " << 0 << " " << 0 << " " // qv, qc, qr
92  << 0 << " " << 0 << " " << 0 // qi, qs, qg
93  << std::endl;
94  } // if good
95  } // NumDataLogs
96 
97  if (NumDataLogs() > 2) {
98  std::ostream& data_log2 = DataLog(2);
99  if (data_log2.good()) {
100  // Write the perturbational quantities at this time
101  // For surface values (k=0), assume w = uw = vw = ww = 0
102  Real w_cc = h_avg_w[1] / 2; // w at first cell center
103  Real uw_cc = h_avg_uw[1] / 2; // u*w at first cell center
104  Real vw_cc = h_avg_vw[1] / 2; // v*w at first cell center
105  Real ww_cc = h_avg_ww[1] / 2; // w*w at first cell center
106  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
107  << std::setw(datwidth) << std::setprecision(datprecision) << 0 << " "
108  << h_avg_uu[0] - h_avg_u[0]*h_avg_u[0] << " " // u'u'
109  << h_avg_uv[0] - h_avg_u[0]*h_avg_v[0] << " " // u'v'
110  << 0 << " " // u'w'
111  << h_avg_vv[0] - h_avg_v[0]*h_avg_v[0] << " " // v'v'
112  << 0 << " " // v'w'
113  << 0 << " " // w'w'
114  << h_avg_uth[0] - h_avg_u[0]*h_avg_th[0] << " " // u'th'
115  << h_avg_vth[0] - h_avg_v[0]*h_avg_th[0] << " " // v'th'
116  << 0 << " " // w'th'
117  << h_avg_thth[0] - h_avg_th[0]*h_avg_th[0] << " " // th'th'
118  << h_avg_uiuiu[0]
119  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_u[0]
120  - 2*(h_avg_u[0]*h_avg_uu[0] + h_avg_v[0]*h_avg_uv[0] + w_cc*uw_cc)
121  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_u[0]
122  << " " // (u'_i u'_i)u'
123  << h_avg_uiuiv[0]
124  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_v[0]
125  - 2*(h_avg_u[0]*h_avg_uv[0] + h_avg_v[0]*h_avg_vv[0] + w_cc*vw_cc)
126  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_v[0]
127  << " " // (u'_i u'_i)v'
128  << 0 << " " // (u'_i u'_i)w'
129  << h_avg_pu[0] - h_avg_p[0]*h_avg_u[0] << " " // p'u'
130  << h_avg_pv[0] - h_avg_p[0]*h_avg_v[0] << " " // p'v'
131  << 0 << " " // p'w'
132  << 0 << " " // qv'w'
133  << 0 << " " // qc'w'
134  << 0 << " " // qr'w'
135  << 0 // thv'w'
136  << std::endl;
137 
138  // For internal values, interpolate scalar quantities to faces
139  for (int k = 1; k < unstag_size; k++) {
140  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
141  Real uface = 0.5*(h_avg_u[k] + h_avg_u[k-1]);
142  Real vface = 0.5*(h_avg_v[k] + h_avg_v[k-1]);
143  Real thface = 0.5*(h_avg_th[k] + h_avg_th[k-1]);
144  Real pface = 0.5*(h_avg_p[k] + h_avg_p[k-1]);
145  Real qvface = 0.5*(h_avg_qv[k] + h_avg_qv[k-1]);
146  Real qcface = 0.5*(h_avg_qc[k] + h_avg_qc[k-1]);
147  Real qrface = 0.5*(h_avg_qr[k] + h_avg_qr[k-1]);
148  Real uuface = 0.5*(h_avg_uu[k] + h_avg_uu[k-1]);
149  Real vvface = 0.5*(h_avg_vv[k] + h_avg_vv[k-1]);
150  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
151  w_cc = 0.5*(h_avg_w[k-1] + h_avg_w[k]);
152  uw_cc = 0.5*(h_avg_uw[k-1] + h_avg_uw[k]);
153  vw_cc = 0.5*(h_avg_vw[k-1] + h_avg_vw[k]);
154  ww_cc = 0.5*(h_avg_ww[k-1] + h_avg_ww[k]);
155  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
156  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
157  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " " // u'u'
158  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " " // u'v'
159  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
160  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " " // v'v'
161  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
162  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
163  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " " // u'th'
164  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " " // v'th'
165  << h_avg_wth[k] - h_avg_w[k]*thface << " " // w'th'
166  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " " // th'th'
167  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
168  // - <u_i u_i> * <u_j>
169  // - 2*<u_i> * <u_i u_j>
170  // + 2*<u_i>*<u_i> * <u_j>
171  << h_avg_uiuiu[k]
172  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_u[k]
173  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + w_cc*uw_cc)
174  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_u[k]
175  << " " // cell-centered (u'_i u'_i)u'
176  << h_avg_uiuiv[k]
177  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_v[k]
178  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + w_cc*vw_cc)
179  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_v[k]
180  << " " // cell-centered (u'_i u'_i)v'
181  << h_avg_uiuiw[k]
182  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
183  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
184  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
185  << " " // face-centered (u'_i u'_i)w'
186  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " " // cell-centered p'u'
187  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " " // cell-centered p'v'
188  << h_avg_pw[k] - pface*h_avg_w[k] << " " // face-centered p'w'
189  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
190  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
191  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
192  << h_avg_wthv[k] - thvface*h_avg_w[k]
193  << std::endl;
194  } // loop over z
195 
196  // Write top face values, extrapolating scalar quantities
197  const int k = unstag_size;
198  Real uface = 1.5*h_avg_u[k-1] - 0.5*h_avg_u[k-2];
199  Real vface = 1.5*h_avg_v[k-1] - 0.5*h_avg_v[k-2];
200  Real thface = 1.5*h_avg_th[k-1] - 0.5*h_avg_th[k-2];
201  Real pface = 1.5*h_avg_p[k-1] - 0.5*h_avg_p[k-2];
202  Real qvface = 1.5*h_avg_qv[k-1] - 0.5*h_avg_qv[k-2];
203  Real qcface = 1.5*h_avg_qc[k-1] - 0.5*h_avg_qc[k-2];
204  Real qrface = 1.5*h_avg_qr[k-1] - 0.5*h_avg_qr[k-2];
205  Real uuface = 1.5*h_avg_uu[k-1] - 0.5*h_avg_uu[k-2];
206  Real vvface = 1.5*h_avg_vv[k-1] - 0.5*h_avg_vv[k-2];
207  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
208  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
209  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
210  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
211  << 0 << " " // u'u'
212  << 0 << " " // u'v'
213  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
214  << 0 << " " // v'v'
215  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
216  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
217  << 0 << " " // u'th'
218  << 0 << " " // v'th'
219  << h_avg_wth[k] - thface*h_avg_w[k] << " " // w'th'
220  << 0 << " " // th'th'
221  << 0 << " " // (u'_i u'_i)u'
222  << 0 << " " // (u'_i u'_i)v'
223  << h_avg_uiuiw[k]
224  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
225  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
226  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
227  << " " // (u'_i u'_i)w'
228  << 0 << " " // pu'
229  << 0 << " " // pv'
230  << h_avg_pw[k] - pface*h_avg_w[k] << " " // pw'
231  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
232  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
233  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
234  << h_avg_wthv[k] - thvface*h_avg_w[k]
235  << std::endl;
236  } // if good
237  } // NumDataLogs
238 
239  if (NumDataLogs() > 3 && time > 0.) {
240  std::ostream& data_log3 = DataLog(3);
241  if (data_log3.good()) {
242  // Write the average stresses
243  for (int k = 0; k < unstag_size; k++) {
244  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
245  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
246  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
247  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
248  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
249  << h_avg_sgshfx[k] << " "
250  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
251  << h_avg_sgsdiss[k]
252  << std::endl;
253  } // loop over z
254  // Write top face values
255  Real NANval = 0.0;
256  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
257  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
258  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
259  << NANval << " " << NANval << " " << h_avg_tau13[unstag_size] << " "
260  << NANval << " " << h_avg_tau23[unstag_size] << " " << NANval << " "
261  << h_avg_sgshfx[unstag_size] << " "
262  << h_avg_sgsq1fx[unstag_size] << " " << h_avg_sgsq2fx[unstag_size] << " "
263  << NANval
264  << std::endl;
265  } // if good
266  } // if (NumDataLogs() > 3)
267  } // if IOProcessor
268  } // if (NumDataLogs() > 1)
269 }
void derive_diag_profiles_stag(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles_stag.cpp:296
void derive_stress_profiles_stag(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles_stag.cpp:605

