ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
ERF Class Reference

#include <ERF.H>

Inheritance diagram for ERF:
Collaboration diagram for ERF:

Public Member Functions

 ERF ()
 
 ~ERF () override
 
void ERF_shared ()
 
 ERF (ERF &&) noexcept=delete
 
ERFoperator= (ERF &&other) noexcept=delete
 
 ERF (const ERF &other)=delete
 
ERFoperator= (const ERF &other)=delete
 
void Evolve ()
 
void ErrorEst (int lev, amrex::TagBoxArray &tags, amrex::Real time, int ngrow) override
 
void HurricaneTracker (int lev, amrex::Real time, const amrex::MultiFab &cc_vel, const amrex::Real velmag_threshold, amrex::TagBoxArray *tags=nullptr)
 
bool FindInitialEye (int lev, const amrex::MultiFab &cc_vel, const amrex::Real velmag_threshold, amrex::Real &eye_x, amrex::Real &eye_y)
 
std::string MakeVTKFilename (int nstep)
 
std::string MakeVTKFilename_TrackerCircle (int nstep)
 
std::string MakeVTKFilename_EyeTracker_xy (int nstep)
 
std::string MakeFilename_EyeTracker_latlon (int nstep)
 
std::string MakeFilename_EyeTracker_maxvel (int nstep)
 
void WriteVTKPolyline (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void WriteLinePlot (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void InitData ()
 
void InitData_pre ()
 
void InitData_post ()
 
void Interp2DArrays (int lev, const amrex::BoxArray &my_ba2d, const amrex::DistributionMapping &my_dm)
 
void WriteMyEBSurface ()
 
void compute_divergence (int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
 
void project_initial_velocity (int lev, amrex::Real time, amrex::Real dt)
 
void project_momenta (int lev, amrex::Real l_time, amrex::Real l_dt, amrex::Vector< amrex::MultiFab > &vars)
 
void project_velocity_tb (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void poisson_wall_dist (int lev)
 
void make_subdomains (const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
 
void solve_with_gmres (int lev, const amrex::Box &subdomain, amrex::MultiFab &rhs, amrex::MultiFab &p, amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &fluxes, amrex::MultiFab &ax_sub, amrex::MultiFab &ay_sub, amrex::MultiFab &az_sub, amrex::MultiFab &, amrex::MultiFab &znd_sub)
 
void ImposeBCsOnPhi (int lev, amrex::MultiFab &phi, const amrex::Box &subdomain)
 
void init_only (int lev, amrex::Real time)
 
void restart ()
 
void check_state_for_nans (amrex::MultiFab const &S)
 
void check_vels_for_nans (amrex::MultiFab const &xvel, amrex::MultiFab const &yvel, amrex::MultiFab const &zvel)
 
void check_for_negative_theta (amrex::MultiFab &S)
 
void check_for_low_temp (amrex::MultiFab &S)
 
bool writeNow (const amrex::Real cur_time, const int nstep, const int plot_int, const amrex::Real plot_per, const amrex::Real dt_0, amrex::Real &last_file_time)
 
void post_timestep (int nstep, amrex::Real time, amrex::Real dt_lev)
 
void sum_integrated_quantities (amrex::Real time)
 
void sum_derived_quantities (amrex::Real time)
 
void sum_energy_quantities (amrex::Real time)
 
void write_1D_profiles (amrex::Real time)
 
void write_1D_profiles_stag (amrex::Real time)
 
amrex::Real cloud_fraction (amrex::Real time)
 
void FillBdyCCVels (amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
 
void sample_points (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void sample_lines (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void derive_diag_profiles (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_diag_profiles_stag (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_stress_profiles (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
void derive_stress_profiles_stag (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
amrex::Real volWgtSumMF (int lev, const amrex::MultiFab &mf, int comp, const amrex::MultiFab &dJ, const amrex::MultiFab &mfx, const amrex::MultiFab &mfy, bool finemask, bool local=true)
 
void volWgtColumnSum (int lev, const amrex::MultiFab &mf, int comp, amrex::MultiFab &mf_2d, const amrex::MultiFab &dJ)
 
void MakeNewLevelFromCoarse (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void RemakeLevel (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void ClearLevel (int lev) override
 
void MakeNewLevelFromScratch (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
amrex::Real estTimeStep (int lev, long &dt_fast_ratio) const
 
void advance_dycore (int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
 
void advance_microphysics (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
 
void advance_lsm (int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
 
void advance_radiation (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
 
void build_fine_mask (int lev, amrex::MultiFab &fine_mask)
 
void MakeHorizontalAverages ()
 
void MakeDiagnosticAverage (amrex::Vector< amrex::Real > &h_havg, amrex::MultiFab &S, int n)
 
void derive_upwp (amrex::Vector< amrex::Real > &h_havg)
 
void Write3DPlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void Write2DPlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void WriteSubvolume (int isub, amrex::Vector< std::string > subvol_var_names)
 
void WriteMultiLevelPlotfileWithTerrain (const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
 
void WriteGenericPlotfileHeaderWithTerrain (std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
 
void erf_enforce_hse (int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
 
void init_from_input_sounding (int lev)
 
void init_immersed_forcing (int lev)
 
void input_sponge (int lev)
 
void init_from_hse (int lev)
 
void init_thin_body (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void FillForecastStateMultiFabs (const int lev, const std::string &filename, const std::unique_ptr< amrex::MultiFab > &z_phys_nd, amrex::Vector< amrex::Vector< amrex::MultiFab >> &weather_forecast_data)
 
void WeatherDataInterpolation (const int nlevs, const amrex::Real time, amrex::Vector< std::unique_ptr< amrex::MultiFab >> &z_phys_nd, bool regrid_forces_file_read)
 
void fill_from_bndryregs (const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
 
void MakeEBGeometry ()
 
void make_eb_box ()
 
void make_eb_regular ()
 
void AverageDownTo (int crse_lev, int scomp, int ncomp)
 
void WriteCheckpointFile () const
 
void ReadCheckpointFile ()
 
void ReadCheckpointFileSurfaceLayer ()
 
void init_zphys (int lev, amrex::Real time)
 
void remake_zphys (int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
 
void update_terrain_arrays (int lev)
 
void writeJobInfo (const std::string &dir) const
 

Static Public Member Functions

static bool is_it_time_for_action (int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
 
static void writeBuildInfo (std::ostream &os)
 
static void print_banner (MPI_Comm, std::ostream &)
 
static void print_usage (MPI_Comm, std::ostream &)
 
static void print_error (MPI_Comm, const std::string &msg)
 
static void print_summary (std::ostream &)
 
static void print_tpls (std::ostream &)
 

Public Attributes

amrex::Vector< std::array< amrex::Real, 2 > > hurricane_track_xy
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_xy
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_latlon
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_maxvel_vs_time
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_tracker_circle
 
amrex::Vector< amrex::MultiFab > weather_forecast_data_1
 
amrex::Vector< amrex::MultiFab > weather_forecast_data_2
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_1
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_2
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_interp
 
std::string pp_prefix {"erf"}
 

Private Member Functions

void ReadParameters ()
 
void ParameterSanityChecks ()
 
void AverageDown ()
 
void update_diffusive_arrays (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void Construct_ERFFillPatchers (int lev)
 
void Define_ERFFillPatchers (int lev)
 
void init1DArrays ()
 
void init_bcs ()
 
void init_phys_bcs (bool &rho_read, bool &read_prim_theta)
 
void init_custom (int lev)
 
void init_uniform (int lev)
 
void init_stuff (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
 
void turbPert_update (const int lev, const amrex::Real dt)
 
void turbPert_amplitude (const int lev)
 
void initialize_integrator (int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
 
void make_physbcs (int lev)
 
void initializeMicrophysics (const int &)
 
void FillPatchCrseLevel (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
 
void FillPatchFineLevel (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
 
void FillIntermediatePatch (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
 
void FillCoarsePatch (int lev, amrex::Real time)
 
void timeStep (int lev, amrex::Real time, int iteration)
 
void Advance (int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
 
void initHSE ()
 Initialize HSE. More...
 
void initHSE (int lev)
 
void initRayleigh ()
 Initialize Rayleigh damping profiles. More...
 
void initSponge ()
 Initialize sponge profiles. More...
 
void setRayleighRefFromSounding (bool restarting)
 Set Rayleigh mean profiles from input sounding. More...
 
void setSpongeRefFromSounding (bool restarting)
 Set sponge mean profiles from input sounding. More...
 
void ComputeDt (int step=-1)
 
std::string PlotFileName (int lev) const
 
void setPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void setPlotVariables2D (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void appendPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void setSubVolVariables (const std::string &pp_subvol_var_names, amrex::Vector< std::string > &subvol_var_names)
 
void init_Dirichlet_bc_data (const std::string input_file)
 
void InitializeFromFile ()
 
void InitializeLevelFromData (int lev, const amrex::MultiFab &initial_data)
 
void post_update (amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void fill_rhs (amrex::MultiFab &rhs_mf, const amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void init_geo_wind_profile (const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
 
void refinement_criteria_setup ()
 
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg (int lev)
 
AMREX_FORCE_INLINE std::ostream & DataLog (int i)
 
AMREX_FORCE_INLINE std::ostream & DerDataLog (int i)
 
AMREX_FORCE_INLINE int NumDataLogs () noexcept
 
AMREX_FORCE_INLINE int NumDerDataLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SamplePointLog (int i)
 
AMREX_FORCE_INLINE int NumSamplePointLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SampleLineLog (int i)
 
AMREX_FORCE_INLINE int NumSampleLineLogs () noexcept
 
amrex::IntVect & SamplePoint (int i)
 
AMREX_FORCE_INLINE int NumSamplePoints () noexcept
 
amrex::IntVect & SampleLine (int i)
 
AMREX_FORCE_INLINE int NumSampleLines () noexcept
 
void setRecordDataInfo (int i, const std::string &filename)
 
void setRecordDerDataInfo (int i, const std::string &filename)
 
void setRecordEnergyDataInfo (int i, const std::string &filename)
 
void setRecordSamplePointInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
void setRecordSampleLineInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
std::string DataLogName (int i) const noexcept
 The filename of the ith datalog file. More...
 
std::string DerDataLogName (int i) const noexcept
 
std::string SamplePointLogName (int i) const noexcept
 The filename of the ith sampleptlog file. More...
 
std::string SampleLineLogName (int i) const noexcept
 The filename of the ith samplelinelog file. More...
 
eb_ const & get_eb (int lev) const noexcept
 
amrex::EBFArrayBoxFactory const & EBFactory (int lev) const noexcept
 

Static Private Member Functions

static amrex::Vector< std::string > PlotFileVarNames (amrex::Vector< std::string > plot_var_names)
 
static void GotoNextLine (std::istream &is)
 
static AMREX_FORCE_INLINE int ComputeGhostCells (const SolverChoice &sc)
 
static amrex::Real getCPUTime ()
 
static int nghost_eb_basic ()
 
static int nghost_eb_volume ()
 
static int nghost_eb_full ()
 

Private Attributes

amrex::Vector< std::unique_ptr< amrex::MultiFab > > lat_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lon_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
 
InputSoundingData input_sounding_data
 
InputSpongeData input_sponge_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
 
std::unique_ptr< ProblemBaseprob = nullptr
 
amrex::Vector< int > num_boxes_at_level
 
amrex::Vector< int > num_files_at_level
 
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
 
amrex::Vector< int > istep
 
amrex::Vector< int > nsubsteps
 
amrex::Vector< amrex::Realt_new
 
amrex::Vector< amrex::Realt_old
 
amrex::Vector< amrex::Realdt
 
amrex::Vector< long > dt_mri_ratio
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
 
amrex::Vector< amrex::Realt_avg_cnt
 
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
 
amrex::Vector< amrex::MultiFab > pp_inc
 
amrex::Vector< amrex::MultiFab > lagged_delta_rt
 
amrex::Vector< amrex::MultiFab > avg_xmom
 
amrex::Vector< amrex::MultiFab > avg_ymom
 
amrex::Vector< amrex::MultiFab > avg_zmom
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
 
amrex::Vector< amrex::MultiFab > rU_old
 
amrex::Vector< amrex::MultiFab > rU_new
 
amrex::Vector< amrex::MultiFab > rV_old
 
amrex::Vector< amrex::MultiFab > rV_new
 
amrex::Vector< amrex::MultiFab > rW_old
 
amrex::Vector< amrex::MultiFab > rW_new
 
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
 
std::unique_ptr< Microphysicsmicro
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
 
LandSurface lsm
 
amrex::Vector< std::string > lsm_data_name
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
 
amrex::Vector< std::string > lsm_flux_name
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
 
amrex::Vector< std::unique_ptr< IRadiation > > rad
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > rad_fluxes
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
 
bool plot_rad = false
 
int rad_datalog_int = -1
 
int cf_width {0}
 
int cf_set_width {0}
 
amrex::Vector< ERFFillPatcherFPr_c
 
amrex::Vector< ERFFillPatcherFPr_u
 
amrex::Vector< ERFFillPatcherFPr_v
 
amrex::Vector< ERFFillPatcherFPr_w
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau_corr
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > land_type_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > soil_type_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > urb_frac_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
 
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > fine_mask
 
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
 
amrex::Vector< amrex::MultiFab > base_state
 
amrex::Vector< amrex::MultiFab > base_state_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
 
bool finished_wave = false
 
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
 
amrex::Vector< amrex::BCRec > domain_bcs_type
 
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
 
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_extdir_vals
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_neumann_vals
 
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
 
amrex::Vector< int > last_subvol_step
 
amrex::Vector< amrex::Reallast_subvol_time
 
const int datwidth = 14
 
const int datprecision = 6
 
const int timeprecision = 13
 
int max_step = -1
 
bool use_datetime = false
 
const std::string datetime_format = "%Y-%m-%d %H:%M:%S"
 
std::string restart_chkfile = ""
 
amrex::Vector< amrex::Realfixed_dt
 
amrex::Vector< amrex::Realfixed_fast_dt
 
int regrid_int = -1
 
bool regrid_level_0_on_restart = false
 
std::string plot3d_file_1 {"plt_1_"}
 
std::string plot3d_file_2 {"plt_2_"}
 
std::string plot2d_file_1 {"plt2d_1_"}
 
std::string plot2d_file_2 {"plt2d_2_"}
 
std::string subvol_file {"subvol"}
 
bool m_expand_plotvars_to_unif_rr = false
 
int m_plot3d_int_1 = -1
 
int m_plot3d_int_2 = -1
 
int m_plot2d_int_1 = -1
 
int m_plot2d_int_2 = -1
 
amrex::Vector< int > m_subvol_int
 
amrex::Vector< amrex::Realm_subvol_per
 
amrex::Real m_plot3d_per_1 = -1.0
 
amrex::Real m_plot3d_per_2 = -1.0
 
amrex::Real m_plot2d_per_1 = -1.0
 
amrex::Real m_plot2d_per_2 = -1.0
 
bool m_plot_face_vels = false
 
bool plot_lsm = false
 
int profile_int = -1
 
bool destag_profiles = true
 
std::string check_file {"chk"}
 
int m_check_int = -1
 
amrex::Real m_check_per = -1.0
 
amrex::Vector< std::string > subvol3d_var_names
 
amrex::Vector< std::string > plot3d_var_names_1
 
amrex::Vector< std::string > plot3d_var_names_2
 
amrex::Vector< std::string > plot2d_var_names_1
 
amrex::Vector< std::string > plot2d_var_names_2
 
const amrex::Vector< std::string > cons_names
 
const amrex::Vector< std::string > derived_names
 
const amrex::Vector< std::string > derived_names_2d
 
const amrex::Vector< std::string > derived_subvol_names {"soundspeed", "temp", "theta", "KE", "scalar"}
 
TurbulentPerturbation turbPert
 
int file_name_digits = 5
 
bool use_real_time_in_pltname = false
 
int real_width {0}
 
int real_set_width {0}
 
bool real_extrap_w {true}
 
bool metgrid_debug_quiescent {false}
 
bool metgrid_debug_isothermal {false}
 
bool metgrid_debug_dry {false}
 
bool metgrid_debug_psfc {false}
 
bool metgrid_debug_msf {false}
 
bool metgrid_interp_theta {false}
 
bool metgrid_basic_linear {false}
 
bool metgrid_use_below_sfc {true}
 
bool metgrid_use_sfc {true}
 
bool metgrid_retain_sfc {false}
 
amrex::Real metgrid_proximity {500.0}
 
int metgrid_order {2}
 
int metgrid_force_sfc_k {6}
 
amrex::Vector< amrex::BoxArray > ba1d
 
amrex::Vector< amrex::BoxArray > ba2d
 
std::unique_ptr< amrex::MultiFab > mf_C1H
 
std::unique_ptr< amrex::MultiFab > mf_C2H
 
std::unique_ptr< amrex::MultiFab > mf_MUB
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_PSFC
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
 
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
 
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
 
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_ptrs
 
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_stag_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_ptrs
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_stag_ptrs
 
amrex::Vector< amrex::Realh_havg_density
 
amrex::Vector< amrex::Realh_havg_temperature
 
amrex::Vector< amrex::Realh_havg_pressure
 
amrex::Vector< amrex::Realh_havg_qv
 
amrex::Vector< amrex::Realh_havg_qc
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_density
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_temperature
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_pressure
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_qv
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_qc
 
std::unique_ptr< WriteBndryPlanesm_w2d = nullptr
 
std::unique_ptr< ReadBndryPlanesm_r2d = nullptr
 
std::unique_ptr< SurfaceLayerm_SurfaceLayer = nullptr
 
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
 
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
 
amrex::Vector< amrex::Realdz_min
 
int line_sampling_interval = -1
 
int plane_sampling_interval = -1
 
amrex::Real line_sampling_per = -1.0
 
amrex::Real plane_sampling_per = -1.0
 
std::unique_ptr< LineSamplerline_sampler = nullptr
 
std::unique_ptr< PlaneSamplerplane_sampler = nullptr
 
amrex::Vector< std::unique_ptr< std::fstream > > datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
 
amrex::Vector< std::string > datalogname
 
amrex::Vector< std::string > der_datalogname
 
amrex::Vector< std::string > tot_e_datalogname
 
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
 
amrex::Vector< std::string > sampleptlogname
 
amrex::Vector< amrex::IntVect > samplepoint
 
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
 
amrex::Vector< std::string > samplelinelogname
 
amrex::Vector< amrex::IntVect > sampleline
 
amrex::Vector< std::unique_ptr< eb_ > > eb
 

Static Private Attributes

static int last_plot3d_file_step_1 = -1
 
static int last_plot3d_file_step_2 = -1
 
static int last_plot2d_file_step_1 = -1
 
static int last_plot2d_file_step_2 = -1
 
static int last_check_file_step = -1
 
static amrex::Real last_plot3d_file_time_1 = 0.0
 
static amrex::Real last_plot3d_file_time_2 = 0.0
 
static amrex::Real last_plot2d_file_time_1 = 0.0
 
static amrex::Real last_plot2d_file_time_2 = 0.0
 
static amrex::Real last_check_file_time = 0.0
 
static bool plot_file_on_restart = true
 
static amrex::Real start_time = 0.0
 
static amrex::Real stop_time = std::numeric_limits<amrex::Real>::max()
 
static amrex::Real cfl = 0.8
 
static amrex::Real sub_cfl = 1.0
 
static amrex::Real init_shrink = 1.0
 
static amrex::Real change_max = 1.1
 
static amrex::Real dt_max_initial = 2.0e100
 
static amrex::Real dt_max = 1.0e9
 
static int fixed_mri_dt_ratio = 0
 
static SolverChoice solverChoice
 
static int verbose = 0
 
static int mg_verbose = 0
 
static bool use_fft = false
 
static int check_for_nans = 0
 
static int sum_interval = -1
 
static int pert_interval = -1
 
static amrex::Real sum_per = -1.0
 
static PlotFileType plotfile3d_type_1 = PlotFileType::None
 
static PlotFileType plotfile3d_type_2 = PlotFileType::None
 
static PlotFileType plotfile2d_type_1 = PlotFileType::None
 
static PlotFileType plotfile2d_type_2 = PlotFileType::None
 
static StateInterpType interpolation_type
 
static std::string sponge_type
 
static amrex::Vector< amrex::Vector< std::string > > nc_init_file = {{""}}
 
static amrex::Vector< amrex::Vector< int > > have_read_nc_init_file = {{0}}
 
static std::string nc_bdy_file
 
static std::string nc_low_file
 
static int output_1d_column = 0
 
static int column_interval = -1
 
static amrex::Real column_per = -1.0
 
static amrex::Real column_loc_x = 0.0
 
static amrex::Real column_loc_y = 0.0
 
static std::string column_file_name = "column_data.nc"
 
static int output_bndry_planes = 0
 
static int bndry_output_planes_interval = -1
 
static amrex::Real bndry_output_planes_per = -1.0
 
static amrex::Real bndry_output_planes_start_time = 0.0
 
static int input_bndry_planes = 0
 
static int ng_dens_hse
 
static int ng_pres_hse
 
static amrex::Vector< amrex::AMRErrorTag > ref_tags
 
static amrex::Real startCPUTime = 0.0
 
static amrex::Real previousCPUTimeUsed = 0.0
 

Detailed Description

Main class in ERF code, instantiated from main.cpp

Constructor & Destructor Documentation

◆ ERF() [1/3]

ERF::ERF ( )
131 {
132  int fix_random_seed = 0;
133  ParmParse pp("erf"); pp.query("fix_random_seed", fix_random_seed);
134  // Note that the value of 1024UL is not significant -- the point here is just to set the
135  // same seed for all MPI processes for the purpose of regression testing
136  if (fix_random_seed) {
137  Print() << "Fixing the random seed" << std::endl;
138  InitRandom(1024UL);
139  }
140 
141  ERF_shared();
142 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real pp(amrex::Real y)
Definition: ERF_MicrophysicsUtils.H:233
void ERF_shared()
Definition: ERF.cpp:145
Here is the call graph for this function:

◆ ~ERF()

ERF::~ERF ( )
overridedefault

◆ ERF() [2/3]

ERF::ERF ( ERF &&  )
deletenoexcept

◆ ERF() [3/3]

ERF::ERF ( const ERF other)
delete

Member Function Documentation

◆ Advance()

void ERF::Advance ( int  lev,
amrex::Real  time,
amrex::Real  dt_lev,
int  iteration,
int  ncycle 
)
private

Function that advances the solution at one level for a single time step – this does some preliminaries then calls erf_advance

Parameters
[in]levlevel of refinement (coarsest level is 0)
[in]timestart time for time advance
[in]dt_levtime step for this time advance
21 {
22  BL_PROFILE("ERF::Advance()");
23 
24  // We must swap the pointers so the previous step's "new" is now this step's "old"
25  std::swap(vars_old[lev], vars_new[lev]);
26 
27  MultiFab& S_old = vars_old[lev][Vars::cons];
28  MultiFab& S_new = vars_new[lev][Vars::cons];
29 
30  MultiFab& U_old = vars_old[lev][Vars::xvel];
31  MultiFab& V_old = vars_old[lev][Vars::yvel];
32  MultiFab& W_old = vars_old[lev][Vars::zvel];
33 
34  MultiFab& U_new = vars_new[lev][Vars::xvel];
35  MultiFab& V_new = vars_new[lev][Vars::yvel];
36  MultiFab& W_new = vars_new[lev][Vars::zvel];
37 
38  // We need to set these because otherwise in the first call to erf_advance we may
39  // read uninitialized data on ghost values in setting the bc's on the velocities
40  U_new.setVal(1.e34,U_new.nGrowVect());
41  V_new.setVal(1.e34,V_new.nGrowVect());
42  W_new.setVal(1.e34,W_new.nGrowVect());
43 
44  //
45  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
46  // If lev == 0 we have already FillPatched this in ERF::TimeStep
47  //
48  if (lev > 0) {
49  FillPatchFineLevel(lev, time, {&S_old, &U_old, &V_old, &W_old},
50  {&S_old, &rU_old[lev], &rV_old[lev], &rW_old[lev]},
51  base_state[lev], base_state[lev]);
52  }
53 
54  //
55  // So we must convert the fillpatched to momenta, including the ghost values
56  //
57  const MultiFab* c_vfrac = nullptr;
58  if (solverChoice.terrain_type == TerrainType::EB) {
59  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
60  }
61 
62  VelocityToMomentum(U_old, rU_old[lev].nGrowVect(),
63  V_old, rV_old[lev].nGrowVect(),
64  W_old, rW_old[lev].nGrowVect(),
65  S_old, rU_old[lev], rV_old[lev], rW_old[lev],
66  Geom(lev).Domain(),
67  domain_bcs_type, c_vfrac);
68 
69  // Update the inflow perturbation update time and amplitude
70  if (solverChoice.pert_type == PerturbationType::Source ||
71  solverChoice.pert_type == PerturbationType::Direct ||
72  solverChoice.pert_type == PerturbationType::CPM)
73  {
74  turbPert.calc_tpi_update(lev, dt_lev, U_old, V_old, S_old);
75  }
76 
77  // If PerturbationType::Direct or CPM is selected, directly add the computed perturbation
78  // on the conserved field
79  if (solverChoice.pert_type == PerturbationType::Direct ||
80  solverChoice.pert_type == PerturbationType::CPM)
81  {
82  auto m_ixtype = S_old.boxArray().ixType(); // Conserved term
83  for (MFIter mfi(S_old,TileNoZ()); mfi.isValid(); ++mfi) {
84  Box bx = mfi.tilebox();
85  const Array4<Real> &cell_data = S_old.array(mfi);
86  const Array4<const Real> &pert_cell = turbPert.pb_cell[lev].array(mfi);
87  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cell_data, pert_cell);
88  }
89  }
90 
91  // configure SurfaceLayer params if needed
92  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
93  if (m_SurfaceLayer) {
94  IntVect ng = Theta_prim[lev]->nGrowVect();
95  MultiFab::Copy( *Theta_prim[lev], S_old, RhoTheta_comp, 0, 1, ng);
96  MultiFab::Divide(*Theta_prim[lev], S_old, Rho_comp , 0, 1, ng);
97  if (solverChoice.moisture_type != MoistureType::None) {
98  ng = Qv_prim[lev]->nGrowVect();
99 
100  MultiFab::Copy( *Qv_prim[lev], S_old, RhoQ1_comp, 0, 1, ng);
101  MultiFab::Divide(*Qv_prim[lev], S_old, Rho_comp , 0, 1, ng);
102 
103  if (solverChoice.moisture_indices.qr > -1) {
104  MultiFab::Copy( *Qr_prim[lev], S_old, solverChoice.moisture_indices.qr, 0, 1, ng);
105  MultiFab::Divide(*Qr_prim[lev], S_old, Rho_comp , 0, 1, ng);
106  } else {
107  Qr_prim[lev]->setVal(0.0);
108  }
109  }
110  // NOTE: std::swap above causes the field ptrs to be out of date.
111  // Reassign the field ptrs for MAC avg computation.
112  m_SurfaceLayer->update_mac_ptrs(lev, vars_old, Theta_prim, Qv_prim, Qr_prim);
113  m_SurfaceLayer->update_pblh(lev, vars_old, z_phys_cc[lev].get(),
115  m_SurfaceLayer->update_fluxes(lev, time, S_old, z_phys_nd[lev]);
116  }
117  }
118 
119 #if defined(ERF_USE_WINDFARM)
120  // **************************************************************************************
121  // Update the windfarm sources
122  // **************************************************************************************
123  if (solverChoice.windfarm_type != WindFarmType::None) {
124  advance_windfarm(Geom(lev), dt_lev, S_old,
125  U_old, V_old, W_old, vars_windfarm[lev],
126  Nturb[lev], SMark[lev], time);
127  }
128 
129 #endif
130 
131  // **************************************************************************************
132  // Update the radiation sources with the "old" state
133  // **************************************************************************************
134  advance_radiation(lev, S_old, dt_lev);
135 
136 #ifdef ERF_USE_SHOC
137  // **************************************************************************************
138  // Update the "old" state using SHOC
139  // **************************************************************************************
140  if (solverChoice.use_shoc) {
141  // Get SFC fluxes from SurfaceLayer
142  if (m_SurfaceLayer) {
143  Vector<const MultiFab*> mfs = {&S_old, &U_old, &V_old, &W_old};
144  m_SurfaceLayer->impose_SurfaceLayer_bcs(lev, mfs, Tau[lev],
145  SFS_hfx1_lev[lev].get() , SFS_hfx2_lev[lev].get() , SFS_hfx3_lev[lev].get(),
146  SFS_q1fx1_lev[lev].get(), SFS_q1fx2_lev[lev].get(), SFS_q1fx3_lev[lev].get(),
147  z_phys_nd[lev].get());
148  }
149 
150  // Get Shoc tendencies and update the state
151  Real* w_sub = (solverChoice.custom_w_subsidence) ? d_w_subsid[lev].data() : nullptr;
152  compute_shoc_tendencies(lev, &S_old, &U_old, &V_old, &W_old, w_sub,
153  Tau[lev][TauType::tau13].get(), Tau[lev][TauType::tau23].get(),
154  SFS_hfx3_lev[lev].get() , SFS_q1fx3_lev[lev].get() ,
155  eddyDiffs_lev[lev].get() , z_phys_nd[lev].get() ,
156  dt_lev);
157  }
158 #endif
159 
160  const BoxArray& ba = S_old.boxArray();
161  const DistributionMapping& dm = S_old.DistributionMap();
162 
163  int nvars = S_old.nComp();
164 
165  // Source array for conserved cell-centered quantities -- this will be filled
166  // in the call to make_sources in ERF_TI_slow_rhs_pre.H
167  MultiFab cc_source(ba,dm,nvars,1); cc_source.setVal(0.0);
168 
169  // Source arrays for momenta -- these will be filled
170  // in the call to make_mom_sources in ERF_TI_slow_rhs_pre.H
171  BoxArray ba_x(ba); ba_x.surroundingNodes(0);
172  MultiFab xmom_source(ba_x,dm,1,1); xmom_source.setVal(0.0);
173 
174  BoxArray ba_y(ba); ba_y.surroundingNodes(1);
175  MultiFab ymom_source(ba_y,dm,1,1); ymom_source.setVal(0.0);
176 
177  BoxArray ba_z(ba); ba_z.surroundingNodes(2);
178  MultiFab zmom_source(ba_z,dm,1,1); zmom_source.setVal(0.0);
179  MultiFab buoyancy(ba_z,dm,1,1); buoyancy.setVal(0.0);
180 
181  amrex::Vector<MultiFab> state_old;
182  amrex::Vector<MultiFab> state_new;
183 
184  // **************************************************************************************
185  // Here we define state_old and state_new which are to be advanced
186  // **************************************************************************************
187  // Initial solution
188  // Note that "old" and "new" here are relative to each RK stage.
189  state_old.push_back(MultiFab(S_old , amrex::make_alias, 0, nvars)); // cons
190  state_old.push_back(MultiFab(rU_old[lev], amrex::make_alias, 0, 1)); // xmom
191  state_old.push_back(MultiFab(rV_old[lev], amrex::make_alias, 0, 1)); // ymom
192  state_old.push_back(MultiFab(rW_old[lev], amrex::make_alias, 0, 1)); // zmom
193 
194  // Final solution
195  // state_new at the end of the last RK stage holds the t^{n+1} data
196  state_new.push_back(MultiFab(S_new , amrex::make_alias, 0, nvars)); // cons
197  state_new.push_back(MultiFab(rU_new[lev], amrex::make_alias, 0, 1)); // xmom
198  state_new.push_back(MultiFab(rV_new[lev], amrex::make_alias, 0, 1)); // ymom
199  state_new.push_back(MultiFab(rW_new[lev], amrex::make_alias, 0, 1)); // zmom
200 
201  // **************************************************************************************
202  // Tests on the reasonableness of the solution before the dycore
203  // **************************************************************************************
204  // Test for NaNs after dycore
205  if (check_for_nans > 1) {
206  if (verbose > 1) {
207  amrex::Print() << "Testing old state and vels for NaNs before dycore" << std::endl;
208  }
209  check_state_for_nans(S_old);
210  check_vels_for_nans(rU_old[lev],rV_old[lev],rW_old[lev]);
211  }
212 
213  // We only test on low temp if we have a moisture model because we are protecting against
214  // the test on low temp inside the moisture models
215  if (solverChoice.moisture_type != MoistureType::None) {
216  if (verbose > 1) {
217  amrex::Print() << "Testing on low temperature before dycore" << std::endl;
218  }
219  check_for_low_temp(S_old);
220  } else {
221  if (verbose > 1) {
222  amrex::Print() << "Testing on negative temperature before dycore" << std::endl;
223  }
225  }
226 
227  // **************************************************************************************
228  // Update the dycore
229  // **************************************************************************************
230  advance_dycore(lev, state_old, state_new,
231  U_old, V_old, W_old,
232  U_new, V_new, W_new,
233  cc_source, xmom_source, ymom_source, zmom_source, buoyancy,
234  Geom(lev), dt_lev, time);
235 
236  // **************************************************************************************
237  // Tests on the reasonableness of the solution after the dycore
238  // **************************************************************************************
239  // Test for NaNs after dycore
240  if (check_for_nans > 0) {
241  if (verbose > 1) {
242  amrex::Print() << "Testing new state and vels for NaNs after dycore" << std::endl;
243  }
244  check_state_for_nans(S_new);
245  check_vels_for_nans(rU_new[lev],rV_new[lev],rW_new[lev]);
246  }
247 
248  // We only test on low temp if we have a moisture model because we are protecting against
249  // the test on low temp inside the moisture models
250  if (solverChoice.moisture_type != MoistureType::None) {
251  if (verbose > 1) {
252  amrex::Print() << "Testing on low temperature after dycore" << std::endl;
253  }
254  check_for_low_temp(S_new);
255  } else {
256  // Otherwise we will test on negative (rhotheta) coming out of the dycore
257  if (verbose > 1) {
258  amrex::Print() << "Testing on negative temperature after dycore" << std::endl;
259  }
261  }
262 
263  // **************************************************************************************
264  // Update the microphysics (moisture)
265  // **************************************************************************************
267  {
268  advance_microphysics(lev, S_new, dt_lev, iteration, time);
269 
270  // Test for NaNs after microphysics
271  if (check_for_nans > 0) {
272  amrex::Print() << "Testing new state for NaNs after advance_microphysics" << std::endl;
273  check_state_for_nans(S_new);
274  }
275  }
276 
277  // **************************************************************************************
278  // Update the land surface model
279  // **************************************************************************************
280  advance_lsm(lev, S_new, U_new, V_new, dt_lev);
281 
282 #ifdef ERF_USE_PARTICLES
283  // **************************************************************************************
284  // Update the particle positions
285  // **************************************************************************************
286  evolveTracers( lev, dt_lev, vars_new, z_phys_nd );
287 #endif
288 
289  // ***********************************************************************************************
290  // Impose domain boundary conditions here so that in FillPatching the fine data we won't
291  // need to re-fill these
292  // ***********************************************************************************************
293  if (lev < finest_level) {
294  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
296  0,vars_new[lev][Vars::cons].nComp(),
297  vars_new[lev][Vars::cons].nGrowVect(),time,BCVars::cons_bc,true);
298  (*physbcs_u[lev])(vars_new[lev][Vars::xvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
299  ngvect_vels,time,BCVars::xvel_bc,true);
300  (*physbcs_v[lev])(vars_new[lev][Vars::yvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
301  ngvect_vels,time,BCVars::yvel_bc,true);
302  (*physbcs_w[lev])(vars_new[lev][Vars::zvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
303  ngvect_vels,time,BCVars::zvel_bc,true);
304  }
305 
306  // **************************************************************************************
307  // Register old and new coarse data if we are at a level less than the finest level
308  // **************************************************************************************
309  if (lev < finest_level) {
310  if (cf_width > 0) {
311  // We must fill the ghost cells of these so that the parallel copy works correctly
312  state_old[IntVars::cons].FillBoundary(geom[lev].periodicity());
313  state_new[IntVars::cons].FillBoundary(geom[lev].periodicity());
314  FPr_c[lev].RegisterCoarseData({&state_old[IntVars::cons], &state_new[IntVars::cons]},
315  {time, time+dt_lev});
316  }
317 
318  if (cf_width >= 0) {
319  // We must fill the ghost cells of these so that the parallel copy works correctly
320  state_old[IntVars::xmom].FillBoundary(geom[lev].periodicity());
321  state_new[IntVars::xmom].FillBoundary(geom[lev].periodicity());
322  FPr_u[lev].RegisterCoarseData({&state_old[IntVars::xmom], &state_new[IntVars::xmom]},
323  {time, time+dt_lev});
324 
325  state_old[IntVars::ymom].FillBoundary(geom[lev].periodicity());
326  state_new[IntVars::ymom].FillBoundary(geom[lev].periodicity());
327  FPr_v[lev].RegisterCoarseData({&state_old[IntVars::ymom], &state_new[IntVars::ymom]},
328  {time, time+dt_lev});
329 
330  state_old[IntVars::zmom].FillBoundary(geom[lev].periodicity());
331  state_new[IntVars::zmom].FillBoundary(geom[lev].periodicity());
332  FPr_w[lev].RegisterCoarseData({&state_old[IntVars::zmom], &state_new[IntVars::zmom]},
333  {time, time+dt_lev});
334  }
335 
336  //
337  // Now create a MultiFab that holds (S_new - S_old) / dt from the coarse level interpolated
338  // on to the coarse/fine boundary at the fine resolution
339  //
340  Interpolater* mapper_f = &face_cons_linear_interp;
341 
342  // PhysBCFunctNoOp null_bc;
343  // MultiFab tempx(vars_new[lev+1][Vars::xvel].boxArray(),vars_new[lev+1][Vars::xvel].DistributionMap(),1,0);
344  // tempx.setVal(0.0);
345  // xmom_crse_rhs[lev+1].setVal(0.0);
346  // FPr_u[lev].FillSet(tempx , time , null_bc, domain_bcs_type);
347  // FPr_u[lev].FillSet(xmom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
348  // MultiFab::Subtract(xmom_crse_rhs[lev+1],tempx,0,0,1,IntVect{0});
349  // xmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
350 
351  // MultiFab tempy(vars_new[lev+1][Vars::yvel].boxArray(),vars_new[lev+1][Vars::yvel].DistributionMap(),1,0);
352  // tempy.setVal(0.0);
353  // ymom_crse_rhs[lev+1].setVal(0.0);
354  // FPr_v[lev].FillSet(tempy , time , null_bc, domain_bcs_type);
355  // FPr_v[lev].FillSet(ymom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
356  // MultiFab::Subtract(ymom_crse_rhs[lev+1],tempy,0,0,1,IntVect{0});
357  // ymom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
358 
359  MultiFab temp_state(zmom_crse_rhs[lev+1].boxArray(),zmom_crse_rhs[lev+1].DistributionMap(),1,0);
360  InterpFromCoarseLevel(temp_state, IntVect{0}, IntVect{0}, state_old[IntVars::zmom], 0, 0, 1,
361  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
362  InterpFromCoarseLevel(zmom_crse_rhs[lev+1], IntVect{0}, IntVect{0}, state_new[IntVars::zmom], 0, 0, 1,
363  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
364  MultiFab::Subtract(zmom_crse_rhs[lev+1],temp_state,0,0,1,IntVect{0});
365  zmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
366  }
367 
368  // ***********************************************************************************************
369  // Update the time averaged velocities if they are requested
370  // ***********************************************************************************************
372  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(), U_new, V_new, W_new);
373  }
374 }
@ tau23
Definition: ERF_DataStruct.H:32
@ tau13
Definition: ERF_DataStruct.H:32
@ nvars
Definition: ERF_DataStruct.H:97
#define Rho_comp
Definition: ERF_IndexDefines.H:36
#define RhoTheta_comp
Definition: ERF_IndexDefines.H:37
#define RhoQ1_comp
Definition: ERF_IndexDefines.H:42
@ surface_layer
amrex::Real Real
Definition: ERF_ShocInterface.H:19
AMREX_FORCE_INLINE amrex::IntVect TileNoZ()
Definition: ERF_TileNoZ.H:11
void Time_Avg_Vel_atCC(const Real &dt, Real &t_avg_cnt, MultiFab *vel_t_avg, MultiFab &xvel, MultiFab &yvel, MultiFab &zvel)
Definition: ERF_TimeAvgVel.cpp:9
void VelocityToMomentum(const amrex::MultiFab &xvel_in, const amrex::IntVect &xvel_ngrow, const amrex::MultiFab &yvel_in, const amrex::IntVect &yvel_ngrow, const amrex::MultiFab &zvel_in, const amrex::IntVect &zvel_ngrow, const amrex::MultiFab &cons_in, amrex::MultiFab &xmom_out, amrex::MultiFab &ymom_out, amrex::MultiFab &zmom_out, const amrex::Box &domain, const amrex::Vector< amrex::BCRec > &domain_bcs_type_h, const amrex::MultiFab *c_vfrac=nullptr)
amrex::Vector< amrex::MultiFab > rU_new
Definition: ERF.H:839
void check_vels_for_nans(amrex::MultiFab const &xvel, amrex::MultiFab const &yvel, amrex::MultiFab const &zvel)
Definition: ERF.cpp:2971
amrex::Vector< ERFFillPatcher > FPr_u
Definition: ERF.H:893
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
Definition: ERF.H:916
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
Definition: ERF.H:804
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
Definition: ERF.H:914
amrex::Vector< ERFFillPatcher > FPr_v
Definition: ERF.H:894
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
Definition: ERF.H:914
eb_ const & get_eb(int lev) const noexcept
Definition: ERF.H:1619
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
Definition: ERF.H:826
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
Definition: ERF.H:924
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
Definition: ERF.H:900
static SolverChoice solverChoice
Definition: ERF.H:1159
amrex::Vector< ERFFillPatcher > FPr_c
Definition: ERF.H:892
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
Definition: ERF.H:898
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
Definition: ERF.H:811
static int verbose
Definition: ERF.H:1194
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
Definition: ERF.H:829
amrex::Vector< amrex::MultiFab > base_state
Definition: ERF.H:958
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
Definition: ERF.H:834
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
Definition: ERF.H:916
amrex::Vector< amrex::MultiFab > rV_new
Definition: ERF.H:841
amrex::Vector< amrex::BCRec > domain_bcs_type
Definition: ERF.H:974
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
Definition: ERF.H:835
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
Definition: ERF.H:827
amrex::Vector< amrex::Real > t_avg_cnt
Definition: ERF.H:812
void FillPatchFineLevel(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
Definition: ERF_FillPatch.cpp:20
amrex::Vector< amrex::MultiFab > rU_old
Definition: ERF.H:838
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
Definition: ERF.H:833
static int check_for_nans
Definition: ERF.H:1198
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
Definition: ERF.H:828
void check_state_for_nans(amrex::MultiFab const &S)
Definition: ERF.cpp:2948
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
Definition: ERF.H:923
void advance_dycore(int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
Definition: ERF_AdvanceDycore.cpp:38
amrex::Vector< amrex::MultiFab > rW_new
Definition: ERF.H:843
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
Definition: ERF.H:847
void check_for_low_temp(amrex::MultiFab &S)
Definition: ERF.cpp:2998
void advance_lsm(int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceLSM.cpp:5
TurbulentPerturbation turbPert
Definition: ERF.H:1162
amrex::Vector< amrex::MultiFab > rW_old
Definition: ERF.H:842
void check_for_negative_theta(amrex::MultiFab &S)
Definition: ERF.cpp:3033
std::unique_ptr< SurfaceLayer > m_SurfaceLayer
Definition: ERF.H:1332
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
Definition: ERF.H:1283
amrex::Vector< ERFFillPatcher > FPr_w
Definition: ERF.H:895
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
Definition: ERF.H:914
amrex::Vector< amrex::Real > dt
Definition: ERF.H:798
void advance_radiation(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceRadiation.cpp:5
void advance_microphysics(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
Definition: ERF_AdvanceMicrophysics.cpp:5
int cf_width
Definition: ERF.H:890
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
Definition: ERF.H:916
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
Definition: ERF.H:987
amrex::Vector< amrex::MultiFab > rV_old
Definition: ERF.H:840
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
Definition: ERF.H:805
const std::unique_ptr< amrex::EBFArrayBoxFactory > & get_const_factory() const noexcept
Definition: ERF_EB.H:46
@ zvel_bc
Definition: ERF_IndexDefines.H:89
@ yvel_bc
Definition: ERF_IndexDefines.H:88
@ cons_bc
Definition: ERF_IndexDefines.H:76
@ xvel_bc
Definition: ERF_IndexDefines.H:87
@ ymom
Definition: ERF_IndexDefines.H:160
@ cons
Definition: ERF_IndexDefines.H:158
@ zmom
Definition: ERF_IndexDefines.H:161
@ xmom
Definition: ERF_IndexDefines.H:159
@ ng
Definition: ERF_Morrison.H:48
@ xvel
Definition: ERF_IndexDefines.H:141
@ cons
Definition: ERF_IndexDefines.H:140
@ zvel
Definition: ERF_IndexDefines.H:143
@ yvel
Definition: ERF_IndexDefines.H:142
int qr
Definition: ERF_DataStruct.H:109
bool use_shoc
Definition: ERF_DataStruct.H:1124
bool moisture_tight_coupling
Definition: ERF_DataStruct.H:1161
bool custom_w_subsidence
Definition: ERF_DataStruct.H:1112
MoistureType moisture_type
Definition: ERF_DataStruct.H:1140
static TerrainType terrain_type
Definition: ERF_DataStruct.H:1009
PerturbationType pert_type
Definition: ERF_DataStruct.H:1130
WindFarmType windfarm_type
Definition: ERF_DataStruct.H:1141
MoistureComponentIndices moisture_indices
Definition: ERF_DataStruct.H:1159
bool time_avg_vel
Definition: ERF_DataStruct.H:1127
amrex::Vector< amrex::MultiFab > pb_cell
Definition: ERF_TurbPertStruct.H:640
void calc_tpi_update(const int lev, const amrex::Real dt, amrex::MultiFab &mf_xvel, amrex::MultiFab &mf_yvel, amrex::MultiFab &mf_cons)
Definition: ERF_TurbPertStruct.H:223
void apply_tpi(const int &lev, const amrex::Box &vbx, const int &comp, const amrex::IndexType &m_ixtype, const amrex::Array4< amrex::Real > &src_arr, const amrex::Array4< amrex::Real const > &pert_cell)
Definition: ERF_TurbPertStruct.H:324
Here is the call graph for this function:

◆ advance_dycore()

void ERF::advance_dycore ( int  level,
amrex::Vector< amrex::MultiFab > &  state_old,
amrex::Vector< amrex::MultiFab > &  state_new,
amrex::MultiFab &  xvel_old,
amrex::MultiFab &  yvel_old,
amrex::MultiFab &  zvel_old,
amrex::MultiFab &  xvel_new,
amrex::MultiFab &  yvel_new,
amrex::MultiFab &  zvel_new,
amrex::MultiFab &  source,
amrex::MultiFab &  xmom_src,
amrex::MultiFab &  ymom_src,
amrex::MultiFab &  zmom_src,
amrex::MultiFab &  buoyancy,
amrex::Geometry  fine_geom,
amrex::Real  dt,
amrex::Real  time 
)

Function that advances the solution at one level for a single time step – this sets up the multirate time integrator and calls the integrator's advance function

Parameters
[in]levellevel of refinement (coarsest level is 0)
[in]state_oldold-time conserved variables
[in]state_newnew-time conserved variables
[in]xvel_oldold-time x-component of velocity
[in]yvel_oldold-time y-component of velocity
[in]zvel_oldold-time z-component of velocity
[in]xvel_newnew-time x-component of velocity
[in]yvel_newnew-time y-component of velocity
[in]zvel_newnew-time z-component of velocity
[in]cc_srcsource term for conserved variables
[in]xmom_srcsource term for x-momenta
[in]ymom_srcsource term for y-momenta
[in]zmom_srcsource term for z-momenta
[in]fine_geomcontainer for geometry information at current level
[in]dt_advancetime step for this time advance
[in]old_timeold time for this time advance
48 {
49  BL_PROFILE_VAR("erf_advance_dycore()",erf_advance_dycore);
50 
51  const Box& domain = fine_geom.Domain();
52 
56 
57  MultiFab r_hse (base_state[level], make_alias, BaseState::r0_comp , 1);
58  MultiFab p_hse (base_state[level], make_alias, BaseState::p0_comp , 1);
59  MultiFab pi_hse(base_state[level], make_alias, BaseState::pi0_comp, 1);
60 
61  // These pointers are used in the MRI utility functions
62  MultiFab* r0 = &r_hse;
63  MultiFab* p0 = &p_hse;
64  MultiFab* pi0 = &pi_hse;
65 
66  Real* dptr_rhotheta_src = solverChoice.custom_rhotheta_forcing ? d_rhotheta_src[level].data() : nullptr;
67  Real* dptr_rhoqt_src = solverChoice.custom_moisture_forcing ? d_rhoqt_src[level].data() : nullptr;
68  Real* dptr_wbar_sub = solverChoice.custom_w_subsidence ? d_w_subsid[level].data() : nullptr;
69 
70  // Turbulent Perturbation Pointer
71  //Real* dptr_rhotheta_src = solverChoice.pert_type ? d_rhotheta_src[level].data() : nullptr;
72 
73  Vector<Real*> d_rayleigh_ptrs_at_lev;
74  d_rayleigh_ptrs_at_lev.resize(Rayleigh::nvars);
75  d_rayleigh_ptrs_at_lev[Rayleigh::ubar] = solverChoice.dampingChoice.rayleigh_damp_U ? d_rayleigh_ptrs[level][Rayleigh::ubar].data() : nullptr;
76  d_rayleigh_ptrs_at_lev[Rayleigh::vbar] = solverChoice.dampingChoice.rayleigh_damp_V ? d_rayleigh_ptrs[level][Rayleigh::vbar].data() : nullptr;
77  d_rayleigh_ptrs_at_lev[Rayleigh::wbar] = solverChoice.dampingChoice.rayleigh_damp_W ? d_rayleigh_ptrs[level][Rayleigh::wbar].data() : nullptr;
78  d_rayleigh_ptrs_at_lev[Rayleigh::thetabar] = solverChoice.dampingChoice.rayleigh_damp_T ? d_rayleigh_ptrs[level][Rayleigh::thetabar].data() : nullptr;
79 
80  bool use_rayleigh =
83  Real* d_sinesq_at_lev = (use_rayleigh) ? d_sinesq_ptrs[level].data() : nullptr;
84  Real* d_sinesq_stag_at_lev = (use_rayleigh) ? d_sinesq_stag_ptrs[level].data() : nullptr;
85 
86  Vector<Real*> d_sponge_ptrs_at_lev;
87  if(sc.sponge_type=="input_sponge")
88  {
89  d_sponge_ptrs_at_lev.resize(Sponge::nvars_sponge);
90  d_sponge_ptrs_at_lev[Sponge::ubar_sponge] = d_sponge_ptrs[level][Sponge::ubar_sponge].data();
91  d_sponge_ptrs_at_lev[Sponge::vbar_sponge] = d_sponge_ptrs[level][Sponge::vbar_sponge].data();
92  }
93 
94  bool l_use_terrain_fitted_coords = (solverChoice.mesh_type != MeshType::ConstantDz);
95  bool l_use_kturb = tc.use_kturb;
96  bool l_use_diff = ( (dc.molec_diff_type != MolecDiffType::None) ||
97  l_use_kturb );
98 
99  const bool use_SurfLayer = (m_SurfaceLayer != nullptr);
100  const MultiFab* z_0 = (use_SurfLayer) ? m_SurfaceLayer->get_z0(level) : nullptr;
101 
102  const BoxArray& ba = state_old[IntVars::cons].boxArray();
103  const BoxArray& ba_z = zvel_old.boxArray();
104  const DistributionMapping& dm = state_old[IntVars::cons].DistributionMap();
105 
106  int num_prim = state_old[IntVars::cons].nComp() - 1;
107 
108  MultiFab S_prim (ba , dm, num_prim, state_old[IntVars::cons].nGrowVect());
109  MultiFab pi_stage (ba , dm, 1, 1);
110  MultiFab fast_coeffs(ba_z, dm, 5, 0);
111 
112  MultiFab* eddyDiffs = eddyDiffs_lev[level].get();
113  MultiFab* SmnSmn = SmnSmn_lev[level].get();
114 
115  // **************************************************************************************
116  // Compute strain for use in slow RHS and Smagorinsky model
117  // **************************************************************************************
118  {
119  BL_PROFILE("erf_advance_strain");
120  if (l_use_diff) {
121 
122  const BCRec* bc_ptr_h = domain_bcs_type.data();
123  const GpuArray<Real, AMREX_SPACEDIM> dxInv = fine_geom.InvCellSizeArray();
124 
125 #ifdef _OPENMP
126 #pragma omp parallel if (Gpu::notInLaunchRegion())
127 #endif
128  for ( MFIter mfi(state_new[IntVars::cons],TileNoZ()); mfi.isValid(); ++mfi)
129  {
130  Box bxcc = mfi.growntilebox(IntVect(1,1,0));
131  Box tbxxy = mfi.tilebox(IntVect(1,1,0),IntVect(1,1,0));
132  Box tbxxz = mfi.tilebox(IntVect(1,0,1),IntVect(1,1,0));
133  Box tbxyz = mfi.tilebox(IntVect(0,1,1),IntVect(1,1,0));
134 
135  if (bxcc.smallEnd(2) != domain.smallEnd(2)) {
136  bxcc.growLo(2,1);
137  tbxxy.growLo(2,1);
138  tbxxz.growLo(2,1);
139  tbxyz.growLo(2,1);
140  }
141 
142  if (bxcc.bigEnd(2) != domain.bigEnd(2)) {
143  bxcc.growHi(2,1);
144  tbxxy.growHi(2,1);
145  tbxxz.growHi(2,1);
146  tbxyz.growHi(2,1);
147  }
148 
149  const Array4<const Real> & u = xvel_old.array(mfi);
150  const Array4<const Real> & v = yvel_old.array(mfi);
151  const Array4<const Real> & w = zvel_old.array(mfi);
152 
153  Array4<Real> tau11 = Tau[level][TauType::tau11].get()->array(mfi);
154  Array4<Real> tau22 = Tau[level][TauType::tau22].get()->array(mfi);
155  Array4<Real> tau33 = Tau[level][TauType::tau33].get()->array(mfi);
156  Array4<Real> tau12 = Tau[level][TauType::tau12].get()->array(mfi);
157  Array4<Real> tau13 = Tau[level][TauType::tau13].get()->array(mfi);
158  Array4<Real> tau23 = Tau[level][TauType::tau23].get()->array(mfi);
159 
160  Array4<Real> tau21 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau21].get()->array(mfi) : Array4<Real>{};
161  Array4<Real> tau31 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau31].get()->array(mfi) : Array4<Real>{};
162  Array4<Real> tau32 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau32].get()->array(mfi) : Array4<Real>{};
163  const Array4<const Real>& z_nd = z_phys_nd[level]->const_array(mfi);
164 
165  const Array4<const Real> mf_mx = mapfac[level][MapFacType::m_x]->const_array(mfi);
166  const Array4<const Real> mf_ux = mapfac[level][MapFacType::u_x]->const_array(mfi);
167  const Array4<const Real> mf_vx = mapfac[level][MapFacType::v_x]->const_array(mfi);
168  const Array4<const Real> mf_my = mapfac[level][MapFacType::m_y]->const_array(mfi);
169  const Array4<const Real> mf_uy = mapfac[level][MapFacType::u_y]->const_array(mfi);
170  const Array4<const Real> mf_vy = mapfac[level][MapFacType::v_y]->const_array(mfi);
171 
172  // We update Tau_corr[level] in erf_make_tau_terms, not here
173  Array4<Real> no_tau_corr_update_here{};
174 
175  if (solverChoice.mesh_type == MeshType::StretchedDz) {
176  ComputeStrain_S(bxcc, tbxxy, tbxxz, tbxyz, domain,
177  u, v, w,
178  tau11, tau22, tau33,
179  tau12, tau21,
180  tau13, tau31,
181  tau23, tau32,
182  stretched_dz_d[level], dxInv,
183  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h,
184  no_tau_corr_update_here, no_tau_corr_update_here);
185  } else if (l_use_terrain_fitted_coords) {
186  ComputeStrain_T(bxcc, tbxxy, tbxxz, tbxyz, domain,
187  u, v, w,
188  tau11, tau22, tau33,
189  tau12, tau21,
190  tau13, tau31,
191  tau23, tau32,
192  z_nd, detJ_cc[level]->const_array(mfi), dxInv,
193  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h,
194  no_tau_corr_update_here, no_tau_corr_update_here);
195  } else {
196  ComputeStrain_N(bxcc, tbxxy, tbxxz, tbxyz, domain,
197  u, v, w,
198  tau11, tau22, tau33,
199  tau12, tau13, tau23,
200  dxInv,
201  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h,
202  no_tau_corr_update_here, no_tau_corr_update_here);
203  }
204  } // mfi
205  } // l_use_diff
206  } // profile
207 
208 #include "ERF_TI_utils.H"
209 
210  // Additional SFS quantities, calculated once per timestep
211  MultiFab* Hfx1 = SFS_hfx1_lev[level].get();
212  MultiFab* Hfx2 = SFS_hfx2_lev[level].get();
213  MultiFab* Hfx3 = SFS_hfx3_lev[level].get();
214  MultiFab* Q1fx1 = SFS_q1fx1_lev[level].get();
215  MultiFab* Q1fx2 = SFS_q1fx2_lev[level].get();
216  MultiFab* Q1fx3 = SFS_q1fx3_lev[level].get();
217  MultiFab* Q2fx3 = SFS_q2fx3_lev[level].get();
218  MultiFab* Diss = SFS_diss_lev[level].get();
219 
220  // *************************************************************************
221  // Calculate cell-centered eddy viscosity & diffusivities
222  //
223  // Notes -- we fill all the data in ghost cells before calling this so
224  // that we can fill the eddy viscosity in the ghost regions and
225  // not have to call a boundary filler on this data itself
226  //
227  // LES - updates both horizontal and vertical eddy viscosity components
228  // PBL - only updates vertical eddy viscosity components so horizontal
229  // components come from the LES model or are left as zero.
230  // *************************************************************************
231  if (l_use_kturb)
232  {
233  // NOTE: state_new transfers to state_old for PBL (due to ptr swap in advance)
234  bool l_use_moisture = ( solverChoice.moisture_type != MoistureType::None );
235  const BCRec* bc_ptr_h = domain_bcs_type.data();
236  ComputeTurbulentViscosity(dt_advance, xvel_old, yvel_old,Tau[level],
237  state_old[IntVars::cons],
238  *walldist[level].get(),
239  *eddyDiffs, *Hfx1, *Hfx2, *Hfx3, *Diss, // to be updated
240  fine_geom, mapfac[level],
241  z_phys_nd[level], solverChoice,
242  m_SurfaceLayer, z_0, l_use_terrain_fitted_coords,
243  l_use_moisture, level,
244  bc_ptr_h);
245  }
246 
247  // ***********************************************************************************************
248  // Update user-defined source terms -- these are defined once per time step (not per RK stage)
249  // ***********************************************************************************************
251  prob->update_rhotheta_sources(old_time,
252  h_rhotheta_src[level], d_rhotheta_src[level],
253  fine_geom, z_phys_cc[level]);
254  }
255 
257  prob->update_rhoqt_sources(old_time,
258  h_rhoqt_src[level], d_rhoqt_src[level],
259  fine_geom, z_phys_cc[level]);
260  }
261 
263  prob->update_geostrophic_profile(old_time,
264  h_u_geos[level], d_u_geos[level],
265  h_v_geos[level], d_v_geos[level],
266  fine_geom, z_phys_cc[level]);
267  }
268 
270  prob->update_w_subsidence(old_time,
271  h_w_subsid[level], d_w_subsid[level],
272  fine_geom, z_phys_nd[level]);
273  }
274 
275  // ***********************************************************************************************
276  // Convert old velocity available on faces to old momentum on faces to be used in time integration
277  // ***********************************************************************************************
278  MultiFab density(state_old[IntVars::cons], make_alias, Rho_comp, 1);
279 
280  //
281  // This is an optimization since we won't need more than one ghost
282  // cell of momentum in the integrator if not using numerical diffusion
283  //
284  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : xvel_old.nGrowVect();
285  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : yvel_old.nGrowVect();
286  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : zvel_old.nGrowVect();
287 
288  const MultiFab* c_vfrac = nullptr;
289  if (solverChoice.terrain_type == TerrainType::EB) {
290  c_vfrac = &((get_eb(level).get_const_factory())->getVolFrac());
291  }
292 
293  VelocityToMomentum(xvel_old, ngu, yvel_old, ngv, zvel_old, ngw, density,
294  state_old[IntVars::xmom],
295  state_old[IntVars::ymom],
296  state_old[IntVars::zmom],
297  domain, domain_bcs_type, c_vfrac);
298 
299  MultiFab::Copy(xvel_new,xvel_old,0,0,1,xvel_old.nGrowVect());
300  MultiFab::Copy(yvel_new,yvel_old,0,0,1,yvel_old.nGrowVect());
301  MultiFab::Copy(zvel_new,zvel_old,0,0,1,zvel_old.nGrowVect());
302 
303  bool fast_only = false;
304  bool vel_and_mom_synced = true;
305 
306  apply_bcs(state_old, old_time,
307  state_old[IntVars::cons].nGrow(), state_old[IntVars::xmom].nGrow(),
308  fast_only, vel_and_mom_synced);
309  cons_to_prim(state_old[IntVars::cons], state_old[IntVars::cons].nGrow());
310 
311  // ***********************************************************************************************
312  // Define a new MultiFab that holds q_total and fill it by summing the moisture components --
313  // to be used in buoyancy calculation and as part of the inertial weighting in the
314  // ***********************************************************************************************
315 
316  const bool l_eb_terrain = (solverChoice.terrain_type == TerrainType::EB);
317  MultiFab qt(grids[level], dmap[level], 1, (l_eb_terrain) ? 2 : 1);
318  qt.setVal(0.0);
319 
320 #include "ERF_TI_no_substep_fun.H"
321 #include "ERF_TI_substep_fun.H"
322 #include "ERF_TI_slow_rhs_pre.H"
323 #include "ERF_TI_slow_rhs_post.H"
324 
325  // ***************************************************************************************
326  // Setup the integrator and integrate for a single timestep
327  // **************************************************************************************
328  MRISplitIntegrator<Vector<MultiFab> >& mri_integrator = *mri_integrator_mem[level];
329 
330  // Define rhs and 'post update' utility function that is called after calculating
331  // any state data (e.g. at RK stages or at the end of a timestep)
332  mri_integrator.set_slow_rhs_pre(slow_rhs_fun_pre);
333  mri_integrator.set_slow_rhs_post(slow_rhs_fun_post);
334 
337  mri_integrator.set_no_substep(no_substep_fun);
338 
339  mri_integrator.advance(state_old, state_new, old_time, dt_advance);
340 
341  if (verbose) Print() << "Done with advance_dycore at level " << level << std::endl;
342 }
void ComputeStrain_N(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau13, Array4< Real > &tau23, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr, Array4< Real > &tau13i, Array4< Real > &tau23i)
Definition: ERF_ComputeStrain_N.cpp:31
void ComputeStrain_S(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Gpu::DeviceVector< Real > &stretched_dz_d, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr, Array4< Real > &tau13i, Array4< Real > &tau23i)
Definition: ERF_ComputeStrain_S.cpp:39
void ComputeStrain_T(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Array4< const Real > &z_nd, const Array4< const Real > &detJ, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr, Array4< Real > &tau13i, Array4< Real > &tau23i)
Definition: ERF_ComputeStrain_T.cpp:39
void ComputeTurbulentViscosity(Real dt, const MultiFab &xvel, const MultiFab &yvel, Vector< std::unique_ptr< MultiFab >> &Tau_lev, MultiFab &cons_in, const MultiFab &wdist, MultiFab &eddyViscosity, MultiFab &Hfx1, MultiFab &Hfx2, MultiFab &Hfx3, MultiFab &Diss, const Geometry &geom, Vector< std::unique_ptr< MultiFab >> &mapfac, const std::unique_ptr< MultiFab > &z_phys_nd, const SolverChoice &solverChoice, std::unique_ptr< SurfaceLayer > &SurfLayer, const MultiFab *z_0, const bool &use_terrain_fitted_coords, const bool &use_moisture, int level, const BCRec *bc_ptr, bool vert_only)
Definition: ERF_ComputeTurbulentViscosity.cpp:570
@ tau12
Definition: ERF_DataStruct.H:32
@ tau33
Definition: ERF_DataStruct.H:32
@ tau22
Definition: ERF_DataStruct.H:32
@ tau11
Definition: ERF_DataStruct.H:32
@ tau32
Definition: ERF_DataStruct.H:32
@ tau31
Definition: ERF_DataStruct.H:32
@ tau21
Definition: ERF_DataStruct.H:32
@ ubar
Definition: ERF_DataStruct.H:97
@ wbar
Definition: ERF_DataStruct.H:97
@ vbar
Definition: ERF_DataStruct.H:97
@ thetabar
Definition: ERF_DataStruct.H:97
@ nvars_sponge
Definition: ERF_DataStruct.H:102
@ vbar_sponge
Definition: ERF_DataStruct.H:102
@ ubar_sponge
Definition: ERF_DataStruct.H:102
@ v_x
Definition: ERF_DataStruct.H:24
@ u_y
Definition: ERF_DataStruct.H:25
@ v_y
Definition: ERF_DataStruct.H:25
@ m_y
Definition: ERF_DataStruct.H:25
@ u_x
Definition: ERF_DataStruct.H:24
@ m_x
Definition: ERF_DataStruct.H:24
auto no_substep_fun
Definition: ERF_TI_no_substep_fun.H:4
auto slow_rhs_fun_post
Definition: ERF_TI_slow_rhs_post.H:3
auto slow_rhs_fun_pre
Definition: ERF_TI_slow_rhs_pre.H:6
auto acoustic_substepping_fun
Definition: ERF_TI_substep_fun.H:6
auto apply_bcs
Definition: ERF_TI_utils.H:73
auto cons_to_prim
Definition: ERF_TI_utils.H:4
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
Definition: ERF.H:947
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
Definition: ERF.H:950
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
Definition: ERF.H:814
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_stag_ptrs
Definition: ERF.H:1314
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
Definition: ERF.H:1277
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
Definition: ERF.H:1282
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
Definition: ERF.H:926
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
Definition: ERF.H:1310
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
Definition: ERF.H:1279
amrex::Vector< long > dt_mri_ratio
Definition: ERF.H:799
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
Definition: ERF.H:917
std::unique_ptr< ProblemBase > prob
Definition: ERF.H:786
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
Definition: ERF.H:956
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
Definition: ERF.H:915
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_sinesq_ptrs
Definition: ERF.H:1313
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
Definition: ERF.H:1289
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
Definition: ERF.H:1288
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
Definition: ERF.H:1280
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
Definition: ERF.H:1276
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
Definition: ERF.H:1285
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
Definition: ERF.H:901
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
Definition: ERF.H:1286
static int fixed_mri_dt_ratio
Definition: ERF.H:1050
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
Definition: ERF.H:1309
Definition: ERF_MRI.H:16
void set_acoustic_substepping(std::function< void(int, int, int, T &, const T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> F)
Definition: ERF_MRI.H:140
void set_no_substep(std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> F)
Definition: ERF_MRI.H:158
void set_slow_rhs_post(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:135
void set_slow_rhs_pre(std::function< void(T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:131
void set_slow_fast_timestep_ratio(const int timestep_ratio=1)
Definition: ERF_MRI.H:148
amrex::Real advance(T &S_old, T &S_new, amrex::Real time, const amrex::Real time_step)
Definition: ERF_MRI.H:168
@ pi0_comp
Definition: ERF_IndexDefines.H:65
@ p0_comp
Definition: ERF_IndexDefines.H:64
@ r0_comp
Definition: ERF_IndexDefines.H:63
@ qt
Definition: ERF_Kessler.H:27
real(c_double), parameter p0
Definition: ERF_module_model_constants.F90:40
bool rayleigh_damp_V
Definition: ERF_DampingStruct.H:85
bool rayleigh_damp_T
Definition: ERF_DampingStruct.H:87
bool rayleigh_damp_W
Definition: ERF_DampingStruct.H:86
bool rayleigh_damp_U
Definition: ERF_DampingStruct.H:84
Definition: ERF_DiffStruct.H:19
MolecDiffType molec_diff_type
Definition: ERF_DiffStruct.H:84
static MeshType mesh_type
Definition: ERF_DataStruct.H:1021
DampingChoice dampingChoice
Definition: ERF_DataStruct.H:1031
DiffChoice diffChoice
Definition: ERF_DataStruct.H:1030
bool custom_rhotheta_forcing
Definition: ERF_DataStruct.H:1110
bool custom_geostrophic_profile
Definition: ERF_DataStruct.H:1113
bool use_num_diff
Definition: ERF_DataStruct.H:1133
bool custom_moisture_forcing
Definition: ERF_DataStruct.H:1111
amrex::Vector< TurbChoice > turbChoice
Definition: ERF_DataStruct.H:1033
SpongeChoice spongeChoice
Definition: ERF_DataStruct.H:1032
Definition: ERF_SpongeStruct.H:15
std::string sponge_type
Definition: ERF_SpongeStruct.H:58
Definition: ERF_TurbStruct.H:41
bool use_kturb
Definition: ERF_TurbStruct.H:416
Here is the call graph for this function:

◆ advance_lsm()

void ERF::advance_lsm ( int  lev,
amrex::MultiFab &  cons_in,
amrex::MultiFab &  xvel_in,
amrex::MultiFab &  yvel_in,
const amrex::Real dt_advance 
)
10 {
11  if (solverChoice.lsm_type != LandSurfaceType::None) {
12  if (solverChoice.lsm_type == LandSurfaceType::NOAHMP) {
13  lsm.Advance(lev, cons_in, xvel_in, yvel_in, SFS_hfx3_lev[lev].get(), SFS_q1fx3_lev[lev].get(), dt_advance, istep[0]);
14  } else {
15  lsm.Advance(lev, dt_advance);
16  }
17  }
18 }
LandSurface lsm
Definition: ERF.H:865
amrex::Vector< int > istep
Definition: ERF.H:792
void Advance(const int &lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, amrex::MultiFab *hfx3_out, amrex::MultiFab *qfx3_out, const amrex::Real &dt_advance, const int &nstep)
Definition: ERF_LandSurface.H:52
LandSurfaceType lsm_type
Definition: ERF_DataStruct.H:1143

◆ advance_microphysics()

void ERF::advance_microphysics ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real dt_advance,
const int &  iteration,
const amrex::Real time 
)
10 {
11  if (solverChoice.moisture_type != MoistureType::None) {
12  micro->Update_Micro_Vars_Lev(lev, cons);
13  micro->Advance(lev, dt_advance, iteration, time, solverChoice, vars_new, z_phys_nd, phys_bc_type);
14  micro->Update_State_Vars_Lev(lev, cons);
15  }
16 }
std::unique_ptr< Microphysics > micro
Definition: ERF.H:849

◆ advance_radiation()

void ERF::advance_radiation ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real dt_advance 
)
8 {
9  if (solverChoice.rad_type != RadiationType::None) {
10 #ifdef ERF_USE_NETCDF
11  MultiFab *lat_ptr = lat_m[lev].get();
12  MultiFab *lon_ptr = lon_m[lev].get();
13 #else
14  MultiFab *lat_ptr = nullptr;
15  MultiFab *lon_ptr = nullptr;
16 #endif
17  // T surf from SurfaceLayer if we have it
18  MultiFab* t_surf = (m_SurfaceLayer) ? m_SurfaceLayer->get_t_surf(lev) : nullptr;
19 
20  // RRTMGP inputs names and pointers
21  Vector<std::string> lsm_input_names = rad[lev]->get_lsm_input_varnames();
22  Vector<MultiFab*> lsm_input_ptrs(lsm_input_names.size(),nullptr);
23  for (int i(0); i<lsm_input_ptrs.size(); ++i) {
24  int varIdx = lsm.Get_DataIdx(lev,lsm_input_names[i]);
25  lsm_input_ptrs[i] = lsm.Get_Data_Ptr(lev,varIdx);
26  }
27 
28  // RRTMGP output names and pointers
29  Vector<std::string> lsm_output_names = rad[lev]->get_lsm_output_varnames();
30  Vector<MultiFab*> lsm_output_ptrs(lsm_output_names.size(),nullptr);
31  for (int i(0); i<lsm_output_ptrs.size(); ++i) {
32  int varIdx = lsm.Get_DataIdx(lev,lsm_output_names[i]);
33  lsm_output_ptrs[i] = lsm.Get_Data_Ptr(lev,varIdx);
34  }
35 
36  // Enter radiation class driver
37  amrex::Real time_for_rad = t_new[lev] + start_time;
38  rad[lev]->Run(lev, istep[lev], time_for_rad, dt_advance,
39  cons.boxArray(), geom[lev], &(cons),
40  lmask_lev[lev][0].get(), t_surf,
41  sw_lw_fluxes[lev].get(), solar_zenith[lev].get(),
42  lsm_input_ptrs, lsm_output_ptrs,
43  qheating_rates[lev].get(), rad_fluxes[lev].get(),
44  z_phys_nd[lev].get() , lat_ptr, lon_ptr);
45  }
46 }
static amrex::Real start_time
Definition: ERF.H:1030
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
Definition: ERF.H:883
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
Definition: ERF.H:906
amrex::Vector< std::unique_ptr< IRadiation > > rad
Definition: ERF.H:871
amrex::Vector< amrex::Real > t_new
Definition: ERF.H:796
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
Definition: ERF.H:884
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lon_m
Definition: ERF.H:749
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lat_m
Definition: ERF.H:749
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
Definition: ERF.H:872
amrex::Vector< std::unique_ptr< amrex::MultiFab > > rad_fluxes
Definition: ERF.H:873
int Get_DataIdx(const int &lev, std::string &varname)
Definition: ERF_LandSurface.H:107
amrex::MultiFab * Get_Data_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:89
RadiationType rad_type
Definition: ERF_DataStruct.H:1144

◆ appendPlotVariables()

void ERF::appendPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
230 {
231  ParmParse pp(pp_prefix);
232 
233  Vector<std::string> plot_var_names(0);
234  if (pp.contains(pp_plot_var_names.c_str())) {
235  std::string nm;
236  int nPltVars = pp.countval(pp_plot_var_names.c_str());
237  for (int i = 0; i < nPltVars; i++) {
238  pp.get(pp_plot_var_names.c_str(), nm, i);
239  // Add the named variable to our list of plot variables
240  // if it is not already in the list
241  if (!containerHasElement(plot_var_names, nm)) {
242  plot_var_names.push_back(nm);
243  }
244  }
245  }
246 
247  Vector<std::string> tmp_plot_names(0);
248 #ifdef ERF_USE_PARTICLES
249  Vector<std::string> particle_mesh_plot_names;
250  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
251  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
252  std::string tmp(particle_mesh_plot_names[i]);
253  if (containerHasElement(plot_var_names, tmp) ) {
254  tmp_plot_names.push_back(tmp);
255  }
256  }
257 #endif
258 
259  {
260  Vector<std::string> microphysics_plot_names;
261  micro->GetPlotVarNames(microphysics_plot_names);
262  if (microphysics_plot_names.size() > 0) {
263  static bool first_call = true;
264  if (first_call) {
265  Print() << getEnumNameString(solverChoice.moisture_type)
266  << ": the following additional variables are available to plot:\n";
267  for (int i = 0; i < microphysics_plot_names.size(); i++) {
268  Print() << " " << microphysics_plot_names[i] << "\n";
269  }
270  first_call = false;
271  }
272  for (auto& plot_name : microphysics_plot_names) {
273  if (containerHasElement(plot_var_names, plot_name)) {
274  tmp_plot_names.push_back(plot_name);
275  }
276  }
277  }
278  }
279 
280  for (int i = 0; i < tmp_plot_names.size(); i++) {
281  a_plot_var_names.push_back( tmp_plot_names[i] );
282  }
283 
284  // Finally, check to see if we found all the requested variables
285  for (const auto& plot_name : plot_var_names) {
286  if (!containerHasElement(a_plot_var_names, plot_name)) {
287  if (amrex::ParallelDescriptor::IOProcessor()) {
288  Warning("\nWARNING: Requested to plot variable '" + plot_name + "' but it is not available");
289  }
290  }
291  }
292 }
bool containerHasElement(const V &iterable, const T &query)
Definition: ERF_Container.H:5
std::string pp_prefix
Definition: ERF.H:518
Here is the call graph for this function:

◆ AverageDown()

void ERF::AverageDown ( )
private
17 {
18  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
19 
20  int src_comp, num_comp;
21  for (int lev = finest_level-1; lev >= 0; --lev)
22  {
23  // If anelastic we don't average down rho because rho == rho0.
24  if (solverChoice.anelastic[lev]) {
25  src_comp = 1;
26  } else {
27  src_comp = 0;
28  }
29  num_comp = vars_new[0][Vars::cons].nComp() - src_comp;
30  AverageDownTo(lev,src_comp,num_comp);
31  }
32 }
void AverageDownTo(int crse_lev, int scomp, int ncomp)
Definition: ERF_AverageDown.cpp:36
amrex::Vector< int > anelastic
Definition: ERF_DataStruct.H:1039
CouplingType coupling_type
Definition: ERF_DataStruct.H:1139

◆ AverageDownTo()

void ERF::AverageDownTo ( int  crse_lev,
int  scomp,
int  ncomp 
)
37 {
38  if (solverChoice.anelastic[crse_lev]) {
39  AMREX_ALWAYS_ASSERT(scomp == 1);
40  } else {
41  AMREX_ALWAYS_ASSERT(scomp == 0);
42  }
43 
44  AMREX_ALWAYS_ASSERT(ncomp == vars_new[crse_lev][Vars::cons].nComp() - scomp);
45  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
46 
47  // ******************************************************************************************
48  // First do cell-centered quantities
49  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
50  // m is the map scale factor at cell centers
51  // Here we multiply (rho S) by detJ and divide (rho S) by m^2 before average down
52  // ******************************************************************************************
53  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
54  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
55  const Box& bx = mfi.tilebox();
56  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
57  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
58  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
59  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
60  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
61  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
62  {
63  cons_arr(i,j,k,scomp+n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
64  });
65  } else {
66  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
67  {
68  cons_arr(i,j,k,scomp+n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
69  });
70  }
71  } // mfi
72  } // lev
73 
74  int fine_lev = crse_lev+1;
75 
76  if (interpolation_type == StateInterpType::Perturbational) {
77  // Make the fine rho and (rho theta) be perturbational
78  MultiFab::Divide(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
79  Rho_comp,RhoTheta_comp,1,IntVect{0});
80  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
81  BaseState::r0_comp,Rho_comp,1,IntVect{0});
82  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
83  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
84 
85  // Make the crse rho and (rho theta) be perturbational
86  MultiFab::Divide(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
87  Rho_comp,RhoTheta_comp,1,IntVect{0});
88  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
89  BaseState::r0_comp,Rho_comp,1,IntVect{0});
90  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
91  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
92  }
93 
94  if (SolverChoice::terrain_type != TerrainType::EB) {
95  average_down(vars_new[crse_lev+1][Vars::cons],vars_new[crse_lev ][Vars::cons],
96  scomp, ncomp, refRatio(crse_lev));
97  } else {
98  // const auto dx = geom[fine_lev].CellSize();
99  // Setting cell_vol to the exact value may cause round-off errors in volume average.
100  // const Real cell_vol = dx[0]*dx[1]*dx[2];
101  constexpr Real cell_vol = 1.0;
102  const BoxArray& ba = vars_new[fine_lev][IntVars::cons].boxArray();
103  const DistributionMapping& dm = vars_new[fine_lev][IntVars::cons].DistributionMap();
104  MultiFab vol_fine(ba, dm, 1, 0);
105  vol_fine.setVal(cell_vol);
106  EB_average_down(vars_new[fine_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
107  vol_fine, *detJ_cc[fine_lev],
108  scomp, ncomp, refRatio(crse_lev));
109  }
110 
111  if (interpolation_type == StateInterpType::Perturbational) {
112  // Restore the fine data to what it was
113  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
114  BaseState::r0_comp,Rho_comp,1,IntVect{0});
115  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
116  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
117  MultiFab::Multiply(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
118  Rho_comp,RhoTheta_comp,1,IntVect{0});
119 
120  // Make the crse data be full values not perturbational
121  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
122  BaseState::r0_comp,Rho_comp,1,IntVect{0});
123  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
124  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
125  MultiFab::Multiply(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
126  Rho_comp,RhoTheta_comp,1,IntVect{0});
127  }
128 
129  vars_new[crse_lev][Vars::cons].FillBoundary(geom[crse_lev].periodicity());
130 
131  // ******************************************************************************************
132  // Here we multiply (rho S) by m^2 and divide by detJ after average down
133  // ******************************************************************************************
134  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
135  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
136  const Box& bx = mfi.tilebox();
137  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
138  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
139  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
140  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
141  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
142  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
143  {
144  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
145  });
146  } else { // MeshType::ConstantDz
147  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
148  {
149  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
150  });
151  }
152  } // mfi
153  } // lev
154 
155  // Fill EB covered cells by old values
156  // (This won't be needed because EB_average_down copyies the covered value.)
157  if (SolverChoice::terrain_type == TerrainType::EB) {
158  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
159  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
160  const Box& bx = mfi.tilebox();
161  const Array4< Real> cons_new = vars_new[lev][Vars::cons].array(mfi);
162  const Array4<const Real> cons_old = vars_old[lev][Vars::cons].array(mfi);
163  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
164  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
165  {
166  if (detJ_arr(i,j,k) == 0.0) {
167  cons_new(i,j,k,scomp+n) = cons_old(i,j,k,scomp+n);
168  }
169  });
170  } // mfi
171  } // lev
172  }
173 
174  // ******************************************************************************************
175  // Now average down momenta.
176  // Note that vars_new holds velocities not momenta, but we want to do conservative
177  // averaging so we first convert to momentum, then average down, then convert
178  // back to velocities -- only on the valid region
179  // ******************************************************************************************
180  for (int lev = crse_lev; lev <= crse_lev+1; lev++)
181  {
182  // FillBoundary for density so we can go back and forth between velocity and momentum
183  vars_new[lev][Vars::cons].FillBoundary(geom[lev].periodicity());
184 
185  const MultiFab* c_vfrac = nullptr;
186  if (SolverChoice::terrain_type == TerrainType::EB) {
187  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
188  }
189 
190  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect(0,0,0),
191  vars_new[lev][Vars::yvel], IntVect(0,0,0),
192  vars_new[lev][Vars::zvel], IntVect(0,0,0),
193  vars_new[lev][Vars::cons],
194  rU_new[lev],
195  rV_new[lev],
196  rW_new[lev],
197  Geom(lev).Domain(),
199  c_vfrac);
200  }
201 
202  if (SolverChoice::terrain_type != TerrainType::EB) {
203  average_down_faces(rU_new[crse_lev+1], rU_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
204  average_down_faces(rV_new[crse_lev+1], rV_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
205  average_down_faces(rW_new[crse_lev+1], rW_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
206  } else {
207  EB_average_down_faces({&rU_new[crse_lev+1], &rV_new[crse_lev+1], &rW_new[crse_lev+1]},
208  {&rU_new[crse_lev], &rV_new[crse_lev], &rW_new[crse_lev]},
209  refRatio(crse_lev), 0);
210  }
211 
212  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
213 
214  const MultiFab* c_vfrac = nullptr;
215  if (SolverChoice::terrain_type == TerrainType::EB) {
216  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
217  }
218 
220  vars_new[lev][Vars::yvel],
221  vars_new[lev][Vars::zvel],
222  vars_new[lev][Vars::cons],
223  rU_new[lev],
224  rV_new[lev],
225  rW_new[lev],
226  Geom(lev).Domain(),
228  c_vfrac);
229  }
230 }
void MomentumToVelocity(MultiFab &xvel, MultiFab &yvel, MultiFab &zvel, const MultiFab &density, const MultiFab &xmom_in, const MultiFab &ymom_in, const MultiFab &zmom_in, const Box &domain, const Vector< BCRec > &domain_bcs_type_h, const MultiFab *c_vfrac)
Definition: ERF_MomentumToVelocity.cpp:25
static StateInterpType interpolation_type
Definition: ERF.H:1214
@ th0_comp
Definition: ERF_IndexDefines.H:66
Here is the call graph for this function:

◆ build_fine_mask()

void ERF::build_fine_mask ( int  lev,
amrex::MultiFab &  fine_mask 
)

Helper function for constructing a fine mask, that is, a MultiFab masking coarser data at a lower level by zeroing out covered cells in the fine mask MultiFab we compute.