◆ writeBuildInfo()

void ERF::writeBuildInfo ( std::ostream &  os)
static
145 {
146  std::string PrettyLine = std::string(78, '=') + "\n";
147  std::string OtherLine = std::string(78, '-') + "\n";
148  std::string SkipSpace = std::string(8, ' ');
149 
150  // build information
151  os << PrettyLine;
152  os << " ERF Build Information\n";
153  os << PrettyLine;
154 
155  os << "build date: " << buildInfoGetBuildDate() << "\n";
156  os << "build machine: " << buildInfoGetBuildMachine() << "\n";
157  os << "build dir: " << buildInfoGetBuildDir() << "\n";
158  os << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
159 
160  os << "\n";
161 
162  os << "COMP: " << buildInfoGetComp() << "\n";
163  os << "COMP version: " << buildInfoGetCompVersion() << "\n";
164 
165  os << "C++ compiler: " << buildInfoGetCXXName() << "\n";
166  os << "C++ flags: " << buildInfoGetCXXFlags() << "\n";
167 
168  os << "\n";
169 
170  os << "Link flags: " << buildInfoGetLinkFlags() << "\n";
171  os << "Libraries: " << buildInfoGetLibraries() << "\n";
172 
173  os << "\n";
174 
175  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
176  os << buildInfoGetModuleName(n) << ": "
177  << buildInfoGetModuleVal(n) << "\n";
178  }
179 
180  os << "\n";
181  const char* githash1 = buildInfoGetGitHash(1);
182  const char* githash2 = buildInfoGetGitHash(2);
183  if (strlen(githash1) > 0) {
184  os << "ERF git hash: " << githash1 << "\n";
185  }
186  if (strlen(githash2) > 0) {
187  os << "AMReX git hash: " << githash2 << "\n";
188  }
189 
190  const char* buildgithash = buildInfoGetBuildGitHash();
191  const char* buildgitname = buildInfoGetBuildGitName();
192  if (strlen(buildgithash) > 0) {
193  os << buildgitname << " git hash: " << buildgithash << "\n";
194  }
195 
196  os << "\n";
197  os << " ERF Compile time variables: \n";
198 
199  os << "\n";
200  os << " ERF Defines: \n";
201 #ifdef _OPENMP
202  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "ON"
203  << std::endl;
204 #else
205  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "OFF"
206  << std::endl;
207 #endif
208 
209 #ifdef MPI_VERSION
210  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
211  << MPI_VERSION << std::endl;
212 #else
213  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
214  << "UNDEFINED" << std::endl;
215 #endif
216 
217 #ifdef MPI_SUBVERSION
218  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
219  << MPI_SUBVERSION << std::endl;
220 #else
221  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
222  << "UNDEFINED" << std::endl;
223 #endif
224 
225  os << "\n\n";
226 }

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ WriteCheckpointFile()

void ERF::WriteCheckpointFile ( ) const

ERF function for writing a checkpoint file.

27 {
28  auto dCheckTime0 = amrex::second();
29 
30  // chk00010 write a checkpoint file with this root directory
31  // chk00010/Header this contains information you need to save (e.g., finest_level, t_new, etc.) and also
32  // the BoxArrays at each level
33  // chk00010/Level_0/
34  // chk00010/Level_1/
35  // etc. these subdirectories will hold the MultiFab data at each level of refinement
36 
37  // checkpoint file name, e.g., chk00010
38  const std::string& checkpointname = Concatenate(check_file,istep[0],file_name_digits);
39 
40  Print() << "Writing native checkpoint " << checkpointname << "\n";
41 
42  const int nlevels = finest_level+1;
43 
44  // ---- prebuild a hierarchy of directories
45  // ---- dirName is built first. if dirName exists, it is renamed. then build
46  // ---- dirName/subDirPrefix_0 .. dirName/subDirPrefix_nlevels-1
47  // ---- if callBarrier is true, call ParallelDescriptor::Barrier()
48  // ---- after all directories are built
49  // ---- ParallelDescriptor::IOProcessor() creates the directories
50  PreBuildDirectorHierarchy(checkpointname, "Level_", nlevels, true);
51 
52  int ncomp_cons = vars_new[0][Vars::cons].nComp();
53 
54  // write Header file
55  if (ParallelDescriptor::IOProcessor()) {
56 
57  std::string HeaderFileName(checkpointname + "/Header");
58  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
59  std::ofstream HeaderFile;
60  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
61  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
62  std::ofstream::trunc |
63  std::ofstream::binary);
64  if(! HeaderFile.good()) {
65  FileOpenFailed(HeaderFileName);
66  }
67 
68  HeaderFile.precision(17);
69 
70  // write out title line
71  HeaderFile << "Checkpoint file for ERF\n";
72 
73  // write out finest_level
74  HeaderFile << finest_level << "\n";
75 
76  // write the number of components
77  // for each variable we store
78 
79  // conservative, cell-centered vars
80  HeaderFile << ncomp_cons << "\n";
81 
82  // x-velocity on faces
83  HeaderFile << 1 << "\n";
84 
85  // y-velocity on faces
86  HeaderFile << 1 << "\n";
87 
88  // z-velocity on faces
89  HeaderFile << 1 << "\n";
90 
91  // write out array of istep
92  for (int i = 0; i < istep.size(); ++i) {
93  HeaderFile << istep[i] << " ";
94  }
95  HeaderFile << "\n";
96 
97  // write out array of dt
98  for (int i = 0; i < dt.size(); ++i) {
99  HeaderFile << dt[i] << " ";
100  }
101  HeaderFile << "\n";
102 
103  // write out array of t_new
104  for (int i = 0; i < t_new.size(); ++i) {
105  HeaderFile << t_new[i] << " ";
106  }
107  HeaderFile << "\n";
108 
109  // write the BoxArray at each level
110  for (int lev = 0; lev <= finest_level; ++lev) {
111  boxArray(lev).writeOn(HeaderFile);
112  HeaderFile << '\n';
113  }
114 
115  // Write separate file that tells how many components we have of the base state
116  std::string BaseStateFileName(checkpointname + "/num_base_state_comps");
117  std::ofstream BaseStateFile;
118  BaseStateFile.open(BaseStateFileName.c_str(), std::ofstream::out |
119  std::ofstream::trunc |
120  std::ofstream::binary);
121  if(! BaseStateFile.good()) {
122  FileOpenFailed(BaseStateFileName);
123  } else {
124  // write out number of components in base state
125  BaseStateFile << BaseState::num_comps << "\n";
126  BaseStateFile << base_state[0].nGrowVect() << "\n";
127  }
128  }
129 
130  // write the MultiFab data to, e.g., chk00010/Level_0/
131  // Here we make copies of the MultiFab with no ghost cells
132  for (int lev = 0; lev <= finest_level; ++lev)
133  {
134  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
135  MultiFab::Copy(cons,vars_new[lev][Vars::cons],0,0,ncomp_cons,0);
136  VisMF::Write(cons, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Cell"));
137 
138  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
139  MultiFab::Copy(xvel,vars_new[lev][Vars::xvel],0,0,1,0);
140  VisMF::Write(xvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "XFace"));
141 
142  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
143  MultiFab::Copy(yvel,vars_new[lev][Vars::yvel],0,0,1,0);
144  VisMF::Write(yvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "YFace"));
145 
146  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
147  MultiFab::Copy(zvel,vars_new[lev][Vars::zvel],0,0,1,0);
148  VisMF::Write(zvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "ZFace"));
149 
150  if (solverChoice.anelastic[lev] == 1) {
151  MultiFab ppinc(grids[lev],dmap[lev],1,0);
152  MultiFab::Copy(ppinc,pp_inc[lev],0,0,1,0);
153  VisMF::Write(ppinc, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PP_Inc"));
154 
155  MultiFab gpx(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
156  MultiFab::Copy(gpx,gradp[lev][GpVars::gpx],0,0,1,0);
157  VisMF::Write(gpx, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpx"));
158 
159  MultiFab gpy(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
160  MultiFab::Copy(gpy,gradp[lev][GpVars::gpy],0,0,1,0);
161  VisMF::Write(gpy, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpy"));
162 
163  MultiFab gpz(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
164  MultiFab::Copy(gpz,gradp[lev][GpVars::gpz],0,0,1,0);
165  VisMF::Write(gpz, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpz"));
166  }
167 
168  // Note that we write the ghost cells of the base state (unlike above)
169  IntVect ng_base = base_state[lev].nGrowVect();
170  int ncomp_base = base_state[lev].nComp();
171  MultiFab base(grids[lev],dmap[lev],ncomp_base,ng_base);
172  MultiFab::Copy(base,base_state[lev],0,0,ncomp_base,ng_base);
173  VisMF::Write(base, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "BaseState"));
174 
175  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
176  // Note that we also write the ghost cells of z_phys_nd
177  IntVect ng = z_phys_nd[lev]->nGrowVect();
178  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
179  MultiFab::Copy(z_height,*z_phys_nd[lev],0,0,1,ng);
180  VisMF::Write(z_height, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z_Phys_nd"));
181  }
182 
183  // We must read and write qmoist with ghost cells because we don't directly impose BCs on these vars
184  // Write the moisture model restart variables
185  std::vector<int> qmoist_indices;
186  std::vector<std::string> qmoist_names;
187  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
188  int qmoist_nvar = qmoist_indices.size();
189  for (int var = 0; var < qmoist_nvar; var++) {
190  const int ncomp = 1;
191  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
192  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
193  MultiFab::Copy(moist_vars,*(qmoist[lev][qmoist_indices[var]]),0,0,ncomp,ng_moist);
194  VisMF::Write(moist_vars, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", qmoist_names[var]));
195  }
196 
197 #if defined(ERF_USE_WINDFARM)
198  if(solverChoice.windfarm_type == WindFarmType::Fitch or
199  solverChoice.windfarm_type == WindFarmType::EWP or
200  solverChoice.windfarm_type == WindFarmType::SimpleAD){
201  IntVect ng_turb = Nturb[lev].nGrowVect();
202  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng_turb);
203  MultiFab::Copy(mf_Nturb,Nturb[lev],0,0,1,ng_turb);
204  VisMF::Write(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", "NumTurb"));
205  }
206 #endif
207 
208  if (solverChoice.lsm_type != LandSurfaceType::None) {
209  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
210  BoxArray ba = lsm_data[lev][mvar]->boxArray();
211  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
212  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
213  int nvar = lsm_data[lev][mvar]->nComp();
214  MultiFab lsm_vars(ba,dm,nvar,ng);
215  MultiFab::Copy(lsm_vars,*(lsm_data[lev][mvar]),0,0,nvar,ng);
216  VisMF::Write(lsm_vars, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LsmVars"));
217  }
218  }
219 
220  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
221  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
222  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_x],0,0,1,ng);
223  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_mx"));
224 
225 #if 0
227  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_y],0,0,1,ng);
228  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_my"));
229  }
230 #endif
231 
232  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
233  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
234  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_x],0,0,1,ng);
235  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_ux"));
236 
237 #if 0
239  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_y],0,0,1,ng);
240  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_uy"));
241  }
242 #endif
243 
244  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
245  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
246  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_x],0,0,1,ng);
247  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vx"));
248 
249 #if 0
251  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_y],0,0,1,ng);
252  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vy"));
253  }
254 #endif
255 
256  if (m_SurfaceLayer) {
257  amrex::Print() << "Writing SurfaceLayer variables at level " << lev << std::endl;
258  ng = IntVect(1,1,0);
259  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
260  MultiFab* src = nullptr;
261 
262  // U*
263  src = m_SurfaceLayer->get_u_star(lev);
264  MultiFab::Copy(m_var,*src,0,0,1,ng);
265  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Ustar"));
266 
267  // W*
268  src = m_SurfaceLayer->get_w_star(lev);
269  MultiFab::Copy(m_var,*src,0,0,1,ng);
270  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Wstar"));
271 
272  // T*
273  src = m_SurfaceLayer->get_t_star(lev);
274  MultiFab::Copy(m_var,*src,0,0,1,ng);
275  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Tstar"));
276 
277  // Q*
278  src = m_SurfaceLayer->get_q_star(lev);
279  MultiFab::Copy(m_var,*src,0,0,1,ng);
280  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qstar"));
281 
282  // Olen
283  src = m_SurfaceLayer->get_olen(lev);
284  MultiFab::Copy(m_var,*src,0,0,1,ng);
285  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Olen"));
286 
287  // Qsurf
288  src = m_SurfaceLayer->get_q_surf(lev);
289  MultiFab::Copy(m_var,*src,0,0,1,ng);
290  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qsurf"));
291 
292  // PBLH
293  src = m_SurfaceLayer->get_pblh(lev);
294  MultiFab::Copy(m_var,*src,0,0,1,ng);
295  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PBLH"));
296 
297  // Z0
298  src = m_SurfaceLayer->get_z0(lev);
299  MultiFab::Copy(m_var,*src,0,0,1,ng);
300  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z0"));
301  }
302 
303  if (sst_lev[lev][0]) {
304  int ntimes = 1;
305  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
306  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
307  for (int nt(0); nt<ntimes; ++nt) {
308  MultiFab::Copy(sst_at_t,*sst_lev[lev][nt],0,0,1,ng);
309  VisMF::Write(sst_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
310  "SST_" + std::to_string(nt)));
311  }
312  }
313 
314  if (tsk_lev[lev][0]) {
315  int ntimes = 1;
316  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
317  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
318  for (int nt(0); nt<ntimes; ++nt) {
319  MultiFab::Copy(tsk_at_t,*tsk_lev[lev][nt],0,0,1,ng);
320  VisMF::Write(tsk_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
321  "TSK_" + std::to_string(nt)));
322  }
323  }
324 
325  {
326  int ntimes = 1;
327  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
328  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
329  for (int nt(0); nt<ntimes; ++nt) {
330  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
331  const Box& bx = mfi.growntilebox();
332  Array4<int> const& src_arr = lmask_lev[lev][nt]->array(mfi);
333  Array4<Real> const& dst_arr = lmask_at_t.array(mfi);
334  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
335  {
336  dst_arr(i,j,k) = Real(src_arr(i,j,k));
337  });
338  }
339  VisMF::Write(lmask_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
340  "LMASK_" + std::to_string(nt)));
341  }
342  }
343 
344  IntVect ngv = ng; ngv[2] = 0;
345 
346  // Write lat/lon if it exists
347  if (lat_m[lev] && lon_m[lev] && solverChoice.has_lat_lon) {
348  amrex::Print() << "Writing Lat/Lon variables at level " << lev << std::endl;
349  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
350  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
351  MultiFab::Copy(lat,*lat_m[lev],0,0,1,ngv);
352  MultiFab::Copy(lon,*lon_m[lev],0,0,1,ngv);
353  VisMF::Write(lat, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LAT"));
354  VisMF::Write(lon, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LON"));
355  }
356 
357 
358 #ifdef ERF_USE_NETCDF
359  // Write sinPhi and cosPhi if it exists
360  if (cosPhi_m[lev] && sinPhi_m[lev] && solverChoice.variable_coriolis) {
361  amrex::Print() << "Writing Coriolis factors at level " << lev << std::endl;
362  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
363  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
364  MultiFab::Copy(sphi,*sinPhi_m[lev],0,0,1,ngv);
365  MultiFab::Copy(cphi,*cosPhi_m[lev],0,0,1,ngv);
366  VisMF::Write(sphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "SinPhi"));
367  VisMF::Write(cphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "CosPhi"));
368  }
369 
370  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
371  amrex::Print() << "Writing C1H/C2H/MUB variables at level " << lev << std::endl;
372  MultiFab tmp1d(ba1d[0],dmap[0],1,0);
373 
374  MultiFab::Copy(tmp1d,*mf_C1H,0,0,1,0);
375  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C1H"));
376 
377  MultiFab::Copy(tmp1d,*mf_C2H,0,0,1,0);
378  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C2H"));
379 
380  MultiFab tmp2d(ba2d[0],dmap[0],1,mf_MUB->nGrowVect());
381 
382  MultiFab::Copy(tmp2d,*mf_MUB,0,0,1,mf_MUB->nGrowVect());
383  VisMF::Write(tmp2d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MUB"));
384  }
385 #endif
386 
387  } // for lev
388 
389 #ifdef ERF_USE_PARTICLES
390  particleData.Checkpoint(checkpointname);
391 #endif
392 
393 #if 0
394 #ifdef ERF_USE_NETCDF
395  // Write bdy_data files
396  if ( ParallelDescriptor::IOProcessor() &&
397  ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
399  {
400  // Vector dimensions
401  int num_time = bdy_data_xlo.size();
402  int num_var = bdy_data_xlo[0].size();
403 
404  // Open header file and write to it
405  std::ofstream bdy_h_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_H"));
406  bdy_h_file << std::setprecision(1) << std::fixed;
407  bdy_h_file << num_time << "\n";
408  bdy_h_file << num_var << "\n";
409  bdy_h_file << start_bdy_time << "\n";
410  bdy_h_file << bdy_time_interval << "\n";
411  bdy_h_file << real_width << "\n";
412  for (int ivar(0); ivar<num_var; ++ivar) {
413  bdy_h_file << bdy_data_xlo[0][ivar].box() << "\n";
414  bdy_h_file << bdy_data_xhi[0][ivar].box() << "\n";
415  bdy_h_file << bdy_data_ylo[0][ivar].box() << "\n";
416  bdy_h_file << bdy_data_yhi[0][ivar].box() << "\n";
417  }
418 
419  // Open data file and write to it
420  std::ofstream bdy_d_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_D"));
421  for (int itime(0); itime<num_time; ++itime) {
422  if (bdy_data_xlo[itime].size() > 0) {
423  for (int ivar(0); ivar<num_var; ++ivar) {
424  bdy_data_xlo[itime][ivar].writeOn(bdy_d_file,0,1);
425  bdy_data_xhi[itime][ivar].writeOn(bdy_d_file,0,1);
426  bdy_data_ylo[itime][ivar].writeOn(bdy_d_file,0,1);
427  bdy_data_yhi[itime][ivar].writeOn(bdy_d_file,0,1);
428  }
429  }
430  }
431  }
432 #endif
433 #endif
434 
435  if (verbose > 0)
436  {
437  auto dCheckTime = amrex::second() - dCheckTime0;
438  ParallelDescriptor::ReduceRealMax(dCheckTime,ParallelDescriptor::IOProcessorNumber());
439  amrex::Print() << "Checkpoint write time = " << dCheckTime << " seconds." << '\n';
440  }
441 }