Parameters
levelFine level index which masks underlying coarser data
126 {
127  // Mask for zeroing covered cells
128  AMREX_ASSERT(level > 0);
129 
130  BoxArray cba = grids[level-1];
131  DistributionMapping cdm = dmap[level-1];
132 
133  BoxArray fba = fine_mask_lev.boxArray();
134 
135  iMultiFab ifine_mask_lev = makeFineMask(cba, cdm, fba, ref_ratio[level-1], 1, 0);
136 
137  const auto fma = fine_mask_lev.arrays();
138  const auto ifma = ifine_mask_lev.arrays();
139  ParallelFor(fine_mask_lev, [=] AMREX_GPU_DEVICE(int bno, int i, int j, int k) noexcept
140  {
141  fma[bno](i,j,k) = ifma[bno](i,j,k);
142  });
143 }

◆ check_for_low_temp()

void ERF::check_for_low_temp ( amrex::MultiFab &  S)
2999 {
3000  // *****************************************************************************
3001  // Test for low temp (low is defined as beyond the microphysics range of validity)
3002  // *****************************************************************************
3003  //
3004  // This value is defined in erf_dtesati in Source/Utils/ERF_MicrophysicsUtils.H
3005  Real t_low = 273.16 - 85.;
3006  //
3007  for (MFIter mfi(S); mfi.isValid(); ++mfi)
3008  {
3009  Box bx = mfi.tilebox();
3010  const Array4<Real> &s_arr = S.array(mfi);
3011  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
3012  {
3013  const Real rho = s_arr(i, j, k, Rho_comp);
3014  const Real rhotheta = s_arr(i, j, k, RhoTheta_comp);
3015  const Real qv = s_arr(i, j, k, RhoQ1_comp);
3016 
3017  Real temp = getTgivenRandRTh(rho, rhotheta, qv);
3018 
3019  if (temp < t_low) {
3020 #ifdef AMREX_USE_GPU
3021  AMREX_DEVICE_PRINTF("Temperature too low in cell: %d %d %d %e \n", i,j,k,temp);
3022 #else
3023  printf("Temperature too low in cell: %d %d %d \n", i,j,k);
3024  printf("Based on temp / rhotheta / rho %e %e %e \n", temp,rhotheta,rho);
3025  Abort();
3026 #endif
3027  }
3028  });
3029  }
3030 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getTgivenRandRTh(const amrex::Real rho, const amrex::Real rhotheta, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:46
@ rho
Definition: ERF_Kessler.H:22
@ qv
Definition: ERF_Kessler.H:28
Here is the call graph for this function:

◆ check_for_negative_theta()

void ERF::check_for_negative_theta ( amrex::MultiFab &  S)
3034 {
3035  // *****************************************************************************
3036  // Test for negative (rho theta)
3037  // *****************************************************************************
3038  for (MFIter mfi(S); mfi.isValid(); ++mfi)
3039  {
3040  Box bx = mfi.tilebox();
3041  const Array4<Real> &s_arr = S.array(mfi);
3042  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
3043  {
3044  const Real rhotheta = s_arr(i, j, k, RhoTheta_comp);
3045  if (rhotheta <= 0.) {
3046 #ifdef AMREX_USE_GPU
3047  AMREX_DEVICE_PRINTF("RhoTheta is negative at %d %d %d %e \n", i,j,k,rhotheta);
3048 #else
3049  printf("RhoTheta is negative at %d %d %d %e \n", i,j,k,rhotheta);
3050  Abort("Bad theta in check_for_negative_theta");
3051 #endif
3052  }
3053  });
3054  } // mfi
3055 }

◆ check_state_for_nans()

void ERF::check_state_for_nans ( amrex::MultiFab const &  S)
2949 {
2950  int ncomp = S.nComp();
2951  for (int lev = 0; lev <= finest_level; lev++)
2952  {
2953  //
2954  // Test at the end of every full timestep whether the solution data contains NaNs
2955  //
2956  bool any_have_nans = false;
2957  for (int i = 0; i < ncomp; i++) {
2958  if (S.contains_nan(i,1,0))
2959  {
2960  amrex::Print() << "Component " << i << " of conserved variables contains NaNs" << '\n';
2961  any_have_nans = true;
2962  }
2963  }
2964  if (any_have_nans) {
2965  exit(0);
2966  }
2967  }
2968 }

◆ check_vels_for_nans()

void ERF::check_vels_for_nans ( amrex::MultiFab const &  xvel,
amrex::MultiFab const &  yvel,
amrex::MultiFab const &  zvel 
)
2972 {
2973  //
2974  // Test at the end of every full timestep whether the solution data contains NaNs
2975  //
2976  bool any_have_nans = false;
2977  if (xvel.contains_nan(0,1,0))
2978  {
2979  amrex::Print() << "x-velocity contains NaNs " << '\n';
2980  any_have_nans = true;
2981  }
2982  if (yvel.contains_nan(0,1,0))
2983  {
2984  amrex::Print() << "y-velocity contains NaNs" << '\n';
2985  any_have_nans = true;
2986  }
2987  if (zvel.contains_nan(0,1,0))
2988  {
2989  amrex::Print() << "z-velocity contains NaNs" << '\n';
2990  any_have_nans = true;
2991  }
2992  if (any_have_nans) {
2993  exit(0);
2994  }
2995 }

◆ ClearLevel()

void ERF::ClearLevel ( int  lev)
override
782 {
783  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
784  vars_new[lev][var_idx].clear();
785  vars_old[lev][var_idx].clear();
786  }
787 
788  base_state[lev].clear();
789 
790  rU_new[lev].clear();
791  rU_old[lev].clear();
792  rV_new[lev].clear();
793  rV_old[lev].clear();
794  rW_new[lev].clear();
795  rW_old[lev].clear();
796 
797  if (lev > 0) {
798  zmom_crse_rhs[lev].clear();
799  }
800 
801  if ( (solverChoice.anelastic[lev] == 1) || (solverChoice.project_initial_velocity[lev] == 1) ) {
802  pp_inc[lev].clear();
803  }
804  if (solverChoice.anelastic[lev] == 0) {
805  lagged_delta_rt[lev].clear();
806  }
807  avg_xmom[lev].clear();
808  avg_ymom[lev].clear();
809  avg_zmom[lev].clear();
810 
811  // Clears the integrator memory
812  mri_integrator_mem[lev].reset();
813 
814  // Clears the physical boundary condition routines
815  physbcs_cons[lev].reset();
816  physbcs_u[lev].reset();
817  physbcs_v[lev].reset();
818  physbcs_w[lev].reset();
819  physbcs_base[lev].reset();
820 
821  // Clears the flux register array
822  advflux_reg[lev]->reset();
823 
824  // Clears the 2D arrays
825  if (sst_lev[lev][0]) {
826  for (int n = 0; n < sst_lev[lev].size(); n++) {
827  sst_lev[lev][n].reset();
828  }
829  }
830  if (tsk_lev[lev][0]) {
831  for (int n = 0; n < tsk_lev[lev].size(); n++) {
832  tsk_lev[lev][n].reset();
833  }
834  }
835  if (lat_m[lev]) {
836  lat_m[lev].reset();
837  }
838  if (lon_m[lev]) {
839  lon_m[lev].reset();
840  }
841  if (sinPhi_m[lev]) {
842  sinPhi_m[lev].reset();
843  }
844  if (cosPhi_m[lev]) {
845  cosPhi_m[lev].reset();
846  }
847 }
amrex::Vector< amrex::MultiFab > avg_xmom
Definition: ERF.H:821
amrex::Vector< amrex::MultiFab > pp_inc
Definition: ERF.H:817
amrex::Vector< amrex::MultiFab > lagged_delta_rt
Definition: ERF.H:820
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
Definition: ERF.H:904
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
Definition: ERF.H:969
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
Definition: ERF.H:751
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
Definition: ERF.H:751
amrex::Vector< amrex::MultiFab > avg_ymom
Definition: ERF.H:822
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
Definition: ERF.H:830
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
Definition: ERF.H:905
amrex::Vector< amrex::MultiFab > avg_zmom
Definition: ERF.H:823
@ NumTypes
Definition: ERF_IndexDefines.H:144
amrex::Vector< int > project_initial_velocity
Definition: ERF_DataStruct.H:1041

◆ cloud_fraction()

Real ERF::cloud_fraction ( amrex::Real  time)
452 {
453  BL_PROFILE("ERF::cloud_fraction()");
454 
455  int lev = 0;
456  // This holds all of qc
457  MultiFab qc(vars_new[lev][Vars::cons],make_alias,RhoQ2_comp,1);
458 
459  int direction = 2; // z-direction
460  Box const& domain = geom[lev].Domain();
461 
462  auto const& qc_arr = qc.const_arrays();
463 
464  // qc_2d is an BaseFab<int> holding the max value over the column
465  auto qc_2d = ReduceToPlane<ReduceOpMax,int>(direction, domain, qc,
466  [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) -> int
467  {
468  if (qc_arr[box_no](i,j,k) > 0) {
469  return 1;
470  } else {
471  return 0;
472  }
473  });
474 
475  auto* p = qc_2d.dataPtr();
476 
477  Long numpts = qc_2d.numPts();
478 
479  AMREX_ASSERT(numpts < Long(std::numeric_limits<int>::max));
480 
481 #if 1
482  if (ParallelDescriptor::UseGpuAwareMpi()) {
483  ParallelDescriptor::ReduceIntMax(p,static_cast<int>(numpts));
484  } else {
485  Gpu::PinnedVector<int> hv(numpts);
486  Gpu::copyAsync(Gpu::deviceToHost, p, p+numpts, hv.data());
487  Gpu::streamSynchronize();
488  ParallelDescriptor::ReduceIntMax(hv.data(),static_cast<int>(numpts));
489  Gpu::copyAsync(Gpu::hostToDevice, hv.data(), hv.data()+numpts, p);
490  }
491 
492  // Sum over component 0
493  Long num_cloudy = qc_2d.template sum<RunOn::Device>(0);
494 
495 #else
496  //
497  // We need this if we allow domain decomposition in the vertical
498  // but for now we leave it commented out
499  //
500  Long num_cloudy = Reduce::Sum<Long>(numpts,
501  [=] AMREX_GPU_DEVICE (Long i) -> Long {
502  if (p[i] == 1) {
503  return 1;
504  } else {
505  return 0;
506  }
507  });
508  ParallelDescriptor::ReduceLongSum(num_cloudy);
509 #endif
510 
511  Real num_total = qc_2d.box().d_numPts();
512 
513  Real cloud_frac = num_cloudy / num_total;
514 
515  return cloud_frac;
516 }
#define RhoQ2_comp
Definition: ERF_IndexDefines.H:43
@ qc
Definition: ERF_SatAdj.H:36

◆ compute_divergence()

void ERF::compute_divergence ( int  lev,
amrex::MultiFab &  rhs,
amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM >  rho0_u_const,
amrex::Geometry const &  geom_at_lev 
)

Project the single-level velocity field to enforce incompressibility Note that the level may or may not be level 0.

11 {
12  BL_PROFILE("ERF::compute_divergence()");
13 
14  auto dxInv = geom_at_lev.InvCellSizeArray();
15 
16  // ****************************************************************************
17  // Compute divergence which will form RHS
18  // Note that we replace "rho0w" with the contravariant momentum, Omega
19  // ****************************************************************************
20  if (solverChoice.terrain_type == TerrainType::EB)
21  {
22  bool already_on_centroids = true;
23  EB_computeDivergence(rhs, rho0_u_const, geom_at_lev, already_on_centroids);
24  }
25  else if (SolverChoice::mesh_type == MeshType::ConstantDz)
26  {
27  computeDivergence(rhs, rho0_u_const, geom_at_lev);
28  }
29  else
30  {
31  for ( MFIter mfi(rhs,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Box bx = mfi.tilebox();
34  const Array4<Real const>& rho0u_arr = rho0_u_const[0]->const_array(mfi);
35  const Array4<Real const>& rho0v_arr = rho0_u_const[1]->const_array(mfi);
36  const Array4<Real const>& rho0w_arr = rho0_u_const[2]->const_array(mfi);
37  const Array4<Real >& rhs_arr = rhs.array(mfi);
38 
39  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
40  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
41  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
42  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
43 
44  if (SolverChoice::mesh_type == MeshType::StretchedDz)
45  {
46  Real* stretched_dz_d_ptr = stretched_dz_d[lev].data();
47  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
48  {
49  Real inv_dz = 1.0/stretched_dz_d_ptr[k];
50  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
51  rhs_arr(i,j,k) = ( (rho0u_arr(i+1,j ,k )/mf_uy(i+1,j,0) - rho0u_arr(i,j,k)/mf_uy(i,j,0)) * dxInv[0]
52  +(rho0v_arr(i ,j+1,k )/mf_vx(i,j+1,0) - rho0v_arr(i,j,k)/mf_vx(i,j,0)) * dxInv[1]
53  +(rho0w_arr(i ,j ,k+1)/mfsq - rho0w_arr(i,j,k)/mfsq ) * inv_dz ) * mfsq;
54  });
55  }
56  else
57  {
58  //
59  // Note we compute the divergence using "rho0w" == Omega
60  //
61  const Array4<Real const>& ax_arr = ax[lev]->const_array(mfi);
62  const Array4<Real const>& ay_arr = ay[lev]->const_array(mfi);
63  const Array4<Real const>& dJ_arr = detJ_cc[lev]->const_array(mfi);
64 
65  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
66  {
67  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
68  rhs_arr(i,j,k) = ( ( ax_arr(i+1,j,k)*rho0u_arr(i+1,j,k)/mf_uy(i+1,j,0)
69  -ax_arr(i ,j,k)*rho0u_arr(i ,j,k)/mf_uy(i ,j,0) ) * dxInv[0]
70  + ( ay_arr(i,j+1,k)*rho0v_arr(i,j+1,k)/mf_vx(i,j+1,0)
71  -ay_arr(i,j ,k)*rho0v_arr(i,j ,k)/mf_vx(i,j ,0) ) * dxInv[1]
72  +( rho0w_arr(i,j,k+1)/mfsq
73  - rho0w_arr(i,j,k )/mfsq ) * dxInv[2] ) * mfsq / dJ_arr(i,j,k);
74  });
75  }
76  } // mfi
77  }
78 }
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
Definition: ERF.H:927
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
Definition: ERF.H:928

◆ ComputeDt()

void ERF::ComputeDt ( int  step = -1)
private

Function that calls estTimeStep for each level

12 {
13  Vector<Real> dt_tmp(finest_level+1);
14 
15  for (int lev = 0; lev <= finest_level; ++lev)
16  {
17  dt_tmp[lev] = estTimeStep(lev, dt_mri_ratio[lev]);
18  }
19 
20  ParallelDescriptor::ReduceRealMin(&dt_tmp[0], dt_tmp.size());
21 
22  Real dt_0 = dt_tmp[0];
23  int n_factor = 1;
24  for (int lev = 0; lev <= finest_level; ++lev) {
25  dt_tmp[lev] = amrex::min(dt_tmp[lev], change_max*dt[lev]);
26  n_factor *= nsubsteps[lev];
27  dt_0 = amrex::min(dt_0, n_factor*dt_tmp[lev]);
28  if (step == 0){
29  dt_0 *= init_shrink;
30  if (verbose && init_shrink != 1.0) {
31  Print() << "Timestep 0: shrink initial dt at level " << lev << " by " << init_shrink << std::endl;
32  }
33  }
34  }
35  // Limit dt's by the value of stop_time.
36  const Real eps = 1.e-3*dt_0;
37  if (t_new[0] + dt_0 > stop_time - eps) {
38  dt_0 = stop_time - t_new[0];
39  }
40 
41  dt[0] = dt_0;
42  for (int lev = 1; lev <= finest_level; ++lev) {
43  dt[lev] = dt[lev-1] / nsubsteps[lev];
44  }
45 }
amrex::Real estTimeStep(int lev, long &dt_fast_ratio) const
Definition: ERF_ComputeTimestep.cpp:54
static amrex::Real stop_time
Definition: ERF.H:1031
amrex::Vector< int > nsubsteps
Definition: ERF.H:793
static amrex::Real init_shrink
Definition: ERF.H:1042
static amrex::Real change_max
Definition: ERF.H:1043

◆ ComputeGhostCells()

static AMREX_FORCE_INLINE int ERF::ComputeGhostCells ( const SolverChoice sc)
inlinestaticprivate
1347  {
1348  int ngrow = 0;
1349 
1350  if (sc.use_num_diff)
1351  {
1352  ngrow = 3;
1353  } else {
1354  if (
1361  { ngrow = 3; }
1362  else if (
1369  { ngrow = 3; }
1370  else if (
1379  { ngrow = 3; }
1380  else if (
1389  { ngrow = 4; }
1390  else
1391  {
1392  if (sc.terrain_type == TerrainType::EB){
1393  ngrow = 3;
1394  } else {
1395  ngrow = 2;
1396  }
1397  }
1398  }
1399 
1400  return ngrow;
1401  }
@ Centered_6th
AdvType moistscal_horiz_adv_type
Definition: ERF_AdvStruct.H:423
AdvType dycore_vert_adv_type
Definition: ERF_AdvStruct.H:420
AdvType moistscal_vert_adv_type
Definition: ERF_AdvStruct.H:424
AdvType dryscal_horiz_adv_type
Definition: ERF_AdvStruct.H:421
AdvType dycore_horiz_adv_type
Definition: ERF_AdvStruct.H:419
AdvType dryscal_vert_adv_type
Definition: ERF_AdvStruct.H:422
AdvChoice advChoice
Definition: ERF_DataStruct.H:1029

◆ Construct_ERFFillPatchers()

void ERF::Construct_ERFFillPatchers ( int  lev)
private
2851 {
2852  auto& fine_new = vars_new[lev];
2853  auto& crse_new = vars_new[lev-1];
2854  auto& ba_fine = fine_new[Vars::cons].boxArray();
2855  auto& ba_crse = crse_new[Vars::cons].boxArray();
2856  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2857  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2858 
2859  int ncomp = vars_new[lev][Vars::cons].nComp();
2860 
2861  FPr_c.emplace_back(ba_fine, dm_fine, geom[lev] ,
2862  ba_crse, dm_crse, geom[lev-1],
2863  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2864  FPr_u.emplace_back(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2865  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2866  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2867  FPr_v.emplace_back(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2868  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2869  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2870  FPr_w.emplace_back(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2871  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2872  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2873 }
int cf_set_width
Definition: ERF.H:891

◆ DataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DataLog ( int  i)
inlineprivate
1412  {
1413  return *datalog[i];
1414  }
amrex::Vector< std::unique_ptr< std::fstream > > datalog
Definition: ERF.H:1591

◆ DataLogName()

std::string ERF::DataLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith datalog file.

1607 { return datalogname[i]; }
amrex::Vector< std::string > datalogname
Definition: ERF.H:1594

◆ Define_ERFFillPatchers()

void ERF::Define_ERFFillPatchers ( int  lev)
private
2877 {
2878  auto& fine_new = vars_new[lev];
2879  auto& crse_new = vars_new[lev-1];
2880  auto& ba_fine = fine_new[Vars::cons].boxArray();
2881  auto& ba_crse = crse_new[Vars::cons].boxArray();
2882  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2883  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2884 
2885  int ncomp = fine_new[Vars::cons].nComp();
2886 
2887  FPr_c[lev-1].Define(ba_fine, dm_fine, geom[lev] ,
2888  ba_crse, dm_crse, geom[lev-1],
2889  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2890  FPr_u[lev-1].Define(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2891  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2892  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2893  FPr_v[lev-1].Define(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2894  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2895  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2896  FPr_w[lev-1].Define(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2897  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2898  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2899 }

◆ DerDataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DerDataLog ( int  i)
inlineprivate
1419  {
1420  return *der_datalog[i];
1421  }
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
Definition: ERF.H:1592

◆ DerDataLogName()

std::string ERF::DerDataLogName ( int  i) const
inlineprivatenoexcept
1608 { return der_datalogname[i]; }
amrex::Vector< std::string > der_datalogname
Definition: ERF.H:1595

◆ derive_diag_profiles()

void ERF::derive_diag_profiles ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
205 {
206  // We assume that this is always called at level 0
207  int lev = 0;
208 
209  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
210  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
211  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, uw, vv, vw, ww, uth, vth, wth,
212  // 0 1 2 3 4 5 6 7 8 9 10 11 12 13
213  // thth, uiuiu, uiuiv, uiuiw, p, pu, pv, pw, qv, qc, qr, wqv, wqc, wqr,
214  // 14 15 16 17 18 19 20 21 22 23 24 25 26 27
215  // qi, qs, qg, wthv
216  // 28 29 30 31
217  MultiFab mf_out(grids[lev], dmap[lev], 32, 0);
218 
219  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
220 
221  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
222  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
223  MultiFab w_cc(mf_vels, make_alias, 2, 1); // w at cell centers
224 
225  average_face_to_cellcenter(mf_vels,0,
226  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
227 
228  int zdir = 2;
229  auto domain = geom[0].Domain();
230 
231  // Sum in the horizontal plane
232  h_avg_u = sumToLine(mf_vels ,0,1,domain,zdir);
233  h_avg_v = sumToLine(mf_vels ,1,1,domain,zdir);
234  h_avg_w = sumToLine(mf_vels ,2,1,domain,zdir);
235 
236  int hu_size = h_avg_u.size();
237 
238  // Divide by the total number of cells we are averaging over
239  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
240  for (int k = 0; k < hu_size; ++k) {
241  h_avg_u[k] /= area_z; h_avg_v[k] /= area_z; h_avg_w[k] /= area_z;
242  }
243 
244  Gpu::DeviceVector<Real> d_avg_u(hu_size, Real(0.0));
245  Gpu::DeviceVector<Real> d_avg_v(hu_size, Real(0.0));
246  Gpu::DeviceVector<Real> d_avg_w(hu_size, Real(0.0));
247 
248 #if 0
249  auto* avg_u_ptr = d_avg_u.data();
250  auto* avg_v_ptr = d_avg_v.data();
251  auto* avg_w_ptr = d_avg_w.data();
252 #endif
253 
254  Gpu::copy(Gpu::hostToDevice, h_avg_u.begin(), h_avg_u.end(), d_avg_u.begin());
255  Gpu::copy(Gpu::hostToDevice, h_avg_v.begin(), h_avg_v.end(), d_avg_v.begin());
256  Gpu::copy(Gpu::hostToDevice, h_avg_w.begin(), h_avg_w.end(), d_avg_w.begin());
257 
258  int nvars = vars_new[lev][Vars::cons].nComp();
259  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
260 
261  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
262 
263  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
264 
265  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
266  {
267  const Box& bx = mfi.tilebox();
268  const Array4<Real>& fab_arr = mf_out.array(mfi);
269  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
270  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
271  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
272  const Array4<Real>& cons_arr = mf_cons.array(mfi);
273  const Array4<Real>& p0_arr = p_hse.array(mfi);
274  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
275  Array4<const Real>{};
276 
277  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
278  {
279  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
280  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
281  fab_arr(i, j, k, 1) = theta;
282  Real ksgs = 0.0;
283  if (l_use_KE) {
284  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
285  }
286  fab_arr(i, j, k, 2) = ksgs;
287 #if 1
288  if (l_use_kturb) {
289  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
290  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
291  } else {
292  fab_arr(i, j, k, 3) = 0.0;
293  fab_arr(i, j, k, 4) = 0.0;
294  }
295 #else
296  // Here we hijack the "Kturb" variable name to print out the resolved kinetic energy
297  Real upert = u_cc_arr(i,j,k) - avg_u_ptr[k];
298  Real vpert = v_cc_arr(i,j,k) - avg_v_ptr[k];
299  Real wpert = w_cc_arr(i,j,k) - avg_w_ptr[k];
300  fab_arr(i, j, k, 3) = 0.5 * (upert*upert + vpert*vpert + wpert*wpert);
301 #endif
302  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
303  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
304  fab_arr(i, j, k, 7) = u_cc_arr(i,j,k) * w_cc_arr(i,j,k); // u*w
305  fab_arr(i, j, k, 8) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
306  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * w_cc_arr(i,j,k); // v*w
307  fab_arr(i, j, k,10) = w_cc_arr(i,j,k) * w_cc_arr(i,j,k); // w*w
308  fab_arr(i, j, k,11) = u_cc_arr(i,j,k) * theta; // u*th
309  fab_arr(i, j, k,12) = v_cc_arr(i,j,k) * theta; // v*th
310  fab_arr(i, j, k,13) = w_cc_arr(i,j,k) * theta; // w*th
311  fab_arr(i, j, k,14) = theta * theta; // th*th
312 
313  // if the number of fields is changed above, then be sure to update
314  // the following def!
315  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,8) + fab_arr(i,j,k,10);
316  fab_arr(i, j, k,15) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
317  fab_arr(i, j, k,16) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
318  fab_arr(i, j, k,17) = uiui * w_cc_arr(i,j,k); // (ui*ui)*w
319 
320  if (!use_moisture) {
321  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
322  p -= p0_arr(i,j,k);
323  fab_arr(i, j, k,18) = p; // p
324  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
325  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
326  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
327  fab_arr(i, j, k,22) = 0.; // qv
328  fab_arr(i, j, k,23) = 0.; // qc
329  fab_arr(i, j, k,24) = 0.; // qr
330  fab_arr(i, j, k,25) = 0.; // w*qv
331  fab_arr(i, j, k,26) = 0.; // w*qc
332  fab_arr(i, j, k,27) = 0.; // w*qr
333  fab_arr(i, j, k,28) = 0.; // qi
334  fab_arr(i, j, k,29) = 0.; // qs
335  fab_arr(i, j, k,30) = 0.; // qg
336  fab_arr(i, j, k,31) = 0.; // w*thv
337  }
338  });
339  } // mfi
340 
341  if (use_moisture)
342  {
343  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
344 
345  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
346  {
347  const Box& bx = mfi.tilebox();
348  const Array4<Real>& fab_arr = mf_out.array(mfi);
349  const Array4<Real>& cons_arr = mf_cons.array(mfi);
350  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
351  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
352  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
353  const Array4<Real>& p0_arr = p_hse.array(mfi);
354 
355  int rhoqr_comp = solverChoice.moisture_indices.qr;
356 
357  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
358  {
359  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
360  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
361  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
362  Real(0.0);
363  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
364 
365  p -= p0_arr(i,j,k);
366  fab_arr(i, j, k,18) = p; // p
367  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
368  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
369  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
370  fab_arr(i, j, k,22) = qv; // qv
371  fab_arr(i, j, k,23) = qc; // qc
372  fab_arr(i, j, k,24) = qr; // qr
373  fab_arr(i, j, k,25) = w_cc_arr(i,j,k) * qv; // w*qv
374  fab_arr(i, j, k,26) = w_cc_arr(i,j,k) * qc; // w*qc
375  fab_arr(i, j, k,27) = w_cc_arr(i,j,k) * qr; // w*qr
376  if (n_qstate_moist > 3) {
377  fab_arr(i, j, k,28) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
378  fab_arr(i, j, k,29) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
379  fab_arr(i, j, k,30) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
380  } else {
381  fab_arr(i, j, k,28) = 0.0; // qi
382  fab_arr(i, j, k,29) = 0.0; // qs
383  fab_arr(i, j, k,30) = 0.0; // qg
384  }
385  Real ql = qc + qr;
386  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
387  Real thv = theta * (1 + 0.61*qv - ql);
388  fab_arr(i, j, k,31) = w_cc_arr(i,j,k) * thv; // w*thv
389  });
390  } // mfi
391  } // use_moisture
392 
393  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
394  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
395  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
396  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
397  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
398  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
399  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
400  h_avg_uw = sumToLine(mf_out, 7,1,domain,zdir);
401  h_avg_vv = sumToLine(mf_out, 8,1,domain,zdir);
402  h_avg_vw = sumToLine(mf_out, 9,1,domain,zdir);
403  h_avg_ww = sumToLine(mf_out,10,1,domain,zdir);
404  h_avg_uth = sumToLine(mf_out,11,1,domain,zdir);
405  h_avg_vth = sumToLine(mf_out,12,1,domain,zdir);
406  h_avg_wth = sumToLine(mf_out,13,1,domain,zdir);
407  h_avg_thth = sumToLine(mf_out,14,1,domain,zdir);
408  h_avg_uiuiu = sumToLine(mf_out,15,1,domain,zdir);
409  h_avg_uiuiv = sumToLine(mf_out,16,1,domain,zdir);
410  h_avg_uiuiw = sumToLine(mf_out,17,1,domain,zdir);
411  h_avg_p = sumToLine(mf_out,18,1,domain,zdir);
412  h_avg_pu = sumToLine(mf_out,19,1,domain,zdir);
413  h_avg_pv = sumToLine(mf_out,20,1,domain,zdir);
414  h_avg_pw = sumToLine(mf_out,21,1,domain,zdir);
415  h_avg_qv = sumToLine(mf_out,22,1,domain,zdir);
416  h_avg_qc = sumToLine(mf_out,23,1,domain,zdir);
417  h_avg_qr = sumToLine(mf_out,24,1,domain,zdir);
418  h_avg_wqv = sumToLine(mf_out,25,1,domain,zdir);
419  h_avg_wqc = sumToLine(mf_out,26,1,domain,zdir);
420  h_avg_wqr = sumToLine(mf_out,27,1,domain,zdir);
421  h_avg_qi = sumToLine(mf_out,28,1,domain,zdir);
422  h_avg_qs = sumToLine(mf_out,29,1,domain,zdir);
423  h_avg_qg = sumToLine(mf_out,30,1,domain,zdir);
424  h_avg_wthv = sumToLine(mf_out,31,1,domain,zdir);
425 
426  // Divide by the total number of cells we are averaging over
427  int h_avg_u_size = static_cast<int>(h_avg_u.size());
428  for (int k = 0; k < h_avg_u_size; ++k) {
429  h_avg_rho[k] /= area_z;
430  h_avg_ksgs[k] /= area_z;
431  h_avg_Kmv[k] /= area_z;
432  h_avg_Khv[k] /= area_z;
433  h_avg_th[k] /= area_z;
434  h_avg_thth[k] /= area_z;
435  h_avg_uu[k] /= area_z;
436  h_avg_uv[k] /= area_z;
437  h_avg_uw[k] /= area_z;
438  h_avg_vv[k] /= area_z;
439  h_avg_vw[k] /= area_z;
440  h_avg_ww[k] /= area_z;
441  h_avg_uth[k] /= area_z;
442  h_avg_vth[k] /= area_z;
443  h_avg_wth[k] /= area_z;
444  h_avg_uiuiu[k] /= area_z;
445  h_avg_uiuiv[k] /= area_z;
446  h_avg_uiuiw[k] /= area_z;
447  h_avg_p[k] /= area_z;
448  h_avg_pu[k] /= area_z;
449  h_avg_pv[k] /= area_z;
450  h_avg_pw[k] /= area_z;
451  h_avg_qv[k] /= area_z;
452  h_avg_qc[k] /= area_z;
453  h_avg_qr[k] /= area_z;
454  h_avg_wqv[k] /= area_z;
455  h_avg_wqc[k] /= area_z;
456  h_avg_wqr[k] /= area_z;
457  h_avg_qi[k] /= area_z;
458  h_avg_qs[k] /= area_z;
459  h_avg_qg[k] /= area_z;
460  h_avg_wthv[k] /= area_z;
461  }
462 
463 #if 0
464  // Here we print the integrated total kinetic energy as computed in the 1D profile above
465  Real sum = 0.;
466  Real dz = geom[0].ProbHi(2) / static_cast<Real>(h_avg_u_size);
467  for (int k = 0; k < h_avg_u_size; ++k) {
468  sum += h_avg_kturb[k] * h_avg_rho[k] * dz;
469  }
470  amrex::Print() << "ITKE " << time << " " << sum << " using " << h_avg_u_size << " " << dz << std::endl;
471 #endif
472 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getPgivenRTh(const amrex::Real rhotheta, const amrex::Real qv=0.)
Definition: ERF_EOS.H:81
#define RhoQ3_comp
Definition: ERF_IndexDefines.H:44
#define RhoQ6_comp
Definition: ERF_IndexDefines.H:47
#define RhoQ5_comp
Definition: ERF_IndexDefines.H:46
#define RhoKE_comp
Definition: ERF_IndexDefines.H:38
@ Theta_v
Definition: ERF_IndexDefines.H:176
@ Mom_v
Definition: ERF_IndexDefines.H:175
@ theta
Definition: ERF_MM5.H:20
Here is the call graph for this function:

◆ derive_diag_profiles_stag()

void ERF::derive_diag_profiles_stag ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities at staggered heights.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
311 {
312  // We assume that this is always called at level 0
313  int lev = 0;
314 
315  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
316  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
317  // Note: "uiui" == u_i*u_i = u*u + v*v + w*w
318  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, vv, uth, vth,
319  // indices: 0 1 2 3 4 5 6 7 8 9
320  // thth, uiuiu, uiuiv, p, pu, pv, qv, qc, qr, qi, qs, qg
321  // 10 11 12 13 14 15 16 17 18 19 20 21
322  MultiFab mf_out(grids[lev], dmap[lev], 22, 0);
323 
324  // This will hold uw, vw, ww, wth, uiuiw, pw, wqv, wqc, wqr, wthv
325  // indices: 0 1 2 3 4 5 6 7 8 9
326  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 10, 0);
327 
328  // This is only used to average u and v; w is not averaged to cell centers
329  MultiFab mf_vels(grids[lev], dmap[lev], 2, 0);
330 
331  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
332  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
333  MultiFab w_fc(vars_new[lev][Vars::zvel], make_alias, 0, 1); // w at face centers (staggered)
334 
335  int zdir = 2;
336  auto domain = geom[0].Domain();
337  Box stag_domain = domain;
338  stag_domain.convert(IntVect(0,0,1));
339 
340  int nvars = vars_new[lev][Vars::cons].nComp();
341  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
342 
343  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
344 
345  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
346 
347  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
348  {
349  const Box& bx = mfi.tilebox();
350  const Array4<Real>& fab_arr = mf_out.array(mfi);
351  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
352  const Array4<Real>& u_arr = vars_new[lev][Vars::xvel].array(mfi);
353  const Array4<Real>& v_arr = vars_new[lev][Vars::yvel].array(mfi);
354  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
355  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
356  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
357  const Array4<Real>& cons_arr = mf_cons.array(mfi);
358  const Array4<Real>& p0_arr = p_hse.array(mfi);
359  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
360  Array4<const Real>{};
361 
362  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
363  {
364  u_cc_arr(i,j,k) = 0.5 * (u_arr(i,j,k) + u_arr(i+1,j ,k));
365  v_cc_arr(i,j,k) = 0.5 * (v_arr(i,j,k) + v_arr(i ,j+1,k));
366 
367  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
368  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
369  fab_arr(i, j, k, 1) = theta;
370  Real ksgs = 0.0;
371  if (l_use_KE) {
372  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
373  }
374  fab_arr(i, j, k, 2) = ksgs;
375  if (l_use_kturb) {
376  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
377  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
378  } else {
379  fab_arr(i, j, k, 3) = 0.0;
380  fab_arr(i, j, k, 4) = 0.0;
381  }
382  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
383  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
384  fab_arr(i, j, k, 7) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
385  fab_arr(i, j, k, 8) = u_cc_arr(i,j,k) * theta; // u*th
386  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * theta; // v*th
387  fab_arr(i, j, k,10) = theta * theta; // th*th
388 
389  Real wcc = 0.5 * (w_fc_arr(i,j,k) + w_fc_arr(i,j,k+1));
390 
391  // if the number of fields is changed above, then be sure to update
392  // the following def!
393  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,7) + wcc*wcc;
394  fab_arr(i, j, k,11) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
395  fab_arr(i, j, k,12) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
396 
397  if (!use_moisture) {
398  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
399  p -= p0_arr(i,j,k);
400  fab_arr(i, j, k,13) = p; // p
401  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
402  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
403  fab_arr(i, j, k,16) = 0.; // qv
404  fab_arr(i, j, k,17) = 0.; // qc
405  fab_arr(i, j, k,18) = 0.; // qr
406  fab_arr(i, j, k,19) = 0.; // qi
407  fab_arr(i, j, k,20) = 0.; // qs
408  fab_arr(i, j, k,21) = 0.; // qg
409  }
410  });
411 
412  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
413  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
414  {
415  // average to z faces (first to cell centers, then in z)
416  Real uface = 0.25 * ( u_arr(i ,j,k) + u_arr(i ,j,k-1)
417  + u_arr(i+1,j,k) + u_arr(i+1,j,k-1));
418  Real vface = 0.25 * ( v_arr(i,j ,k) + v_arr(i,j ,k-1)
419  + v_arr(i,j+1,k) + v_arr(i,j+1,k-1));
420  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
421  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
422  Real thface = 0.5*(theta0 + theta1);
423  fab_arr_stag(i,j,k,0) = uface * w_fc_arr(i,j,k); // u*w
424  fab_arr_stag(i,j,k,1) = vface * w_fc_arr(i,j,k); // v*w
425  fab_arr_stag(i,j,k,2) = w_fc_arr(i,j,k) * w_fc_arr(i,j,k); // w*w
426  fab_arr_stag(i,j,k,3) = thface * w_fc_arr(i,j,k); // th*w
427  Real uiui = uface*uface + vface*vface + fab_arr_stag(i,j,k,2);
428  fab_arr_stag(i,j,k,4) = uiui * w_fc_arr(i,j,k); // (ui*ui)*w
429  if (!use_moisture) {
430  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp)) - p0_arr(i,j,k );
431  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp)) - p0_arr(i,j,k-1);
432  Real pface = 0.5 * (p0 + p1);
433  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
434  fab_arr_stag(i,j,k,6) = 0.; // w*qv
435  fab_arr_stag(i,j,k,7) = 0.; // w*qc
436  fab_arr_stag(i,j,k,8) = 0.; // w*qr
437  fab_arr_stag(i,j,k,9) = 0.; // w*thv
438  }
439  });
440 
441  } // mfi
442 
443  if (use_moisture)
444  {
445  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
446 
447  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
448  {
449  const Box& bx = mfi.tilebox();
450  const Array4<Real>& fab_arr = mf_out.array(mfi);
451  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
452  const Array4<Real>& cons_arr = mf_cons.array(mfi);
453  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
454  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
455  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
456  const Array4<Real>& p0_arr = p_hse.array(mfi);
457 
458  int rhoqr_comp = solverChoice.moisture_indices.qr;
459 
460  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
461  {
462  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
463  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
464  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
465  Real(0.0);
466  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
467 
468  p -= p0_arr(i,j,k);
469  fab_arr(i, j, k,13) = p; // p
470  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
471  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
472  fab_arr(i, j, k,16) = qv; // qv
473  fab_arr(i, j, k,17) = qc; // qc
474  fab_arr(i, j, k,18) = qr; // qr
475  if (n_qstate_moist > 3) { // SAM model
476  fab_arr(i, j, k,19) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
477  fab_arr(i, j, k,20) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
478  fab_arr(i, j, k,21) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
479  } else {
480  fab_arr(i, j, k,19) = 0.0; // qi
481  fab_arr(i, j, k,20) = 0.0; // qs
482  fab_arr(i, j, k,21) = 0.0; // qg
483  }
484  });
485 
486  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
487  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
488  {
489  Real qv0 = cons_arr(i,j,k ,RhoQ1_comp) / cons_arr(i,j,k ,Rho_comp);
490  Real qv1 = cons_arr(i,j,k-1,RhoQ1_comp) / cons_arr(i,j,k-1,Rho_comp);
491  Real qc0 = cons_arr(i,j,k ,RhoQ2_comp) / cons_arr(i,j,k ,Rho_comp);
492  Real qc1 = cons_arr(i,j,k-1,RhoQ2_comp) / cons_arr(i,j,k-1,Rho_comp);
493  Real qr0 = (rhoqr_comp > -1) ? cons_arr(i,j,k ,RhoQ3_comp) / cons_arr(i,j,k ,Rho_comp) :
494  Real(0.0);
495  Real qr1 = (rhoqr_comp > -1) ? cons_arr(i,j,k-1,RhoQ3_comp) / cons_arr(i,j,k-1,Rho_comp) :
496  Real(0.0);
497  Real qvface = 0.5 * (qv0 + qv1);
498  Real qcface = 0.5 * (qc0 + qc1);
499  Real qrface = 0.5 * (qr0 + qr1);
500 
501  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp), qv0) - p0_arr(i,j,k );
502  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp), qv1) - p0_arr(i,j,k-1);
503  Real pface = 0.5 * (p0 + p1);
504 
505  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
506  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
507  Real thface = 0.5*(theta0 + theta1);
508  Real ql = qcface + qrface;
509  Real thv = thface * (1 + 0.61*qvface - ql);
510 
511  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
512  fab_arr_stag(i,j,k,6) = qvface * w_fc_arr(i,j,k); // w*qv
513  fab_arr_stag(i,j,k,7) = qcface * w_fc_arr(i,j,k); // w*qc
514  fab_arr_stag(i,j,k,8) = qrface * w_fc_arr(i,j,k); // w*qr
515  fab_arr_stag(i,j,k,9) = thv * w_fc_arr(i,j,k); // w*thv
516  });
517  } // mfi
518  } // use_moisture
519 
520  // Sum in the horizontal plane
521  h_avg_u = sumToLine(u_cc,0,1, domain,zdir);
522  h_avg_v = sumToLine(v_cc,0,1, domain,zdir);
523  h_avg_w = sumToLine(w_fc,0,1,stag_domain,zdir);
524 
525  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
526  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
527  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
528  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
529  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
530  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
531  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
532  h_avg_vv = sumToLine(mf_out, 7,1,domain,zdir);
533  h_avg_uth = sumToLine(mf_out, 8,1,domain,zdir);
534  h_avg_vth = sumToLine(mf_out, 9,1,domain,zdir);
535  h_avg_thth = sumToLine(mf_out,10,1,domain,zdir);
536  h_avg_uiuiu = sumToLine(mf_out,11,1,domain,zdir);
537  h_avg_uiuiv = sumToLine(mf_out,12,1,domain,zdir);
538  h_avg_p = sumToLine(mf_out,13,1,domain,zdir);
539  h_avg_pu = sumToLine(mf_out,14,1,domain,zdir);
540  h_avg_pv = sumToLine(mf_out,15,1,domain,zdir);
541  h_avg_qv = sumToLine(mf_out,16,1,domain,zdir);
542  h_avg_qc = sumToLine(mf_out,17,1,domain,zdir);
543  h_avg_qr = sumToLine(mf_out,18,1,domain,zdir);
544  h_avg_qi = sumToLine(mf_out,19,1,domain,zdir);
545  h_avg_qs = sumToLine(mf_out,20,1,domain,zdir);
546  h_avg_qg = sumToLine(mf_out,21,1,domain,zdir);
547 
548  h_avg_uw = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
549  h_avg_vw = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
550  h_avg_ww = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
551  h_avg_wth = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
552  h_avg_uiuiw = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
553  h_avg_pw = sumToLine(mf_out_stag,5,1,stag_domain,zdir);
554  h_avg_wqv = sumToLine(mf_out_stag,6,1,stag_domain,zdir);
555  h_avg_wqc = sumToLine(mf_out_stag,7,1,stag_domain,zdir);
556  h_avg_wqr = sumToLine(mf_out_stag,8,1,stag_domain,zdir);
557  h_avg_wthv = sumToLine(mf_out_stag,9,1,stag_domain,zdir);
558 
559  // Divide by the total number of cells we are averaging over
560  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
561  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
562  for (int k = 0; k < unstag_size; ++k) {
563  h_avg_u[k] /= area_z;
564  h_avg_v[k] /= area_z;
565  h_avg_rho[k] /= area_z;
566  h_avg_ksgs[k] /= area_z;
567  h_avg_Kmv[k] /= area_z;
568  h_avg_Khv[k] /= area_z;
569  h_avg_th[k] /= area_z;
570  h_avg_thth[k] /= area_z;
571  h_avg_uu[k] /= area_z;
572  h_avg_uv[k] /= area_z;
573  h_avg_vv[k] /= area_z;
574  h_avg_uth[k] /= area_z;
575  h_avg_vth[k] /= area_z;
576  h_avg_uiuiu[k] /= area_z;
577  h_avg_uiuiv[k] /= area_z;
578  h_avg_p[k] /= area_z;
579  h_avg_pu[k] /= area_z;
580  h_avg_pv[k] /= area_z;
581  h_avg_qv[k] /= area_z;
582  h_avg_qc[k] /= area_z;
583  h_avg_qr[k] /= area_z;
584  h_avg_qi[k] /= area_z;
585  h_avg_qs[k] /= area_z;
586  h_avg_qg[k] /= area_z;
587  }
588 
589  for (int k = 0; k < unstag_size+1; ++k) { // staggered heights
590  h_avg_w[k] /= area_z;
591  h_avg_uw[k] /= area_z;
592  h_avg_vw[k] /= area_z;
593  h_avg_ww[k] /= area_z;
594  h_avg_wth[k] /= area_z;
595  h_avg_uiuiw[k] /= area_z;
596  h_avg_pw[k] /= area_z;
597  h_avg_wqv[k] /= area_z;
598  h_avg_wqc[k] /= area_z;
599  h_avg_wqr[k] /= area_z;
600  h_avg_wthv[k] /= area_z;
601  }
602 }
const Box zbx
Definition: ERF_SetupDiff.H:9
Here is the call graph for this function:

◆ derive_stress_profiles()

void ERF::derive_stress_profiles ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
480 {
481  int lev = 0;
482 
483  // This will hold the stress tensor components
484  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
485 
486  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
487 
488  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
489 
490  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
491  {
492  const Box& bx = mfi.tilebox();
493  const Array4<Real>& fab_arr = mf_out.array(mfi);
494 
495  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
496 
497  // NOTE: These are from the last RK stage...
498  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
499  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
500  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
501  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
502  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
503  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
504 
505  // These should be re-calculated during ERF_slow_rhs_post
506  // -- just vertical SFS kinematic heat flux for now
507  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
508  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
509  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
510  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
511  Array4<const Real>{};
512  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
513  Array4<const Real>{};
514  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
515 
516  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
517  {
518  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
519  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
520  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
521  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
522  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
523  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
524  fab_arr(i, j, k, 2) = ( tau13_arr(i,j,k ) + tau13_arr(i+1,j,k )
525  + tau13_arr(i,j,k+1) + tau13_arr(i+1,j,k+1) )
526  / ( rho_arr(i,j,k ) + rho_arr(i+1,j,k )
527  + rho_arr(i,j,k+1) + rho_arr(i+1,j,k+1) );
528  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
529  fab_arr(i, j, k, 4) = ( tau23_arr(i,j,k ) + tau23_arr(i,j+1,k )
530  + tau23_arr(i,j,k+1) + tau23_arr(i,j+1,k+1) )
531  / ( rho_arr(i,j,k ) + rho_arr(i,j+1,k )
532  + rho_arr(i,j,k+1) + rho_arr(i,j+1,k+1) );
533  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
534  fab_arr(i, j, k, 6) = 0.5 * ( hfx3_arr(i,j,k) + hfx3_arr(i,j,k+1) ) / rho_arr(i,j,k);
535  fab_arr(i, j, k, 7) = (l_use_moist) ? 0.5 * ( q1fx3_arr(i,j,k) + q1fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
536  fab_arr(i, j, k, 8) = (l_use_moist) ? 0.5 * ( q2fx3_arr(i,j,k) + q2fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
537  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
538  });
539  }
540 
541  int zdir = 2;
542  auto domain = geom[0].Domain();
543 
544  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
545  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
546  h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
547  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
548  h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
549  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
550  h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
551  h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
552  h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
553  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
554 
555  int ht_size = h_avg_tau11.size();
556 
557  // Divide by the total number of cells we are averaging over
558  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
559  for (int k = 0; k < ht_size; ++k) {
560  h_avg_tau11[k] /= area_z;
561  h_avg_tau12[k] /= area_z;
562  h_avg_tau13[k] /= area_z;
563  h_avg_tau22[k] /= area_z;
564  h_avg_tau23[k] /= area_z;
565  h_avg_tau33[k] /= area_z;
566  h_avg_hfx3[k] /= area_z;
567  h_avg_q1fx3[k] /= area_z;
568  h_avg_q2fx3[k] /= area_z;
569  h_avg_diss[k] /= area_z;
570  }
571 }

◆ derive_stress_profiles_stag()

void ERF::derive_stress_profiles_stag ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
610 {
611  int lev = 0;
612 
613  // This will hold the stress tensor components
614  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
615 
616  // This will hold Tau13 and Tau23
617  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 5, 0);
618 
619  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
620 
621  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
622 
623  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
624  {
625  const Box& bx = mfi.tilebox();
626  const Array4<Real>& fab_arr = mf_out.array(mfi);
627  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
628 
629  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
630 
631  // NOTE: These are from the last RK stage...
632  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
633  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
634  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
635  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
636  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
637  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
638 
639  // These should be re-calculated during ERF_slow_rhs_post
640  // -- just vertical SFS kinematic heat flux for now
641  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
642  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
643  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
644  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
645  Array4<const Real>{};
646  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
647  Array4<const Real>{};
648  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
649 
650  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
651  {
652  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
653  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
654  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
655  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
656  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
657  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
658  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
659  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
660  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
661  });
662 
663  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
664  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
665  {
666  Real rho_face = 0.5 * (rho_arr(i,j,k-1) + rho_arr(i,j,k));
667  // average from edge to face center
668  fab_arr_stag(i,j,k,0) = 0.5*(tau13_arr(i,j,k) + tau13_arr(i+1,j ,k)) / rho_face;
669  fab_arr_stag(i,j,k,1) = 0.5*(tau23_arr(i,j,k) + tau23_arr(i ,j+1,k)) / rho_face;
670 
671  fab_arr_stag(i,j,k,2) = hfx3_arr(i,j,k) / rho_face;
672  fab_arr_stag(i,j,k,3) = (l_use_moist) ? q1fx3_arr(i,j,k) / rho_face : 0.0;
673  fab_arr_stag(i,j,k,4) = (l_use_moist) ? q2fx3_arr(i,j,k) / rho_face : 0.0;
674  });
675  }
676 
677  int zdir = 2;
678  auto domain = geom[0].Domain();
679  Box stag_domain = domain;
680  stag_domain.convert(IntVect(0,0,1));
681 
682  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
683  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
684 // h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
685  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
686 // h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
687  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
688 // h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
689 // h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
690 // h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
691  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
692 
693  h_avg_tau13 = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
694  h_avg_tau23 = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
695  h_avg_hfx3 = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
696  h_avg_q1fx3 = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
697  h_avg_q2fx3 = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
698 
699  int ht_size = h_avg_tau11.size(); // _un_staggered
700 
701  // Divide by the total number of cells we are averaging over
702  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
703  for (int k = 0; k < ht_size; ++k) {
704  h_avg_tau11[k] /= area_z;
705  h_avg_tau12[k] /= area_z;
706  h_avg_tau13[k] /= area_z;
707  h_avg_tau22[k] /= area_z;
708  h_avg_tau23[k] /= area_z;
709  h_avg_tau33[k] /= area_z;
710  h_avg_hfx3[k] /= area_z;
711  h_avg_q1fx3[k] /= area_z;
712  h_avg_q2fx3[k] /= area_z;
713  h_avg_diss[k] /= area_z;
714  }
715  // staggered heights
716  h_avg_tau13[ht_size] /= area_z;
717  h_avg_tau23[ht_size] /= area_z;
718  h_avg_hfx3[ht_size] /= area_z;
719  h_avg_q1fx3[ht_size] /= area_z;
720  h_avg_q2fx3[ht_size] /= area_z;
721 }

◆ derive_upwp()

void ERF::derive_upwp ( amrex::Vector< amrex::Real > &  h_havg)

◆ EBFactory()

amrex::EBFArrayBoxFactory const& ERF::EBFactory ( int  lev) const
inlineprivatenoexcept
1625  {
1626  return *(eb[lev]->get_const_factory());
1627  }
amrex::Vector< std::unique_ptr< eb_ > > eb
Definition: ERF.H:1617

◆ erf_enforce_hse()

void ERF::erf_enforce_hse ( int  lev,
amrex::MultiFab &  dens,
amrex::MultiFab &  pres,
amrex::MultiFab &  pi,
amrex::MultiFab &  th,
amrex::MultiFab &  qv,
std::unique_ptr< amrex::MultiFab > &  z_cc 
)

Enforces hydrostatic equilibrium when using terrain.

Parameters
[in]levInteger specifying the current level
[out]densMultiFab storing base state density
[out]presMultiFab storing base state pressure
[out]piMultiFab storing base state Exner function
[in]z_ccPointer to MultiFab storing cell centered z-coordinates
167 {
168  Real l_gravity = solverChoice.gravity;
169  bool l_use_terrain = (solverChoice.mesh_type != MeshType::ConstantDz);
170 
171  const auto geomdata = geom[lev].data();
172  const Real dz = geomdata.CellSize(2);
173 
174  for ( MFIter mfi(dens, TileNoZ()); mfi.isValid(); ++mfi )
175  {
176  // Create a flat box with same horizontal extent but only one cell in vertical
177  const Box& tbz = mfi.nodaltilebox(2);
178  int klo = tbz.smallEnd(2);
179  int khi = tbz.bigEnd(2);
180 
181  // Note we only grow by 1 because that is how big z_cc is.
182  Box b2d = tbz; // Copy constructor
183  b2d.grow(0,1);
184  b2d.grow(1,1);
185  b2d.setRange(2,0);
186 
187  // Intersect this box with the domain
188  Box zdomain = convert(geom[lev].Domain(),tbz.ixType());
189  b2d &= zdomain;
190 
191  // We integrate to the first cell (and below) by using rho in this cell
192  // If gravity == 0 this is constant pressure
193  // If gravity != 0, hence this is a wall, this gives gp0 = dens[0] * gravity
194  // (dens_hse*gravity would also be dens[0]*gravity because we use foextrap for rho at k = -1)
195  // Note ng_pres_hse = 1
196 
197  // We start by assuming pressure on the ground is p_0 (in ERF_Constants.H)
198  // Note that gravity is positive
199 
200  Array4<Real> rho_arr = dens.array(mfi);
201  Array4<Real> pres_arr = pres.array(mfi);
202  Array4<Real> pi_arr = pi.array(mfi);
203  Array4<Real> th_arr = theta.array(mfi);
204  Array4<Real> zcc_arr;
205  if (l_use_terrain) {
206  zcc_arr = z_cc->array(mfi);
207  }
208 
209  const Real rdOcp = solverChoice.rdOcp;
210 
211  ParallelFor(b2d, [=] AMREX_GPU_DEVICE (int i, int j, int)
212  {
213  // Set value at surface from Newton iteration for rho
214  if (klo == 0)
215  {
216  // Physical height of the terrain at cell center
217  Real hz;
218  if (l_use_terrain) {
219  hz = zcc_arr(i,j,klo);
220  } else {
221  hz = 0.5*dz;
222  }
223 
224  pres_arr(i,j,klo) = p_0 - hz * rho_arr(i,j,klo) * l_gravity;
225  pi_arr(i,j,klo) = getExnergivenP(pres_arr(i,j,klo), rdOcp);
226  th_arr(i,j,klo) = getRhoThetagivenP(pres_arr(i,j,klo)) / rho_arr(i,j,klo);
227 
228  //
229  // Set ghost cell with dz and rho at boundary
230  // (We will set the rest of the ghost cells in the boundary condition routine)
231  //
232  pres_arr(i,j,klo-1) = p_0 + hz * rho_arr(i,j,klo) * l_gravity;
233  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
234  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
235 
236  } else {
237 
238  // If level > 0 and klo > 0, we need to use the value of pres_arr(i,j,klo-1) which was
239  // filled from FillPatch-ing it.
240  Real dz_loc;
241  if (l_use_terrain) {
242  dz_loc = (zcc_arr(i,j,klo) - zcc_arr(i,j,klo-1));
243  } else {
244  dz_loc = dz;
245  }
246 
247  Real dens_interp = 0.5*(rho_arr(i,j,klo) + rho_arr(i,j,klo-1));
248  pres_arr(i,j,klo) = pres_arr(i,j,klo-1) - dz_loc * dens_interp * l_gravity;
249 
250  pi_arr(i,j,klo ) = getExnergivenP(pres_arr(i,j,klo ), rdOcp);
251  th_arr(i,j,klo ) = getRhoThetagivenP(pres_arr(i,j,klo )) / rho_arr(i,j,klo );
252 
253  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
254  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
255  }
256 
257  Real dens_interp;
258  if (l_use_terrain) {
259  for (int k = klo+1; k <= khi; k++) {
260  Real dz_loc = (zcc_arr(i,j,k) - zcc_arr(i,j,k-1));
261  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
262  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz_loc * dens_interp * l_gravity;
263  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
264  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
265  }
266  } else {
267  for (int k = klo+1; k <= khi; k++) {
268  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
269  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz * dens_interp * l_gravity;
270  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
271  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
272  }
273  }
274  });
275 
276  } // mfi
277 
278  dens.FillBoundary(geom[lev].periodicity());
279  pres.FillBoundary(geom[lev].periodicity());
280  pi.FillBoundary(geom[lev].periodicity());
281  theta.FillBoundary(geom[lev].periodicity());
282  qv.FillBoundary(geom[lev].periodicity());
283 }
constexpr amrex::Real p_0
Definition: ERF_Constants.H:18
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getRhoThetagivenP(const amrex::Real p, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:172
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getExnergivenP(const amrex::Real P, const amrex::Real rdOcp)
Definition: ERF_EOS.H:141
@ pres
Definition: ERF_Kessler.H:25
real(c_double), parameter, private pi
Definition: ERF_module_mp_morr_two_moment.F90:100
amrex::Real rdOcp
Definition: ERF_DataStruct.H:1097
amrex::Real gravity
Definition: ERF_DataStruct.H:1095
Here is the call graph for this function:

◆ ERF_shared()

void ERF::ERF_shared ( )
146 {
147  if (ParallelDescriptor::IOProcessor()) {
148  const char* erf_hash = buildInfoGetGitHash(1);
149  const char* amrex_hash = buildInfoGetGitHash(2);
150  const char* buildgithash = buildInfoGetBuildGitHash();
151  const char* buildgitname = buildInfoGetBuildGitName();
152 
153  if (strlen(erf_hash) > 0) {
154  Print() << "\n"
155  << "ERF git hash: " << erf_hash << "\n";
156  }
157  if (strlen(amrex_hash) > 0) {
158  Print() << "AMReX git hash: " << amrex_hash << "\n";
159  }
160  if (strlen(buildgithash) > 0) {
161  Print() << buildgitname << " git hash: " << buildgithash << "\n";
162  }
163 
164  Print() << "\n";
165  }
166 
167  int nlevs_max = max_level + 1;
168 
169 #ifdef ERF_USE_WINDFARM
170  Nturb.resize(nlevs_max);
171  vars_windfarm.resize(nlevs_max);
172  SMark.resize(nlevs_max);
173 #endif
174 
175  qheating_rates.resize(nlevs_max);
176  rad_fluxes.resize(nlevs_max);
177  sw_lw_fluxes.resize(nlevs_max);
178  solar_zenith.resize(nlevs_max);
179 
180  // NOTE: size lsm before readparams (chooses the model at all levels)
181  lsm.ReSize(nlevs_max);
182  lsm_data.resize(nlevs_max);
183  lsm_flux.resize(nlevs_max);
184 
185  // NOTE: size canopy model before readparams (if file exists, we construct)
186  m_forest_drag.resize(nlevs_max);
187  for (int lev = 0; lev <= max_level; ++lev) { m_forest_drag[lev] = nullptr;}
188 
189  ReadParameters();
190  initializeMicrophysics(nlevs_max);
191 
192 #ifdef ERF_USE_WINDFARM
193  initializeWindFarm(nlevs_max);
194 #endif
195 
196 #ifdef ERF_USE_SHOC
197  shoc_interface.resize(nlevs_max);
198  if (solverChoice.use_shoc) {
199  for (int lev = 0; lev <= max_level; ++lev) {
200  shoc_interface[lev] = std::make_unique<SHOCInterface>(lev, solverChoice);
201  }
202  }
203 #endif
204 
205  rad.resize(nlevs_max);
206  for (int lev = 0; lev <= max_level; ++lev) {
207  if (solverChoice.rad_type == RadiationType::RRTMGP) {
208 #ifdef ERF_USE_RRTMGP
209  rad[lev] = std::make_unique<Radiation>(lev, solverChoice);
210  // pass radiation datalog frequency to model - RRTMGP needs to know when to save data for profiles
211  rad[lev]->setDataLogFrequency(rad_datalog_int);
212 #endif
213  } else if (solverChoice.rad_type != RadiationType::None) {
214  Abort("Don't know this radiation model!");
215  }
216  }
217 
218  const std::string& pv3d_1 = "plot_vars_1" ; setPlotVariables(pv3d_1,plot3d_var_names_1);
219  const std::string& pv3d_2 = "plot_vars_2" ; setPlotVariables(pv3d_2,plot3d_var_names_2);
220  const std::string& pv2d_1 = "plot2d_vars_1"; setPlotVariables2D(pv2d_1,plot2d_var_names_1);
221  const std::string& pv2d_2 = "plot2d_vars_2"; setPlotVariables2D(pv2d_2,plot2d_var_names_2);
222 
223  // This is only used when we have mesh_type == MeshType::StretchedDz
224  stretched_dz_h.resize(nlevs_max);
225  stretched_dz_d.resize(nlevs_max);
226 
227  // Initialize staggered vertical levels for grid stretching or terrain, and
228  // to simplify Rayleigh damping layer calculations.
229  zlevels_stag.resize(max_level+1);
233  geom,
234  refRatio(),
237  solverChoice.dz0);
238 
239  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
240  SolverChoice::mesh_type == MeshType::VariableDz) {
241  int nz = geom[0].Domain().length(2) + 1; // staggered
242  if (std::fabs(zlevels_stag[0][nz-1]-geom[0].ProbHi(2)) > 1.0e-4) {
243  Print() << "Note: prob_hi[2]=" << geom[0].ProbHi(2)
244  << " does not match highest requested z level " << zlevels_stag[0][nz-1]
245  << std::endl;
246  }
247  if (std::fabs(zlevels_stag[0][0]-geom[0].ProbLo(2)) > 1.0e-4) {
248  Print() << "Note: prob_lo[2]=" << geom[0].ProbLo(2)
249  << " does not match lowest requested level " << zlevels_stag[0][0]
250  << std::endl;
251  }
252 
253  // Redefine the problem domain here?
254  }
255 
256  // Get lo/hi indices for massflux calc
258  if (solverChoice.mesh_type == MeshType::ConstantDz) {
259  const Real massflux_zlo = solverChoice.const_massflux_layer_lo - geom[0].ProbLo(2);
260  const Real massflux_zhi = solverChoice.const_massflux_layer_hi - geom[0].ProbLo(2);
261  const Real dz = geom[0].CellSize(2);
262  if (massflux_zlo == -1e34) {
263  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
264  } else {
265  solverChoice.massflux_klo = static_cast<int>(std::ceil(massflux_zlo / dz - 0.5));
266  }
267  if (massflux_zhi == 1e34) {
268  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2);
269  } else {
270  solverChoice.massflux_khi = static_cast<int>(std::floor(massflux_zhi / dz - 0.5));
271  }
272  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
273  const Real massflux_zlo = solverChoice.const_massflux_layer_lo;
274  const Real massflux_zhi = solverChoice.const_massflux_layer_hi;
275  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
276  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2) + 1;
277  for (int k=0; k <= geom[0].Domain().bigEnd(2)+1; ++k) {
278  if (zlevels_stag[0][k] <= massflux_zlo) solverChoice.massflux_klo = k;
279  if (zlevels_stag[0][k] <= massflux_zhi) solverChoice.massflux_khi = k;
280  }
281  } else { // solverChoice.mesh_type == MeshType::VariableDz
282  Error("Const massflux with variable dz not supported -- planar averages are on k rather than constant-z planes");
283  }
284 
285  Print() << "Constant mass flux based on k in ["
286  << solverChoice.massflux_klo << ", " << solverChoice.massflux_khi << "]" << std::endl;
287  }
288 
289  prob = amrex_probinit(geom[0].ProbLo(),geom[0].ProbHi());
290 
291  // Geometry on all levels has been defined already.
292 
293  // No valid BoxArray and DistributionMapping have been defined.
294  // But the arrays for them have been resized.
295 
296  t_new.resize(nlevs_max, 0.0);
297  t_old.resize(nlevs_max, -1.e100);
298  dt.resize(nlevs_max, std::min(1.e100,dt_max_initial));
299  dt_mri_ratio.resize(nlevs_max, 1);
300 
301  vars_new.resize(nlevs_max);
302  vars_old.resize(nlevs_max);
303  gradp.resize(nlevs_max);
304 
305  // We resize this regardless in order to pass it without error
306  pp_inc.resize(nlevs_max);
307 
308  // Used in the fast substepping only
309  lagged_delta_rt.resize(nlevs_max);
310  avg_xmom.resize(nlevs_max);
311  avg_ymom.resize(nlevs_max);
312  avg_zmom.resize(nlevs_max);
313 
314  rU_new.resize(nlevs_max);
315  rV_new.resize(nlevs_max);
316  rW_new.resize(nlevs_max);
317 
318  rU_old.resize(nlevs_max);
319  rV_old.resize(nlevs_max);
320  rW_old.resize(nlevs_max);
321 
322  // xmom_crse_rhs.resize(nlevs_max);
323  // ymom_crse_rhs.resize(nlevs_max);
324  zmom_crse_rhs.resize(nlevs_max);
325 
326  for (int lev = 0; lev < nlevs_max; ++lev) {
327  vars_new[lev].resize(Vars::NumTypes);
328  vars_old[lev].resize(Vars::NumTypes);
329  gradp[lev].resize(AMREX_SPACEDIM);
330  }
331 
332  // Time integrator
333  mri_integrator_mem.resize(nlevs_max);
334 
335  // Physical boundary conditions
336  physbcs_cons.resize(nlevs_max);
337  physbcs_u.resize(nlevs_max);
338  physbcs_v.resize(nlevs_max);
339  physbcs_w.resize(nlevs_max);
340  physbcs_base.resize(nlevs_max);
341 
342  // Planes to hold Dirichlet values at boundaries
343  xvel_bc_data.resize(nlevs_max);
344  yvel_bc_data.resize(nlevs_max);
345  zvel_bc_data.resize(nlevs_max);
346  th_bc_data.resize(nlevs_max);
347 
348  advflux_reg.resize(nlevs_max);
349 
350  // Stresses
351  Tau.resize(nlevs_max);
352  Tau_corr.resize(nlevs_max);
353  SFS_hfx1_lev.resize(nlevs_max); SFS_hfx2_lev.resize(nlevs_max); SFS_hfx3_lev.resize(nlevs_max);
354  SFS_diss_lev.resize(nlevs_max);
355  SFS_q1fx1_lev.resize(nlevs_max); SFS_q1fx2_lev.resize(nlevs_max); SFS_q1fx3_lev.resize(nlevs_max);
356  SFS_q2fx3_lev.resize(nlevs_max);
357  eddyDiffs_lev.resize(nlevs_max);
358  SmnSmn_lev.resize(nlevs_max);
359 
360  // Sea surface temps
361  sst_lev.resize(nlevs_max);
362  tsk_lev.resize(nlevs_max);
363  lmask_lev.resize(nlevs_max);
364 
365  // Land and soil grid type and urban fractions
366  land_type_lev.resize(nlevs_max);
367  soil_type_lev.resize(nlevs_max);
368  urb_frac_lev.resize(nlevs_max);
369 
370  // Metric terms
371  z_phys_nd.resize(nlevs_max);
372  z_phys_cc.resize(nlevs_max);
373  detJ_cc.resize(nlevs_max);
374  ax.resize(nlevs_max);
375  ay.resize(nlevs_max);
376  az.resize(nlevs_max);
377 
378  z_phys_nd_new.resize(nlevs_max);
379  detJ_cc_new.resize(nlevs_max);
380 
381  z_phys_nd_src.resize(nlevs_max);
382  z_phys_cc_src.resize(nlevs_max);
383  detJ_cc_src.resize(nlevs_max);
384  ax_src.resize(nlevs_max);
385  ay_src.resize(nlevs_max);
386  az_src.resize(nlevs_max);
387 
388  z_t_rk.resize(nlevs_max);
389 
390  terrain_blanking.resize(nlevs_max);
391 
392  // Wall distance
393  walldist.resize(nlevs_max);
394 
395  // BoxArrays to make MultiFabs needed to convert WRFBdy data
396  ba1d.resize(nlevs_max);
397  ba2d.resize(nlevs_max);
398 
399  // MultiFabs needed to convert WRFBdy data
400  mf_PSFC.resize(nlevs_max);
401 
402  // Map factors
403  mapfac.resize(nlevs_max);
404 
405  // Fine mask
406  fine_mask.resize(nlevs_max);
407 
408  // Thin immersed body
409  xflux_imask.resize(nlevs_max);
410  yflux_imask.resize(nlevs_max);
411  zflux_imask.resize(nlevs_max);
412  //overset_imask.resize(nlevs_max);
413  thin_xforce.resize(nlevs_max);
414  thin_yforce.resize(nlevs_max);
415  thin_zforce.resize(nlevs_max);
416 
417  // Base state
418  base_state.resize(nlevs_max);
419  base_state_new.resize(nlevs_max);
420 
421  // Wave coupling data
422  Hwave.resize(nlevs_max);
423  Lwave.resize(nlevs_max);
424  for (int lev = 0; lev < max_level; ++lev)
425  {
426  Hwave[lev] = nullptr;
427  Lwave[lev] = nullptr;
428  }
429  Hwave_onegrid.resize(nlevs_max);
430  Lwave_onegrid.resize(nlevs_max);
431  for (int lev = 0; lev < max_level; ++lev)
432  {
433  Hwave_onegrid[lev] = nullptr;
434  Lwave_onegrid[lev] = nullptr;
435  }
436 
437  // Theta prim for MOST
438  Theta_prim.resize(nlevs_max);
439 
440  // Qv prim for MOST
441  Qv_prim.resize(nlevs_max);
442 
443  // Qr prim for MOST
444  Qr_prim.resize(nlevs_max);
445 
446  // Time averaged velocity field
447  vel_t_avg.resize(nlevs_max);
448  t_avg_cnt.resize(nlevs_max);
449 
450  // Size lat long arrays and default to null pointers
451  lat_m.resize(nlevs_max);
452  lon_m.resize(nlevs_max);
453  for (int lev = 0; lev < max_level; ++lev) {
454  lat_m[lev] = nullptr;
455  lon_m[lev] = nullptr;
456  }
457 
458  // Variable coriolis
459  sinPhi_m.resize(nlevs_max);
460  cosPhi_m.resize(nlevs_max);
461  for (int lev = 0; lev < max_level; ++lev) {
462  sinPhi_m[lev] = nullptr;
463  cosPhi_m[lev] = nullptr;
464  }
465 
466  // Initialize tagging criteria for mesh refinement
468 
469  for (int lev = 0; lev < max_level; ++lev)
470  {
471  Print() << "Refinement ratio at level " << lev+1 << " set to be " <<
472  ref_ratio[lev][0] << " " << ref_ratio[lev][1] << " " << ref_ratio[lev][2] << std::endl;
473  }
474 
475  // We will create each of these in MakeNewLevelFromScratch
476  eb.resize(max_level+1);
477  for (int lev = 0; lev < max_level + 1; lev++){
478  eb[lev] = std::make_unique<eb_>();
479  }
480 
481  //
482  // Construct the EB data structures and store in a separate class
483  //
484  // This is needed before initializing level MultiFabs
485  if ( solverChoice.terrain_type == TerrainType::EB ||
486  solverChoice.terrain_type == TerrainType::ImmersedForcing)
487  {
488  std::string geometry ="terrain";
489  ParmParse pp("eb2");
490  pp.queryAdd("geometry", geometry);
491 
492  constexpr int ngrow_for_eb = 4; // This is the default in amrex but we need to explicitly pass it here since
493  // we want to also pass the build_coarse_level_by_coarsening argument
494  const bool build_eb_for_multigrid = (solverChoice.terrain_type == TerrainType::EB &&
496  solverChoice.anelastic[0] == 1));
497  // Note this just needs to be an integer > number of V-cycles one might use
498  const int max_coarsening_level = (build_eb_for_multigrid) ? 100 : 0;
499  const bool build_coarse_level_by_coarsening(false);
500 
501  // Define GeometryShop using the implicit function
502  if (geometry == "terrain") {
503  Box terrain_bx(surroundingNodes(geom[max_level].Domain())); terrain_bx.grow(3);
504  FArrayBox terrain_fab(makeSlab(terrain_bx,2,0),1);
505  Real dummy_time = 0.0;
506  prob->init_terrain_surface(geom[max_level], terrain_fab, dummy_time);
507  TerrainIF implicit_fun(terrain_fab, geom[max_level], stretched_dz_d[max_level]);
508  auto gshop = EB2::makeShop(implicit_fun);
509  if (build_eb_for_multigrid) {
510  EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level,
511  ngrow_for_eb, build_coarse_level_by_coarsening);
512  } else {
513  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
514  }
515  } else if (geometry == "box") {
516  RealArray box_lo{0.0, 0.0, 0.0};
517  RealArray box_hi{0.0, 0.0, 0.0};
518  pp.query("box_lo", box_lo);
519  pp.query("box_hi", box_hi);
520  EB2::BoxIF implicit_fun(box_lo, box_hi, false);
521  auto gshop = EB2::makeShop(implicit_fun);
522  if (build_eb_for_multigrid) {
523  EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level,
524  ngrow_for_eb, build_coarse_level_by_coarsening);
525  } else {
526  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
527  }
528  } else if (geometry == "sphere") {
529  auto ProbLoArr = geom[max_level].ProbLoArray();
530  auto ProbHiArr = geom[max_level].ProbHiArray();
531  const Real xcen = 0.5 * (ProbLoArr[0] + ProbHiArr[0]);
532  const Real ycen = 0.5 * (ProbLoArr[1] + ProbHiArr[1]);
533  RealArray sphere_center = {xcen, ycen, 0.0};
534  EB2::SphereIF implicit_fun(0.5, sphere_center, false);
535  auto gshop = EB2::makeShop(implicit_fun);
536  if (build_eb_for_multigrid) {
537  EB2::Build(gshop, geom[max_level], max_level, max_coarsening_level,
538  ngrow_for_eb, build_coarse_level_by_coarsening);
539  } else {
540  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
541  }
542  }
543  }
544 
545  if ( solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
546  constexpr int ngrow_for_eb = 4;
547  Box buildings_bx(surroundingNodes(geom[max_level].Domain())); buildings_bx.grow(3);
548  FArrayBox buildings_fab(makeSlab(buildings_bx,2,0),1);
549  Real dummy_time = 0.0;
550  prob->init_buildings_surface(geom[max_level], buildings_fab, dummy_time);
551  TerrainIF implicit_fun(buildings_fab, geom[max_level], stretched_dz_d[max_level]);
552  auto gshop = EB2::makeShop(implicit_fun);
553  EB2::Build(gshop, this->Geom(), ngrow_for_eb);
554  }
555  forecast_state_1.resize(nlevs_max);
556  forecast_state_2.resize(nlevs_max);
557  forecast_state_interp.resize(nlevs_max);
558 }
void init_zlevels(Vector< Vector< Real >> &zlevels_stag, Vector< Vector< Real >> &stretched_dz_h, Vector< Gpu::DeviceVector< Real >> &stretched_dz_d, Vector< Geometry > const &geom, Vector< IntVect > const &ref_ratio, const Real grid_stretching_ratio, const Real zsurf, const Real dz0)
Definition: ERF_InitZLevels.cpp:11
std::unique_ptr< ProblemBase > amrex_probinit(const amrex_real *problo, const amrex_real *probhi) AMREX_ATTRIBUTE_WEAK
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
Definition: ERF.H:964
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
Definition: ERF.H:997
void setPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:25
amrex::Vector< amrex::BoxArray > ba2d
Definition: ERF.H:1248
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
Definition: ERF.H:808
void ReadParameters()
Definition: ERF.cpp:2167
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_interp
Definition: ERF.H:164
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_PSFC
Definition: ERF.H:1253
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
Definition: ERF.H:931
amrex::Vector< amrex::MultiFab > base_state_new
Definition: ERF.H:959
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
Definition: ERF.H:929
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
Definition: ERF.H:944
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
Definition: ERF.H:938
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
Definition: ERF.H:998
amrex::Vector< std::string > plot3d_var_names_2
Definition: ERF.H:1095
amrex::Vector< std::string > plot2d_var_names_1
Definition: ERF.H:1096
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
Definition: ERF.H:996
void setPlotVariables2D(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:187
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
Definition: ERF.H:763
amrex::Vector< amrex::Real > t_old
Definition: ERF.H:797
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
Definition: ERF.H:941
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
Definition: ERF.H:965
amrex::Vector< std::unique_ptr< amrex::MultiFab > > fine_mask
Definition: ERF.H:953
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
Definition: ERF.H:1333
amrex::Vector< amrex::BoxArray > ba1d
Definition: ERF.H:1247
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
Definition: ERF.H:760
int rad_datalog_int
Definition: ERF.H:887
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
Definition: ERF.H:933
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
Definition: ERF.H:935
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
Definition: ERF.H:991
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
Definition: ERF.H:869
amrex::Vector< std::string > plot3d_var_names_1
Definition: ERF.H:1094
void refinement_criteria_setup()
Definition: ERF_Tagging.cpp:320
amrex::Vector< std::string > plot2d_var_names_2
Definition: ERF.H:1097
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau_corr
Definition: ERF.H:899
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
Definition: ERF.H:934
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > urb_frac_lev
Definition: ERF.H:911
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
Definition: ERF.H:932
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_2
Definition: ERF.H:163
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > soil_type_lev
Definition: ERF.H:910
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
Definition: ERF.H:920
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
Definition: ERF.H:867
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
Definition: ERF.H:955
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
Definition: ERF.H:936
static amrex::Real dt_max_initial
Definition: ERF.H:1044
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
Definition: ERF.H:963
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > land_type_lev
Definition: ERF.H:909
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_1
Definition: ERF.H:162
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
Definition: ERF.H:992
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
Definition: ERF.H:762
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
Definition: ERF.H:939
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
Definition: ERF.H:761
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
Definition: ERF.H:962
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
Definition: ERF.H:990
void initializeMicrophysics(const int &)
Definition: ERF.cpp:1930
void ReSize(const int &nlev)
Definition: ERF_LandSurface.H:24
Definition: ERF_EBIFTerrain.H:14
const char * buildInfoGetGitHash(int i)
amrex::Real dz0
Definition: ERF_DataStruct.H:1102
amrex::Real const_massflux_layer_lo
Definition: ERF_DataStruct.H:1177
amrex::Real const_massflux_v
Definition: ERF_DataStruct.H:1175
int massflux_klo
Definition: ERF_DataStruct.H:1179
amrex::Real grid_stretching_ratio
Definition: ERF_DataStruct.H:1100
amrex::Real const_massflux_u
Definition: ERF_DataStruct.H:1174
amrex::Real zsurf
Definition: ERF_DataStruct.H:1101
static BuildingsType buildings_type
Definition: ERF_DataStruct.H:1012
amrex::Real const_massflux_layer_hi
Definition: ERF_DataStruct.H:1178
int massflux_khi
Definition: ERF_DataStruct.H:1180
Here is the call graph for this function:

◆ ErrorEst()

void ERF::ErrorEst ( int  lev,
amrex::TagBoxArray &  tags,
amrex::Real  time,
int  ngrow 
)
override
25 {
26  const int clearval = TagBox::CLEAR;
27  const int tagval = TagBox::SET;
28 
29 #ifdef ERF_USE_NETCDF
30  if (solverChoice.init_type == InitType::WRFInput) {
31  int ratio;
32  Box subdomain;
33 
34  if (!nc_init_file[levc+1].empty())
35  {
36  Real levc_start_time = read_start_time_from_wrfinput(levc , nc_init_file[levc ][0]);
37  amrex::Print() << " WRFInput time at level " << levc << " is " << levc_start_time << std::endl;
38 
39  for (int isub = 0; isub < nc_init_file[levc+1].size(); isub++) {
40  if (!have_read_nc_init_file[levc+1][isub])
41  {
42  Real levf_start_time = read_start_time_from_wrfinput(levc+1, nc_init_file[levc+1][isub]);
43  amrex::Print() << " WRFInput start_time at level " << levc+1 << " is " << levf_start_time << std::endl;
44 
45  // We assume there is only one subdomain at levc; otherwise we don't know
46  // which one is the parent of the fine region we are trying to create
47  AMREX_ALWAYS_ASSERT(subdomains[levc].size() == 1);
48 
49  if ( (ref_ratio[levc][2]) != 1) {
50  amrex::Abort("The ref_ratio specified in the inputs file must have 1 in the z direction; please use ref_ratio_vect rather than ref_ratio");
51  }
52 
53  if ( levf_start_time <= (levc_start_time + t_new[levc]) ) {
54  amrex::Print() << " WRFInput file to read: " << nc_init_file[levc+1][isub] << std::endl;
55  subdomain = read_subdomain_from_wrfinput(levc, nc_init_file[levc+1][isub], ratio);
56  amrex::Print() << " WRFInput subdomain " << isub << " at level " << levc+1 << " is " << subdomain << std::endl;
57 
58  if ( (ratio != ref_ratio[levc][0]) || (ratio != ref_ratio[levc][1]) ) {
59  amrex::Print() << "File " << nc_init_file[levc+1][0] << " has refinement ratio = " << ratio << std::endl;
60  amrex::Print() << "The inputs file has refinement ratio = " << ref_ratio[levc] << std::endl;
61  amrex::Abort("These must be the same -- please edit your inputs file and try again.");
62  }
63 
64  subdomain.coarsen(IntVect(ratio,ratio,1));
65 
66  Box coarser_level(subdomains[levc][isub].minimalBox());
67  subdomain.shift(coarser_level.smallEnd());
68 
69  if (verbose > 0) {
70  amrex::Print() << " Crse subdomain to be tagged is" << subdomain << std::endl;
71  }
72 
73  Box new_fine(subdomain); new_fine.refine(IntVect(ratio,ratio,1));
74  num_boxes_at_level[levc+1] = 1;
75  boxes_at_level[levc+1].push_back(new_fine);
76 
77  for (MFIter mfi(tags); mfi.isValid(); ++mfi) {
78  auto tag_arr = tags.array(mfi); // Get device-accessible array
79 
80  Box bx = mfi.validbox(); bx &= subdomain;
81 
82  if (!bx.isEmpty()) {
83  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
84  tag_arr(i,j,k) = TagBox::SET;
85  });
86  }
87  }
88  } // time is right
89  } else {
90  // Re-tag this region
91  for (MFIter mfi(tags); mfi.isValid(); ++mfi)
92  {
93  auto tag_arr = tags.array(mfi); // Get device-accessible array
94 
95  Box existing_bx_coarsened(boxes_at_level[levc+1][isub]);
96  existing_bx_coarsened.coarsen(ref_ratio[levc]);
97 
98  Box bx = mfi.validbox(); bx &= existing_bx_coarsened;
99 
100  if (!bx.isEmpty()) {
101  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
102  tag_arr(i,j,k) = TagBox::SET;
103  });
104  }
105  }
106  } // has file been read?
107  } // isub
108  return;
109  } // file not empty
110  }
111 #endif
112 
113  //
114  // Make sure the ghost cells of the level we are tagging at are filled
115  // in case we take differences that require them
116  // NOTE: We are Fillpatching only the cell-centered variables here
117  //
118  MultiFab& S_new = vars_new[levc][Vars::cons];
119  MultiFab& U_new = vars_new[levc][Vars::xvel];
120  MultiFab& V_new = vars_new[levc][Vars::yvel];
121  MultiFab& W_new = vars_new[levc][Vars::zvel];
122  //
123  if (levc == 0) {
124  FillPatchCrseLevel(levc, time, {&S_new, &U_new, &V_new, &W_new});
125  } else {
126  FillPatchFineLevel(levc, time, {&S_new, &U_new, &V_new, &W_new},
127  {&S_new, &rU_new[levc], &rV_new[levc], &rW_new[levc]},
128  base_state[levc], base_state[levc],
129  false, true);
130  }
131 
132  for (int j=0; j < ref_tags.size(); ++j)
133  {
134  //
135  // This mf must have ghost cells because we may take differences between adjacent values
136  //
137  std::unique_ptr<MultiFab> mf = std::make_unique<MultiFab>(grids[levc], dmap[levc], 1, 1);
138  mf->setVal(0.0);
139 
140  // This allows dynamic refinement based on the value of the density
141  if (ref_tags[j].Field() == "density")
142  {
143  MultiFab::Copy(*mf,vars_new[levc][Vars::cons],Rho_comp,0,1,1);
144 
145  // This allows dynamic refinement based on the value of qv
146  } else if ( ref_tags[j].Field() == "qv" ) {
147  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ1_comp, 0, 1, 1);
148  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
149 
150 
151  // This allows dynamic refinement based on the value of qc
152  } else if (ref_tags[j].Field() == "qc" ) {
153  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ2_comp, 0, 1, 1);
154  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
155 
156  // This allows dynamic refinement based on the value of the z-component of vorticity
157  } else if (ref_tags[j].Field() == "vorticity" ) {
158  Vector<MultiFab> mf_cc_vel(1);
159  mf_cc_vel[0].define(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(1,1,1));
160  average_face_to_cellcenter(mf_cc_vel[0],0,Array<const MultiFab*,3>{&U_new, &V_new, &W_new});
161 
162  // Impose bc's at domain boundaries at all levels
163  FillBdyCCVels(mf_cc_vel,levc);
164 
165  mf->setVal(0.);
166 
167  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
168  {
169  const Box& bx = mfi.tilebox();
170  auto& dfab = (*mf)[mfi];
171  auto& sfab = mf_cc_vel[0][mfi];
172  derived::erf_dervortz(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
173  }
174 
175  // This allows dynamic refinement based on the value of the scalar/theta
176  } else if ( (ref_tags[j].Field() == "scalar" ) ||
177  (ref_tags[j].Field() == "theta" ) )
178  {
179  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
180  {
181  const Box& bx = mfi.growntilebox();
182  auto& dfab = (*mf)[mfi];
183  auto& sfab = vars_new[levc][Vars::cons][mfi];
184  if (ref_tags[j].Field() == "scalar") {
185  derived::erf_derscalar(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
186  } else if (ref_tags[j].Field() == "theta") {
187  derived::erf_dertheta(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
188  }
189  } // mfi
190  // This allows dynamic refinement based on the value of the density
191  } else if ( (SolverChoice::terrain_type == TerrainType::ImmersedForcing) &&
192  (ref_tags[j].Field() == "terrain_blanking") )
193  {
194  MultiFab::Copy(*mf,*terrain_blanking[levc],0,0,1,1);
195  }
196  else if (ref_tags[j].Field() == "velmag")
197  {
198  ParmParse pp(pp_prefix);
199  Vector<std::string> refinement_indicators;
200  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
201  Real velmag_threshold;
202  bool is_hurricane_tracker = false;
203  for (int i=0; i<refinement_indicators.size(); ++i)
204  {
205  if (refinement_indicators[i]=="hurricane_tracker") {
206  is_hurricane_tracker = true;
207  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
208  ParmParse ppr(ref_prefix);
209  ppr.get("value_greater", velmag_threshold);
210  break;
211  }
212  }
213 
214  Vector<MultiFab> mf_cc_vel(1);
215  mf_cc_vel[0].define(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
216  average_face_to_cellcenter(mf_cc_vel[0],0,Array<const MultiFab*,3>{&U_new, &V_new, &W_new});
217 
218  if (is_hurricane_tracker) {
219  HurricaneTracker(levc, time, mf_cc_vel[0], velmag_threshold, &tags);
220  } else {
221  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
222  {
223  const Box& bx = mfi.tilebox();
224  auto& dfab = (*mf)[mfi];
225  auto& sfab = mf_cc_vel[0][mfi];
226  derived::erf_dermagvel(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
227  }
228  }
229 
230 #ifdef ERF_USE_PARTICLES
231  } else {
232  //
233  // This allows dynamic refinement based on the number of particles per cell
234  //
235  // Note that we must count all the particles in levels both at and above the current,
236  // since otherwise, e.g., if the particles are all at level 1, counting particles at
237  // level 0 will not trigger refinement when regridding so level 1 will disappear,
238  // then come back at the next regridding
239  //
240  const auto& particles_namelist( particleData.getNames() );
241  mf->setVal(0.0);
242  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++)
243  {
244  std::string tmp_string(particles_namelist[i]+"_count");
245  IntVect rr = IntVect::TheUnitVector();
246  if (ref_tags[j].Field() == tmp_string) {
247  for (int lev = levc; lev <= finest_level; lev++)
248  {
249  MultiFab temp_dat(grids[lev], dmap[lev], 1, 0); temp_dat.setVal(0);
250  particleData[particles_namelist[i]]->IncrementWithTotal(temp_dat, lev);
251 
252  MultiFab temp_dat_crse(grids[levc], dmap[levc], 1, 0); temp_dat_crse.setVal(0);
253 
254  if (lev == levc) {
255  MultiFab::Copy(*mf, temp_dat, 0, 0, 1, 0);
256  } else {
257  for (int d = 0; d < AMREX_SPACEDIM; d++) {
258  rr[d] *= ref_ratio[levc][d];
259  }
260  average_down(temp_dat, temp_dat_crse, 0, 1, rr);
261  MultiFab::Add(*mf, temp_dat_crse, 0, 0, 1, 0);
262  }
263  }
264  }
265  }
266 #endif
267  }
268 
269  ref_tags[j](tags,mf.get(),clearval,tagval,time,levc,geom[levc]);
270  } // loop over j
271 
272  // ********************************************************************************************
273  // Refinement based on 2d distance from the "eye" which is defined here as the (x,y) location of
274  // the integrated qv
275  // ********************************************************************************************
276  ParmParse pp(pp_prefix);
277  Vector<std::string> refinement_indicators;
278  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
279  for (int i=0; i<refinement_indicators.size(); ++i)
280  {
281  if ( (refinement_indicators[i]=="storm_tracker") && (solverChoice.moisture_type != MoistureType::None) )
282  {
283  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
284  ParmParse ppr(ref_prefix);
285 
286  Real ref_start_time = -1.0;
287  ppr.query("start_time",ref_start_time);
288 
289  if (time >= ref_start_time) {
290 
291  Real max_radius = -1.0;
292  ppr.get("max_radius", max_radius);
293 
294  // Create the volume-weighted sum of (rho qv) in each column
295  MultiFab mf_qv_int(ba2d[levc], dmap[levc], 1, 0); mf_qv_int.setVal(0.);
296 
297  // Define the 2D MultiFab holding the column-integrated (rho qv)
298  volWgtColumnSum(levc, S_new, RhoQ1_comp, mf_qv_int, *detJ_cc[levc]);
299 
300  // Find the max value in the domain
301  IntVect eye = mf_qv_int.maxIndex(0);
302 
303  const auto dx = geom[levc].CellSizeArray();
304  const auto prob_lo = geom[levc].ProbLoArray();
305 
306  Real eye_x = prob_lo[0] + (eye[0] + 0.5) * dx[0];
307  Real eye_y = prob_lo[1] + (eye[1] + 0.5) * dx[1];
308 
309  tag_on_distance_from_eye(geom[levc], &tags, eye_x, eye_y, max_radius);
310  }
311  }
312  }
313 }
void tag_on_distance_from_eye(const Geometry &cgeom, TagBoxArray *tags, const Real eye_x, const Real eye_y, const Real rad_tag)
Definition: ERF_Tagging.cpp:619
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
Definition: ERF.H:790
void FillBdyCCVels(amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
Definition: ERF_FillBdyCCVels.cpp:11
void volWgtColumnSum(int lev, const amrex::MultiFab &mf, int comp, amrex::MultiFab &mf_2d, const amrex::MultiFab &dJ)
Definition: ERF_VolWgtSum.cpp:82
void FillPatchCrseLevel(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
Definition: ERF_FillPatch.cpp:288
void HurricaneTracker(int lev, amrex::Real time, const amrex::MultiFab &cc_vel, const amrex::Real velmag_threshold, amrex::TagBoxArray *tags=nullptr)
Definition: ERF_Tagging.cpp:648
static amrex::Vector< amrex::Vector< std::string > > nc_init_file
Definition: ERF.H:1220
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
Definition: ERF.H:1340
static amrex::Vector< amrex::Vector< int > > have_read_nc_init_file
Definition: ERF.H:1221
static amrex::Vector< amrex::AMRErrorTag > ref_tags
Definition: ERF.H:1338
amrex::Vector< int > num_boxes_at_level
Definition: ERF.H:788
void erf_derscalar(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:165
void erf_dermagvel(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:319
void erf_dervortz(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:256
void erf_dertheta(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:144
real(c_double), private rr
Definition: ERF_module_mp_morr_two_moment.F90:224
integer, private isub
Definition: ERF_module_mp_morr_two_moment.F90:164
static InitType init_type
Definition: ERF_DataStruct.H:1003
Here is the call graph for this function:

◆ estTimeStep()

Real ERF::estTimeStep ( int  level,
long &  dt_fast_ratio 
) const

Function that calls estTimeStep for each level

Parameters
[in]levellevel of refinement (coarsest level i 0)
[out]dt_fast_ratioratio of slow to fast time step
55 {
56  BL_PROFILE("ERF::estTimeStep()");
57 
58  Real estdt_comp = 1.e20;
59  Real estdt_lowM = 1.e20;
60 
61  // We intentionally use the level 0 domain to compute whether to use this direction in the dt calculation
62  const int nxc = geom[0].Domain().length(0);
63  const int nyc = geom[0].Domain().length(1);
64 
65  auto const dxinv = geom[level].InvCellSizeArray();
66  auto const dzinv = 1.0 / dz_min[level];
67 
68  MultiFab const& S_new = vars_new[level][Vars::cons];
69 
70  MultiFab ccvel(grids[level],dmap[level],3,0);
71 
72  average_face_to_cellcenter(ccvel,0,
73  Array<const MultiFab*,3>{&vars_new[level][Vars::xvel],
74  &vars_new[level][Vars::yvel],
75  &vars_new[level][Vars::zvel]});
76 
77  bool l_substepping = (solverChoice.substepping_type[level] == SubsteppingType::Implicit);
78  int l_anelastic = solverChoice.anelastic[level];
79 
80  bool l_comp_substepping_diag = (verbose && l_substepping && !l_anelastic && solverChoice.substepping_diag);
81 
82  Real estdt_comp_inv;
83  Real estdt_vert_comp_inv;
84  Real estdt_vert_lowM_inv;
85 
86  if (l_substepping && (nxc==1) && (nyc==1)) {
87  // SCM -- should not depend on dx or dy; force minimum number of substeps
88  estdt_comp_inv = std::numeric_limits<Real>::min();
89  }
90  else if (solverChoice.terrain_type == TerrainType::EB)
91  {
92  const eb_& eb_lev = get_eb(level);
93  const MultiFab& detJ = (eb_lev.get_const_factory())->getVolFrac();
94 
95  estdt_comp_inv = ReduceMax(S_new, ccvel, detJ, 0,
96  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
97  Array4<Real const> const& s,
98  Array4<Real const> const& u,
99  Array4<Real const> const& vf) -> Real
100  {
101  Real new_comp_dt = -1.e100;
102  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
103  {
104  if (vf(i,j,k) > 0.)
105  {
106  const Real rho = s(i, j, k, Rho_comp);
107  const Real rhotheta = s(i, j, k, RhoTheta_comp);
108 
109  // NOTE: even when moisture is present,
110  // we only use the partial pressure of the dry air
111  // to compute the soundspeed
112  Real pressure = getPgivenRTh(rhotheta);
113  Real c = std::sqrt(Gamma * pressure / rho);
114 
115  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
116  // to the computation of the time step
117  if (l_substepping) {
118  if ((nxc > 1) && (nyc==1)) {
119  // 2-D in x-z
120  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
121  } else if ((nyc > 1) && (nxc==1)) {
122  // 2-D in y-z
123  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
124  } else {
125  // 3-D
126  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
127  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
128  }
129 
130  // If we are not doing implicit acoustic substepping, then the z-direction contributes
131  // to the computation of the time step
132  } else {
133  if (nxc > 1 && nyc > 1) {
134  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
135  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
136  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
137  } else if (nxc > 1) {
138  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
139  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
140  } else if (nyc > 1) {
141  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
142  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
143  } else {
144  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
145  }
146 
147  }
148  }
149  });
150  return new_comp_dt;
151  });
152 
153  } else {
154  estdt_comp_inv = ReduceMax(S_new, ccvel, 0,
155  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
156  Array4<Real const> const& s,
157  Array4<Real const> const& u) -> Real
158  {
159  Real new_comp_dt = -1.e100;
160  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
161  {
162  {
163  const Real rho = s(i, j, k, Rho_comp);
164  const Real rhotheta = s(i, j, k, RhoTheta_comp);
165 
166  // NOTE: even when moisture is present,
167  // we only use the partial pressure of the dry air
168  // to compute the soundspeed
169  Real pressure = getPgivenRTh(rhotheta);
170  Real c = std::sqrt(Gamma * pressure / rho);
171 
172  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
173  // to the computation of the time step
174  if (l_substepping) {
175  if ((nxc > 1) && (nyc==1)) {
176  // 2-D in x-z
177  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
178  } else if ((nyc > 1) && (nxc==1)) {
179  // 2-D in y-z
180  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
181  } else {
182  // 3-D
183  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
184  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
185  }
186 
187  // If we are not doing implicit acoustic substepping, then the z-direction contributes
188  // to the computation of the time step
189  } else {
190  if (nxc > 1 && nyc > 1) {
191  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
192  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
193  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
194  } else if (nxc > 1) {
195  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
196  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
197  } else if (nyc > 1) {
198  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
199  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
200  } else {
201  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
202  }
203 
204  }
205  }
206  });
207  return new_comp_dt;
208  });
209  } // not EB
210 
211  ParallelDescriptor::ReduceRealMax(estdt_comp_inv);
212  estdt_comp = cfl / estdt_comp_inv;
213 
214  Real estdt_lowM_inv = ReduceMax(ccvel, 0,
215  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
216  Array4<Real const> const& u) -> Real
217  {
218  Real new_lm_dt = -1.e100;
219  Loop(b, [=,&new_lm_dt] (int i, int j, int k) noexcept
220  {
221  new_lm_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0)))*dxinv[0]),
222  ((amrex::Math::abs(u(i,j,k,1)))*dxinv[1]),
223  ((amrex::Math::abs(u(i,j,k,2)))*dxinv[2]), new_lm_dt);
224  });
225  return new_lm_dt;
226  });
227 
228  ParallelDescriptor::ReduceRealMax(estdt_lowM_inv);
229  if (estdt_lowM_inv > 0.0_rt)
230  estdt_lowM = cfl / estdt_lowM_inv;
231 
232  // Additional vertical diagnostics
233  if (l_comp_substepping_diag) {
234  estdt_vert_comp_inv = ReduceMax(S_new, ccvel, 0,
235  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
236  Array4<Real const> const& s,
237  Array4<Real const> const& u) -> Real
238  {
239  Real new_comp_dt = -1.e100;
240  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
241  {
242  {
243  const Real rho = s(i, j, k, Rho_comp);
244  const Real rhotheta = s(i, j, k, RhoTheta_comp);
245 
246  // NOTE: even when moisture is present,
247  // we only use the partial pressure of the dry air
248  // to compute the soundspeed
249  Real pressure = getPgivenRTh(rhotheta);
250  Real c = std::sqrt(Gamma * pressure / rho);
251 
252  // Look at z-direction only
253  new_comp_dt = amrex::max((amrex::Math::abs(u(i,j,k,2)) + c) * dzinv, new_comp_dt);
254  }
255  });
256  return new_comp_dt;
257  });
258 
259  estdt_vert_lowM_inv = ReduceMax(ccvel, 0,
260  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
261  Array4<Real const> const& u) -> Real
262  {
263  Real new_lowM_dt = -1.e100;
264  amrex::Loop(b, [=,&new_lowM_dt] (int i, int j, int k) noexcept
265  {
266  new_lowM_dt = amrex::max((amrex::Math::abs(u(i,j,k,2))) * dzinv, new_lowM_dt);
267  });
268  return new_lowM_dt;
269  });
270 
271  ParallelDescriptor::ReduceRealMax(estdt_vert_comp_inv);
272  ParallelDescriptor::ReduceRealMax(estdt_vert_lowM_inv);
273  }
274 
275  if (verbose) {
276  if (fixed_dt[level] <= 0.0) {
277  Print() << "Using cfl = " << cfl << " and dx/dy/dz_min = " <<
278  1.0/dxinv[0] << " " << 1.0/dxinv[1] << " " << dz_min[level] << std::endl;
279  Print() << "Compressible dt at level " << level << ": " << estdt_comp << std::endl;
280  if (estdt_lowM_inv > 0.0_rt) {
281  Print() << "Anelastic dt at level " << level << ": " << estdt_lowM << std::endl;
282  } else {
283  Print() << "Anelastic dt at level " << level << ": undefined " << std::endl;
284  }
285  }
286 
287  if (fixed_dt[level] > 0.0) {
288  Print() << "Based on cfl of 1.0 " << std::endl;
289  Print() << "Compressible dt at level " << level << " would be: " << estdt_comp/cfl << std::endl;
290  if (estdt_lowM_inv > 0.0_rt) {
291  Print() << "Anelastic dt at level " << level << " would be: " << estdt_lowM/cfl << std::endl;
292  } else {
293  Print() << "Anelastic dt at level " << level << " would be undefined " << std::endl;
294  }
295  Print() << "Fixed dt at level " << level << " is: " << fixed_dt[level] << std::endl;
296  if (fixed_fast_dt[level] > 0.0) {
297  Print() << "Fixed fast dt at level " << level << " is: " << fixed_fast_dt[level] << std::endl;
298  }
299  }
300  }
301 
302  if (solverChoice.substepping_type[level] != SubsteppingType::None) {
303  if (fixed_dt[level] > 0. && fixed_fast_dt[level] > 0.) {
304  dt_fast_ratio = static_cast<long>( fixed_dt[level] / fixed_fast_dt[level] );
305  } else if (fixed_dt[level] > 0.) {
306  // Max CFL_c = 1.0 for substeps by default, but we enforce a min of 4 substeps
307  auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
308  dt_fast_ratio = static_cast<long>( std::max(fixed_dt[level]/dt_sub_max,4.) );
309  } else {
310  // auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
311  // dt_fast_ratio = static_cast<long>( std::max(estdt_comp/dt_sub_max,4.) );
312  dt_fast_ratio = static_cast<long>( std::max(cfl / sub_cfl, 4.) );
313  }
314 
315  // Force time step ratio to be an even value
317  if ( dt_fast_ratio%2 != 0) dt_fast_ratio += 1;
318  } else {
319  if ( dt_fast_ratio%6 != 0) {
320  Print() << "mri_dt_ratio = " << dt_fast_ratio
321  << " not divisible by 6 for N/3 substeps in stage 1" << std::endl;
322  dt_fast_ratio = static_cast<int>(std::ceil(dt_fast_ratio/6.0) * 6);
323  }
324  }
325 
326  if (verbose) {
327  Print() << "smallest even ratio is: " << dt_fast_ratio << std::endl;
328  }
329  } // if substepping
330 
331  // Print out some extra diagnostics -- dt calcs are repeated so as to not
332  // disrupt the overall code flow...
333  if (l_comp_substepping_diag) {
334  Real dt_diag = (fixed_dt[level] > 0.0) ? fixed_dt[level] : estdt_comp;
335  int ns = (fixed_mri_dt_ratio > 0.0) ? fixed_mri_dt_ratio : dt_fast_ratio;
336 
337  // horizontal acoustic CFL must be < 1 (fully explicit)
338  // vertical acoustic CFL may be > 1
339  Print() << "effective horiz,vert acoustic CFL with " << ns << " substeps : "
340  << (dt_diag / ns) * estdt_comp_inv << " "
341  << (dt_diag / ns) * estdt_vert_comp_inv << std::endl;
342 
343  // vertical advective CFL should be < 1, otherwise w-damping may be needed
344  Print() << "effective vert advective CFL : "
345  << dt_diag * estdt_vert_lowM_inv << std::endl;
346  }
347 
348  if (fixed_dt[level] > 0.0) {
349  return fixed_dt[level];
350  } else {
351  // Anelastic (substepping is not allowed)
352  if (l_anelastic) {
353 
354  // Make sure that timestep is less than the dt_max
355  estdt_lowM = amrex::min(estdt_lowM, dt_max);
356 
357  // On the first timestep enforce dt_max_initial
358  if (istep[level] == 0) {
359  return amrex::min(dt_max_initial, estdt_lowM);
360  } else {
361  return estdt_lowM;
362  }
363 
364 
365  // Compressible with or without substepping
366  } else {
367  return estdt_comp;
368  }
369  }
370 }
constexpr amrex::Real Gamma
Definition: ERF_Constants.H:19
amrex::Vector< amrex::Real > dz_min
Definition: ERF.H:1342
amrex::Vector< amrex::Real > fixed_dt
Definition: ERF.H:1048
static amrex::Real dt_max
Definition: ERF.H:1045
amrex::Vector< amrex::Real > fixed_fast_dt
Definition: ERF.H:1049
static amrex::Real cfl
Definition: ERF.H:1040
static amrex::Real sub_cfl
Definition: ERF.H:1041
Definition: ERF_EB.H:13
@ ns
Definition: ERF_Morrison.H:47
int force_stage1_single_substep
Definition: ERF_DataStruct.H:1036
amrex::Vector< SubsteppingType > substepping_type
Definition: ERF_DataStruct.H:1038
bool substepping_diag
Definition: ERF_DataStruct.H:1045
Here is the call graph for this function:

◆ Evolve()

void ERF::Evolve ( )
565 {
566  BL_PROFILE_VAR("ERF::Evolve()", evolve);
567 
568  Real cur_time = t_new[0];
569 
570  // Take one coarse timestep by calling timeStep -- which recursively calls timeStep
571  // for finer levels (with or without subcycling)
572  for (int step = istep[0]; step < max_step && start_time+cur_time < stop_time; ++step)
573  {
574  if (use_datetime) {
575  Print() << "\n" << getTimestamp(start_time+cur_time, datetime_format)
576  << " (" << cur_time << " s elapsed)" << std::endl;
577  }
578  Print() << "\nCoarse STEP " << step+1 << " starts ..." << std::endl;
579 
580  ComputeDt(step);
581 
582  // Make sure we have read enough of the boundary plane data to make it through this timestep
583  if (input_bndry_planes)
584  {
585  m_r2d->read_input_files(cur_time,dt[0],m_bc_extdir_vals);
586  }
587 
588 #ifdef ERF_USE_PARTICLES
589  // We call this every time step with the knowledge that the particles may be
590  // initialized at a later time than the simulation start time.
591  // The ParticleContainer carries a "start time" so the initialization will happen
592  // only when a) time > start_time, and b) particles have not yet been initialized
593  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,cur_time);
594 #endif
595 
596  if(solverChoice.init_type == InitType::HindCast and
598  for(int lev=0;lev<finest_level+1;lev++){
599  WeatherDataInterpolation(lev,cur_time,z_phys_nd,false);
600  }
601  }
602 
603  auto dEvolveTime0 = amrex::second();
604 
605  int iteration = 1;
606  timeStep(0, cur_time, iteration);
607 
608  cur_time += dt[0];
609 
610  Print() << "Coarse STEP " << step+1 << " ends." << " TIME = " << cur_time
611  << " DT = " << dt[0] << std::endl;
612 
613  if (check_for_nans > 0) {
614  amrex::Print() << "Testing new state and vels for NaNs at end of timestep" << std::endl;
615  for (int lev = 0; lev <= finest_level; ++lev) {
618  }
619  }
620 
621  if (verbose > 0)
622  {
623  auto dEvolveTime = amrex::second() - dEvolveTime0;
624  ParallelDescriptor::ReduceRealMax(dEvolveTime,ParallelDescriptor::IOProcessorNumber());
625  amrex::Print() << "Timestep time = " << dEvolveTime << " seconds." << '\n';
626  }
627 
628  post_timestep(step, cur_time, dt[0]);
629 
630  if (writeNow(cur_time, step+1, m_plot3d_int_1, m_plot3d_per_1, dt[0], last_plot3d_file_time_1)) {
631  last_plot3d_file_step_1 = step+1;
633  for (int lev = 0; lev <= finest_level; ++lev) {lsm.Plot(lev, step+1);}
635  }
636  if (writeNow(cur_time, step+1, m_plot3d_int_2, m_plot3d_per_2, dt[0], last_plot3d_file_time_2)) {
637  last_plot3d_file_step_2 = step+1;
639  for (int lev = 0; lev <= finest_level; ++lev) {lsm.Plot(lev, step+1);}
641  }
642 
643  if (writeNow(cur_time, step+1, m_plot2d_int_1, m_plot2d_per_1, dt[0], last_plot2d_file_time_1)) {
644  last_plot2d_file_step_1 = step+1;
647  }
648 
649  if (writeNow(cur_time, step+1, m_plot2d_int_2, m_plot2d_per_2, dt[0], last_plot2d_file_time_2)) {
650  last_plot2d_file_step_2 = step+1;
653  }
654 
655  for (int i = 0; i < m_subvol_int.size(); i++) {
656  if (writeNow(cur_time, step+1, m_subvol_int[i], m_subvol_per[i], dt[0], last_subvol_time[i])) {
657  last_subvol_step[i] = step+1;
659  if (m_subvol_per[i] > 0.) {last_subvol_time[i] += m_subvol_per[i];}
660  }
661  }
662 
663  if (writeNow(cur_time, step+1, m_check_int, m_check_per, dt[0], last_check_file_time)) {
664  last_check_file_step = step+1;
667  }
668 
669 #ifdef AMREX_MEM_PROFILING
670  {
671  std::ostringstream ss;
672  ss << "[STEP " << step+1 << "]";
673  MemProfiler::report(ss.str());
674  }
675 #endif
676 
677  if (cur_time >= stop_time - 1.e-6*dt[0]) break;
678  }
679 
680  // Write plotfiles at final time
681  if ( (m_plot3d_int_1 > 0 || m_plot3d_per_1 > 0.) && istep[0] > last_plot3d_file_step_1 ) {
684  }
685  if ( (m_plot3d_int_2 > 0 || m_plot3d_per_2 > 0.) && istep[0] > last_plot3d_file_step_2) {
688  }
689  if ( (m_plot2d_int_1 > 0 || m_plot2d_per_1 > 0.) && istep[0] > last_plot2d_file_step_1 ) {
692  }
693  if ( (m_plot2d_int_2 > 0 || m_plot2d_per_2 > 0.) && istep[0] > last_plot2d_file_step_2) {
696  }
697 
698  for (int i = 0; i < m_subvol_int.size(); i++) {
699  if ( (m_subvol_int[i] > 0 || m_subvol_per[i] > 0.) && istep[0] > last_subvol_step[i]) {
701  if (m_subvol_per[i] > 0.) {last_subvol_time[i] += m_subvol_per[i];}
702  }
703  }
704 
705  if ( (m_check_int > 0 || m_check_per > 0.) && istep[0] > last_check_file_step) {
708  }
709 
710  BL_PROFILE_VAR_STOP(evolve);
711 }
AMREX_FORCE_INLINE std::string getTimestamp(const amrex::Real epoch_real, const std::string &datetime_format, bool add_long_frac=true)
Definition: ERF_EpochTime.H:72
static int last_check_file_step
Definition: ERF.H:1004
int max_step
Definition: ERF.H:1027
static amrex::Real last_plot2d_file_time_2
Definition: ERF.H:1009
amrex::Vector< std::string > subvol3d_var_names
Definition: ERF.H:1092
amrex::Real m_plot2d_per_1
Definition: ERF.H:1077
static amrex::Real last_plot2d_file_time_1
Definition: ERF.H:1008
static int last_plot2d_file_step_2
Definition: ERF.H:1003
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_extdir_vals
Definition: ERF.H:981
static amrex::Real last_plot3d_file_time_2
Definition: ERF.H:1007
int m_plot2d_int_2
Definition: ERF.H:1070
int m_plot3d_int_1
Definition: ERF.H:1067
static int last_plot3d_file_step_2
Definition: ERF.H:1001
void post_timestep(int nstep, amrex::Real time, amrex::Real dt_lev)
Definition: ERF.cpp:715
amrex::Real m_plot2d_per_2
Definition: ERF.H:1078
amrex::Real m_check_per
Definition: ERF.H:1090
int m_check_int
Definition: ERF.H:1089
static int input_bndry_planes
Definition: ERF.H:1270
void Write2DPlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:1931
const std::string datetime_format
Definition: ERF.H:1034
bool use_datetime
Definition: ERF.H:1033
amrex::Vector< amrex::Real > m_subvol_per
Definition: ERF.H:1073
void ComputeDt(int step=-1)
Definition: ERF_ComputeTimestep.cpp:11
void WeatherDataInterpolation(const int nlevs, const amrex::Real time, amrex::Vector< std::unique_ptr< amrex::MultiFab >> &z_phys_nd, bool regrid_forces_file_read)
Definition: ERF_WeatherDataInterpolation.cpp:347
void WriteSubvolume(int isub, amrex::Vector< std::string > subvol_var_names)
Definition: ERF_WriteSubvolume.cpp:145
amrex::Real m_plot3d_per_2
Definition: ERF.H:1076
amrex::Vector< int > last_subvol_step
Definition: ERF.H:1012
static PlotFileType plotfile3d_type_2
Definition: ERF.H:1207
static PlotFileType plotfile2d_type_2
Definition: ERF.H:1209
bool writeNow(const amrex::Real cur_time, const int nstep, const int plot_int, const amrex::Real plot_per, const amrex::Real dt_0, amrex::Real &last_file_time)
Definition: ERF.cpp:2927
int m_plot2d_int_1
Definition: ERF.H:1069
void WriteCheckpointFile() const
Definition: ERF_Checkpoint.cpp:26
void Write3DPlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:308
static int last_plot2d_file_step_1
Definition: ERF.H:1002
amrex::Real m_plot3d_per_1
Definition: ERF.H:1075
std::unique_ptr< ReadBndryPlanes > m_r2d
Definition: ERF.H:1331
amrex::Vector< amrex::Real > last_subvol_time
Definition: ERF.H:1013
static amrex::Real last_check_file_time
Definition: ERF.H:1010
static int last_plot3d_file_step_1
Definition: ERF.H:1000
static amrex::Real last_plot3d_file_time_1
Definition: ERF.H:1006
static PlotFileType plotfile2d_type_1
Definition: ERF.H:1208
static PlotFileType plotfile3d_type_1
Definition: ERF.H:1206
amrex::Vector< int > m_subvol_int
Definition: ERF.H:1072
int m_plot3d_int_2
Definition: ERF.H:1068
void timeStep(int lev, amrex::Real time, int iteration)
Definition: ERF_TimeStep.cpp:17
void Plot(const int &lev, const int &nstep)
Definition: ERF_LandSurface.H:71
bool hindcast_lateral_forcing
Definition: ERF_DataStruct.H:1184

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ fill_from_bndryregs()

void ERF::fill_from_bndryregs ( const amrex::Vector< amrex::MultiFab * > &  mfs,
amrex::Real  time 
)
14 {
15  //
16  // We now assume that if we read in on one face, we read in on all faces
17  //
18  AMREX_ALWAYS_ASSERT(m_r2d);
19 
20  int lev = 0;
21  const Box& domain = geom[lev].Domain();
22 
23  const auto& dom_lo = lbound(domain);
24  const auto& dom_hi = ubound(domain);
25 
26  Vector<std::unique_ptr<PlaneVector>>& bndry_data = m_r2d->interp_in_time(time);
27 
28  const BCRec* bc_ptr = domain_bcs_type_d.data();
29 
30  // xlo: ori = 0
31  // ylo: ori = 1
32  // zlo: ori = 2
33  // xhi: ori = 3
34  // yhi: ori = 4
35  // zhi: ori = 5
36  const auto& bdatxlo = (*bndry_data[0])[lev].const_array();
37  const auto& bdatylo = (*bndry_data[1])[lev].const_array();
38  const auto& bdatxhi = (*bndry_data[3])[lev].const_array();
39  const auto& bdatyhi = (*bndry_data[4])[lev].const_array();
40 
41  int bccomp;
42 
43  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx)
44  {
45  MultiFab& mf = *mfs[var_idx];
46  const int icomp = 0;
47  const int ncomp = mf.nComp();
48 
49  if (var_idx == Vars::xvel) {
50  bccomp = BCVars::xvel_bc;
51  } else if (var_idx == Vars::yvel) {
52  bccomp = BCVars::yvel_bc;
53  } else if (var_idx == Vars::zvel) {
54  bccomp = BCVars::zvel_bc;
55  } else if (var_idx == Vars::cons) {
56  bccomp = BCVars::cons_bc;
57  }
58 
59 #ifdef AMREX_USE_OMP
60 #pragma omp parallel if (Gpu::notInLaunchRegion())
61 #endif
62  for (MFIter mfi(mf); mfi.isValid(); ++mfi)
63  {
64  const Array4<Real>& dest_arr = mf.array(mfi);
65  Box bx = mfi.growntilebox();
66 
67  // x-faces
68  {
69  Box bx_xlo(bx); bx_xlo.setBig(0,dom_lo.x-1);
70  if (var_idx == Vars::xvel) bx_xlo.setBig(0,dom_lo.x);
71 
72  Box bx_xhi(bx); bx_xhi.setSmall(0,dom_hi.x+1);
73  if (var_idx == Vars::xvel) bx_xhi.setSmall(0,dom_hi.x);
74 
75  ParallelFor(
76  bx_xlo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
77  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
78  BCVars::RhoScalar_bc_comp : icomp+n;
79  if (bc_ptr[bc_comp].lo(0) == ERFBCType::ext_dir_ingested) {
80  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
81  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
82  dest_arr(i,j,k,icomp+n) = bdatxlo(dom_lo.x-1,jb,kb,bccomp+n);
83  }
84  },
85  bx_xhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
86  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
87  BCVars::RhoScalar_bc_comp : icomp+n;
88  if (bc_ptr[bc_comp].hi(0) == ERFBCType::ext_dir_ingested) {
89  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
90  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
91  dest_arr(i,j,k,icomp+n) = bdatxhi(dom_hi.x+1,jb,kb,bccomp+n);
92  }
93  }
94  );
95  } // x-faces
96 
97  // y-faces
98  {
99  Box bx_ylo(bx); bx_ylo.setBig (1,dom_lo.y-1);
100  if (var_idx == Vars::yvel) bx_ylo.setBig(1,dom_lo.y);
101 
102  Box bx_yhi(bx); bx_yhi.setSmall(1,dom_hi.y+1);
103  if (var_idx == Vars::yvel) bx_yhi.setSmall(1,dom_hi.y);
104 
105  ParallelFor(
106  bx_ylo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
107  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
108  BCVars::RhoScalar_bc_comp : icomp+n;
109  if (bc_ptr[bc_comp].lo(1) == ERFBCType::ext_dir_ingested) {
110  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
111  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
112  dest_arr(i,j,k,icomp+n) = bdatylo(ib,dom_lo.y-1,kb,bccomp+n);
113  }
114  },
115  bx_yhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
116  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
117  BCVars::RhoScalar_bc_comp : icomp+n;
118  if (bc_ptr[bc_comp].hi(1) == ERFBCType::ext_dir_ingested) {
119  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
120  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
121  dest_arr(i,j,k,icomp+n) = bdatyhi(ib,dom_hi.y+1,kb,bccomp+n);
122  }
123  }
124  );
125  } // y-faces
126  } // mf
127  } // var_idx
128 }
#define RhoScalar_comp
Definition: ERF_IndexDefines.H:40
#define NSCALARS
Definition: ERF_IndexDefines.H:16
const auto & dom_hi
Definition: ERF_SetupVertDiff.H:2
const auto & dom_lo
Definition: ERF_SetupVertDiff.H:1
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
Definition: ERF.H:975
@ RhoScalar_bc_comp
Definition: ERF_IndexDefines.H:80
@ ext_dir_ingested
Definition: ERF_IndexDefines.H:212

◆ fill_rhs()

void ERF::fill_rhs ( amrex::MultiFab &  rhs_mf,
const amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ FillBdyCCVels()

void ERF::FillBdyCCVels ( amrex::Vector< amrex::MultiFab > &  mf_cc_vel,
int  levc = 0 
)
12 {
13  // Impose bc's at domain boundaries
14  for (int ilev(0); ilev < mf_cc_vel.size(); ++ilev)
15  {
16  int lev = ilev + levc;
17  Box domain(Geom(lev).Domain());
18 
19  int ihi = domain.bigEnd(0);
20  int jhi = domain.bigEnd(1);
21  int khi = domain.bigEnd(2);
22 
23  // Impose periodicity first
24  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
25 
26  int jper = (Geom(lev).isPeriodic(1));
27  int kper = (Geom(lev).isPeriodic(2));
28 
29  for (MFIter mfi(mf_cc_vel[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
30  {
31  const Box& bx = mfi.tilebox();
32  const Array4<Real>& vel_arr = mf_cc_vel[lev].array(mfi);
33 
34  if (!Geom(lev).isPeriodic(0)) {
35  // Low-x side
36  if (bx.smallEnd(0) <= domain.smallEnd(0)) {
37  Real multn = ( (phys_bc_type[0] == ERF_BC::slip_wall ) ||
39  (phys_bc_type[0] == ERF_BC::symmetry ) ) ? -1. : 1.;
40  Real multt = (phys_bc_type[0] == ERF_BC::no_slip_wall) ? -1. : 1.;
41  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
42  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
43  {
44  vel_arr(-1,j,k,0) = multn*vel_arr(0,j,k,0); // u
45  vel_arr(-1,j,k,1) = multt*vel_arr(0,j,k,1); // v
46  vel_arr(-1,j,k,2) = multt*vel_arr(0,j,k,2); // w
47  });
48  }
49 
50  // High-x side
51  if (bx.bigEnd(0) >= domain.bigEnd(0)) {
52  Real multn = ( (phys_bc_type[3] == ERF_BC::slip_wall ) ||
54  (phys_bc_type[3] == ERF_BC::symmetry ) ) ? -1. : 1.;
55  Real multt = (phys_bc_type[3] == ERF_BC::no_slip_wall) ? -1. : 1.;
56  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
57  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
58  {
59  vel_arr(ihi+1,j,k,0) = multn*vel_arr(ihi,j,k,0); // u
60  vel_arr(ihi+1,j,k,1) = multt*vel_arr(ihi,j,k,1); // v
61  vel_arr(ihi+1,j,k,2) = multt*vel_arr(ihi,j,k,2); // w
62  });
63  }
64  } // !periodic
65 
66  if (!Geom(lev).isPeriodic(1)) {
67  // Low-y side
68  if (bx.smallEnd(1) <= domain.smallEnd(1)) {
69  Real multn = ( (phys_bc_type[1] == ERF_BC::slip_wall ) ||
71  (phys_bc_type[1] == ERF_BC::symmetry ) ) ? -1. : 1.;
72  Real multt = (phys_bc_type[1] == ERF_BC::no_slip_wall) ? -1. : 1.;
73  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
74  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
75  {
76  vel_arr(i,-1,k,0) = multt*vel_arr(i,0,k,0); // u
77  vel_arr(i,-1,k,1) = multn*vel_arr(i,0,k,1); // u
78  vel_arr(i,-1,k,2) = multt*vel_arr(i,0,k,2); // w
79  });
80  }
81 
82  // High-y side
83  if (bx.bigEnd(1) >= domain.bigEnd(1)) {
84  Real multn = ( (phys_bc_type[4] == ERF_BC::slip_wall ) ||
86  (phys_bc_type[4] == ERF_BC::symmetry ) ) ? -1. : 1.;
87  Real multt = (phys_bc_type[4] == ERF_BC::no_slip_wall) ? -1. : 1.;
88  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
89  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
90  {
91  vel_arr(i,jhi+1,k,0) = multt*vel_arr(i,jhi,k,0); // u
92  vel_arr(i,jhi+1,k,1) = multn*vel_arr(i,jhi,k,1); // v
93  vel_arr(i,jhi+1,k,2) = multt*vel_arr(i,jhi,k,2); // w
94  });
95  }
96  } // !periodic
97 
98  if (!Geom(lev).isPeriodic(2)) {
99  // Low-z side
100  if (bx.smallEnd(2) <= domain.smallEnd(2)) {
101  Real multn = ( (phys_bc_type[2] == ERF_BC::slip_wall ) ||
103  (phys_bc_type[2] == ERF_BC::symmetry ) ) ? -1. : 1.;
104  Real multt = (phys_bc_type[2] == ERF_BC::no_slip_wall) ? -1. : 1.;
105  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
106  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
107  {
108  vel_arr(i,j,-1,0) = multt*vel_arr(i,j,0,0); // u
109  vel_arr(i,j,-1,1) = multt*vel_arr(i,j,0,1); // v
110  vel_arr(i,j,-1,2) = multn*vel_arr(i,j,0,2); // w
111  });
112  }
113 
114  // High-z side
115  if (bx.bigEnd(2) >= domain.bigEnd(2)) {
116  Real multn = ( (phys_bc_type[5] == ERF_BC::slip_wall ) ||
118  (phys_bc_type[5] == ERF_BC::symmetry ) ) ? -1. : 1.;
119  Real multt = (phys_bc_type[5] == ERF_BC::no_slip_wall) ? -1. : 1.;
120  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
121  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
122  {
123  vel_arr(i,j,khi+1,0) = multt*vel_arr(i,j,khi,0); // u
124  vel_arr(i,j,khi+1,1) = multt*vel_arr(i,j,khi,1); // v
125  vel_arr(i,j,khi+1,2) = multn*vel_arr(i,j,khi,2); // w
126  });
127  }
128  } // !periodic
129  } // MFIter
130 
131  // Impose periodicity again
132  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
133  } // lev
134 }
@ no_slip_wall