◆ WriteGenericPlotfileHeaderWithTerrain()

void ERF::WriteGenericPlotfileHeaderWithTerrain ( std::ostream &  HeaderFile,
int  nlevels,
const amrex::Vector< amrex::BoxArray > &  bArray,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName,
const std::string &  levelPrefix,
const std::string &  mfPrefix 
) const
1853 {
1854  AMREX_ALWAYS_ASSERT(nlevels <= bArray.size());
1855  AMREX_ALWAYS_ASSERT(nlevels <= my_ref_ratio.size()+1);
1856  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1857 
1858  HeaderFile.precision(17);
1859 
1860  // ---- this is the generic plot file type name
1861  HeaderFile << versionName << '\n';
1862 
1863  HeaderFile << varnames.size() << '\n';
1864 
1865  for (int ivar = 0; ivar < varnames.size(); ++ivar) {
1866  HeaderFile << varnames[ivar] << "\n";
1867  }
1868  HeaderFile << AMREX_SPACEDIM << '\n';
1869  HeaderFile << my_time << '\n';
1870  HeaderFile << finest_level << '\n';
1871  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1872  HeaderFile << my_geom[0].ProbLo(i) << ' ';
1873  }
1874  HeaderFile << '\n';
1875  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1876  HeaderFile << my_geom[0].ProbHi(i) << ' ';
1877  }
1878  HeaderFile << '\n';
1879  for (int i = 0; i < finest_level; ++i) {
1880  HeaderFile << my_ref_ratio[i][0] << ' ';
1881  }
1882  HeaderFile << '\n';
1883  for (int i = 0; i <= finest_level; ++i) {
1884  HeaderFile << my_geom[i].Domain() << ' ';
1885  }
1886  HeaderFile << '\n';
1887  for (int i = 0; i <= finest_level; ++i) {
1888  HeaderFile << level_steps[i] << ' ';
1889  }
1890  HeaderFile << '\n';
1891  for (int i = 0; i <= finest_level; ++i) {
1892  for (int k = 0; k < AMREX_SPACEDIM; ++k) {
1893  HeaderFile << my_geom[i].CellSize()[k] << ' ';
1894  }
1895  HeaderFile << '\n';
1896  }
1897  HeaderFile << (int) my_geom[0].Coord() << '\n';
1898  HeaderFile << "0\n";
1899 
1900  for (int level = 0; level <= finest_level; ++level) {
1901  HeaderFile << level << ' ' << bArray[level].size() << ' ' << my_time << '\n';
1902  HeaderFile << level_steps[level] << '\n';
1903 
1904  const IntVect& domain_lo = my_geom[level].Domain().smallEnd();
1905  for (int i = 0; i < bArray[level].size(); ++i)
1906  {
1907  // Need to shift because the RealBox ctor we call takes the
1908  // physical location of index (0,0,0). This does not affect
1909  // the usual cases where the domain index starts with 0.
1910  const Box& b = shift(bArray[level][i], -domain_lo);
1911  RealBox loc = RealBox(b, my_geom[level].CellSize(), my_geom[level].ProbLo());
1912  for (int n = 0; n < AMREX_SPACEDIM; ++n) {
1913  HeaderFile << loc.lo(n) << ' ' << loc.hi(n) << '\n';
1914  }
1915  }
1916 
1917  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mfPrefix) << '\n';
1918  }
1919  HeaderFile << "1" << "\n";
1920  HeaderFile << "3" << "\n";
1921  HeaderFile << "amrexvec_nu_x" << "\n";
1922  HeaderFile << "amrexvec_nu_y" << "\n";
1923  HeaderFile << "amrexvec_nu_z" << "\n";
1924  std::string mf_nodal_prefix = "Nu_nd";
1925  for (int level = 0; level <= finest_level; ++level) {
1926  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mf_nodal_prefix) << '\n';
1927  }
1928 }
Coord
Definition: ERF_DataStruct.H:91

◆ writeJobInfo()

void ERF::writeJobInfo ( const std::string &  dir) const
11 {
12  // job_info file with details about the run
13  std::ofstream jobInfoFile;
14  std::string FullPathJobInfoFile = dir;
15  FullPathJobInfoFile += "/job_info";
16  jobInfoFile.open(FullPathJobInfoFile.c_str(), std::ios::out);
17 
18  std::string PrettyLine = "==================================================="
19  "============================\n";
20  std::string OtherLine = "----------------------------------------------------"
21  "----------------------------\n";
22  std::string SkipSpace = " ";
23 
24  // job information
25  jobInfoFile << PrettyLine;
26  jobInfoFile << " ERF Job Information\n";
27  jobInfoFile << PrettyLine;
28 
29  jobInfoFile << "inputs file: " << inputs_name << "\n\n";
30 
31  jobInfoFile << "number of MPI processes: "
32  << ParallelDescriptor::NProcs() << "\n";
33 #ifdef _OPENMP
34  jobInfoFile << "number of threads: " << omp_get_max_threads() << "\n";
35 #endif
36 
37  jobInfoFile << "\n";
38  jobInfoFile << "CPU time used since start of simulation (CPU-hours): "
39  << getCPUTime() / 3600.0;
40 
41  jobInfoFile << "\n\n";
42 
43  if (use_datetime) {
44  const std::string dt_format = "%Y-%m-%d %H:%M:%S"; // ISO 8601 standard
45  jobInfoFile << "Simulation time: " << getTimestamp(start_time+t_new[0], dt_format) << "\n";
46  jobInfoFile << "\n\n";
47  }
48 
49  // plotfile information
50  jobInfoFile << PrettyLine;
51  jobInfoFile << " Plotfile Information\n";
52  jobInfoFile << PrettyLine;
53 
54  time_t now = time(nullptr);
55 
56  // Convert now to tm struct for local timezone
57  tm* localtm = localtime(&now);
58  jobInfoFile << "output data / time: " << asctime(localtm);
59 
60  std::string currentDir = FileSystem::CurrentPath();
61  jobInfoFile << "output dir: " << currentDir << "\n";
62 
63  jobInfoFile << "\n\n";
64 
65  // build information
66  jobInfoFile << PrettyLine;
67  jobInfoFile << " Build Information\n";
68  jobInfoFile << PrettyLine;
69 
70  jobInfoFile << "build date: " << buildInfoGetBuildDate() << "\n";
71  jobInfoFile << "build machine: " << buildInfoGetBuildMachine() << "\n";
72  jobInfoFile << "build dir: " << buildInfoGetBuildDir() << "\n";
73  jobInfoFile << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
74 
75  jobInfoFile << "\n";
76 
77  jobInfoFile << "COMP: " << buildInfoGetComp() << "\n";
78  jobInfoFile << "COMP version: " << buildInfoGetCompVersion() << "\n";
79 
80  jobInfoFile << "\n";
81 
82  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
83  jobInfoFile << buildInfoGetModuleName(n) << ": "
84  << buildInfoGetModuleVal(n) << "\n";
85  }
86 
87  jobInfoFile << "\n";
88 
89  const char* githash1 = buildInfoGetGitHash(1);
90  const char* githash2 = buildInfoGetGitHash(2);
91  if (strlen(githash1) > 0) {
92  jobInfoFile << "ERF git hash: " << githash1 << "\n";
93  }
94  if (strlen(githash2) > 0) {
95  jobInfoFile << "AMReX git hash: " << githash2 << "\n";
96  }
97 
98  const char* buildgithash = buildInfoGetBuildGitHash();
99  const char* buildgitname = buildInfoGetBuildGitName();
100  if (strlen(buildgithash) > 0) {
101  jobInfoFile << buildgitname << " git hash: " << buildgithash << "\n";
102  }
103 
104  jobInfoFile << "\n\n";
105 
106  // grid information
107  jobInfoFile << PrettyLine;
108  jobInfoFile << " Grid Information\n";
109  jobInfoFile << PrettyLine;
110 
111  int f_lev = finest_level;
112 
113  for (int i = 0; i <= f_lev; i++) {
114  jobInfoFile << " level: " << i << "\n";
115  jobInfoFile << " number of boxes = " << grids[i].size() << "\n";
116  jobInfoFile << " maximum zones = ";
117  for (int n = 0; n < AMREX_SPACEDIM; n++) {
118  jobInfoFile << geom[i].Domain().length(n) << " ";
119  }
120  jobInfoFile << "\n\n";
121  }
122 
123  jobInfoFile << " Boundary conditions\n";
124 
125  jobInfoFile << " -x: " << domain_bc_type[0] << "\n";
126  jobInfoFile << " +x: " << domain_bc_type[3] << "\n";
127  jobInfoFile << " -y: " << domain_bc_type[1] << "\n";
128  jobInfoFile << " +y: " << domain_bc_type[4] << "\n";
129  jobInfoFile << " -z: " << domain_bc_type[2] << "\n";
130  jobInfoFile << " +z: " << domain_bc_type[5] << "\n";
131 
132  jobInfoFile << "\n\n";
133 
134  // runtime parameters
135  jobInfoFile << PrettyLine;
136  jobInfoFile << " Inputs File Parameters\n";
137  jobInfoFile << PrettyLine;
138 
139  ParmParse::dumpTable(jobInfoFile, true);
140  jobInfoFile.close();
141 }
std::string inputs_name
Definition: main.cpp:14
static amrex::Real getCPUTime()
Definition: ERF.H:1505
Here is the call graph for this function:

◆ WriteLinePlot()

void ERF::WriteLinePlot ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
692 {
693  std::ofstream ofs(filename);
694  if (!ofs.is_open()) {
695  amrex::Print() << "Error: Could not open file " << filename << " for writing.\n";
696  return;
697  }
698 
699  ofs << std::setprecision(10) << std::scientific;
700  ofs << "# x y\n";
701 
702  for (const auto& p : points_xy) {
703  ofs << p[0] << " " << p[1] << "\n";
704  }
705 
706  ofs.close();
707 
708  amrex::Print() << "Line plot data written to " << filename << "\n";
709 }

◆ WriteMultiLevelPlotfileWithTerrain()