◆ FillCoarsePatch()

void ERF::FillCoarsePatch ( int  lev,
amrex::Real  time 
)
private
22 {
23  BL_PROFILE_VAR("FillCoarsePatch()",FillCoarsePatch);
24  AMREX_ASSERT(lev > 0);
25 
26  //
27  //****************************************************************************************************************
28  // First fill velocities and density at the COARSE level so we can convert velocity to momenta at the COARSE level
29  //****************************************************************************************************************
30  //
31  bool cons_only = false;
32  if (lev == 1) {
33  FillPatchCrseLevel(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
34  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
35  cons_only);
36  } else {
37  FillPatchFineLevel(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
38  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
39  {&vars_new[lev-1][Vars::cons],
40  &rU_new[lev-1], &rV_new[lev-1], &rW_new[lev-1]},
41  base_state[lev-1], base_state[lev-1],
42  false, cons_only);
43  }
44 
45  //
46  // ************************************************
47  // Convert velocity to momentum at the COARSE level
48  // ************************************************
49  //
50  const MultiFab* c_vfrac = nullptr;
51  if (solverChoice.terrain_type == TerrainType::EB) {
52  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
53  }
54 
55  VelocityToMomentum(vars_new[lev-1][Vars::xvel], IntVect{0},
56  vars_new[lev-1][Vars::yvel], IntVect{0},
57  vars_new[lev-1][Vars::zvel], IntVect{0},
58  vars_new[lev-1][Vars::cons],
59  rU_new[lev-1],
60  rV_new[lev-1],
61  rW_new[lev-1],
62  Geom(lev).Domain(),
63  domain_bcs_type, c_vfrac);
64  //
65  // *****************************************************************
66  // Interpolate all cell-centered variables from coarse to fine level
67  // *****************************************************************
68  //
69  Interpolater* mapper_c = &cell_cons_interp;
70  Interpolater* mapper_f = &face_cons_linear_interp;
71 
72  //
73  //************************************************************************************************
74  // Interpolate cell-centered data from coarse to fine level
75  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
76  // ************************************************************************************************
77  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
78  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
79 
80  InterpFromCoarseLevel(vars_new[lev ][Vars::cons], ngvect_cons, IntVect(0,0,0),
81  vars_new[lev-1][Vars::cons], 0, 0, ncomp_cons,
82  geom[lev-1], geom[lev],
83  refRatio(lev-1), mapper_c, domain_bcs_type, BCVars::cons_bc);
84 
85  // ***************************************************************************
86  // Physical bc's for cell centered variables at domain boundary
87  // ***************************************************************************
89  0,ncomp_cons,ngvect_cons,time,BCVars::cons_bc,true);
90 
91  //
92  //************************************************************************************************
93  // Interpolate x-momentum from coarse to fine level
94  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
95  // ************************************************************************************************
96  //
97  InterpFromCoarseLevel(rU_new[lev], IntVect{0}, IntVect{0}, rU_new[lev-1], 0, 0, 1,
98  geom[lev-1], geom[lev],
99  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::xvel_bc);
100 
101  //
102  //************************************************************************************************
103  // Interpolate y-momentum from coarse to fine level
104  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
105  // ************************************************************************************************
106  //
107  InterpFromCoarseLevel(rV_new[lev], IntVect{0}, IntVect{0}, rV_new[lev-1], 0, 0, 1,
108  geom[lev-1], geom[lev],
109  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::yvel_bc);
110 
111  //************************************************************************************************
112  // Interpolate z-momentum from coarse to fine level
113  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
114  // ************************************************************************************************
115  InterpFromCoarseLevel(rW_new[lev], IntVect{0}, IntVect{0}, rW_new[lev-1], 0, 0, 1,
116  geom[lev-1], geom[lev],
117  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::zvel_bc);
118  //
119  // *********************************************************
120  // After interpolation of momentum, convert back to velocity
121  // *********************************************************
122  //
123  for (int which_lev = lev-1; which_lev <= lev; which_lev++)
124  {
125  c_vfrac = nullptr;
126  if (solverChoice.terrain_type == TerrainType::EB) {
127  c_vfrac = &((get_eb(which_lev).get_const_factory())->getVolFrac());
128  }
129 
131  vars_new[which_lev][Vars::yvel],
132  vars_new[which_lev][Vars::zvel],
133  vars_new[which_lev][Vars::cons],
134  rU_new[which_lev],
135  rV_new[which_lev],
136  rW_new[which_lev],
137  Geom(which_lev).Domain(),
138  domain_bcs_type, c_vfrac);
139  }
140 
141  // ***************************************************************************
142  // Physical bc's at domain boundary
143  // ***************************************************************************
144  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
145 
147  ngvect_vels,time,BCVars::xvel_bc,true);
149  ngvect_vels,time,BCVars::yvel_bc,true);
151  ngvect_vels,time,BCVars::zvel_bc,true);
152 
153  // ***************************************************************************
154  // Since lev > 0 here we don't worry about m_r2d or wrfbdy data
155  // ***************************************************************************
156 }
void FillCoarsePatch(int lev, amrex::Real time)
Definition: ERF_FillCoarsePatch.cpp:21
Here is the call graph for this function:

◆ FillForecastStateMultiFabs()

void ERF::FillForecastStateMultiFabs ( const int  lev,
const std::string &  filename,
const std::unique_ptr< amrex::MultiFab > &  z_phys_nd,
amrex::Vector< amrex::Vector< amrex::MultiFab >> &  weather_forecast_data 
)
68 {
69 
70  Vector<Real> latvec_h, lonvec_h, xvec_h, yvec_h, zvec_h;
71  Vector<Real> rho_h, uvel_h, vvel_h, wvel_h, theta_h, qv_h, qc_h, qr_h;
72 
73  ReadCustomBinaryIC(filename, latvec_h, lonvec_h,
74  xvec_h, yvec_h, zvec_h, rho_h,
75  uvel_h, vvel_h, wvel_h,
76  theta_h, qv_h, qc_h, qr_h);
77 
78  Real zmax = *std::max_element(zvec_h.begin(), zvec_h.end());
79 
80  const auto prob_lo_erf = geom[lev].ProbLoArray();
81  const auto prob_hi_erf = geom[lev].ProbHiArray();
82  const auto dx_erf = geom[lev].CellSizeArray();
83 
84  if (prob_hi_erf[2] >= zmax) {
85  Abort("ERROR: the maximum z of the domain (" + std::to_string(prob_hi_erf[2]) +
86  ") should be less than the maximum z in the forecast data (" + std::to_string(zmax) +
87  "). Change geometry.prob_hi[2] in the inputs to be less than " + std::to_string(zmax) + "."
88  );
89  }
90 
91  if(prob_lo_erf[0] < xvec_h.front() + 4*dx_erf[0]){
92  amrex::Abort("The xlo value of the domain has to be greater than " + std::to_string(xvec_h.front() + 4*dx_erf[0]));
93  }
94  if(prob_hi_erf[0] > xvec_h.back() - 4*dx_erf[0]){
95  amrex::Abort("The xhi value of the domain has to be less than " + std::to_string(xvec_h.back() - 4*dx_erf[0]));
96  }
97  if(prob_lo_erf[1] < yvec_h.front() + 4*dx_erf[1]){
98  amrex::Abort("The ylo value of the domain has to be greater than " + std::to_string(yvec_h.front() + 4*dx_erf[1]));
99  }
100  if(prob_hi_erf[1] > yvec_h.back() - 4*dx_erf[1]){
101  amrex::Abort("The yhi value of the domain has to be less than " + std::to_string(yvec_h.back() - 4*dx_erf[1]));
102  }
103 
104 
105  int nx = xvec_h.size();
106  int ny = yvec_h.size();
107  int nz = zvec_h.size();
108 
109  amrex::Real dxvec = (xvec_h[nx-1]-xvec_h[0])/(nx-1);
110  amrex::Real dyvec = (yvec_h[ny-1]-yvec_h[0])/(ny-1);
111 
112  amrex::Gpu::DeviceVector<Real> latvec_d(nx*ny), lonvec_d(nx*ny), zvec_d(nz);
113  amrex::Gpu::DeviceVector<Real> xvec_d(nx*ny*nz), yvec_d(nx*ny*nz);
114  amrex::Gpu::DeviceVector<Real> rho_d(nx*ny*nz), uvel_d(nx*ny*nz), vvel_d(nx*ny*nz), wvel_d(nx*ny*nz),
115  theta_d(nx*ny*nz), qv_d(nx*ny*nz), qc_d(nx*ny*nz), qr_d(nx*ny*nz);
116 
117  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, latvec_h.begin(), latvec_h.end(), latvec_d.begin());
118  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, lonvec_h.begin(), lonvec_h.end(), lonvec_d.begin());
119 
120  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, xvec_h.begin(), xvec_h.end(), xvec_d.begin());
121  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, yvec_h.begin(), yvec_h.end(), yvec_d.begin());
122  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, zvec_h.begin(), zvec_h.end(), zvec_d.begin());
123  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, rho_h.begin(), rho_h.end(), rho_d.begin());
124  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, theta_h.begin(), theta_h.end(), theta_d.begin());
125  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, uvel_h.begin(), uvel_h.end(), uvel_d.begin());
126  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, vvel_h.begin(), vvel_h.end(), vvel_d.begin());
127  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, wvel_h.begin(), wvel_h.end(), wvel_d.begin());
128  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, qv_h.begin(), qv_h.end(), qv_d.begin());
129  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, qc_h.begin(), qc_h.end(), qc_d.begin());
130  amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, qr_h.begin(), qr_h.end(), qr_d.begin());
131 
132  amrex::Gpu::streamSynchronize();
133 
134  Real* latvec_d_ptr = latvec_d.data();
135  Real* lonvec_d_ptr = lonvec_d.data();
136  Real* xvec_d_ptr = xvec_d.data();
137  Real* yvec_d_ptr = yvec_d.data();
138  Real* zvec_d_ptr = zvec_d.data();
139  Real* rho_d_ptr = rho_d.data();
140  Real* uvel_d_ptr = uvel_d.data();
141  Real* vvel_d_ptr = vvel_d.data();
142  Real* wvel_d_ptr = wvel_d.data();
143  Real* theta_d_ptr = theta_d.data();
144  Real* qv_d_ptr = qv_d.data();
145  Real* qc_d_ptr = qc_d.data();
146  Real* qr_d_ptr = qr_d.data();
147 
148  MultiFab& erf_mf_cons = forecast_state[lev][Vars::cons];
149  MultiFab& erf_mf_xvel = forecast_state[lev][Vars::xvel];
150  MultiFab& erf_mf_yvel = forecast_state[lev][Vars::yvel];
151  MultiFab& erf_mf_zvel = forecast_state[lev][Vars::zvel];
152  MultiFab& erf_mf_latlon = forecast_state[lev][4];
153 
154  erf_mf_cons.setVal(0.0);
155  erf_mf_xvel.setVal(0.0);
156  erf_mf_yvel.setVal(0.0);
157  erf_mf_zvel.setVal(0.0);
158  erf_mf_latlon.setVal(0.0);
159 
160  // Interpolate the data on to the ERF mesh
161 
162  for (MFIter mfi(erf_mf_cons); mfi.isValid(); ++mfi) {
163  const auto z_arr = (a_z_phys_nd) ? a_z_phys_nd->const_array(mfi) :
164  Array4<const Real> {};
165  const Array4<Real> &fine_cons_arr = erf_mf_cons.array(mfi);
166  const Array4<Real> &fine_xvel_arr = erf_mf_xvel.array(mfi);
167  const Array4<Real> &fine_yvel_arr = erf_mf_yvel.array(mfi);
168  const Array4<Real> &fine_zvel_arr = erf_mf_zvel.array(mfi);
169  const Array4<Real> &fine_latlon_arr = erf_mf_latlon.array(mfi);
170 
171 
172  const Box& gbx = mfi.growntilebox(); // tilebox + ghost cells
173 
174  const Box &gtbx = mfi.tilebox(IntVect(1,0,0));
175  const Box &gtby = mfi.tilebox(IntVect(0,1,0));
176  const Box &gtbz = mfi.tilebox(IntVect(0,0,1));
177  const auto prob_lo = geom[lev].ProbLoArray();
178  const auto dx = geom[lev].CellSizeArray();
179  //const Box &gtbz = mfi.tilebox(IntVect(0,0,1));
180 
181  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
182  // Geometry (note we must include these here to get the data on device)
183  const Real x = prob_lo[0] + (i + 0.5) * dx[0];
184  const Real y = prob_lo[1] + (j + 0.5) * dx[1];
185  //const Real z = prob_lo[2] + (k + 0.5) * dx[2];
186  const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
187 
188  // First interpolate where the weather data is available from
189  Real tmp_rho, tmp_theta, tmp_qv, tmp_qc, tmp_qr, tmp_lat, tmp_lon;
190  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
191  dxvec, dyvec,
192  nx, ny, nz,
193  x, y, z,
194  rho_d_ptr, tmp_rho);
195 
196  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
197  dxvec, dyvec,
198  nx, ny, nz,
199  x, y, z,
200  theta_d_ptr, tmp_theta);
201 
202  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
203  dxvec, dyvec,
204  nx, ny, nz,
205  x, y, z,
206  qv_d_ptr, tmp_qv);
207 
208  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
209  dxvec, dyvec,
210  nx, ny, nz,
211  x, y, z,
212  qc_d_ptr, tmp_qc);
213 
214  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
215  dxvec, dyvec,
216  nx, ny, nz,
217  x, y, z,
218  qr_d_ptr, tmp_qr);
219 
220  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
221  dxvec, dyvec,
222  nx, ny, 1,
223  x, y, 0.0,
224  latvec_d_ptr, tmp_lat);
225 
226  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
227  dxvec, dyvec,
228  nx, ny, 1,
229  x, y, 0.0,
230  lonvec_d_ptr, tmp_lon);
231 
232  fine_cons_arr(i,j,k,Rho_comp) = tmp_rho;
233  fine_latlon_arr(i,j,k,0) = tmp_lat;
234  fine_latlon_arr(i,j,k,1) = tmp_lon;
235  });
236 
237  ParallelFor(gtbx, gtby, gtbz,
238  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
239  // Physical location of the fine node
240  Real x = prob_lo_erf[0] + i * dx_erf[0];
241  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
242  //Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
243  const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
244 
245  Real tmp_uvel;
246  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
247  dxvec, dyvec,
248  nx, ny, nz,
249  x, y, z,
250  uvel_d_ptr, tmp_uvel);
251 
252  fine_xvel_arr(i, j, k, 0) = tmp_uvel;
253  },
254  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
255  // Physical location of the fine node
256  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
257  Real y = prob_lo_erf[1] + j * dx_erf[1];
258  //Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
259  const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
260 
261  Real tmp_vvel;
262  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
263  dxvec, dyvec,
264  nx, ny, nz,
265  x, y, z,
266  vvel_d_ptr, tmp_vvel);
267 
268  fine_yvel_arr(i, j, k, 0) = tmp_vvel;
269  },
270  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
271  // Physical location of the fine node
272  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
273  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
274  Real z = prob_lo_erf[2] + k * dx_erf[2];
275  //const Real z = (z_arr(i,j,k) + z_arr(i,j,k+1))/2.0;
276 
277  Real tmp_wvel;
278  bilinear_interpolation(xvec_d_ptr, yvec_d_ptr, zvec_d_ptr,
279  dxvec, dyvec,
280  nx, ny, nz,
281  x, y, z,
282  wvel_d_ptr, tmp_wvel);
283 
284  fine_zvel_arr(i, j, k, 0) = tmp_wvel;
285  });
286  }
287 
288  /*Vector<std::string> varnames = {
289  "rho", "uvel", "vvel", "wvel", "theta", "qv", "qc", "qr"
290  }; // Customize variable names
291 
292  Vector<std::string> varnames_cons = {
293  "rho", "rhotheta", "ke", "sc", "rhoqv", "rhoqc", "rhoqr"
294  }; // Customize variable names
295 
296  Vector<std::string> varnames_plot_mf = {
297  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel", "latitude", "longitude"
298  }; // Customize variable names
299 
300  const Real time = 0.0;
301 
302  std::string pltname = "plt_interp";
303 
304  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
305  10, 0);
306 
307  plot_mf.setVal(0.0);
308 
309  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
310  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
311  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
312  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
313  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
314  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
315  const Array4<Real> &erf_mf_latlon_arr = erf_mf_latlon.array(mfi);
316 
317  const Box& bx = mfi.validbox();
318 
319  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
320  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
321  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
322  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
323  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
324  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
325 
326  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
327  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
328  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
329 
330  plot_mf_arr(i,j,k,8) = erf_mf_latlon_arr(i,j,k,0);
331  plot_mf_arr(i,j,k,9) = erf_mf_latlon_arr(i,j,k,1);
332  });
333  }
334 
335 
336  WriteSingleLevelPlotfile(
337  pltname,
338  plot_mf,
339  varnames_plot_mf,
340  geom[0],
341  time,
342  0 // level
343  );*/
344 }
AMREX_FORCE_INLINE AMREX_GPU_HOST_DEVICE void bilinear_interpolation(const amrex::Real *xvec, const amrex::Real *yvec, const amrex::Real *zvec, const amrex::Real dxvec, const amrex::Real dyvec, const int nx, const int ny, const int nz, const amrex::Real x, const amrex::Real y, const amrex::Real z, const amrex::Real *varvec, amrex::Real &tmp_var)
Definition: ERF_Interpolation_Bilinear.H:24
void ReadCustomBinaryIC(const std::string filename, amrex::Vector< amrex::Real > &latvec_h, amrex::Vector< amrex::Real > &lonvec_h, amrex::Vector< amrex::Real > &xvec_h, amrex::Vector< amrex::Real > &yvec_h, amrex::Vector< amrex::Real > &zvec_h, amrex::Vector< amrex::Real > &rho_h, amrex::Vector< amrex::Real > &uvel_h, amrex::Vector< amrex::Real > &vvel_h, amrex::Vector< amrex::Real > &wvel_h, amrex::Vector< amrex::Real > &theta_h, amrex::Vector< amrex::Real > &qv_h, amrex::Vector< amrex::Real > &qc_h, amrex::Vector< amrex::Real > &qr_h)
Definition: ERF_ReadCustomBinaryIC.H:12
Here is the call graph for this function:

◆ FillIntermediatePatch()

void ERF::FillIntermediatePatch ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
int  ng_cons,
int  ng_vel,
bool  cons_only,
int  icomp_cons,
int  ncomp_cons 
)
private
33 {
34  BL_PROFILE_VAR("FillIntermediatePatch()",FillIntermediatePatch);
35  Interpolater* mapper;
36 
37  PhysBCFunctNoOp null_bc;
38 
39  //
40  // ***************************************************************************
41  // The first thing we do is interpolate the momenta on the "valid" faces of
42  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
43  // will not be over-written by interpolation below because the FillPatch
44  // operators see these as valid faces. But we must have these interpolated
45  // values in the fine data before we call FillPatchTwoLevels.
46  //
47  // Also -- note that we might be filling values by interpolation at physical boundaries
48  // here but that's ok because we will overwrite those values when we impose
49  // the physical bc's below
50  // ***************************************************************************
51  if (lev>0) {
52  if (cf_set_width > 0) {
53  // We note that mfs_vel[Vars::cons] and mfs_mom[Vars::cons] are in fact the same pointer
54  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
55  }
56  if ( !cons_only && (cf_set_width >= 0) ) {
57  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
58  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
59  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
60  }
61  }
62 
63  // amrex::Print() << "LEVEL " << lev << " CONS ONLY " << cons_only <<
64  // " ICOMP NCOMP " << icomp_cons << " " << ncomp_cons << " NGHOST " << ng_cons << std::endl;
65 
66  if (!cons_only) {
67  AMREX_ALWAYS_ASSERT(mfs_mom.size() == IntVars::NumTypes);
68  AMREX_ALWAYS_ASSERT(mfs_vel.size() == Vars::NumTypes);
69  }
70 
71  // Enforce no penetration for thin immersed body
72  if (!cons_only) {
73  // Enforce no penetration for thin immersed body
74  if (xflux_imask[lev]) {
75  ApplyMask(*mfs_mom[IntVars::xmom], *xflux_imask[lev]);
76  }
77  if (yflux_imask[lev]) {
78  ApplyMask(*mfs_mom[IntVars::ymom], *yflux_imask[lev]);
79  }
80  if (zflux_imask[lev]) {
81  ApplyMask(*mfs_mom[IntVars::zmom], *zflux_imask[lev]);
82  }
83  }
84 
85  //
86  // We now start working on conserved quantities + VELOCITY
87  //
88  if (lev == 0)
89  {
90  // We don't do anything here because we will call the physbcs routines below,
91  // which calls FillBoundary and fills other domain boundary conditions
92  // Physical boundaries will be filled below
93 
94  if (!cons_only)
95  {
96  // ***************************************************************************
97  // We always come in to this call with updated momenta but we need to create updated velocity
98  // in order to impose the rest of the bc's
99  // ***************************************************************************
100  const MultiFab* c_vfrac = nullptr;
101  if (solverChoice.terrain_type == TerrainType::EB) {
102  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
103  }
104 
105  // This only fills VALID region of velocity
106  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
107  *mfs_vel[Vars::cons],
108  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
109  Geom(lev).Domain(), domain_bcs_type, c_vfrac);
110  }
111  }
112  else
113  {
114  //
115  // We must fill a temporary then copy it back so we don't double add/subtract
116  //
117  MultiFab mf(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
118  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
119  //
120  // Set all components to 1.789e19, then copy just the density from *mfs_vel[Vars::cons]
121  //
122  mf.setVal(1.789e19);
123  MultiFab::Copy(mf,*mfs_vel[Vars::cons],Rho_comp,Rho_comp,1,mf.nGrowVect());
124 
125  Vector<MultiFab*> fmf = {mfs_vel[Vars::cons],mfs_vel[Vars::cons]};
126  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
127  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
128  Vector<Real> ftime = {time,time};
129 
130  if (interpolation_type == StateInterpType::Perturbational)
131  {
132  if (icomp_cons+ncomp_cons > 1)
133  {
134  // Divide (rho theta) by rho to get theta
135  MultiFab::Divide(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
136 
137  // Subtract theta_0 from theta
138  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
139 
140  if (!amrex::almostEqual(time,ctime[1])) {
141  MultiFab::Divide(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
142  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
143  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
144  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
145  }
146  if (!amrex::almostEqual(time,ctime[0])) {
147  MultiFab::Divide(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
148  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
149  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
150  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
151  }
152  }
153 
154  // Subtract rho_0 from rho before we interpolate -- note we only subtract
155  // on valid region of mf since the ghost cells will be filled below
156  if (icomp_cons == 0)
157  {
158  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{0});
159 
160  if (!amrex::almostEqual(time,ctime[1])) {
161  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
162  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
163  }
164  if (!amrex::almostEqual(time,ctime[0])) {
165  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
166  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
167  }
168  }
169  } // interpolation_type == StateInterpType::Perturbational
170 
171  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
172  mapper = &cell_cons_interp;
173  FillPatchTwoLevels(mf, IntVect{ng_cons}, IntVect(0,0,0),
174  time, cmf, ctime, fmf, ftime,
175  icomp_cons, icomp_cons, ncomp_cons, geom[lev-1], geom[lev],
176  refRatio(lev-1), mapper, domain_bcs_type,
177  icomp_cons);
178 
179  if (interpolation_type == StateInterpType::Perturbational)
180  {
181  if (icomp_cons == 0)
182  {
183  // Restore the coarse values to what they were
184  if (!amrex::almostEqual(time,ctime[1])) {
185  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
186  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
187  }
188  if (!amrex::almostEqual(time,ctime[0])) {
189  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
190  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
191  }
192 
193  // Set values in the cells outside the domain boundary so that we can do the Add
194  // without worrying about uninitialized values outside the domain -- these
195  // will be filled in the physbcs call
196  mf.setDomainBndry(1.234e20,Rho_comp,1,geom[lev]);
197 
198  // Add rho_0 back to rho after we interpolate -- on all the valid + ghost region
199  MultiFab::Add(mf, base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{ng_cons});
200  }
201 
202  if (icomp_cons+ncomp_cons > 1)
203  {
204  // Add theta_0 to theta
205  if (!amrex::almostEqual(time,ctime[1])) {
206  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
207  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
208  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
209  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
210  }
211  if (!amrex::almostEqual(time,ctime[0])) {
212  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
213  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
214  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
215  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
216  }
217 
218  // Multiply theta by rho to get (rho theta)
219  MultiFab::Multiply(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
220 
221  // Add theta_0 to theta
222  MultiFab::Add(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
223 
224  // Add theta_0 back to theta
225  MultiFab::Add(mf,base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{ng_cons});
226 
227  // Multiply (theta) by rho to get (rho theta)
228  MultiFab::Multiply(mf,mf,Rho_comp,RhoTheta_comp,1,IntVect{ng_cons});
229  }
230  } // interpolation_type == StateInterpType::Perturbational
231 
232  // Impose physical bc's on fine data (note time and 0 are not used)
233  // Note that we do this after the FillPatch because imposing physical bc's on fine ghost
234  // cells that need to be filled from coarse requires that we have done the interpolation first
235  bool do_fb = true; bool do_terrain_adjustment = false;
236  (*physbcs_cons[lev])(mf,*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
237  icomp_cons,ncomp_cons,IntVect{ng_cons},time,BCVars::cons_bc,
238  do_fb, do_terrain_adjustment);
239 
240  // Make sure to only copy back the components we worked on
241  MultiFab::Copy(*mfs_vel[Vars::cons],mf,icomp_cons,icomp_cons,ncomp_cons,IntVect{ng_cons});
242 
243  // *****************************************************************************************
244 
245  if (!cons_only)
246  {
247  // ***************************************************************************
248  // We always come in to this call with updated momenta but we need to create updated velocity
249  // in order to impose the rest of the bc's
250  // ***************************************************************************
251  const MultiFab* c_vfrac = nullptr;
252  if (solverChoice.terrain_type == TerrainType::EB) {
253  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
254  }
255 
256  // This only fills VALID region of velocity
257  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
258  *mfs_vel[Vars::cons],
259  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
260  Geom(lev).Domain(), domain_bcs_type, c_vfrac);
261 
262  mapper = &face_cons_linear_interp;
263 
264  //
265  // NOTE: All interpolation here happens on velocities not momenta;
266  // note we only do the interpolation and FillBoundary here,
267  // physical bc's are imposed later
268  //
269  // NOTE: This will only fill velocity from coarse grid *outside* the fine grids
270  // unlike the FillSet calls above which filled momenta on the coarse/fine bdy
271  //
272 
273  MultiFab& mfu = *mfs_vel[Vars::xvel];
274 
275  fmf = {&mfu,&mfu};
276  cmf = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
277 
278  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
279  FillPatchTwoLevels(mfu, IntVect{ng_vel}, IntVect(0,0,0),
280  time, cmf, ctime, fmf, ftime,
281  0, 0, 1, geom[lev-1], geom[lev],
282  refRatio(lev-1), mapper, domain_bcs_type,
284 
285  // *****************************************************************************************
286 
287  MultiFab& mfv = *mfs_vel[Vars::yvel];
288 
289  fmf = {&mfv,&mfv};
290  cmf = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
291 
292  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
293  FillPatchTwoLevels(mfv, IntVect{ng_vel}, IntVect(0,0,0),
294  time, cmf, ctime, fmf, ftime,
295  0, 0, 1, geom[lev-1], geom[lev],
296  refRatio(lev-1), mapper, domain_bcs_type,
298 
299  // *****************************************************************************************
300 
301  MultiFab& mfw = *mfs_vel[Vars::zvel];
302 
303  fmf = {&mfw,&mfw};
304  cmf = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
305 
306  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
307  FillPatchTwoLevels(mfw, IntVect{ng_vel}, IntVect(0,0,0),
308  time, cmf, ctime, fmf, ftime,
309  0, 0, 1, geom[lev-1], geom[lev],
310  refRatio(lev-1), mapper, domain_bcs_type,
312  } // !cons_only
313  } // lev > 0
314 
315  // ***************************************************************************
316  // Physical bc's at domain boundary
317  // ***************************************************************************
318  IntVect ngvect_cons = IntVect(ng_cons,ng_cons,ng_cons);
319  IntVect ngvect_vels = IntVect(ng_vel ,ng_vel ,ng_vel);
320 
321  bool do_fb = true;
322 
323 #ifdef ERF_USE_NETCDF
324  // We call this here because it is an ERF routine
325  if (solverChoice.use_real_bcs && (lev==0)) {
327  fill_from_realbdy_upwind(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
328  } else {
329  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
330  }
331  do_fb = false;
332  }
333 #endif
334 
335  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
336 
337  // We call this even if use_real_bcs is true because these will fill the vertical bcs
338  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
339  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
340  if (!cons_only) {
341  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
342  ngvect_vels,time,BCVars::xvel_bc, do_fb);
343  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
344  ngvect_vels,time,BCVars::yvel_bc, do_fb);
345  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
346  ngvect_vels,time,BCVars::zvel_bc, do_fb);
347  }
348  // ***************************************************************************
349 
350  // We always come in to this call with momenta so we need to leave with momenta!
351  // We need to make sure we convert back on all ghost cells/faces because this is
352  // how velocity from fine-fine copies (as well as physical and interpolated bcs) will be filled
353  if (!cons_only)
354  {
355  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::xvel]->nGrowVect();
356  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::yvel]->nGrowVect();
357  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : mfs_vel[Vars::zvel]->nGrowVect();
358 
359  const MultiFab* c_vfrac = nullptr;
360  if (solverChoice.terrain_type == TerrainType::EB) {
361  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
362  }
363 
364  VelocityToMomentum(*mfs_vel[Vars::xvel], ngu,
365  *mfs_vel[Vars::yvel], ngv,
366  *mfs_vel[Vars::zvel], ngw,
367  *mfs_vel[Vars::cons],
368  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
369  Geom(lev).Domain(),
370  domain_bcs_type, c_vfrac);
371  }
372 
373  // NOTE: There are not FillBoundary calls here for the following reasons:
374  // Removal of the FillBoundary (FB) calls has bee completed for the following reasons:
375  //
376  // 1. physbc_cons is called before VelocityToMomentum and a FB is completed in that functor.
377  // Therefore, the conserved CC vars have their inter-rank ghost cells filled and then their
378  // domain ghost cells filled from the BC operations. We should not call FB on this MF again.
379  //
380  // 2. physbc_u/v/w is also called before VelocityToMomentum and a FB is completed those functors.
381  // Furthermore, VelocityToMomentum operates on a growntilebox so we exit that routine with momentum
382  // filled everywhere---i.e., physbc_u/v/w fills velocity ghost cells (inter-rank and domain)
383  // and then V2M does the conversion to momenta everywhere; so there is again no need to do a FB on momenta.
384 }
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:408
void fill_from_bndryregs(const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
Definition: ERF_BoundaryConditionsBndryReg.cpp:13
void FillIntermediatePatch(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
Definition: ERF_FillIntermediatePatch.cpp:28
@ NumTypes
Definition: ERF_IndexDefines.H:162
static bool upwind_real_bcs
Definition: ERF_DataStruct.H:1018
static bool use_real_bcs
Definition: ERF_DataStruct.H:1015
Here is the call graph for this function:

◆ FillPatchCrseLevel()

void ERF::FillPatchCrseLevel ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
bool  cons_only = false 
)
private
291 {
292  BL_PROFILE_VAR("ERF::FillPatchCrseLevel()",ERF_FillPatchCrseLevel);
293 
294  AMREX_ALWAYS_ASSERT(lev == 0);
295 
296  IntVect ngvect_cons = mfs_vel[Vars::cons]->nGrowVect();
297  IntVect ngvect_vels = mfs_vel[Vars::xvel]->nGrowVect();
298 
299  Vector<Real> ftime = {t_old[lev], t_new[lev]};
300 
301  //
302  // Below we call FillPatchSingleLevel which does NOT fill ghost cells outside the domain
303  //
304 
305  Vector<MultiFab*> fmf;
306  Vector<MultiFab*> fmf_u;
307  Vector<MultiFab*> fmf_v;
308  Vector<MultiFab*> fmf_w;
309 
310  if (amrex::almostEqual(time,ftime[0])) {
311  fmf = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::cons]};
312  } else if (amrex::almostEqual(time,ftime[1])) {
313  fmf = {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::cons]};
314  } else {
315  fmf = {&vars_old[lev][Vars::cons], &vars_new[lev][Vars::cons]};
316  }
317 
318  const int ncomp = mfs_vel[Vars::cons]->nComp();
319 
320  FillPatchSingleLevel(*mfs_vel[Vars::cons], ngvect_cons, time, fmf, IntVect(0,0,0), ftime,
321  0, 0, ncomp, geom[lev]);
322 
323  if (!cons_only) {
324  if (amrex::almostEqual(time,ftime[0])) {
325  fmf_u = {&vars_old[lev][Vars::xvel], &vars_old[lev][Vars::xvel]};
326  fmf_v = {&vars_old[lev][Vars::yvel], &vars_old[lev][Vars::yvel]};
327  fmf_w = {&vars_old[lev][Vars::zvel], &vars_old[lev][Vars::zvel]};
328  } else if (amrex::almostEqual(time,ftime[1])) {
329  fmf_u = {&vars_new[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
330  fmf_v = {&vars_new[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
331  fmf_w = {&vars_new[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
332  } else {
333  fmf_u = {&vars_old[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
334  fmf_v = {&vars_old[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
335  fmf_w = {&vars_old[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
336  }
337  FillPatchSingleLevel(*mfs_vel[Vars::xvel], ngvect_vels, time, fmf_u,
338  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
339 
340  FillPatchSingleLevel(*mfs_vel[Vars::yvel], ngvect_vels, time, fmf_v,
341  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
342 
343  FillPatchSingleLevel(*mfs_vel[Vars::zvel], ngvect_vels, time, fmf_w,
344  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
345  } // !cons_only
346 
347  // ***************************************************************************
348  // Physical bc's at domain boundary
349  // ***************************************************************************
350  int icomp_cons = 0;
351  int ncomp_cons = mfs_vel[Vars::cons]->nComp();
352 
353  bool do_fb = true;
354 
355 #ifdef ERF_USE_NETCDF
356  // We call this here because it is an ERF routine
357  if(solverChoice.use_real_bcs && (lev==0)) {
359  fill_from_realbdy_upwind(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
360  } else {
361  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
362  }
363  do_fb = false;
364  }
365 #endif
366 
367  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
368 
369  // We call this even if use_real_bcs is true because these will fill the vertical bcs
370  // Note that we call FillBoundary inside the physbcs call
371  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
372  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
373  if (!cons_only) {
374  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
375  ngvect_vels,time,BCVars::xvel_bc, do_fb);
376  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
377  ngvect_vels,time,BCVars::yvel_bc, do_fb);
378  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
379  ngvect_vels,time,BCVars::zvel_bc, do_fb);
380  }
381 }

◆ FillPatchFineLevel()

void ERF::FillPatchFineLevel ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
const amrex::MultiFab &  old_base_state,
const amrex::MultiFab &  new_base_state,
bool  fillset = true,
bool  cons_only = false 
)
private
26 {
27  BL_PROFILE_VAR("ERF::FillPatchFineLevel()",ERF_FillPatchFineLevel);
28 
29  AMREX_ALWAYS_ASSERT(lev > 0);
30 
31  Interpolater* mapper = nullptr;
32 
33  PhysBCFunctNoOp null_bc;
34 
35  //
36  // ***************************************************************************
37  // The first thing we do is interpolate the momenta on the "valid" faces of
38  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
39  // will not be over-written below because the FillPatch operators see these as
40  // valid faces.
41  //
42  // Note that we interpolate momentum not velocity, but all the other boundary
43  // conditions are imposed on velocity, so we convert to momentum here then
44  // convert back.
45  // ***************************************************************************
46  if (fillset) {
47  if (cf_set_width > 0) {
48  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
49  }
50  if (cf_set_width >= 0 && !cons_only) {
51 
52  const MultiFab* c_vfrac = nullptr;
53  if (solverChoice.terrain_type == TerrainType::EB) {
54  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
55  }
56 
57  VelocityToMomentum(*mfs_vel[Vars::xvel], IntVect{0},
58  *mfs_vel[Vars::yvel], IntVect{0},
59  *mfs_vel[Vars::zvel], IntVect{0},
60  *mfs_vel[Vars::cons],
61  *mfs_mom[IntVars::xmom],
62  *mfs_mom[IntVars::ymom],
63  *mfs_mom[IntVars::zmom],
64  Geom(lev).Domain(),
65  domain_bcs_type, c_vfrac);
66 
67  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
68  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
69  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
70 
71  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
72  *mfs_vel[Vars::cons],
73  *mfs_mom[IntVars::xmom],
74  *mfs_mom[IntVars::ymom],
75  *mfs_mom[IntVars::zmom],
76  Geom(lev).Domain(),
77  domain_bcs_type, c_vfrac);
78  }
79  }
80 
81  IntVect ngvect_cons = mfs_vel[Vars::cons]->nGrowVect();
82  IntVect ngvect_vels = mfs_vel[Vars::xvel]->nGrowVect();
83 
84  Vector<Real> ftime = {t_old[lev ], t_new[lev ]};
85  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
86 
87  amrex::Real small_dt = 1.e-8 * (ftime[1] - ftime[0]);
88 
89  Vector<MultiFab*> fmf;
90  if ( amrex::almostEqual(time,ftime[0]) || (time-ftime[0]) < small_dt ) {
91  fmf = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::cons]};
92  } else if (amrex::almostEqual(time,ftime[1])) {
93  fmf = {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::cons]};
94  } else {
95  fmf = {&vars_old[lev][Vars::cons], &vars_new[lev][Vars::cons]};
96  }
97  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
98 
99  // We must fill a temporary then copy it back so we don't double add/subtract
100  MultiFab mf_c(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
101  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
102 
103  mapper = &cell_cons_interp;
104 
105  if (interpolation_type == StateInterpType::Perturbational)
106  {
107  // Divide (rho theta) by rho to get theta (before we subtract rho0 from rho!)
108  if (!amrex::almostEqual(time,ctime[1])) {
109  MultiFab::Divide(vars_old[lev-1][Vars::cons],vars_old[lev-1][Vars::cons],
110  Rho_comp,RhoTheta_comp,1,ngvect_cons);
111  MultiFab::Subtract(vars_old[lev-1][Vars::cons],base_state[lev-1],
112  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
113  MultiFab::Subtract(vars_old[lev-1][Vars::cons],base_state[lev-1],
114  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
115  }
116  if (!amrex::almostEqual(time,ctime[0])) {
117  MultiFab::Divide(vars_new[lev-1][Vars::cons],vars_new[lev-1][Vars::cons],
118  Rho_comp,RhoTheta_comp,1,ngvect_cons);
119  MultiFab::Subtract(vars_new[lev-1][Vars::cons],base_state[lev-1],
120  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
121  MultiFab::Subtract(vars_new[lev-1][Vars::cons],base_state[lev-1],
122  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
123  }
124 
125  if (!amrex::almostEqual(time,ftime[1])) {
126  MultiFab::Divide(vars_old[lev ][Vars::cons],vars_old[lev ][Vars::cons],
127  Rho_comp,RhoTheta_comp,1,IntVect{0});
128  MultiFab::Subtract(vars_old[lev ][Vars::cons],old_base_state,
129  BaseState::r0_comp,Rho_comp,1,IntVect{0});
130  MultiFab::Subtract(vars_old[lev ][Vars::cons],old_base_state,
131  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
132  }
133  if (!amrex::almostEqual(time,ftime[0])) {
134  MultiFab::Divide(vars_new[lev ][Vars::cons],vars_new[lev ][Vars::cons],
135  Rho_comp,RhoTheta_comp,1,IntVect{0});
136  MultiFab::Subtract(vars_new[lev ][Vars::cons],old_base_state,
137  BaseState::r0_comp,Rho_comp,1,IntVect{0});
138  MultiFab::Subtract(vars_new[lev ][Vars::cons],old_base_state,
139  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
140  }
141  }
142 
143  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
144  FillPatchTwoLevels(mf_c, ngvect_cons, IntVect(0,0,0),
145  time, cmf, ctime, fmf, ftime,
146  0, 0, mf_c.nComp(), geom[lev-1], geom[lev],
147  refRatio(lev-1), mapper, domain_bcs_type,
149 
150  if (interpolation_type == StateInterpType::Perturbational)
151  {
152  // Restore the coarse values to what they were
153  if (!amrex::almostEqual(time,ctime[1])) {
154  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
155  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
156  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
157  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
158  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
159  Rho_comp,RhoTheta_comp,1,ngvect_cons);
160  }
161  if (!amrex::almostEqual(time,ctime[0])) {
162  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
163  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
164  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
165  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
166  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
167  Rho_comp,RhoTheta_comp,1,ngvect_cons);
168  }
169 
170  if (!amrex::almostEqual(time,ftime[1])) {
171  MultiFab::Add(vars_old[lev][Vars::cons],base_state[lev ],BaseState::r0_comp,Rho_comp,1,ngvect_cons);
172  MultiFab::Add(vars_old[lev][Vars::cons],base_state[lev ],BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
173  MultiFab::Multiply(vars_old[lev][Vars::cons], vars_old[lev][Vars::cons],
174  Rho_comp,RhoTheta_comp,1,ngvect_cons);
175  }
176  if (!amrex::almostEqual(time,ftime[0])) {
177  MultiFab::Add(vars_new[lev][Vars::cons], base_state[lev],BaseState::r0_comp,Rho_comp,1,ngvect_cons);
178  MultiFab::Add(vars_new[lev][Vars::cons], base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
179  MultiFab::Multiply(vars_new[lev][Vars::cons], vars_new[lev][Vars::cons],
180  Rho_comp,RhoTheta_comp,1,ngvect_cons);
181  }
182 
183  // Set values in the cells outside the domain boundary so that we can do the Add
184  // without worrying about uninitialized values outside the domain -- these
185  // will be filled in the physbcs call
186  mf_c.setDomainBndry(1.234e20,0,2,geom[lev]); // Do both rho and (rho theta) together
187 
188  // Add rho_0 back to rho and theta_0 back to theta
189  MultiFab::Add(mf_c, new_base_state,BaseState::r0_comp,Rho_comp,1,ngvect_cons);
190  MultiFab::Add(mf_c, new_base_state,BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
191 
192  // Multiply (theta) by rho to get (rho theta)
193  MultiFab::Multiply(mf_c,mf_c,Rho_comp,RhoTheta_comp,1,ngvect_cons);
194  }
195 
196  MultiFab::Copy(*mfs_vel[Vars::cons],mf_c,0,0,mf_c.nComp(),mf_c.nGrowVect());
197 
198  // ***************************************************************************************
199 
200  if (!cons_only)
201  {
202  mapper = &face_cons_linear_interp;
203 
204  MultiFab& mf_u = *mfs_vel[Vars::xvel];
205  MultiFab& mf_v = *mfs_vel[Vars::yvel];
206  MultiFab& mf_w = *mfs_vel[Vars::zvel];
207 
208  Vector<MultiFab*> fmf_u; Vector<MultiFab*> fmf_v; Vector<MultiFab*> fmf_w;
209  Vector<MultiFab*> cmf_u; Vector<MultiFab*> cmf_v; Vector<MultiFab*> cmf_w;
210 
211  // **********************************************************************
212 
213  if ( amrex::almostEqual(time,ftime[0]) || (time-ftime[0]) < small_dt ) {
214  fmf_u = {&vars_old[lev][Vars::xvel], &vars_old[lev][Vars::xvel]};
215  fmf_v = {&vars_old[lev][Vars::yvel], &vars_old[lev][Vars::yvel]};
216  fmf_w = {&vars_old[lev][Vars::zvel], &vars_old[lev][Vars::zvel]};
217  } else if ( amrex::almostEqual(time,ftime[1]) ) {
218  fmf_u = {&vars_new[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
219  fmf_v = {&vars_new[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
220  fmf_w = {&vars_new[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
221  } else {
222  fmf_u = {&vars_old[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
223  fmf_v = {&vars_old[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
224  fmf_w = {&vars_old[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
225  }
226  cmf_u = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
227  cmf_v = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
228  cmf_w = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
229 
230  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
231  FillPatchTwoLevels(mf_u, ngvect_vels, IntVect(0,0,0),
232  time, cmf_u, ctime, fmf_u, ftime,
233  0, 0, 1, geom[lev-1], geom[lev],
234  refRatio(lev-1), mapper, domain_bcs_type,
236 
237  FillPatchTwoLevels(mf_v, ngvect_vels, IntVect(0,0,0),
238  time, cmf_v, ctime, fmf_v, ftime,
239  0, 0, 1, geom[lev-1], geom[lev],
240  refRatio(lev-1), mapper, domain_bcs_type,
242 
243  // We put these here because these may be used in constructing omega outside the
244  // domain when fillpatching w
245  bool do_fb = true;
246  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
247  ngvect_vels,time,BCVars::xvel_bc, do_fb);
248  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
249  ngvect_vels,time,BCVars::yvel_bc, do_fb);
250 
251  // **********************************************************************
252 
253  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
254  FillPatchTwoLevels(mf_w, ngvect_vels, IntVect(0,0,0),
255  time, cmf_w, ctime, fmf_w, ftime,
256  0, 0, 1, geom[lev-1], geom[lev],
257  refRatio(lev-1), mapper, domain_bcs_type,
259  } // !cons_only
260 
261  // ***************************************************************************
262  // Physical bc's at domain boundary
263  // ***************************************************************************
264  int icomp_cons = 0;
265  int ncomp_cons = mfs_vel[Vars::cons]->nComp();
266 
267  bool do_fb = true;
268 
269  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
270 
271  // We call this even if use_real_bcs is true because these will fill the vertical bcs
272  // Note that we call FillBoundary inside the physbcs call
273  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
274  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
275  if (!cons_only) {
276  // Note that we need to fill u and v in the case of terrain because we will use
277  // these in the call of WFromOmega in lateral ghost cells of the fine grid
278  // (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
279  // ngvect_vels,time,BCVars::xvel_bc, do_fb);
280  // (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
281  // ngvect_vels,time,BCVars::yvel_bc, do_fb);
282  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
283  ngvect_vels,time,BCVars::zvel_bc, do_fb);
284  }
285 }
Here is the call graph for this function:

◆ FindInitialEye()

bool ERF::FindInitialEye ( int  lev,
const amrex::MultiFab &  cc_vel,
const amrex::Real  velmag_threshold,
amrex::Real eye_x,
amrex::Real eye_y 
)
552 {
553  const auto dx = geom[levc].CellSizeArray();
554  const auto prob_lo = geom[levc].ProbLoArray();
555 
556  Gpu::DeviceVector<Real> d_coords(2, 0.0);
557  Gpu::DeviceVector<int> d_found(1,0);
558 
559  Real* d_coords_ptr = d_coords.data();
560  int* d_found_ptr = d_found.data();
561 
562  for (MFIter mfi(mf_cc_vel); mfi.isValid(); ++mfi)
563  {
564  const Box& box = mfi.validbox();
565  const Array4<const Real>& vel_arr = mf_cc_vel.const_array(mfi);
566 
567  ParallelFor(box, [=] AMREX_GPU_DEVICE(int i, int j, int k)
568  {
569  Real magnitude = std::sqrt(vel_arr(i,j,k,0) * vel_arr(i,j,k,0) +
570  vel_arr(i,j,k,1) * vel_arr(i,j,k,1) +
571  vel_arr(i,j,k,2) * vel_arr(i,j,k,2));
572 
573  magnitude *= 3.6;
574 
575  Real z = prob_lo[2] + (k + 0.5) * dx[2];
576 
577  // Check if magnitude exceeds threshold
578  if (z < 2000. && magnitude > velmag_threshold) {
579  // Use atomic operations to set found flag and store coordinates
580  Gpu::Atomic::Add(&d_found_ptr[0], 1); // Mark as found
581 
582  Real x = prob_lo[0] + (i + 0.5) * dx[0];
583  Real y = prob_lo[1] + (j + 0.5) * dx[1];
584 
585  // Store coordinates
586  Gpu::Atomic::Add(&d_coords_ptr[0],x); // Store x index
587  Gpu::Atomic::Add(&d_coords_ptr[1],y); // Store x index
588  }
589  });
590  }
591 
592  // Synchronize to ensure all threads complete their execution
593  amrex::Gpu::streamSynchronize(); // Wait for all GPU threads to finish
594 
595  Vector<int> h_found(1,0);
596  Gpu::copy(Gpu::deviceToHost, d_found.begin(), d_found.end(), h_found.begin());
597  ParallelAllReduce::Sum(h_found.data(), h_found.size(), ParallelContext::CommunicatorAll());
598 
599  // Broadcast coordinates if found
600  if (h_found[0] > 0) {
601  Vector<Real> h_coords(2,-1e10);
602  Gpu::copy(Gpu::deviceToHost, d_coords.begin(), d_coords.end(), h_coords.begin());
603 
604  ParallelAllReduce::Sum(h_coords.data(), h_coords.size(), ParallelContext::CommunicatorAll());
605 
606  eye_x = h_coords[0]/h_found[0];
607  eye_y = h_coords[1]/h_found[0];
608 
609  } else {
610  // Random large negative numbers so we don't trigger refinement in this case
611  eye_x = -1.e20;
612  eye_y = -1.e20;
613  }
614 
615  return (h_found[0] > 0);
616 }

◆ get_eb()

eb_ const& ERF::get_eb ( int  lev) const
inlineprivatenoexcept
1619  {
1620  AMREX_ASSERT(lev >= 0 && lev < eb.size() && eb[lev] != nullptr);
1621  return *eb[lev];
1622  }

◆ getAdvFluxReg()

AMREX_FORCE_INLINE amrex::YAFluxRegister* ERF::getAdvFluxReg ( int  lev)
inlineprivate
1405  {
1406  return advflux_reg[lev];
1407  }

◆ getCPUTime()

static amrex::Real ERF::getCPUTime ( )
inlinestaticprivate
1497  {
1498  int numCores = amrex::ParallelDescriptor::NProcs();
1499 #ifdef _OPENMP
1500  numCores = numCores * omp_get_max_threads();
1501 #endif
1502 
1503  amrex::Real T =
1504  numCores * (amrex::ParallelDescriptor::second() - startCPUTime) +
1506 
1507  return T;
1508  }
static amrex::Real previousCPUTimeUsed
Definition: ERF.H:1493
static amrex::Real startCPUTime
Definition: ERF.H:1492
@ T
Definition: ERF_IndexDefines.H:110

◆ GotoNextLine()

void ERF::GotoNextLine ( std::istream &  is)
staticprivate

Utility to skip to next line in Header file input stream.

17 {
18  constexpr std::streamsize bl_ignore_max { 100000 };
19  is.ignore(bl_ignore_max, '\n');
20 }

◆ HurricaneTracker()

void ERF::HurricaneTracker ( int  lev,
amrex::Real  time,
const amrex::MultiFab &  cc_vel,
const amrex::Real  velmag_threshold,
amrex::TagBoxArray *  tags = nullptr 
)
653 {
654  bool is_found;
655 
656  Real eye_x, eye_y;
657 
658  if (time==0.0) {
659  is_found = FindInitialEye(levc, mf_cc_vel, velmag_threshold, eye_x, eye_y);
660  } else {
661  is_found = true;
662  const auto& last = hurricane_eye_track_xy.back();
663  eye_x = last[0];
664  eye_y = last[1];
665  }
666 
667  if (is_found) {
668  Real rad_tag = 4.e5 * std::pow(2, max_level-1-levc);
669  tag_on_distance_from_eye(geom[levc], tags, eye_x, eye_y, rad_tag);
670  }
671 }
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_xy
Definition: ERF.H:157
bool FindInitialEye(int lev, const amrex::MultiFab &cc_vel, const amrex::Real velmag_threshold, amrex::Real &eye_x, amrex::Real &eye_y)
Definition: ERF_Tagging.cpp:548
Here is the call graph for this function:

◆ ImposeBCsOnPhi()

void ERF::ImposeBCsOnPhi ( int  lev,
amrex::MultiFab &  phi,
const amrex::Box &  subdomain 
)

Impose bc's on the pressure that comes out of the solve

13 {
14  BL_PROFILE("ERF::ImposeBCsOnPhi()");
15 
16  auto const sub_lo = lbound(subdomain);
17  auto const sub_hi = ubound(subdomain);
18 
19  auto const dom_lo = lbound(geom[lev].Domain());
20  auto const dom_hi = ubound(geom[lev].Domain());
21 
22  phi.setBndry(1.e25);
23  phi.FillBoundary(geom[lev].periodicity());
24 
25  // ****************************************************************************
26  // Impose bc's on pprime
27  // ****************************************************************************
28 #ifdef _OPENMP
29 #pragma omp parallel if (Gpu::notInLaunchRegion())
30 #endif
31  for (MFIter mfi(phi,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Array4<Real> const& pp_arr = phi.array(mfi);
34  Box const& bx = mfi.tilebox();
35  auto const bx_lo = lbound(bx);
36  auto const bx_hi = ubound(bx);
37 
38  auto bc_type_xlo = domain_bc_type[Orientation(0,Orientation::low)];
39  auto bc_type_xhi = domain_bc_type[Orientation(0,Orientation::high)];
40  auto bc_type_ylo = domain_bc_type[Orientation(1,Orientation::low)];
41  auto bc_type_yhi = domain_bc_type[Orientation(1,Orientation::high)];
42  auto bc_type_zhi = domain_bc_type[Orientation(2,Orientation::high)];
43 
44  if ( (bx_lo.x == dom_lo.x) && (bc_type_xlo == "Outflow" || bc_type_xlo == "Open") && !solverChoice.use_real_bcs) {
45  ParallelFor(makeSlab(bx,0,dom_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
46  {
47  pp_arr(i-1,j,k) = -pp_arr(i,j,k);
48  });
49  } else if (bx_lo.x == sub_lo.x) {
50  ParallelFor(makeSlab(bx,0,sub_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
51  {
52  pp_arr(i-1,j,k) = pp_arr(i,j,k);
53  });
54  }
55 
56  if ( (bx_hi.x == dom_hi.x) && (bc_type_xhi == "Outflow" || bc_type_xhi == "Open") && !solverChoice.use_real_bcs) {
57  ParallelFor(makeSlab(bx,0,dom_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
58  {
59  pp_arr(i+1,j,k) = -pp_arr(i,j,k);
60  });
61  } else if (bx_hi.x == sub_hi.x) {
62  ParallelFor(makeSlab(bx,0,sub_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
63  {
64  pp_arr(i+1,j,k) = pp_arr(i,j,k);
65  });
66  }
67 
68  if ( (bx_lo.y == dom_lo.y) && (bc_type_ylo == "Outflow" || bc_type_ylo == "Open") && !solverChoice.use_real_bcs) {
69  ParallelFor(makeSlab(bx,1,dom_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
70  {
71  pp_arr(i,j-1,k) = -pp_arr(i,j,k);
72  });
73  } else if (bx_lo.y == sub_lo.y) {
74  ParallelFor(makeSlab(bx,1,sub_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
75  {
76  pp_arr(i,j-1,k) = pp_arr(i,j,k);
77  });
78  }
79 
80  if ( (bx_hi.y == dom_hi.y) && (bc_type_yhi == "Outflow" || bc_type_yhi == "Open") && !solverChoice.use_real_bcs) {
81  ParallelFor(makeSlab(bx,1,dom_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
82  {
83  pp_arr(i,j+1,k) = -pp_arr(i,j,k);
84  });
85  } else if (bx_hi.y == sub_hi.y) {
86  ParallelFor(makeSlab(bx,1,sub_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
87  {
88  pp_arr(i,j+1,k) = pp_arr(i,j,k);
89  });
90  }
91 
92  // At low z we are always Neumann whether the box touches the bottom boundary or not
93  Box zbx(bx); zbx.grow(0,1); zbx.grow(1,1); // Grow in x-dir and y-dir because we have filled that above
94  if (bx_lo.z == sub_lo.z) {
95  ParallelFor(makeSlab(zbx,2,dom_lo.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
96  {
97  pp_arr(i,j,k-1) = pp_arr(i,j,k);
98  });
99  }
100 
101  if ( (bx_hi.z == dom_hi.z) && (bc_type_zhi == "Outflow" || bc_type_zhi == "Open") ) {
102  ParallelFor(makeSlab(bx,2,dom_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
103  {
104  pp_arr(i,j,k+1) = -pp_arr(i,j,k);
105  });
106  } else if (bx_hi.z == sub_hi.z) {
107  ParallelFor(makeSlab(bx,2,sub_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
108  {
109  pp_arr(i,j,k+1) = pp_arr(i,j,k);
110  });
111  }
112  } // mfi
113 
114  // Now overwrite with periodic fill outside domain and fine-fine fill inside
115  phi.FillBoundary(geom[lev].periodicity());
116 }
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
Definition: ERF.H:978

◆ init1DArrays()

void ERF::init1DArrays ( )
private

◆ init_bcs()

void ERF::init_bcs ( )
private
288 {
289  bool rho_read = false;
290  bool read_prim_theta = true;
291 
292  init_phys_bcs(rho_read, read_prim_theta);
293 
294  Vector<Real> cons_dir_init(NBCVAR_max,0.0);
295  cons_dir_init[BCVars::Rho_bc_comp] = 1.0;
296  cons_dir_init[BCVars::RhoTheta_bc_comp] = -1.0;
297 
298  // *****************************************************************************
299  //
300  // Here we translate the physical boundary conditions -- one type per face --
301  // into logical boundary conditions for each velocity component
302  //
303  // *****************************************************************************
304  {
305  domain_bcs_type.resize(AMREX_SPACEDIM+NBCVAR_max);
306  domain_bcs_type_d.resize(AMREX_SPACEDIM+NBCVAR_max);
307 
308  for (OrientationIter oit; oit; ++oit) {
309  Orientation ori = oit();
310  int dir = ori.coordDir();
311  Orientation::Side side = ori.faceDir();
312  auto const bct = phys_bc_type[ori];
313  if ( bct == ERF_BC::symmetry )
314  {
315  if (side == Orientation::low) {
316  for (int i = 0; i < AMREX_SPACEDIM; i++) {
318  }
320  } else {
321  for (int i = 0; i < AMREX_SPACEDIM; i++) {
323  }
325  }
326  }
327  else if (bct == ERF_BC::outflow or bct == ERF_BC::ho_outflow )
328  {
329  if (side == Orientation::low) {
330  for (int i = 0; i < AMREX_SPACEDIM; i++) {
332  }
333  if (!solverChoice.anelastic[0]) {
335  }
336  } else {
337  for (int i = 0; i < AMREX_SPACEDIM; i++) {
339  }
340  if (!solverChoice.anelastic[0]) {
342  }
343  }
344  }
345  else if (bct == ERF_BC::open)
346  {
347  if (side == Orientation::low) {
348  for (int i = 0; i < AMREX_SPACEDIM; i++)
350  } else {
351  for (int i = 0; i < AMREX_SPACEDIM; i++)
353  }
354  }
355  else if (bct == ERF_BC::inflow)
356  {
357  if (side == Orientation::low) {
358  for (int i = 0; i < AMREX_SPACEDIM; i++) {
360  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
362  }
363  }
364  } else {
365  for (int i = 0; i < AMREX_SPACEDIM; i++) {
367  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
369  }
370  }
371  }
372  }
373  else if (bct == ERF_BC::inflow_outflow)
374  {
375  if (side == Orientation::low) {
376  for (int i = 0; i < AMREX_SPACEDIM; i++) {
378  }
379  } else {
380  for (int i = 0; i < AMREX_SPACEDIM; i++) {
382  }
383  }
384  }
385  else if (bct == ERF_BC::no_slip_wall)
386  {
387  if (side == Orientation::low) {
388  for (int i = 0; i < AMREX_SPACEDIM; i++) {
390  }
391  } else {
392  for (int i = 0; i < AMREX_SPACEDIM; i++) {
394  }
395  }
396  }
397  else if (bct == ERF_BC::slip_wall)
398  {
399  if (side == Orientation::low) {
400  for (int i = 0; i < AMREX_SPACEDIM; i++) {
402  }
403  // Only normal direction has ext_dir
405 
406  } else {
407  for (int i = 0; i < AMREX_SPACEDIM; i++) {
409  }
410  // Only normal direction has ext_dir
412  }
413  }
414  else if (bct == ERF_BC::periodic)
415  {
416  if (side == Orientation::low) {
417  for (int i = 0; i < AMREX_SPACEDIM; i++) {
419  }
420  } else {
421  for (int i = 0; i < AMREX_SPACEDIM; i++) {
423  }
424  }
425  }
426  else if ( bct == ERF_BC::surface_layer )
427  {
428  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
432  }
433  }
434  }
435 
436  // *****************************************************************************
437  //
438  // Here we translate the physical boundary conditions -- one type per face --
439  // into logical boundary conditions for each cell-centered variable
440  // (including the base state variables)
441  // NOTE: all "scalars" share the same type of boundary condition
442  //
443  // *****************************************************************************
444  {
445  for (OrientationIter oit; oit; ++oit) {
446  Orientation ori = oit();
447  int dir = ori.coordDir();
448  Orientation::Side side = ori.faceDir();
449  auto const bct = phys_bc_type[ori];
450  if ( bct == ERF_BC::symmetry )
451  {
452  if (side == Orientation::low) {
453  for (int i = 0; i < NBCVAR_max; i++) {
455  }
456  } else {
457  for (int i = 0; i < NBCVAR_max; i++) {
459  }
460  }
461  }
462  else if ( bct == ERF_BC::outflow )
463  {
464  if (side == Orientation::low) {
465  for (int i = 0; i < NBCVAR_max; i++) {
467  }
468  } else {
469  for (int i = 0; i < NBCVAR_max; i++) {
471  }
472  }
473  }
474  else if ( bct == ERF_BC::ho_outflow )
475  {
476  if (side == Orientation::low) {
477  for (int i = 0; i < NBCVAR_max; i++) {
479  }
480  } else {
481  for (int i = 0; i < NBCVAR_max; i++) {
483  }
484  }
485  }
486  else if ( bct == ERF_BC::open )
487  {
488  if (side == Orientation::low) {
489  for (int i = 0; i < NBCVAR_max; i++)
491  } else {
492  for (int i = 0; i < NBCVAR_max; i++)
494  }
495  }
496  else if ( bct == ERF_BC::no_slip_wall )
497  {
498  if (side == Orientation::low) {
499  for (int i = 0; i < NBCVAR_max; i++) {
501  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
502  if (rho_read) {
504  } else {
506  }
507  }
508  }
509  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
511  }
512  } else {
513  for (int i = 0; i < NBCVAR_max; i++) {
515  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
516  if (rho_read) {
518  } else {
520  }
521  }
522  }
523  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
525  }
526  }
527  }
528  else if (bct == ERF_BC::slip_wall)
529  {
530  if (side == Orientation::low) {
531  for (int i = 0; i < NBCVAR_max; i++) {
533  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
534  if (rho_read) {
536  } else {
538  }
539  }
540  }
541  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
543  }
544  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
546  }
547  } else {
548  for (int i = 0; i < NBCVAR_max; i++) {
550  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
551  if (rho_read) {
553  } else {
555  }
556  }
557  }
558  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
560  }
561  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
563  }
564  }
565  }
566  else if (bct == ERF_BC::inflow)
567  {
568  if (side == Orientation::low) {
569  for (int i = 0; i < NBCVAR_max; i++) {
571  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
572  (th_bc_data[0].data() != nullptr))
573  {
574  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setLo(dir, ERFBCType::ext_dir_prim);
575  }
576  else if (input_bndry_planes && dir < 2 && (
577  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
578  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
579  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
580  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
581  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
582  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )) )
583  {
585  }
586  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
588  }
589  }
590  } else {
591  for (int i = 0; i < NBCVAR_max; i++) {
593  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
594  (th_bc_data[0].data() != nullptr))
595  {
596  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setHi(dir, ERFBCType::ext_dir_prim);
597  }
598  else if (input_bndry_planes && dir < 2 && (
599  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
600  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
601  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
602  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
603  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
604  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )
605  ) )
606  {
608  }
609  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
611  }
612  }
613  }
614  }
615  else if (bct == ERF_BC::inflow_outflow )
616  {
617  if (side == Orientation::low) {
618  for (int i = 0; i < NBCVAR_max; i++) {
620  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
622  }
623  }
624  } else {
625  for (int i = 0; i < NBCVAR_max; i++) {
627  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
629  }
630  }
631  }
632  }
633  else if (bct == ERF_BC::periodic)
634  {
635  if (side == Orientation::low) {
636  for (int i = 0; i < NBCVAR_max; i++) {
638  }
639  } else {
640  for (int i = 0; i < NBCVAR_max; i++) {
642  }
643  }
644  }
645  else if ( bct == ERF_BC::surface_layer )
646  {
647  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
648  for (int i = 0; i < NBCVAR_max; i++) {
650  }
651  }
652  }
653  }
654 
655  // NOTE: Gpu:copy is a wrapper to htod_memcpy (GPU) or memcpy (CPU) and is a blocking comm
656  Gpu::copy(Gpu::hostToDevice, domain_bcs_type.begin(), domain_bcs_type.end(), domain_bcs_type_d.begin());
657 }
#define NBCVAR_max
Definition: ERF_IndexDefines.H:29
@ ho_outflow
@ inflow_outflow
void init_phys_bcs(bool &rho_read, bool &read_prim_theta)
Definition: ERF_InitBCs.cpp:20
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_neumann_vals
Definition: ERF.H:984
@ RhoQ1_bc_comp
Definition: ERF_IndexDefines.H:81
@ RhoKE_bc_comp
Definition: ERF_IndexDefines.H:79
@ RhoTheta_bc_comp
Definition: ERF_IndexDefines.H:78
@ RhoQ2_bc_comp
Definition: ERF_IndexDefines.H:82
@ Rho_bc_comp
Definition: ERF_IndexDefines.H:77
@ neumann
Definition: ERF_IndexDefines.H:213
@ open
Definition: ERF_IndexDefines.H:215
@ reflect_odd
Definition: ERF_IndexDefines.H:205
@ hoextrap
Definition: ERF_IndexDefines.H:216
@ foextrap
Definition: ERF_IndexDefines.H:208
@ ext_dir
Definition: ERF_IndexDefines.H:209
@ ext_dir_prim
Definition: ERF_IndexDefines.H:211
@ ext_dir_upwind
Definition: ERF_IndexDefines.H:217
@ int_dir
Definition: ERF_IndexDefines.H:206
@ neumann_int
Definition: ERF_IndexDefines.H:214
@ reflect_even
Definition: ERF_IndexDefines.H:207

◆ init_custom()

void ERF::init_custom ( int  lev)
private

Wrapper for custom problem-specific initialization routines that can be defined by the user as they set up a new problem in ERF. This wrapper handles all the overhead of defining the perturbation as well as initializing the random seed if needed.

This wrapper calls a user function to customize initialization on a per-Fab level inside an MFIter loop, so all the MultiFab operations are hidden from the user.

Parameters
levInteger specifying the current level
27 {
28  auto& lev_new = vars_new[lev];
29 
30  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
31  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
32 
33  MultiFab cons_pert(lev_new[Vars::cons].boxArray(), lev_new[Vars::cons].DistributionMap(),
34  lev_new[Vars::cons].nComp() , lev_new[Vars::cons].nGrow());
35  MultiFab xvel_pert(lev_new[Vars::xvel].boxArray(), lev_new[Vars::xvel].DistributionMap(), 1, lev_new[Vars::xvel].nGrowVect());
36  MultiFab yvel_pert(lev_new[Vars::yvel].boxArray(), lev_new[Vars::yvel].DistributionMap(), 1, lev_new[Vars::yvel].nGrowVect());
37  MultiFab zvel_pert(lev_new[Vars::zvel].boxArray(), lev_new[Vars::zvel].DistributionMap(), 1, lev_new[Vars::zvel].nGrowVect());
38 
39  // Default all perturbations to zero
40  cons_pert.setVal(0.);
41  xvel_pert.setVal(0.);
42  yvel_pert.setVal(0.);
43  zvel_pert.setVal(0.);
44 
45 #ifdef _OPENMP
46 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
47 #endif
48  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
49  {
50  const Box &bx = mfi.tilebox();
51  const Box &xbx = mfi.tilebox(IntVect(1,0,0));
52  const Box &ybx = mfi.tilebox(IntVect(0,1,0));
53  const Box &zbx = mfi.tilebox(IntVect(0,0,1));
54 
55  const auto &cons_pert_arr = cons_pert.array(mfi);
56  const auto &xvel_pert_arr = xvel_pert.array(mfi);
57  const auto &yvel_pert_arr = yvel_pert.array(mfi);
58  const auto &zvel_pert_arr = zvel_pert.array(mfi);
59 
60  Array4<Real const> cons_arr = lev_new[Vars::cons].const_array(mfi);
61  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
62  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
63 
64  // Here we arbitrarily choose the x-oriented map factor -- this should be generalized
65  Array4<Real const> mf_m = mapfac[lev][MapFacType::m_x]->const_array(mfi);
66  Array4<Real const> mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
67  Array4<Real const> mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
68 
69  Array4<Real> r_hse_arr = r_hse.array(mfi);
70  Array4<Real> p_hse_arr = p_hse.array(mfi);
71 
72  prob->init_custom_pert(bx, xbx, ybx, zbx, cons_arr, cons_pert_arr,
73  xvel_pert_arr, yvel_pert_arr, zvel_pert_arr,
74  r_hse_arr, p_hse_arr, z_nd_arr, z_cc_arr,
75  geom[lev].data(), mf_m, mf_u, mf_v,
76  solverChoice, lev);
77  } //mfi
78 
79  // Add problem-specific perturbation to background flow if not doing anelastic with fixed-in-time density
80  if (!solverChoice.fixed_density[lev]) {
81  MultiFab::Add(lev_new[Vars::cons], cons_pert, Rho_comp, Rho_comp, 1, cons_pert.nGrow());
82  }
83  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoTheta_comp, RhoTheta_comp, 1, cons_pert.nGrow());
84  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoScalar_comp,RhoScalar_comp,NSCALARS, cons_pert.nGrow());
85 
86  // RhoKE is relevant if using Deardorff with LES, k-equation for RANS, or MYNN with PBL
87  if (solverChoice.turbChoice[lev].use_tke) {
88  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoKE_comp, RhoKE_comp, 1, cons_pert.nGrow());
89  }
90 
91  if (solverChoice.moisture_type != MoistureType::None) {
92  int qstate_size = micro->Get_Qstate_Size();
93  for (int q_offset(0); q_offset<qstate_size; ++q_offset) {
94  int q_idx = RhoQ1_comp+q_offset;
95  MultiFab::Add(lev_new[Vars::cons], cons_pert, q_idx, q_idx, 1, cons_pert.nGrow());
96  }
97  }
98 
99  MultiFab::Add(lev_new[Vars::xvel], xvel_pert, 0, 0, 1, xvel_pert.nGrowVect());
100  MultiFab::Add(lev_new[Vars::yvel], yvel_pert, 0, 0, 1, yvel_pert.nGrowVect());
101  MultiFab::Add(lev_new[Vars::zvel], zvel_pert, 0, 0, 1, zvel_pert.nGrowVect());
102 }
const Box xbx
Definition: ERF_SetupDiff.H:7
const Box ybx
Definition: ERF_SetupDiff.H:8
amrex::Vector< int > fixed_density
Definition: ERF_DataStruct.H:1040
Here is the call graph for this function:

◆ init_Dirichlet_bc_data()

void ERF::init_Dirichlet_bc_data ( const std::string  input_file)
private
660 {
661  // Read the dirichlet_input file
662  Print() << "dirichlet_input file location : " << input_file << std::endl;
663  std::ifstream input_reader(input_file);
664  if (!input_reader.is_open()) {
665  amrex::Abort("Error opening the dirichlet_input file.\n");
666  }
667 
668  Print() << "Successfully opened the dirichlet_input file. Now reading... " << std::endl;
669  std::string line;
670 
671  // Size of Ninp (number of z points in input file)
672  Vector<Real> z_inp_tmp, u_inp_tmp, v_inp_tmp, w_inp_tmp, th_inp_tmp;
673 
674  // Top and bot for domain
675  const int klo = geom[0].Domain().smallEnd()[2];
676  const int khi = geom[0].Domain().bigEnd()[2];
677  const Real zbot = zlevels_stag[0][klo];
678  const Real ztop = zlevels_stag[0][khi+1];
679 
680  // Flag if theta input
681  Real th_init = -300.0;
682  bool th_read{false};
683 
684  // Add surface
685  z_inp_tmp.push_back(zbot); // height above sea level [m]
686  u_inp_tmp.push_back(0.);
687  v_inp_tmp.push_back(0.);
688  w_inp_tmp.push_back(0.);
689  th_inp_tmp.push_back(th_init);
690 
691  // Read the vertical profile at each given height
692  Real z, u, v, w, th;
693  while(std::getline(input_reader, line)) {
694  std::istringstream iss_z(line);
695 
696  Vector<Real> rval_v;
697  Real rval;
698  while (iss_z >> rval) {
699  rval_v.push_back(rval);
700  }
701  z = rval_v[0];
702  u = rval_v[1];
703  v = rval_v[2];
704  w = rval_v[3];
705 
706  // Format without theta
707  if (rval_v.size() == 4) {
708  if (z == zbot) {
709  u_inp_tmp[0] = u;
710  v_inp_tmp[0] = v;
711  w_inp_tmp[0] = w;
712  } else {
713  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
714  z_inp_tmp.push_back(z);
715  u_inp_tmp.push_back(u);
716  v_inp_tmp.push_back(v);
717  w_inp_tmp.push_back(w);
718  if (z >= ztop) break;
719  }
720  } else if (rval_v.size() == 5) {
721  th_read = true;
722  th = rval_v[4];
723  if (z == zbot) {
724  u_inp_tmp[0] = u;
725  v_inp_tmp[0] = v;
726  w_inp_tmp[0] = w;
727  th_inp_tmp[0] = th;
728  } else {
729  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
730  z_inp_tmp.push_back(z);
731  u_inp_tmp.push_back(u);
732  v_inp_tmp.push_back(v);
733  w_inp_tmp.push_back(w);
734  th_inp_tmp.push_back(th);
735  if (z >= ztop) break;
736  }
737  } else {
738  Abort("Unknown inflow file format!");
739  }
740  }
741 
742  // Ensure we set a reasonable theta surface
743  if (th_read) {
744  if (th_inp_tmp[0] == th_init) {
745  Real slope = (th_inp_tmp[2] - th_inp_tmp[1]) / (z_inp_tmp[2] - z_inp_tmp[1]);
746  Real dz = z_inp_tmp[0] - z_inp_tmp[1];
747  th_inp_tmp[0] = slope * dz + th_inp_tmp[1];
748  }
749  }
750 
751  amrex::Print() << "Successfully read and interpolated the dirichlet_input file..." << std::endl;
752  input_reader.close();
753 
754  for (int lev = 0; lev <= max_level; lev++) {
755 
756  const int Nz = geom[lev].Domain().size()[2];
757 
758  // Size of Nz (domain grid)
759  Vector<Real> zcc_inp(Nz );
760  Vector<Real> znd_inp(Nz+1);
761  Vector<Real> u_inp(Nz ); xvel_bc_data[lev].resize(Nz ,0.0);
762  Vector<Real> v_inp(Nz ); yvel_bc_data[lev].resize(Nz ,0.0);
763  Vector<Real> w_inp(Nz+1); zvel_bc_data[lev].resize(Nz+1,0.0);
764  Vector<Real> th_inp;
765  if (th_read) {
766  th_inp.resize(Nz);
767  th_bc_data[lev].resize(Nz, 0.0);
768  }
769 
770  // At this point, we have an input from zbot up to
771  // z_inp_tmp[N-1] >= ztop. Now, interpolate to grid level 0 heights
772  const int Ninp = z_inp_tmp.size();
773  for (int k(0); k<Nz; ++k) {
774  zcc_inp[k] = 0.5 * (zlevels_stag[lev][k] + zlevels_stag[lev][k+1]);
775  znd_inp[k] = zlevels_stag[lev][k+1];
776  u_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), u_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
777  v_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), v_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
778  w_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), znd_inp[k], Ninp);
779  if (th_read) {
780  th_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), th_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
781  }
782  }
783  znd_inp[Nz] = ztop;
784  w_inp[Nz] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), ztop, Ninp);
785 
786  // Copy host data to the device
787  Gpu::copy(Gpu::hostToDevice, u_inp.begin(), u_inp.end(), xvel_bc_data[lev].begin());
788  Gpu::copy(Gpu::hostToDevice, v_inp.begin(), v_inp.end(), yvel_bc_data[lev].begin());
789  Gpu::copy(Gpu::hostToDevice, w_inp.begin(), w_inp.end(), zvel_bc_data[lev].begin());
790  if (th_read) {
791  Gpu::copy(Gpu::hostToDevice, th_inp.begin(), th_inp.end(), th_bc_data[lev].begin());
792  }
793 
794  // NOTE: These device vectors are passed to the PhysBC constructors when that
795  // class is instantiated in ERF_MakeNewArrays.cpp.
796  } // lev
797 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real interpolate_1d(const amrex::Real *alpha, const amrex::Real *beta, const amrex::Real alpha_interp, const int alpha_size)
Definition: ERF_Interpolation_1D.H:12
Here is the call graph for this function:

◆ init_from_hse()

void ERF::init_from_hse ( int  lev)

Initialize the background flow to have the calculated HSE density and rho*theta calculated from the HSE pressure. In general, the hydrostatically balanced density and pressure (r_hse and p_hse from base_state) used here may be calculated through a solver path such as:

ERF::initHSE(lev)

  • call prob->erf_init_dens_hse(...)
    • call Problem::init_isentropic_hse(...), to simultaneously calculate r_hse and p_hse with Newton iteration – assuming constant theta
    • save r_hse
  • call ERF::enforce_hse(...), calculates p_hse from saved r_hse (redundant, but needed because p_hse is not necessarily calculated by the Problem implementation) and pi_hse and th_hse – note: this pressure does not exactly match the p_hse from before because what is calculated by init_isentropic_hse comes from the EOS whereas what is calculated here comes from the hydro- static equation
Parameters
levInteger specifying the current level
33 {
34  auto& lev_new = vars_new[lev];
35 
36  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
37  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
38 
39 #ifdef _OPENMP
40 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
41 #endif
42  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
43  {
44  const Box &gbx = mfi.growntilebox(1);
45  const Array4<Real >& cons_arr = lev_new[Vars::cons].array(mfi);
46  const Array4<Real const>& r_hse_arr = r_hse.const_array(mfi);
47  const Array4<Real const>& p_hse_arr = p_hse.const_array(mfi);
48 
49  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
50  {
51  cons_arr(i,j,k,Rho_comp) = r_hse_arr(i,j,k);
52  cons_arr(i,j,k,RhoTheta_comp) = getRhoThetagivenP(p_hse_arr(i,j,k));
53  });
54  } //mfi
55 }
Here is the call graph for this function:

◆ init_from_input_sounding()

void ERF::init_from_input_sounding ( int  lev)

High level wrapper for initializing scalar and velocity level data from input sounding data.

Parameters
levInteger specifying the current level
53 {
54  // We only want to read the file once -- here we fill one FArrayBox (per variable) that spans the domain
55  if (lev == 0) {
57  Error("input_sounding file name must be provided via input");
58  }
59 
61 
62  // this will interpolate the input profiles to the nominal height levels
63  // (ranging from 0 to the domain top)
64  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
66  }
67 
68  // this will calculate the hydrostatically balanced density and pressure
69  // profiles following WRF ideal.exe
70  if (solverChoice.sounding_type == SoundingType::Ideal) {
72  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
73  solverChoice.sounding_type == SoundingType::DryIsentropic) {
74  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
76  }
77 
78  } else {
79  //
80  // We need to do this interp from coarse level in order to set the values of
81  // the base state inside the domain but outside of the fine region
82  //
83  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
84  //
85  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
86  // have been pre-filled - this includes ghost cells both inside and outside
87  // the domain
88  //
89  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
90  IntVect(0,0,0), // do not fill ghost cells outside the domain
91  base_state[lev-1], 0, 0, base_state[lev].nComp(),
92  geom[lev-1], geom[lev],
93  refRatio(lev-1), &cell_cons_interp,
95 
96  // We need to do this here because the interpolation above may leave corners unfilled
97  // when the corners need to be filled by, for example, reflection of the fine ghost
98  // cell outside the fine region but inide the domain.
99  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
100  }
101 
102  auto& lev_new = vars_new[lev];
103 
104  // updated if sounding is ideal (following WRF) or isentropic
105  const bool l_isentropic = (solverChoice.sounding_type == SoundingType::Isentropic ||
106  solverChoice.sounding_type == SoundingType::DryIsentropic);
107  const bool sounding_ideal_or_isentropic = (solverChoice.sounding_type == SoundingType::Ideal ||
108  l_isentropic);
109  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
110  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
111  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
112  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
113  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
114 
115  const Real l_gravity = solverChoice.gravity;
116  const Real l_rdOcp = solverChoice.rdOcp;
117  const bool l_moist = (solverChoice.moisture_type != MoistureType::None);
118 
119 #ifdef _OPENMP
120 #pragma omp parallel if (Gpu::notInLaunchRegion())
121 #endif
122  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
123  const Box &bx = mfi.tilebox();
124  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
125  const auto &xvel_arr = lev_new[Vars::xvel].array(mfi);
126  const auto &yvel_arr = lev_new[Vars::yvel].array(mfi);
127  const auto &zvel_arr = lev_new[Vars::zvel].array(mfi);
128  Array4<Real> r_hse_arr = r_hse.array(mfi);
129  Array4<Real> p_hse_arr = p_hse.array(mfi);
130  Array4<Real> pi_hse_arr = pi_hse.array(mfi);
131  Array4<Real> th_hse_arr = th_hse.array(mfi);
132  Array4<Real> qv_hse_arr = qv_hse.array(mfi);
133 
134  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
135  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
136 
137  if (sounding_ideal_or_isentropic)
138  {
139  // HSE will be initialized here, interpolated from values previously
140  // calculated by calc_rho_p or calc_rho_p_isentropic
142  bx, cons_arr,
143  r_hse_arr, p_hse_arr, pi_hse_arr, th_hse_arr, qv_hse_arr,
144  geom[lev].data(), z_cc_arr,
145  l_gravity, l_rdOcp, l_moist, input_sounding_data,
146  l_isentropic);
147  }
148  else
149  {
150  // This assumes rho_0 = 1.0
151  // HSE will be calculated later with call to initHSE
153  bx, cons_arr,
154  geom[lev].data(), z_cc_arr,
155  l_moist, input_sounding_data);
156  }
157 
159  bx, xvel_arr, yvel_arr, zvel_arr,
160  geom[lev].data(), z_nd_arr,
162 
163  } //mfi
164 }
void init_bx_scalars_from_input_sounding(const Box &bx, Array4< Real > const &state, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const bool &l_moist, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:176
void init_bx_scalars_from_input_sounding_hse(const Box &bx, Array4< Real > const &state, Array4< Real > const &r_hse_arr, Array4< Real > const &p_hse_arr, Array4< Real > const &pi_hse_arr, Array4< Real > const &th_hse_arr, Array4< Real > const &qv_hse_arr, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const Real &l_gravity, const Real &l_rdOcp, const bool &l_moist, InputSoundingData const &inputSoundingData, const bool &l_isentropic)
Definition: ERF_InitFromInputSounding.cpp:238
void init_bx_velocities_from_input_sounding(const Box &bx, Array4< Real > const &x_vel, Array4< Real > const &y_vel, Array4< Real > const &z_vel, GeometryData const &geomdata, Array4< const Real > const &z_nd_arr, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:374
InputSoundingData input_sounding_data
Definition: ERF.H:754
@ rho0_bc_comp
Definition: ERF_IndexDefines.H:98
@ qv0_comp
Definition: ERF_IndexDefines.H:67
void resize_arrays()
Definition: ERF_InputSoundingData.H:60
int n_sounding_files
Definition: ERF_InputSoundingData.H:395
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag, int itime)
Definition: ERF_InputSoundingData.H:77
amrex::Vector< std::string > input_sounding_file
Definition: ERF_InputSoundingData.H:393
void calc_rho_p(int itime)
Definition: ERF_InputSoundingData.H:173
void calc_rho_p_isentropic(int itime)
Definition: ERF_InputSoundingData.H:259
bool assume_dry
Definition: ERF_InputSoundingData.H:398
static SoundingType sounding_type
Definition: ERF_DataStruct.H:1006
Here is the call graph for this function:

◆ init_geo_wind_profile()

void ERF::init_geo_wind_profile ( const std::string  input_file,
amrex::Vector< amrex::Real > &  u_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  u_geos_d,
amrex::Vector< amrex::Real > &  v_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  v_geos_d,
const amrex::Geometry &  lgeom,
const amrex::Vector< amrex::Real > &  zlev_stag 
)
private
17 {
18  const int klo = 0;
19  const int khi = lgeom.Domain().bigEnd()[AMREX_SPACEDIM-1];
20  const amrex::Real dz = lgeom.CellSize()[AMREX_SPACEDIM-1];
21 
22  const bool grid_stretch = (zlev_stag.size() > 0);
23  const Real zbot = (grid_stretch) ? zlev_stag[klo] : lgeom.ProbLo(AMREX_SPACEDIM-1);
24  const Real ztop = (grid_stretch) ? zlev_stag[khi+1] : lgeom.ProbHi(AMREX_SPACEDIM-1);
25 
26  amrex::Print() << "Reading geostrophic wind profile from " << input_file << std::endl;
27  std::ifstream profile_reader(input_file);
28  if(!profile_reader.is_open()) {
29  amrex::Error("Error opening the abl_geo_wind_table\n");
30  }
31 
32  // First, read the input data into temp vectors
33  std::string line;
34  Vector<Real> z_inp, Ug_inp, Vg_inp;
35  Real z, Ug, Vg;
36  amrex::Print() << "z Ug Vg" << std::endl;
37  while(std::getline(profile_reader, line)) {
38  std::istringstream iss(line);
39  iss >> z >> Ug >> Vg;
40  amrex::Print() << z << " " << Ug << " " << Vg << std::endl;
41  z_inp.push_back(z);
42  Ug_inp.push_back(Ug);
43  Vg_inp.push_back(Vg);
44  if (z >= ztop) break;
45  }
46 
47  const int Ninp = z_inp.size();
48  AMREX_ALWAYS_ASSERT(z_inp[0] <= zbot);
49  AMREX_ALWAYS_ASSERT(z_inp[Ninp-1] >= ztop);
50 
51  // Now, interpolate vectors to the cell centers
52  for (int k = 0; k <= khi; k++) {
53  z = (grid_stretch) ? 0.5 * (zlev_stag[k] + zlev_stag[k+1])
54  : zbot + (k + 0.5) * dz;
55  u_geos[k] = interpolate_1d(z_inp.dataPtr(), Ug_inp.dataPtr(), z, Ninp);
56  v_geos[k] = interpolate_1d(z_inp.dataPtr(), Vg_inp.dataPtr(), z, Ninp);
57  }
58 
59  // Copy from host version to device version
60  Gpu::copy(Gpu::hostToDevice, u_geos.begin(), u_geos.end(), u_geos_d.begin());
61  Gpu::copy(Gpu::hostToDevice, v_geos.begin(), v_geos.end(), v_geos_d.begin());
62 
63  profile_reader.close();
64 }
Here is the call graph for this function:

◆ init_immersed_forcing()

void ERF::init_immersed_forcing ( int  lev)

Set velocities in cells that are immersed to be 0 (or a very small number)

Parameters
levInteger specifying the current level
16 {
17  auto& lev_new = vars_new[lev];
18  MultiFab* terrain_blank = terrain_blanking[lev].get();
19 
20 #ifdef _OPENMP
21 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
22 #endif
23  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
24  {
25  const Box &xbx = mfi.tilebox(IntVect(1,0,0));
26  const Box &ybx = mfi.tilebox(IntVect(0,1,0));
27  const Box &zbx = mfi.tilebox(IntVect(0,0,1));
28  const Real epsilon = 1e-2;
29 
30  const Array4<const Real>& t_blank_arr = terrain_blank->const_array(mfi);
31 
32  const auto &xvel_arr = lev_new[Vars::xvel].array(mfi);
33  const auto &yvel_arr = lev_new[Vars::yvel].array(mfi);
34  const auto &zvel_arr = lev_new[Vars::zvel].array(mfi);
35 
36  // Set the x,y,z-velocities
37  ParallelFor(xbx, ybx, zbx,
38  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
39  const Real t_blank = 0.5 * (t_blank_arr(i, j, k) + t_blank_arr(i-1, j, k));
40  if (t_blank == 1.0) { xvel_arr(i, j, k) = epsilon; }
41  },
42  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
43  const Real t_blank = 0.5 * (t_blank_arr(i, j, k) + t_blank_arr(i, j-1, k));
44  if (t_blank == 1.0) { yvel_arr(i, j, k) = epsilon; }
45  },
46  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
47  const Real t_blank = 0.5 * (t_blank_arr(i, j, k) + t_blank_arr(i, j, k-1));
48  if (t_blank == 1.0) { zvel_arr(i, j, k) = epsilon; }
49  });
50  } //mfi
51 }
real(c_double), parameter epsilon
Definition: ERF_module_model_constants.F90:12
Here is the call graph for this function:

◆ init_only()

void ERF::init_only ( int  lev,
amrex::Real  time 
)
2027 {
2028  t_new[lev] = time;
2029  t_old[lev] = time - 1.e200;
2030 
2031  auto& lev_new = vars_new[lev];
2032  auto& lev_old = vars_old[lev];
2033 
2034  // Loop over grids at this level to initialize our grid data
2035  lev_new[Vars::cons].setVal(0.0); lev_old[Vars::cons].setVal(0.0);
2036  lev_new[Vars::xvel].setVal(0.0); lev_old[Vars::xvel].setVal(0.0);
2037  lev_new[Vars::yvel].setVal(0.0); lev_old[Vars::yvel].setVal(0.0);
2038  lev_new[Vars::zvel].setVal(0.0); lev_old[Vars::zvel].setVal(0.0);
2039 
2040  // Initialize background flow (optional)
2041  if (solverChoice.init_type == InitType::Input_Sounding) {
2042  // The physbc's need the terrain but are needed for initHSE
2043  // We have already made the terrain in the call to init_zphys
2044  // in MakeNewLevelFromScratch
2045  make_physbcs(lev);
2046 
2047  // Now init the base state and the data itself
2049 
2050  // The base state has been initialized by integrating vertically
2051  // through the sounding for ideal (like WRF) or isentropic approaches
2052  if (solverChoice.sounding_type == SoundingType::Ideal ||
2053  solverChoice.sounding_type == SoundingType::Isentropic ||
2054  solverChoice.sounding_type == SoundingType::DryIsentropic) {
2055  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(solverChoice.use_gravity,
2056  "Gravity should be on to be consistent with sounding initialization.");
2057  } else { // SoundingType::ConstantDensity
2058  AMREX_ASSERT_WITH_MESSAGE(!solverChoice.use_gravity,
2059  "Constant density probably doesn't make sense with gravity");
2060  initHSE();
2061  }
2062 
2063 #ifdef ERF_USE_NETCDF
2064  }
2065  else if (solverChoice.init_type == InitType::WRFInput && !nc_init_file[lev].empty())
2066  {
2067  // The base state is initialized from WRF wrfinput data, output by
2068  // ideal.exe or real.exe
2069 
2070  init_from_wrfinput(lev, *mf_C1H, *mf_C2H, *mf_MUB, *mf_PSFC[lev]);
2071 
2072  if (lev==0) {
2073  if ((start_time > 0) && (start_time != start_bdy_time)) {
2074  Print() << "Ignoring specified start_time="
2075  << std::setprecision(timeprecision) << start_time
2076  << std::endl;
2077  }
2078  }
2079 
2080  start_time = start_bdy_time;
2081 
2082  use_datetime = true;
2083 
2084  // The physbc's need the terrain but are needed for initHSE
2085  if (!solverChoice.use_real_bcs) {
2086  make_physbcs(lev);
2087  }
2088  }
2089  else if (solverChoice.init_type == InitType::WRFInput && nc_init_file[lev].empty())
2090  {
2091  amrex::Abort("This pathway is not quite implemented yet");
2092  }
2093  else if (solverChoice.init_type == InitType::NCFile)
2094  {
2095  // The state is initialized by reading from a Netcdf file
2096  init_from_ncfile(lev);
2097 
2098  // The physbc's need the terrain but are needed for initHSE
2099  make_physbcs(lev);
2100  }
2101  else if (solverChoice.init_type == InitType::Metgrid)
2102  {
2103  // The base state is initialized from data output by WPS metgrid;
2104  // we will rebalance after interpolation
2105  init_from_metgrid(lev);
2106 #endif
2107  } else if (solverChoice.init_type == InitType::Uniform) {
2108  // Initialize a uniform background field and base state based on the
2109  // problem-specified reference density and temperature
2110 
2111  // The physbc's need the terrain but are needed for initHSE
2112  make_physbcs(lev);
2113 
2114  init_uniform(lev);
2115  initHSE(lev);
2116  } else {
2117  // No background flow initialization specified, initialize the
2118  // background field to be equal to the base state, calculated from the
2119  // problem-specific erf_init_dens_hse
2120 
2121  // The bc's need the terrain but are needed for initHSE
2122  make_physbcs(lev);
2123 
2124  // We will initialize the state from the background state so must set that first
2125  initHSE(lev);
2126  init_from_hse(lev);
2127  }
2128 
2129  // Add problem-specific flow features
2130  //
2131  // Notes:
2132  // - This calls init_custom_pert that is defined for each problem
2133  // - This may modify the base state
2134  // - The fields set by init_custom_pert are **perturbations** to the
2135  // background flow set based on init_type
2136  if (solverChoice.init_type != InitType::NCFile) {
2137  init_custom(lev);
2138  }
2139 
2140  // Ensure that the face-based data are the same on both sides of a periodic domain.
2141  // The data associated with the lower grid ID is considered the correct value.
2142  lev_new[Vars::xvel].OverrideSync(geom[lev].periodicity());
2143  lev_new[Vars::yvel].OverrideSync(geom[lev].periodicity());
2144  lev_new[Vars::zvel].OverrideSync(geom[lev].periodicity());
2145 
2146  if(solverChoice.spongeChoice.sponge_type == "input_sponge"){
2147  input_sponge(lev);
2148  }
2149 
2150  // Initialize turbulent perturbation
2151  if (solverChoice.pert_type == PerturbationType::Source ||
2152  solverChoice.pert_type == PerturbationType::Direct ||
2153  solverChoice.pert_type == PerturbationType::CPM) {
2154  turbPert_update(lev, 0.);
2155  turbPert_amplitude(lev);
2156  }
2157 
2158  // Set initial velocity field for immersed cells to be close to 0
2159  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
2160  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
2161  init_immersed_forcing(lev);
2162  }
2163 }
const int timeprecision
Definition: ERF.H:1020
void init_from_input_sounding(int lev)
Definition: ERF_InitFromInputSounding.cpp:52
std::unique_ptr< amrex::MultiFab > mf_MUB
Definition: ERF.H:1251
std::unique_ptr< amrex::MultiFab > mf_C2H
Definition: ERF.H:1250
void init_custom(int lev)
Definition: ERF_InitCustom.cpp:26
void init_from_hse(int lev)
Definition: ERF_InitFromHSE.cpp:32
void initHSE()
Initialize HSE.
Definition: ERF_Init1D.cpp:146
void turbPert_update(const int lev, const amrex::Real dt)
Definition: ERF_InitTurbPert.cpp:12
void input_sponge(int lev)
Definition: ERF_InitSponge.cpp:17
void make_physbcs(int lev)
Definition: ERF_MakeNewArrays.cpp:836
void init_immersed_forcing(int lev)
Definition: ERF_InitImmersedForcing.cpp:15
void init_uniform(int lev)
Definition: ERF_InitUniform.cpp:17
std::unique_ptr< amrex::MultiFab > mf_C1H
Definition: ERF.H:1249
void turbPert_amplitude(const int lev)
Definition: ERF_InitTurbPert.cpp:32
bool use_gravity
Definition: ERF_DataStruct.H:1070

◆ init_phys_bcs()

void ERF::init_phys_bcs ( bool &  rho_read,
bool &  read_prim_theta 
)
private

Initializes data structures in the ERF class that specify which boundary conditions we are implementing on each face of the domain.

This function also maps the selected boundary condition types (e.g. Outflow, Inflow, InflowOutflow, Periodic, Dirichlet, ...) to the specific implementation needed for each variable.

Stores this information in both host and device vectors so it is available for GPU kernels.

21 {
22  auto f = [this,&rho_read,&read_prim_theta] (std::string const& bcid, Orientation ori)
23  {
24  // These are simply defaults for Dirichlet faces -- they should be over-written below
26  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = -1.0; // It is important to set this negative
27  // because the sign is tested on below
28  for (int n = BCVars::RhoKE_bc_comp; n < BCVars::xvel_bc; n++) {
29  m_bc_extdir_vals[n][ori] = 0.0;
30  }
31 
32  m_bc_extdir_vals[BCVars::xvel_bc][ori] = 0.0; // default
35 
36  // These are simply defaults for Neumann gradients -- they should be over-written below
39 
48 
52 
53  std::string pp_text = pp_prefix + "." + bcid;
54  ParmParse pp(pp_text);
55 
56  std::string bc_type_in;
57  if (pp.query("type", bc_type_in) <= 0)
58  {
59  pp_text = bcid;
60  pp = ParmParse(pp_text);
61  pp.query("type", bc_type_in);
62  }
63 
64  std::string bc_type = amrex::toLower(bc_type_in);
65 
66  if (bc_type == "symmetry")
67  {
68  // Print() << bcid << " set to symmetry.\n";
70  domain_bc_type[ori] = "Symmetry";
71  }
72  else if (bc_type == "outflow")
73  {
74  // Print() << bcid << " set to outflow.\n";
76  domain_bc_type[ori] = "Outflow";
77  }
78  else if (bc_type == "open")
79  {
80  // Print() << bcid << " set to open.\n";
81  AMREX_ASSERT_WITH_MESSAGE((ori.coordDir() != 2), "Open boundary not valid on zlo or zhi!");
83  domain_bc_type[ori] = "Open";
84  }
85  else if (bc_type == "ho_outflow")
86  {
88  domain_bc_type[ori] = "HO_Outflow";
89  }
90 
91  else if (bc_type == "inflow" || bc_type == "inflow_outflow")
92  {
93  if (bc_type == "inflow") {
94  // Print() << bcid << " set to inflow.\n";
96  domain_bc_type[ori] = "Inflow";
97  } else {
98  // Print() << bcid << " set to inflow_outflow.\n";
100  domain_bc_type[ori] = "InflowOutflow";
101  }
102 
103  std::vector<Real> v;
104  if (input_bndry_planes && m_r2d->ingested_velocity()) {
108  } else {
109  // Test for input data file if at xlo face
110  std::string dirichlet_file;
111  auto file_exists = pp.query("dirichlet_file", dirichlet_file);
112  if (file_exists) {
113  pp.query("read_prim_theta", read_prim_theta);
114  init_Dirichlet_bc_data(dirichlet_file);
115  } else {
116  pp.getarr("velocity", v, 0, AMREX_SPACEDIM);
117  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
118  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
119  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
120  }
121  }
122 
123  Real rho_in = 0.;
124  if (input_bndry_planes && m_r2d->ingested_density()) {
126  } else {
127  if (!pp.query("density", rho_in)) {
128  amrex::Print() << "Using interior values to set conserved vars" << std::endl;
129  }
130  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
131  }
132 
133  bool th_read = (th_bc_data[0].data()!=nullptr);
134  Real theta_in = 0.;
135  if (input_bndry_planes && m_r2d->ingested_theta()) {
137  } else if (!th_read) {
138  if (rho_in > 0) {
139  pp.get("theta", theta_in);
140  }
141  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = rho_in*theta_in;
142  }
143 
144  Real scalar_in = 0.;
145  if (input_bndry_planes && m_r2d->ingested_scalar()) {
147  } else {
148  if (pp.query("scalar", scalar_in))
149  m_bc_extdir_vals[BCVars::RhoScalar_bc_comp][ori] = rho_in*scalar_in;
150  }
151 
152  if (solverChoice.moisture_type != MoistureType::None) {
153  Real qv_in = 0.;
154  if (input_bndry_planes && m_r2d->ingested_q1()) {
156  } else {
157  if (pp.query("qv", qv_in))
158  m_bc_extdir_vals[BCVars::RhoQ1_bc_comp][ori] = rho_in*qv_in;
159  }
160  Real qc_in = 0.;
161  if (input_bndry_planes && m_r2d->ingested_q2()) {
163  } else {
164  if (pp.query("qc", qc_in))
165  m_bc_extdir_vals[BCVars::RhoQ2_bc_comp][ori] = rho_in*qc_in;
166  }
167  }
168 
169  Real KE_in = 0.;
170  if (input_bndry_planes && m_r2d->ingested_KE()) {
172  } else {
173  if (pp.query("KE", KE_in))
174  m_bc_extdir_vals[BCVars::RhoKE_bc_comp][ori] = rho_in*KE_in;
175  }
176  }
177  else if (bc_type == "noslipwall")
178  {
179  // Print() << bcid <<" set to no-slip wall.\n";
181  domain_bc_type[ori] = "NoSlipWall";
182 
183  std::vector<Real> v;
184 
185  // The values of m_bc_extdir_vals default to 0.
186  // But if we find "velocity" in the inputs file, use those values instead.
187  if (pp.queryarr("velocity", v, 0, AMREX_SPACEDIM))
188  {
189  v[ori.coordDir()] = 0.0;
190  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
191  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
192  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
193  }
194 
195  Real rho_in;
196  rho_read = pp.query("density", rho_in);
197  if (rho_read)
198  {
199  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
200  }
201 
202  Real theta_in;
203  if (pp.query("theta", theta_in))
204  {
206  }
207 
208  Real theta_grad_in;
209  if (pp.query("theta_grad", theta_grad_in))
210  {
211  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
212  }
213 
214  Real qv_in;
215  if (pp.query("qv", qv_in))
216  {
218  }
219  }
220  else if (bc_type == "slipwall")
221  {
222  // Print() << bcid <<" set to slip wall.\n";
223 
225  domain_bc_type[ori] = "SlipWall";
226 
227  Real rho_in;
228  rho_read = pp.query("density", rho_in);
229  if (rho_read)
230  {
231  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
232  }
233 
234  Real theta_in;
235  if (pp.query("theta", theta_in))
236  {
238  }
239 
240  Real rho_grad_in;
241  if (pp.query("density_grad", rho_grad_in))
242  {
243  m_bc_neumann_vals[BCVars::Rho_bc_comp][ori] = rho_grad_in;
244  }
245 
246  Real theta_grad_in;
247  if (pp.query("theta_grad", theta_grad_in))
248  {
249  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
250  }
251  }
252  else if (bc_type == "surface_layer")
253  {
255  domain_bc_type[ori] = "surface_layer";
256  }
257  else
258  {
260  }
261 
262  if (geom[0].isPeriodic(ori.coordDir())) {
263  domain_bc_type[ori] = "Periodic";
264  if (phys_bc_type[ori] == ERF_BC::undefined)
265  {
267  } else {
268  Abort("Wrong BC type for periodic boundary");
269  }
270  }
271 
272  if (phys_bc_type[ori] == ERF_BC::undefined)
273  {
274  Print() << "BC Type specified for face " << bcid << " is " << bc_type_in << std::endl;
275  Abort("This BC type is unknown");
276  }
277  };
278 
279  f("xlo", Orientation(Direction::x,Orientation::low));
280  f("xhi", Orientation(Direction::x,Orientation::high));
281  f("ylo", Orientation(Direction::y,Orientation::low));
282  f("yhi", Orientation(Direction::y,Orientation::high));
283  f("zlo", Orientation(Direction::z,Orientation::low));
284  f("zhi", Orientation(Direction::z,Orientation::high));
285 }
void init_Dirichlet_bc_data(const std::string input_file)
Definition: ERF_InitBCs.cpp:659
@ RhoQ6_bc_comp
Definition: ERF_IndexDefines.H:86
@ RhoQ4_bc_comp
Definition: ERF_IndexDefines.H:84
@ RhoQ3_bc_comp
Definition: ERF_IndexDefines.H:83
@ RhoQ5_bc_comp
Definition: ERF_IndexDefines.H:85
Here is the call graph for this function:

◆ init_stuff()

void ERF::init_stuff ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm,
amrex::Vector< amrex::MultiFab > &  lev_new,
amrex::Vector< amrex::MultiFab > &  lev_old,
amrex::MultiFab &  tmp_base_state,
std::unique_ptr< amrex::MultiFab > &  tmp_zphys_nd 
)
private
28 {
29  // ********************************************************************************************
30  // Base state holds r_0, pres_0, pi_0, th_0 (in that order)
31  //
32  // Here is where we set the number of ghost cells for the base state!
33  // ********************************************************************************************
34  int ngb = (solverChoice.terrain_type == TerrainType::EB) ? 4 : 3;
35  tmp_base_state.define(ba,dm,BaseState::num_comps,ngb);
36  tmp_base_state.setVal(0.);
37 
38  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
39  base_state_new[lev].define(ba,dm,BaseState::num_comps,base_state[lev].nGrowVect());
40  base_state_new[lev].setVal(0.);
41  }
42 
43  // ********************************************************************************************
44  // Allocate terrain arrays
45  // ********************************************************************************************
46 
47  BoxArray ba_nd(ba);
48  ba_nd.surroundingNodes();
49 
50  // NOTE: this is where we actually allocate z_phys_nd -- but here it's called "tmp_zphys_nd"
51  // We need this to be one greater than the ghost cells to handle levels > 0
52 
53  int ngrow = ComputeGhostCells(solverChoice) + 2;
54  tmp_zphys_nd = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
55 
56  z_phys_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
57  init_default_zphys(lev, geom[lev], *tmp_zphys_nd, *z_phys_cc[lev]);
58 
59  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh)
60  {
61  detJ_cc_new[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
62  detJ_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
63 
64  ax_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
65  ay_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
66  az_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
67 
68  z_t_rk[lev] = std::make_unique<MultiFab>( convert(ba, IntVect(0,0,1)), dm, 1, 1 );
69 
70  z_phys_nd_new[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
71  z_phys_nd_src[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
72  z_phys_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
73  }
74  else
75  {
76  z_phys_nd_new[lev] = nullptr;
77  detJ_cc_new[lev] = nullptr;
78 
79  z_phys_nd_src[lev] = nullptr;
80  z_phys_cc_src[lev] = nullptr;
81  detJ_cc_src[lev] = nullptr;
82 
83  z_t_rk[lev] = nullptr;
84  }
85 
86  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
87  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
88  {
89  terrain_blanking[lev] = std::make_unique<MultiFab>(ba,dm,1,ngrow);
90  terrain_blanking[lev]->setVal(1.0);
91  }
92 
93  // We use these area arrays regardless of terrain, EB or none of the above
94  detJ_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
95  ax[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
96  ay[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
97  az[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
98 
99  detJ_cc[lev]->setVal(1.0);
100  ax[lev]->setVal(1.0);
101  ay[lev]->setVal(1.0);
102  az[lev]->setVal(1.0);
103 
104  // ********************************************************************************************
105  // Create wall distance array for RANS modeling
106  // ********************************************************************************************
107  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
108  walldist[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
109  walldist[lev]->setVal(1e23);
110  } else {
111  walldist[lev] = nullptr;
112  }
113 
114  // ********************************************************************************************
115  // These are the persistent containers for the old and new data
116  // ********************************************************************************************
117  int ncomp;
118  if (lev > 0) {
119  ncomp = vars_new[lev-1][Vars::cons].nComp();
120  } else {
121  int n_qstate = micro->Get_Qstate_Size();
122  ncomp = NDRY + NSCALARS + n_qstate;
123  }
124 
125  // ********************************************************************************************
126  // The number of ghost cells for density must be 1 greater than that for velocity
127  // so that we can go back in forth between velocity and momentum on all faces
128  // ********************************************************************************************
129  int ngrow_state = ComputeGhostCells(solverChoice) + 1;
130  int ngrow_vels = ComputeGhostCells(solverChoice);
131 
132  // ********************************************************************************************
133  // New solution data containers
134  // ********************************************************************************************
135  if (solverChoice.terrain_type != TerrainType::EB) {
136  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state);
137  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state);
138  } else {
139  // EB: Define the MultiFabs with the EBFactory
140  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state, MFInfo(), EBFactory(lev));
141  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state, MFInfo(), EBFactory(lev));
142  }
143  lev_new[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
144  lev_old[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
145 
146  lev_new[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
147  lev_old[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
148 
149  gradp[lev][GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp[lev][GpVars::gpx].setVal(0.);
150  gradp[lev][GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp[lev][GpVars::gpy].setVal(0.);
151  gradp[lev][GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp[lev][GpVars::gpz].setVal(0.);
152 
153  // Note that we need the ghost cells in the z-direction if we are doing any
154  // kind of domain decomposition in the vertical (at level 0 or above)
155  lev_new[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
156  lev_old[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
157 
158  if ( (solverChoice.anelastic[lev] == 1) || (solverChoice.project_initial_velocity[lev] == 1) ) {
159  pp_inc[lev].define(ba, dm, 1, 1);
160  pp_inc[lev].setVal(0.0);
161  }
162 
163  // We use this in the fast substepping only
164  if (solverChoice.anelastic[lev] == 0) {
165  lagged_delta_rt[lev].define(ba, dm, 1, 1);
166  lagged_delta_rt[lev].setVal(0.0);
167  }
168 
169  // We use these for advecting the slow variables, whether anelastic or compressible
170  avg_xmom[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, 1);
171  avg_ymom[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, 1);
172  avg_zmom[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, 1);
173  avg_xmom[lev].setVal(0.0); avg_ymom[lev].setVal(0.0); avg_zmom[lev].setVal(0.0);
174 
175  // ********************************************************************************************
176  // These are just used for scratch in the time integrator but we might as well define them here
177  // ********************************************************************************************
178  if (solverChoice.terrain_type != TerrainType::EB) {
179  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
180  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
181 
182  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
183  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
184 
185  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
186  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
187  } else {
188  // EB: Define the MultiFabs with the EBFactory
189  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
190  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
191 
192  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
193  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
194 
195  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
196  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
197  }
198 
199  if (lev > 0) {
200  //xmom_crse_rhs[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, IntVect{0});
201  //ymom_crse_rhs[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, IntVect{0});
202  zmom_crse_rhs[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, IntVect{0});
203  }
204 
205  // We do this here just so they won't be undefined in the initial FillPatch
206  rU_old[lev].setVal(1.2e21);
207  rV_old[lev].setVal(3.4e22);
208  rW_old[lev].setVal(5.6e23);
209  rU_new[lev].setVal(1.2e21);
210  rV_new[lev].setVal(3.4e22);
211  rW_new[lev].setVal(5.6e23);
212 
213  // ********************************************************************************************
214  // These are just time averaged fields for diagnostics
215  // ********************************************************************************************
216 
217  // NOTE: We are not completing a fillpach call on the time averaged data;
218  // which would copy on intersection and interpolate from coarse.
219  // Therefore, we are restarting the averaging when the ba changes,
220  // this may give poor statistics for dynamic mesh refinement.
221  vel_t_avg[lev] = nullptr;
223  vel_t_avg[lev] = std::make_unique<MultiFab>(ba, dm, 4, 0); // Each vel comp and the mag
224  vel_t_avg[lev]->setVal(0.0);
225  t_avg_cnt[lev] = 0.0;
226  }
227 
228  // ********************************************************************************************
229  // Initialize flux registers whenever we create/re-create a level
230  // ********************************************************************************************
231  if (solverChoice.coupling_type == CouplingType::TwoWay) {
232  if (lev == 0) {
233  advflux_reg[0] = nullptr;
234  } else {
235  int ncomp_reflux = vars_new[0][Vars::cons].nComp();
236  advflux_reg[lev] = new YAFluxRegister(ba , grids[lev-1],
237  dm , dmap[lev-1],
238  geom[lev], geom[lev-1],
239  ref_ratio[lev-1], lev, ncomp_reflux);
240  }
241  }
242 
243  // ********************************************************************************************
244  // Define Theta_prim storage if using surface_layer BC
245  // ********************************************************************************************
246  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
247  Theta_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
248  if (solverChoice.moisture_type != MoistureType::None) {
249  Qv_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
250  Qr_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
251  } else {
252  Qv_prim[lev] = nullptr;
253  Qr_prim[lev] = nullptr;
254  }
255  } else {
256  Theta_prim[lev] = nullptr;
257  Qv_prim[lev] = nullptr;
258  Qr_prim[lev] = nullptr;
259  }
260 
261  // ********************************************************************************************
262  // Map factors
263  // ********************************************************************************************
264  BoxList bl2d_mf = ba.boxList();
265  for (auto& b : bl2d_mf) {
266  b.setRange(2,0);
267  }
268  BoxArray ba2d_mf(std::move(bl2d_mf));
269 
270  mapfac[lev].resize(MapFacType::num);
271  mapfac[lev][MapFacType::m_x] = std::make_unique<MultiFab>( ba2d_mf,dm,1,IntVect(3,3,0));
272  mapfac[lev][MapFacType::u_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,IntVect(3,3,0));
273  mapfac[lev][MapFacType::v_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,IntVect(3,3,0));
274 
275 #if 0
276  // For now we comment this out to avoid CI failures but we will need to re-enable
277  // this if using non-conformal mappings
279  mapfac[lev][MapFacType::m_y] = std::make_unique<MultiFab>(ba2d_mf,dm,1,IntVect(3,3,0));
280  }
282  mapfac[lev][MapFacType::u_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,IntVect(3,3,0));
283  }
285  mapfac[lev][MapFacType::v_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,IntVect(3,3,0));
286  }
287 #endif
288 
290  for (int i = 0; i < 3; i++) {
291  mapfac[lev][i]->setVal(0.5);
292  }
293  for (int i = 3; i < mapfac[lev].size(); i++) {
294  mapfac[lev][i]->setVal(0.25);
295  }
296  } else {
297  for (int i = 0; i < mapfac[lev].size(); i++) {
298  mapfac[lev][i]->setVal(1.0);
299  }
300  }
301 
302  // ********************************************************************************************
303  // Build 1D BA and 2D BA
304  // ********************************************************************************************
305  BoxList bl1d = ba.boxList();
306  for (auto& b : bl1d) {
307  b.setRange(0,0);
308  b.setRange(1,0);
309  }
310  ba1d[lev] = BoxArray(std::move(bl1d));
311 
312  // Build 2D BA
313  BoxList bl2d = ba.boxList();
314  for (auto& b : bl2d) {
315  b.setRange(2,0);
316  }
317  ba2d[lev] = BoxArray(std::move(bl2d));
318 
319  IntVect ng = vars_new[lev][Vars::cons].nGrowVect();
320 
321  if (lev == 0) {
322  mf_C1H = std::make_unique<MultiFab>(ba1d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
323  mf_C2H = std::make_unique<MultiFab>(ba1d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
324  mf_MUB = std::make_unique<MultiFab>(ba2d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
325  }
326 
327  mf_PSFC[lev] = std::make_unique<MultiFab>(ba2d[lev],dm,1,ng);
328 
329  //*********************************************************
330  // Variables for Fitch model for windfarm parametrization
331  //*********************************************************
332 #if defined(ERF_USE_WINDFARM)
333  if (solverChoice.windfarm_type == WindFarmType::Fitch){
334  vars_windfarm[lev].define(ba, dm, 5, ngrow_state); // V, dVabsdt, dudt, dvdt, dTKEdt
335  }
336  if (solverChoice.windfarm_type == WindFarmType::EWP){
337  vars_windfarm[lev].define(ba, dm, 3, ngrow_state); // dudt, dvdt, dTKEdt
338  }
339  if (solverChoice.windfarm_type == WindFarmType::SimpleAD) {
340  vars_windfarm[lev].define(ba, dm, 2, ngrow_state);// dudt, dvdt
341  }
342  if (solverChoice.windfarm_type == WindFarmType::GeneralAD) {
343  vars_windfarm[lev].define(ba, dm, 3, ngrow_state);// dudt, dvdt, dwdt
344  }
345  Nturb[lev].define(ba, dm, 1, ngrow_state); // Number of turbines in a cell
346  SMark[lev].define(ba, dm, 2, 1); // Free stream velocity/source term
347  // sampling marker in a cell - 2 components
348 #endif
349 
350  if(solverChoice.init_type == InitType::HindCast and
352 
353  int ncomp_extra = 2;
354  int nvars = vars_new[lev].size();
355 
356  // Resize all containers
357  forecast_state_1[lev].resize(nvars + 1);
358  forecast_state_2[lev].resize(nvars + 1);
359  forecast_state_interp[lev].resize(nvars + 1);
360 
361  // Define the "normal" components
362  for (int comp = 0; comp < nvars; ++comp) {
363  const MultiFab& src = vars_new[lev][comp];
364  ncomp = src.nComp();
365  ngrow = src.nGrow();
366 
367  forecast_state_1[lev][comp].define(ba, dm, ncomp, ng);
368  forecast_state_2[lev][comp].define(ba, dm, ncomp, ng);
369  forecast_state_interp[lev][comp].define(ba, dm, ncomp, ng);
370  }
371 
372  // Define the "extra" component (last slot)
373  {
374  const MultiFab& src0 = vars_new[lev][0];
375  ngrow = src0.nGrow();
376  int idx = nvars;
377 
378  forecast_state_1[lev][idx].define(ba, dm, ncomp_extra, ngrow);
379  forecast_state_2[lev][idx].define(ba, dm, ncomp_extra, ngrow);
380  forecast_state_interp[lev][idx].define(ba, dm, ncomp_extra, ngrow);
381  }
382  bool regrid_forces_file_read = true;
383  WeatherDataInterpolation(lev, t_new[0],z_phys_nd, regrid_forces_file_read);
384  }
385 
386 
387 #ifdef ERF_USE_WW3_COUPLING
388  // create a new BoxArray and DistributionMapping for a MultiFab with 1 box
389  BoxArray ba_onegrid(geom[lev].Domain());
390  BoxList bl2d_onegrid = ba_onegrid.boxList();
391  for (auto& b : bl2d_onegrid) {
392  b.setRange(2,0);
393  }
394  BoxArray ba2d_onegrid(std::move(bl2d_onegrid));
395  Vector<int> pmap;
396  pmap.resize(1);
397  pmap[0]=0;
398  DistributionMapping dm_onegrid(ba2d_onegrid);
399  dm_onegrid.define(pmap);
400 
401  Hwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
402  Lwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
403 
404  BoxList bl2d_wave = ba.boxList();
405  for (auto& b : bl2d_wave) {
406  b.setRange(2,0);
407  }
408  BoxArray ba2d_wave(std::move(bl2d_wave));
409 
410  Hwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
411  Lwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
412 
413  std::cout<<ba_onegrid<<std::endl;
414  std::cout<<ba2d_onegrid<<std::endl;
415  std::cout<<dm_onegrid<<std::endl;
416 #endif
417 
418 
419  //*********************************************************
420  // Radiation heating source terms
421  //*********************************************************
422  if (solverChoice.rad_type != RadiationType::None)
423  {
424  qheating_rates[lev] = std::make_unique<MultiFab>(ba, dm, 2, 0);
425  rad_fluxes[lev] = std::make_unique<MultiFab>(ba, dm, 4, 0);
426  qheating_rates[lev]->setVal(0.);
427  rad_fluxes[lev]->setVal(0.);
428  }
429 
430  //*********************************************************
431  // Radiation fluxes for coupling to LSM
432  //*********************************************************
433 
434  // NOTE: Finer levels do not need to coincide with the bottom domain boundary
435  // at k=0. We make slabs here with the kmin for a given box. Therefore,
436  // care must be taken before applying these fluxes to an LSM model. For
437 
438  // Radiative fluxes for LSM
439  if (solverChoice.lsm_type != LandSurfaceType::None &&
440  solverChoice.rad_type != RadiationType::None)
441  {
442  BoxList m_bl = ba.boxList();
443  for (auto& b : m_bl) {
444  int kmin = b.smallEnd(2);
445  b.setRange(2,kmin);
446  }
447  BoxArray m_ba(std::move(m_bl));
448 
449  sw_lw_fluxes[lev] = std::make_unique<MultiFab>(m_ba, dm, 6, 0); // DIR/DIF VIS/NIR (4), NET SW (1), LW (1)
450  solar_zenith[lev] = std::make_unique<MultiFab>(m_ba, dm, 1, 0);
451 
452  sw_lw_fluxes[lev]->setVal(0.);
453  solar_zenith[lev]->setVal(0.);
454  }
455 
456  //*********************************************************
457  // Turbulent perturbation region initialization
458  //*********************************************************
459  if (solverChoice.pert_type == PerturbationType::Source ||
460  solverChoice.pert_type == PerturbationType::Direct ||
461  solverChoice.pert_type == PerturbationType::CPM)
462  {
463  amrex::Box bnd_bx = ba.minimalBox();
465  turbPert.init_tpi(lev, bnd_bx.smallEnd(), bnd_bx.bigEnd(), geom[lev].CellSizeArray(),
466  ba, dm, ngrow_state, pp_prefix, refRatio(), max_level);
467  }
468 
469  //
470  // Define the land mask here and set it to all land by default
471  // NOTE: the logic below will BREAK if we have any grids not touching the bottom boundary
472  //
473  {
474  lmask_lev[lev].resize(1);
475  auto ngv = lev_new[Vars::cons].nGrowVect(); ngv[2] = 0;
476  BoxList bl2d_mask = ba.boxList();
477  for (auto& b : bl2d_mask) {
478  b.setRange(2,0);
479  }
480  BoxArray ba2d_mask(std::move(bl2d_mask));
481  lmask_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
482  lmask_lev[lev][0]->setVal(1);
483  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
484 
485  land_type_lev[lev].resize(1);
486  land_type_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
487  land_type_lev[lev][0]->setVal(0);
488  land_type_lev[lev][0]->FillBoundary(geom[lev].periodicity());
489 
490  soil_type_lev[lev].resize(1);
491  soil_type_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
492  soil_type_lev[lev][0]->setVal(0);
493  soil_type_lev[lev][0]->FillBoundary(geom[lev].periodicity());
494 
495  urb_frac_lev[lev].resize(1);
496  urb_frac_lev[lev][0] = std::make_unique<MultiFab>(ba2d_mask,dm,1,ngv);
497  urb_frac_lev[lev][0]->setVal(1.0);
498  urb_frac_lev[lev][0]->FillBoundary(geom[lev].periodicity());
499  }
500 
501  // Read in tables needed for windfarm simulations
502  // fill in Nturb multifab - number of turbines in each mesh cell
503  // write out the vtk files for wind turbine location and/or
504  // actuator disks
505  #ifdef ERF_USE_WINDFARM
506  //init_windfarm(lev);
507  #endif
508 
509  if (lev > 0) {
510  fine_mask[lev] = std::make_unique<MultiFab>(grids[lev-1], dmap[lev-1], 1, 0);
511  build_fine_mask(lev, *fine_mask[lev].get());
512  }
513 }
@ num
Definition: ERF_DataStruct.H:24
#define NDRY
Definition: ERF_IndexDefines.H:13
void init_default_zphys(int, const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:15
void build_fine_mask(int lev, amrex::MultiFab &fine_mask)
Definition: ERF_VolWgtSum.cpp:125
static AMREX_FORCE_INLINE int ComputeGhostCells(const SolverChoice &sc)
Definition: ERF.H:1346
amrex::EBFArrayBoxFactory const & EBFactory(int lev) const noexcept
Definition: ERF.H:1625
@ num_comps
Definition: ERF_IndexDefines.H:68
@ gpz
Definition: ERF_IndexDefines.H:152
@ gpy
Definition: ERF_IndexDefines.H:151
@ gpx
Definition: ERF_IndexDefines.H:150
bool test_mapfactor
Definition: ERF_DataStruct.H:1065
void init_tpi_type(const PerturbationType &pert_type)
Definition: ERF_TurbPertStruct.H:28
void init_tpi(const int lev, const amrex::IntVect &valid_box_lo, const amrex::IntVect &valid_box_hi, const amrex::GpuArray< amrex::Real, 3 > dx, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, const int ngrow_state, std::string pp_prefix, const amrex::Vector< amrex::IntVect > refRatio, const int max_level)
Definition: ERF_TurbPertStruct.H:45
Here is the call graph for this function:

◆ init_thin_body()

void ERF::init_thin_body ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
851 {
852  //********************************************************************************************
853  // Thin immersed body
854  // *******************************************************************************************
855 #if 0
856  if ((solverChoice.advChoice.zero_xflux.size() > 0) ||
857  (solverChoice.advChoice.zero_yflux.size() > 0) ||
858  (solverChoice.advChoice.zero_zflux.size() > 0))
859  {
860  overset_imask[lev] = std::make_unique<iMultiFab>(ba,dm,1,0);
861  overset_imask[lev]->setVal(1); // == value is unknown (to be solved)
862  }
863 #endif
864 
865  if (solverChoice.advChoice.zero_xflux.size() > 0) {
866  amrex::Print() << "Setting up thin immersed body for "
867  << solverChoice.advChoice.zero_xflux.size() << " xfaces" << std::endl;
868  BoxArray ba_xf(ba);
869  ba_xf.surroundingNodes(0);
870  thin_xforce[lev] = std::make_unique<MultiFab>(ba_xf,dm,1,0);
871  thin_xforce[lev]->setVal(0.0);
872  xflux_imask[lev] = std::make_unique<iMultiFab>(ba_xf,dm,1,0);
873  xflux_imask[lev]->setVal(1);
874  for ( MFIter mfi(*xflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
875  {
876  Array4<int> const& imask_arr = xflux_imask[lev]->array(mfi);
877  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
878  Box xbx = mfi.nodaltilebox(0);
879  for (int iv=0; iv < solverChoice.advChoice.zero_xflux.size(); ++iv) {
880  const auto& faceidx = solverChoice.advChoice.zero_xflux[iv];
881  if ((faceidx[0] >= xbx.smallEnd(0)) && (faceidx[0] <= xbx.bigEnd(0)) &&
882  (faceidx[1] >= xbx.smallEnd(1)) && (faceidx[1] <= xbx.bigEnd(1)) &&
883  (faceidx[2] >= xbx.smallEnd(2)) && (faceidx[2] <= xbx.bigEnd(2)))
884  {
885  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
886  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
887  //imask_cell_arr(faceidx[0]-1,faceidx[1],faceidx[2]) = 0;
888  amrex::AllPrint() << " mask xface at " << faceidx << std::endl;
889  }
890  }
891  }
892  } else {
893  thin_xforce[lev] = nullptr;
894  xflux_imask[lev] = nullptr;
895  }
896 
897  if (solverChoice.advChoice.zero_yflux.size() > 0) {
898  amrex::Print() << "Setting up thin immersed body for "
899  << solverChoice.advChoice.zero_yflux.size() << " yfaces" << std::endl;
900  BoxArray ba_yf(ba);
901  ba_yf.surroundingNodes(1);
902  thin_yforce[lev] = std::make_unique<MultiFab>(ba_yf,dm,1,0);
903  thin_yforce[lev]->setVal(0.0);
904  yflux_imask[lev] = std::make_unique<iMultiFab>(ba_yf,dm,1,0);
905  yflux_imask[lev]->setVal(1);
906  for ( MFIter mfi(*yflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
907  {
908  Array4<int> const& imask_arr = yflux_imask[lev]->array(mfi);
909  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
910  Box ybx = mfi.nodaltilebox(1);
911  for (int iv=0; iv < solverChoice.advChoice.zero_yflux.size(); ++iv) {
912  const auto& faceidx = solverChoice.advChoice.zero_yflux[iv];
913  if ((faceidx[0] >= ybx.smallEnd(0)) && (faceidx[0] <= ybx.bigEnd(0)) &&
914  (faceidx[1] >= ybx.smallEnd(1)) && (faceidx[1] <= ybx.bigEnd(1)) &&
915  (faceidx[2] >= ybx.smallEnd(2)) && (faceidx[2] <= ybx.bigEnd(2)))
916  {
917  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
918  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
919  //imask_cell_arr(faceidx[0],faceidx[1]-1,faceidx[2]) = 0;
920  amrex::AllPrint() << " mask yface at " << faceidx << std::endl;
921  }
922  }
923  }
924  } else {
925  thin_yforce[lev] = nullptr;
926  yflux_imask[lev