void ERF::WriteMultiLevelPlotfileWithTerrain ( const std::string &  plotfilename,
int  nlevels,
const amrex::Vector< const amrex::MultiFab * > &  mf,
const amrex::Vector< const amrex::MultiFab * > &  mf_nd,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName = "HyperCLaw-V1.1",
const std::string &  levelPrefix = "Level_",
const std::string &  mfPrefix = "Cell",
const amrex::Vector< std::string > &  extra_dirs = amrex::Vector<std::string>() 
) const
1767 {
1768  BL_PROFILE("WriteMultiLevelPlotfileWithTerrain()");
1769 
1770  AMREX_ALWAYS_ASSERT(nlevels <= mf.size());
1771  AMREX_ALWAYS_ASSERT(nlevels <= rr.size()+1);
1772  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1773  AMREX_ALWAYS_ASSERT(mf[0]->nComp() == varnames.size());
1774 
1775  bool callBarrier(false);
1776  PreBuildDirectorHierarchy(plotfilename, levelPrefix, nlevels, callBarrier);
1777  if (!extra_dirs.empty()) {
1778  for (const auto& d : extra_dirs) {
1779  const std::string ed = plotfilename+"/"+d;
1780  PreBuildDirectorHierarchy(ed, levelPrefix, nlevels, callBarrier);
1781  }
1782  }
1783  ParallelDescriptor::Barrier();
1784 
1785  if (ParallelDescriptor::MyProc() == ParallelDescriptor::NProcs()-1) {
1786  Vector<BoxArray> boxArrays(nlevels);
1787  for(int level(0); level < boxArrays.size(); ++level) {
1788  boxArrays[level] = mf[level]->boxArray();
1789  }
1790 
1791  auto f = [=]() {
1792  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
1793  std::string HeaderFileName(plotfilename + "/Header");
1794  std::ofstream HeaderFile;
1795  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
1796  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
1797  std::ofstream::trunc |
1798  std::ofstream::binary);
1799  if( ! HeaderFile.good()) FileOpenFailed(HeaderFileName);
1800  WriteGenericPlotfileHeaderWithTerrain(HeaderFile, nlevels, boxArrays, varnames,
1801  my_geom, time, level_steps, rr, versionName,
1802  levelPrefix, mfPrefix);
1803  };
1804 
1805  if (AsyncOut::UseAsyncOut()) {
1806  AsyncOut::Submit(std::move(f));
1807  } else {
1808  f();
1809  }
1810  }
1811 
1812  std::string mf_nodal_prefix = "Nu_nd";
1813  for (int level = 0; level <= finest_level; ++level)
1814  {
1815  if (AsyncOut::UseAsyncOut()) {
1816  VisMF::AsyncWrite(*mf[level],
1817  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix),
1818  true);
1819  VisMF::AsyncWrite(*mf_nd[level],
1820  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix),
1821  true);
1822  } else {
1823  const MultiFab* data;
1824  std::unique_ptr<MultiFab> mf_tmp;
1825  if (mf[level]->nGrowVect() != 0) {
1826  mf_tmp = std::make_unique<MultiFab>(mf[level]->boxArray(),
1827  mf[level]->DistributionMap(),
1828  mf[level]->nComp(), 0, MFInfo(),
1829  mf[level]->Factory());
1830  MultiFab::Copy(*mf_tmp, *mf[level], 0, 0, mf[level]->nComp(), 0);
1831  data = mf_tmp.get();
1832  } else {
1833  data = mf[level];
1834  }
1835  VisMF::Write(*data , MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix));
1836  VisMF::Write(*mf_nd[level], MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix));
1837  }
1838  }
1839 }
void WriteGenericPlotfileHeaderWithTerrain(std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
Definition: ERF_Plotfile.cpp:1842

◆ WriteMyEBSurface()

void ERF::WriteMyEBSurface ( )

◆ writeNow()

bool ERF::writeNow ( const amrex::Real  cur_time,
const int  nstep,
const int  plot_int,
const amrex::Real  plot_per,
const amrex::Real  dt_0,
amrex::Real last_file_time 
)
2881 {
2882  bool write_now = false;
2883 
2884  if ( plot_int > 0) {
2885 
2886  write_now = (nstep % plot_int == 0);
2887 
2888  } else if (plot_per > 0.0) {
2889 
2890  amrex::Print() << "CUR NEXT PER " << cur_time << " " << next_file_time << " " << plot_per << std::endl;
2891 
2892  // Only write now if nstep newly matches the number of elapsed periods
2893  write_now = (cur_time > (next_file_time - Real(0.1)*dt_0));
2894  }
2895 
2896  return write_now;
2897 }

◆ WriteSubvolume()

void ERF::WriteSubvolume ( int  isub,
amrex::Vector< std::string >  subvol_var_names 
)
146 {
147  ParmParse pp("erf.subvol");
148 
149  Vector<Real> origin;
150  Vector< int> ncell;
151  Vector<Real> delta;
152 
153  // **************************************************************
154  // Read in the origin, number of cells in each dir, and resolution
155  // **************************************************************
156 
157  int lev_for_sub = 0;
158  int offset = isub * AMREX_SPACEDIM;
159 
160  pp.getarr("origin",origin,offset,AMREX_SPACEDIM);
161  pp.getarr("nxnynz", ncell,offset,AMREX_SPACEDIM);
162  pp.getarr("dxdydz", delta,offset,AMREX_SPACEDIM);
163 
164  bool found = false;
165  for (int i = 0; i <= finest_level; i++) {
166  if (!found) {
167  if (almostEqual(delta[offset+0],geom[i].CellSize(0)) &&
168  almostEqual(delta[offset+1],geom[i].CellSize(1)) &&
169  almostEqual(delta[offset+2],geom[i].CellSize(2)) ) {
170 
171  amrex::Print() << "WriteSubvolume:Resolution specified matches that of level " << i << std::endl;
172  found = true;
173  lev_for_sub = i;
174  }
175  }
176  }
177 
178  if (!found) {
179  amrex::Abort("Resolution specified for subvol does not match the resolution of any of the levels.");
180  }
181 
182 
183  // **************************************************************
184  // Now that we know which level we're at, we can figure out which (i,j,k) the origin corresponds to
185  // Note we use 1.0001 as a fudge factor since the division of two reals --> integer will do a floor
186  // **************************************************************
187  int i0 = static_cast<int>((origin[offset+0] - geom[lev_for_sub].ProbLo(0)) * 1.0001 / delta[offset+0]);
188  int j0 = static_cast<int>((origin[offset+1] - geom[lev_for_sub].ProbLo(1)) * 1.0001 / delta[offset+1]);
189  int k0 = static_cast<int>((origin[offset+2] - geom[lev_for_sub].ProbLo(2)) * 1.0001 / delta[offset+2]);
190 
191  found = false;
192  if (almostEqual(geom[lev_for_sub].ProbLo(0)+i0*delta[offset+0],origin[offset+0]) &&
193  almostEqual(geom[lev_for_sub].ProbLo(1)+j0*delta[offset+1],origin[offset+1]) &&
194  almostEqual(geom[lev_for_sub].ProbLo(2)+k0*delta[offset+2],origin[offset+2]) )
195  {
196  amrex::Print() << "WriteSubvolume:Specified origin is the lower left corner of cell " << IntVect(i0,j0,k0) << std::endl;
197  found = true;
198  }
199 
200  if (!found) {
201  amrex::Abort("Origin specified does not correspond to a node at this level.");
202  }
203 
204  Box domain(geom[lev_for_sub].Domain());
205 
206  Box bx(IntVect(i0,j0,k0),IntVect(i0+ncell[offset+0]-1,j0+ncell[offset+1]-1,k0+ncell[offset+2]-1));
207  amrex::Print() << "WriteSubvolume:Box requested is " << bx << std::endl;
208 
209  if (!domain.contains(bx))
210  {
211  amrex::Abort("WriteSubvolume:Box requested is larger than the existing domain");
212  }
213 
214  Vector<int> cs(AMREX_SPACEDIM);
215  int count = pp.countval("chunk_size");
216  if (count > 0) {
217  pp.queryarr("chunk_size",cs,0,AMREX_SPACEDIM);
218  } else {
219  cs[0] = max_grid_size[0][0];
220  cs[1] = max_grid_size[0][1];
221  cs[2] = max_grid_size[0][2];
222  }
223  IntVect chunk_size(cs[0],cs[1],cs[2]);
224 
225  BoxArray ba(bx);
226  ba.maxSize(chunk_size);
227 
228  amrex::Print() << "WriteSubvolume:BoxArray is " << ba << std::endl;
229 
230  Vector<std::string> varnames;
231  varnames.insert(varnames.end(), subvol_var_names.begin(), subvol_var_names.end());
232 
233  int ncomp_mf = subvol_var_names.size();
234 
235  DistributionMapping dm(ba);
236 
237  MultiFab mf(ba, dm, ncomp_mf, 0);
238 
239  int mf_comp = 0;
240 
241  // *****************************************************************************************
242 
243  // First, copy any of the conserved state variables into the output plotfile
244  for (int i = 0; i < cons_names.size(); ++i) {
245  if (containerHasElement(subvol_var_names, cons_names[i])) {
246  mf.ParallelCopy(vars_new[lev_for_sub][Vars::cons],i,mf_comp,1,1,0);
247  mf_comp++;
248  }
249  }
250 
251  // *****************************************************************************************
252 
253  if (containerHasElement(subvol_var_names, "x_velocity") ||
254  containerHasElement(subvol_var_names, "y_velocity") ||
255  containerHasElement(subvol_var_names, "z_velocity"))
256  {
257  MultiFab mf_cc_vel(grids[lev_for_sub], dmap[lev_for_sub], AMREX_SPACEDIM, 0);
258  average_face_to_cellcenter(mf_cc_vel,0,
259  Array<const MultiFab*,3>{&vars_new[lev_for_sub][Vars::xvel],
260  &vars_new[lev_for_sub][Vars::yvel],
261  &vars_new[lev_for_sub][Vars::zvel]});
262  if (containerHasElement(subvol_var_names, "x_velocity")) {
263  mf.ParallelCopy(mf_cc_vel,0,mf_comp,1,0,0);
264  mf_comp++;
265  }
266  if (containerHasElement(subvol_var_names, "y_velocity")) {
267  mf.ParallelCopy(mf_cc_vel,1,mf_comp,1,0,0);
268  mf_comp++;
269  }
270  if (containerHasElement(subvol_var_names, "z_velocity")) {
271  mf.ParallelCopy(mf_cc_vel,2,mf_comp,1,0,0);
272  mf_comp++;
273  }
274  }
275 
276  // *****************************************************************************************
277 
278  // Finally, check for any derived quantities and compute them, inserting
279  // them into our output multifab
280  auto calculate_derived = [&](const std::string& der_name,
281  MultiFab& src_mf,
282  decltype(derived::erf_dernull)& der_function)
283  {
284  if (containerHasElement(subvol_var_names, der_name)) {
285  MultiFab dmf(src_mf.boxArray(), src_mf.DistributionMap(), 1, 0);
286 #ifdef _OPENMP
287 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
288 #endif
289  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
290  {
291  const Box& tbx = mfi.tilebox();
292  auto& dfab = dmf[mfi];
293  auto& sfab = src_mf[mfi];
294  der_function(tbx, dfab, 0, 1, sfab, Geom(lev_for_sub), t_new[0], nullptr, lev_for_sub);
295  }
296  mf.ParallelCopy(dmf,0,mf_comp,1,0,0);
297  mf_comp++;
298  }
299  };
300 
301  // *****************************************************************************************
302  // NOTE: All derived variables computed below **MUST MATCH THE ORDER** of "derived_names"
303  // defined in ERF.H
304  // *****************************************************************************************
305 
306  calculate_derived("soundspeed", vars_new[lev_for_sub][Vars::cons], derived::erf_dersoundspeed);
307  if (solverChoice.moisture_type != MoistureType::None) {
308  calculate_derived("temp", vars_new[lev_for_sub][Vars::cons], derived::erf_dermoisttemp);
309  } else {
310  calculate_derived("temp", vars_new[lev_for_sub][Vars::cons], derived::erf_dertemp);
311  }
312  calculate_derived("theta", vars_new[lev_for_sub][Vars::cons], derived::erf_dertheta);
313  calculate_derived("KE", vars_new[lev_for_sub][Vars::cons], derived::erf_derKE);
314  calculate_derived("scalar", vars_new[lev_for_sub][Vars::cons], derived::erf_derscalar);
315 
316  // *****************************************************************************************
317 
318  Real time = t_new[lev_for_sub];
319 
320  std::string sf = subvol_file + "_" + std::to_string(isub);
321  std::string subvol_filename;
322 
324  const std::string dt_format = "%Y-%m-%d_%H:%M:%S"; // ISO 8601 standard
325  subvol_filename = sf + getTimestamp(start_time+time, dt_format);
326  } else {
327  subvol_filename = Concatenate(sf + "_", istep[0], file_name_digits);
328  }
329 
330  amrex::Print() <<"Writing subvolume into " << subvol_filename << std::endl;
331  WriteSingleLevelPlotfile(subvol_filename,mf,varnames,geom[lev_for_sub],time,istep[0]);
332 
333 }
real(c_double), private cs
Definition: ERF_module_mp_morr_two_moment.F90:203
Here is the call graph for this function:

◆ WriteVTKPolyline()

void ERF::WriteVTKPolyline ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
645 {
646  std::ofstream vtkfile(filename);
647  if (!vtkfile.is_open()) {
648  std::cerr << "Error: Cannot open file " << filename << std::endl;
649  return;
650  }
651 
652  int num_points = points_xy.size();
653  if (num_points == 0) {
654  vtkfile << "# vtk DataFile Version 3.0\n";
655  vtkfile << "Hurricane Track\n";
656  vtkfile << "ASCII\n";
657  vtkfile << "DATASET POLYDATA\n";
658  vtkfile << "POINTS " << num_points << " float\n";
659  vtkfile.close();
660  return;
661  }
662  if (num_points < 2) {
663  points_xy.push_back(points_xy[0]);
664  }
665  num_points = points_xy.size();
666 
667  vtkfile << "# vtk DataFile Version 3.0\n";
668  vtkfile << "Hurricane Track\n";
669  vtkfile << "ASCII\n";
670  vtkfile << "DATASET POLYDATA\n";
671 
672  // Write points (Z=0 assumed)
673  vtkfile << "POINTS " << num_points << " float\n";
674  for (const auto& pt : points_xy) {
675  vtkfile << pt[0] << " " << pt[1] << " 10000.0\n";
676  }
677 
678  // Write polyline connectivity
679  vtkfile << "LINES 1 " << num_points + 1 << "\n";
680  vtkfile << num_points << " ";
681  for (int i = 0; i < num_points; ++i) {
682  vtkfile << i << " ";
683  }
684  vtkfile << "\n";
685 
686  vtkfile.close();
687 }

Member Data Documentation

◆ advflux_reg

amrex::Vector<amrex::YAFluxRegister*> ERF::advflux_reg
private

Referenced by getAdvFluxReg().

◆ avg_xmom

amrex::Vector<amrex::MultiFab> ERF::avg_xmom
private

◆ avg_ymom

amrex::Vector<amrex::MultiFab> ERF::avg_ymom
private

◆ avg_zmom

amrex::Vector<amrex::MultiFab> ERF::avg_zmom
private

◆ ax

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax
private

◆ ax_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax_src
private

◆ ay

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay
private

◆ ay_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay_src
private

◆ az

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az
private

◆ az_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az_src
private

◆ ba1d

amrex::Vector<amrex::BoxArray> ERF::ba1d
private

◆ ba2d

amrex::Vector<amrex::BoxArray> ERF::ba2d
private

◆ base_state

amrex::Vector<amrex::MultiFab> ERF::base_state
private

◆ base_state_new

amrex::Vector<amrex::MultiFab> ERF::base_state_new
private

◆ bndry_output_planes_interval

int ERF::bndry_output_planes_interval = -1
staticprivate

◆ bndry_output_planes_per

Real ERF::bndry_output_planes_per = -1.0
staticprivate

◆ bndry_output_planes_start_time

Real ERF::bndry_output_planes_start_time = 0.0
staticprivate

◆ boxes_at_level

amrex::Vector<amrex::Vector<amrex::Box> > ERF::boxes_at_level
private

◆ cf_set_width

int ERF::cf_set_width {0}
private

◆ cf_width

int ERF::cf_width {0}
private

◆ cfl

Real ERF::cfl = 0.8
staticprivate

◆ change_max

Real ERF::change_max = 1.1
staticprivate

◆ check_file

std::string ERF::check_file {"chk"}
private

◆ check_for_nans

int ERF::check_for_nans = 0
staticprivate

◆ column_file_name

std::string ERF::column_file_name = "column_data.nc"
staticprivate

◆ column_interval

int ERF::column_interval = -1
staticprivate

◆ column_loc_x

Real ERF::column_loc_x = 0.0
staticprivate

◆ column_loc_y

Real ERF::column_loc_y = 0.0
staticprivate

◆ column_per

Real ERF::column_per = -1.0
staticprivate

◆ cons_names

const amrex::Vector<std::string> ERF::cons_names
private
Initial value:
{"density", "rhotheta", "rhoKE", "rhoadv_0",
"rhoQ1", "rhoQ2", "rhoQ3",
"rhoQ4", "rhoQ5", "rhoQ6"}

◆ cosPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::cosPhi_m
private

◆ d_havg_density

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_density
private

◆ d_havg_pressure

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_pressure
private

◆ d_havg_qc

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qc
private

◆ d_havg_qv

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qv
private

◆ d_havg_temperature

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_temperature
private

◆ d_rayleigh_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_rayleigh_ptrs
private

◆ d_rhoqt_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhoqt_src
private

◆ d_rhotheta_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhotheta_src
private

◆ d_sinesq_ptrs

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_sinesq_ptrs
private

◆ d_sinesq_stag_ptrs

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_sinesq_stag_ptrs
private

◆ d_sponge_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_sponge_ptrs
private

◆ d_u_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_u_geos
private

◆ d_v_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_v_geos
private

◆ d_w_subsid

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_w_subsid
private

◆ datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::datalog
private

◆ datalogname

amrex::Vector<std::string> ERF::datalogname
private

Referenced by DataLogName().

◆ datetime_format

const std::string ERF::datetime_format = "%Y-%m-%d %H:%M:%S"
private

◆ datprecision

const int ERF::datprecision = 6
private

◆ datwidth

const int ERF::datwidth = 14
private

◆ der_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::der_datalog
private

◆ der_datalogname

amrex::Vector<std::string> ERF::der_datalogname
private

Referenced by DerDataLogName().

◆ derived_names

const amrex::Vector<std::string> ERF::derived_names
private

◆ derived_names_2d

const amrex::Vector<std::string> ERF::derived_names_2d
private
Initial value:
{
"z_surf", "landmask", "mapfac", "lat_m", "lon_m",
"u_star", "w_star", "t_star", "q_star", "Olen", "pblh",
"t_surf", "q_surf", "z0", "OLR", "sens_flux", "laten_flux",
"surf_pres"
}

◆ derived_subvol_names

const amrex::Vector<std::string> ERF::derived_subvol_names {"soundspeed", "temp", "theta", "KE", "scalar"}
private

◆ destag_profiles

bool ERF::destag_profiles = true
private

◆ detJ_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc
private

◆ detJ_cc_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_new
private

◆ detJ_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_src
private

◆ domain_bc_type

amrex::Array<std::string,2*AMREX_SPACEDIM> ERF::domain_bc_type
private

◆ domain_bcs_type

amrex::Vector<amrex::BCRec> ERF::domain_bcs_type
private

◆ domain_bcs_type_d

amrex::Gpu::DeviceVector<amrex::BCRec> ERF::domain_bcs_type_d
private

◆ dt

amrex::Vector<amrex::Real> ERF::dt
private

◆ dt_max

Real ERF::dt_max = 1.0e9
staticprivate

◆ dt_max_initial

Real ERF::dt_max_initial = 2.0e100
staticprivate

◆ dt_mri_ratio

amrex::Vector<long> ERF::dt_mri_ratio
private

◆ dz_min

amrex::Vector<amrex::Real> ERF::dz_min
private

◆ eb

amrex::Vector<std::unique_ptr<eb_> > ERF::eb
private

Referenced by EBFactory(), and get_eb().

◆ eddyDiffs_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::eddyDiffs_lev
private

◆ file_name_digits

int ERF::file_name_digits = 5
private

◆ fine_mask

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::fine_mask
private

◆ finished_wave

bool ERF::finished_wave = false
private

◆ fixed_dt

amrex::Vector<amrex::Real> ERF::fixed_dt
private

◆ fixed_fast_dt

amrex::Vector<amrex::Real> ERF::fixed_fast_dt
private

◆ fixed_mri_dt_ratio

int ERF::fixed_mri_dt_ratio = 0
staticprivate

◆ forecast_state_1

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_1

◆ forecast_state_2

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_2

◆ forecast_state_interp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_interp

◆ FPr_c

amrex::Vector<ERFFillPatcher> ERF::FPr_c
private

◆ FPr_u

amrex::Vector<ERFFillPatcher> ERF::FPr_u
private

◆ FPr_v

amrex::Vector<ERFFillPatcher> ERF::FPr_v
private

◆ FPr_w

amrex::Vector<ERFFillPatcher> ERF::FPr_w
private

◆ gradp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::gradp
private

◆ h_havg_density

amrex::Vector<amrex::Real> ERF::h_havg_density
private

◆ h_havg_pressure

amrex::Vector<amrex::Real> ERF::h_havg_pressure
private

◆ h_havg_qc

amrex::Vector<amrex::Real> ERF::h_havg_qc
private

◆ h_havg_qv

amrex::Vector<amrex::Real> ERF::h_havg_qv
private

◆ h_havg_temperature

amrex::Vector<amrex::Real> ERF::h_havg_temperature
private

◆ h_rayleigh_ptrs

amrex::Vector<amrex::Vector<amrex::Vector<amrex::Real> > > ERF::h_rayleigh_ptrs
private

◆ h_rhoqt_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhoqt_src
private

◆ h_rhotheta_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhotheta_src
private

◆ h_sinesq_ptrs

amrex::Vector<amrex::Vector<amrex::Real> > ERF::h_sinesq_ptrs
private

◆ h_sinesq_stag_ptrs

amrex::Vector<amrex::Vector<amrex::Real> > ERF::h_sinesq_stag_ptrs
private

◆ h_sponge_ptrs

amrex::Vector<amrex::Vector<amrex::Vector<amrex::Real> > > ERF::h_sponge_ptrs
private

◆ h_u_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_u_geos
private

◆ h_v_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_v_geos
private

◆ h_w_subsid

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_w_subsid
private

◆ have_read_nc_init_file

Vector< Vector< int > > ERF::have_read_nc_init_file = {{0}}
staticprivate

◆ hurricane_eye_track_latlon

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_eye_track_latlon

◆ hurricane_eye_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_eye_track_xy

◆ hurricane_maxvel_vs_time

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_maxvel_vs_time

◆ hurricane_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_track_xy

◆ hurricane_tracker_circle

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_tracker_circle

◆ Hwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave
private

◆ Hwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave_onegrid
private

◆ init_shrink

Real ERF::init_shrink = 1.0
staticprivate

◆ input_bndry_planes

int ERF::input_bndry_planes = 0
staticprivate

◆ input_sounding_data

InputSoundingData ERF::input_sounding_data
private

◆ input_sponge_data

InputSpongeData ERF::input_sponge_data
private

◆ interpolation_type

StateInterpType ERF::interpolation_type
staticprivate

◆ istep

amrex::Vector<int> ERF::istep
private

◆ lagged_delta_rt

amrex::Vector<amrex::MultiFab> ERF::lagged_delta_rt
private

◆ land_type_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::land_type_lev
private

◆ last_check_file_step

int ERF::last_check_file_step = -1
staticprivate

◆ last_check_file_time

Real ERF::last_check_file_time = 0.0
staticprivate

◆ last_plot2d_file_step_1

int ERF::last_plot2d_file_step_1 = -1
staticprivate

◆ last_plot2d_file_step_2

int ERF::last_plot2d_file_step_2 = -1
staticprivate

◆ last_plot2d_file_time_1

Real ERF::last_plot2d_file_time_1 = 0.0
staticprivate

◆ last_plot2d_file_time_2

Real ERF::last_plot2d_file_time_2 = 0.0
staticprivate

◆ last_plot3d_file_step_1

int ERF::last_plot3d_file_step_1 = -1
staticprivate

◆ last_plot3d_file_step_2

int ERF::last_plot3d_file_step_2 = -1
staticprivate

◆ last_plot3d_file_time_1

Real ERF::last_plot3d_file_time_1 = 0.0
staticprivate

◆ last_plot3d_file_time_2

Real ERF::last_plot3d_file_time_2 = 0.0
staticprivate

◆ last_subvol_step

amrex::Vector<int> ERF::last_subvol_step
private

◆ last_subvol_time

amrex::Vector<amrex::Real> ERF::last_subvol_time
private

◆ lat_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::lat_m
private

◆ line_sampler

std::unique_ptr<LineSampler> ERF::line_sampler = nullptr
private

◆ line_sampling_interval

int ERF::line_sampling_interval = -1
private

◆ line_sampling_per

amrex::Real ERF::line_sampling_per = -1.0
private

◆ lmask_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::lmask_lev
private

◆ lon_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::lon_m
private

◆ lsm

LandSurface ERF::lsm
private

◆ lsm_data

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_data
private

◆ lsm_data_name

amrex::Vector<std::string> ERF::lsm_data_name
private

◆ lsm_flux

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_flux
private

◆ lsm_flux_name

amrex::Vector<std::string> ERF::lsm_flux_name
private

◆ Lwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave
private

◆ Lwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave_onegrid
private

◆ m_bc_extdir_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_extdir_vals
private

◆ m_bc_neumann_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_neumann_vals
private

◆ m_check_int

int ERF::m_check_int = -1
private

◆ m_check_per

amrex::Real ERF::m_check_per = -1.0
private

◆ m_expand_plotvars_to_unif_rr

bool ERF::m_expand_plotvars_to_unif_rr = false
private

◆ m_forest_drag

amrex::Vector<std::unique_ptr<ForestDrag> > ERF::m_forest_drag
private

◆ m_plot2d_int_1

int ERF::m_plot2d_int_1 = -1
private

◆ m_plot2d_int_2

int ERF::m_plot2d_int_2 = -1
private

◆ m_plot2d_per_1

amrex::Real ERF::m_plot2d_per_1 = -1.0
private

◆ m_plot2d_per_2

amrex::Real ERF::m_plot2d_per_2 = -1.0
private

◆ m_plot3d_int_1

int ERF::m_plot3d_int_1 = -1
private

◆ m_plot3d_int_2

int ERF::m_plot3d_int_2 = -1
private

◆ m_plot3d_per_1

amrex::Real ERF::m_plot3d_per_1 = -1.0
private

◆ m_plot3d_per_2

amrex::Real ERF::m_plot3d_per_2 = -1.0
private

◆ m_plot_face_vels

bool ERF::m_plot_face_vels = false
private

◆ m_r2d

std::unique_ptr<ReadBndryPlanes> ERF::m_r2d = nullptr
private

◆ m_subvol_int

amrex::Vector<int> ERF::m_subvol_int
private

◆ m_subvol_per

amrex::Vector<amrex::Real> ERF::m_subvol_per
private

◆ m_SurfaceLayer

std::unique_ptr<SurfaceLayer> ERF::m_SurfaceLayer = nullptr
private

◆ m_w2d

std::unique_ptr<WriteBndryPlanes> ERF::m_w2d = nullptr
private

◆ mapfac

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::mapfac
private

◆ max_step

int ERF::max_step = -1
private

◆ metgrid_basic_linear

bool ERF::metgrid_basic_linear {false}
private

◆ metgrid_debug_dry

bool ERF::metgrid_debug_dry {false}
private

◆ metgrid_debug_isothermal

bool ERF::metgrid_debug_isothermal {false}
private

◆ metgrid_debug_msf

bool ERF::metgrid_debug_msf {false}
private

◆ metgrid_debug_psfc

bool ERF::metgrid_debug_psfc {false}
private

◆ metgrid_debug_quiescent

bool ERF::metgrid_debug_quiescent {false}
private

◆ metgrid_force_sfc_k

int ERF::metgrid_force_sfc_k {6}
private

◆ metgrid_interp_theta

bool ERF::metgrid_interp_theta {false}
private

◆ metgrid_order

int ERF::metgrid_order {2}
private

◆ metgrid_proximity

amrex::Real ERF::metgrid_proximity {500.0}
private

◆ metgrid_retain_sfc

bool ERF::metgrid_retain_sfc {false}
private

◆ metgrid_use_below_sfc

bool ERF::metgrid_use_below_sfc {true}
private

◆ metgrid_use_sfc

bool ERF::metgrid_use_sfc {true}
private

◆ mf_C1H

std::unique_ptr<amrex::MultiFab> ERF::mf_C1H
private

◆ mf_C2H

std::unique_ptr<amrex::MultiFab> ERF::mf_C2H
private

◆ mf_MUB

std::unique_ptr<amrex::MultiFab> ERF::mf_MUB
private

◆ mf_PSFC

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::mf_PSFC
private

◆ mg_verbose

int ERF::mg_verbose = 0
staticprivate

◆ micro

std::unique_ptr<Microphysics> ERF::micro
private

◆ mri_integrator_mem

amrex::Vector<std::unique_ptr<MRISplitIntegrator<amrex::Vector<amrex::MultiFab> > > > ERF::mri_integrator_mem
private

◆ nc_bdy_file

std::string ERF::nc_bdy_file
staticprivate

◆ nc_init_file

Vector< Vector< std::string > > ERF::nc_init_file = {{""}}
staticprivate

◆ nc_low_file

std::string ERF::nc_low_file
staticprivate

◆ ng_dens_hse

int ERF::ng_dens_hse
staticprivate

◆ ng_pres_hse

int ERF::ng_pres_hse
staticprivate

◆ nsubsteps

amrex::Vector<int> ERF::nsubsteps
private

◆ num_boxes_at_level

amrex::Vector<int> ERF::num_boxes_at_level
private

◆ num_files_at_level

amrex::Vector<int> ERF::num_files_at_level
private

◆ output_1d_column

int ERF::output_1d_column = 0
staticprivate

◆ output_bndry_planes

int ERF::output_bndry_planes = 0
staticprivate

◆ pert_interval

int ERF::pert_interval = -1
staticprivate

◆ phys_bc_type

amrex::GpuArray<ERF_BC, AMREX_SPACEDIM*2> ERF::phys_bc_type
private

◆ physbcs_base

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_base> > ERF::physbcs_base
private

◆ physbcs_cons

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_cons> > ERF::physbcs_cons
private

◆ physbcs_u

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_u> > ERF::physbcs_u
private

◆ physbcs_v

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_v> > ERF::physbcs_v
private

◆ physbcs_w

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_w> > ERF::physbcs_w
private

◆ plane_sampler

std::unique_ptr<PlaneSampler> ERF::plane_sampler = nullptr
private

◆ plane_sampling_interval

int ERF::plane_sampling_interval = -1
private

◆ plane_sampling_per

amrex::Real ERF::plane_sampling_per = -1.0
private

◆ plot2d_file_1

std::string ERF::plot2d_file_1 {"plt2d_1_"}
private

◆ plot2d_file_2

std::string ERF::plot2d_file_2 {"plt2d_2_"}
private

◆ plot2d_var_names_1

amrex::Vector<std::string> ERF::plot2d_var_names_1
private

◆ plot2d_var_names_2

amrex::Vector<std::string> ERF::plot2d_var_names_2
private

◆ plot3d_file_1

std::string ERF::plot3d_file_1 {"plt_1_"}
private

◆ plot3d_file_2

std::string ERF::plot3d_file_2 {"plt_2_"}
private

◆ plot3d_var_names_1

amrex::Vector<std::string> ERF::plot3d_var_names_1
private

◆ plot3d_var_names_2

amrex::Vector<std::string> ERF::plot3d_var_names_2
private

◆ plot_file_on_restart

bool ERF::plot_file_on_restart = true
staticprivate

◆ plot_lsm

bool ERF::plot_lsm = false
private

◆ plot_rad

bool ERF::plot_rad = false
private

◆ plotfile2d_type_1

PlotFileType ERF::plotfile2d_type_1 = PlotFileType::None
staticprivate

◆ plotfile2d_type_2

PlotFileType ERF::plotfile2d_type_2 = PlotFileType::None
staticprivate

◆ plotfile3d_type_1

PlotFileType ERF::plotfile3d_type_1 = PlotFileType::None
staticprivate

◆ plotfile3d_type_2

PlotFileType ERF::plotfile3d_type_2 = PlotFileType::None
staticprivate

◆ pp_inc

amrex::Vector<amrex::MultiFab> ERF::pp_inc
private

◆ pp_prefix

std::string ERF::pp_prefix {"erf"}

◆ previousCPUTimeUsed

Real ERF::previousCPUTimeUsed = 0.0
staticprivate

Referenced by getCPUTime().

◆ prob

std::unique_ptr<ProblemBase> ERF::prob = nullptr
private

◆ profile_int

int ERF::profile_int = -1
private

◆ qheating_rates

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::qheating_rates
private

◆ qmoist

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::qmoist
private

◆ Qr_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qr_prim
private

◆ Qv_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qv_prim
private

◆ rad

amrex::Vector<std::unique_ptr<IRadiation> > ERF::rad
private

◆ rad_datalog_int

int ERF::rad_datalog_int = -1
private

◆ rad_fluxes

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::rad_fluxes
private

◆ real_extrap_w

bool ERF::real_extrap_w {true}
private

◆ real_set_width

int ERF::real_set_width {0}
private

◆ real_width

int ERF::real_width {0}
private

◆ ref_tags

Vector< AMRErrorTag > ERF::ref_tags
staticprivate

◆ regrid_int

int ERF::regrid_int = -1
private

◆ regrid_level_0_on_restart

bool ERF::regrid_level_0_on_restart = false
private

◆ restart_chkfile

std::string ERF::restart_chkfile = ""
private

◆ rU_new

amrex::Vector<amrex::MultiFab> ERF::rU_new
private

◆ rU_old

amrex::Vector<amrex::MultiFab> ERF::rU_old
private

◆ rV_new

amrex::Vector<amrex::MultiFab> ERF::rV_new
private

◆ rV_old

amrex::Vector<amrex::MultiFab> ERF::rV_old
private

◆ rW_new

amrex::Vector<amrex::MultiFab> ERF::rW_new
private

◆ rW_old

amrex::Vector<amrex::MultiFab> ERF::rW_old
private

◆ sampleline

amrex::Vector<amrex::IntVect> ERF::sampleline
private

Referenced by NumSampleLines(), and SampleLine().

◆ samplelinelog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::samplelinelog
private

◆ samplelinelogname

amrex::Vector<std::string> ERF::samplelinelogname
private

Referenced by SampleLineLogName().

◆ samplepoint

amrex::Vector<amrex::IntVect> ERF::samplepoint
private

Referenced by NumSamplePoints(), and SamplePoint().

◆ sampleptlog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::sampleptlog
private

◆ sampleptlogname

amrex::Vector<std::string> ERF::sampleptlogname
private

Referenced by SamplePointLogName().

◆ SFS_diss_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_diss_lev
private

◆ SFS_hfx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx1_lev
private

◆ SFS_hfx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx2_lev
private

◆ SFS_hfx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx3_lev
private

◆ SFS_q1fx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx1_lev
private

◆ SFS_q1fx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx2_lev
private

◆ SFS_q1fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx3_lev
private

◆ SFS_q2fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q2fx3_lev
private

◆ sinPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sinPhi_m
private

◆ SmnSmn_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SmnSmn_lev
private

◆ soil_type_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::soil_type_lev
private

◆ solar_zenith

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::solar_zenith
private

◆ solverChoice

SolverChoice ERF::solverChoice
staticprivate

◆ sponge_type

std::string ERF::sponge_type
staticprivate

◆ sst_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::sst_lev
private

◆ start_time

Real ERF::start_time = 0.0
staticprivate

◆ startCPUTime

Real ERF::startCPUTime = 0.0
staticprivate

Referenced by getCPUTime().

◆ stop_time

Real ERF::stop_time = std::numeric_limits<amrex::Real>::max()
staticprivate

◆ stretched_dz_d

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::stretched_dz_d
private

◆ stretched_dz_h

amrex::Vector<amrex::Vector<amrex::Real> > ERF::stretched_dz_h
private

◆ sub_cfl

Real ERF::sub_cfl = 1.0
staticprivate

◆ subdomains

amrex::Vector<amrex::Vector<amrex::BoxArray> > ERF::subdomains
private

◆ subvol3d_var_names

amrex::Vector<std::string> ERF::subvol3d_var_names
private

◆ subvol_file

std::string ERF::subvol_file {"subvol"}
private

◆ sum_interval

int ERF::sum_interval = -1
staticprivate

◆ sum_per

Real ERF::sum_per = -1.0
staticprivate

◆ sw_lw_fluxes

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sw_lw_fluxes
private

◆ t_avg_cnt

amrex::Vector<amrex::Real> ERF::t_avg_cnt
private

◆ t_new

amrex::Vector<amrex::Real> ERF::t_new
private

◆ t_old

amrex::Vector<amrex::Real> ERF::t_old
private

◆ Tau

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::Tau
private

◆ Tau_corr

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::Tau_corr
private

◆ terrain_blanking

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::terrain_blanking
private

◆ th_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::th_bc_data
private

◆ Theta_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Theta_prim
private

◆ thin_xforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_xforce
private

◆ thin_yforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_yforce
private

◆ thin_zforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_zforce
private

◆ timeprecision

const int ERF::timeprecision = 13
private

◆ tot_e_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::tot_e_datalog
private

Referenced by setRecordEnergyDataInfo().

◆ tot_e_datalogname

amrex::Vector<std::string> ERF::tot_e_datalogname
private

◆ tsk_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::tsk_lev
private

◆ turbPert

TurbulentPerturbation ERF::turbPert
private

◆ urb_frac_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::urb_frac_lev
private

◆ use_datetime

bool ERF::use_datetime = false
private

◆ use_fft

bool ERF::use_fft = false
staticprivate

◆ use_real_time_in_pltname

bool ERF::use_real_time_in_pltname = false
private

◆ vars_new

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_new
private

◆ vars_old

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_old
private

◆ vel_t_avg

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::vel_t_avg
private

◆ verbose

int ERF::verbose = 0
staticprivate

◆ walldist

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::walldist
private

◆ weather_forecast_data_1

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data_1

◆ weather_forecast_data_2

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data_2

◆ xflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::xflux_imask
private

◆ xvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::xvel_bc_data
private

◆ yflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::yflux_imask
private

◆ yvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::yvel_bc_data
private

◆ z_phys_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc
private

◆ z_phys_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc_src
private

◆ z_phys_nd

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd
private

◆ z_phys_nd_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_new
private

◆ z_phys_nd_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_src
private

◆ z_t_rk

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_t_rk
private

◆ zflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::zflux_imask
private

◆ zlevels_stag

amrex::Vector<amrex::Vector<amrex::Real> > ERF::zlevels_stag
private

◆ zmom_crse_rhs

amrex::Vector<amrex::MultiFab> ERF::zmom_crse_rhs
private

◆ zvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::zvel_bc_data
private

The documentation for this class was generated from the following files: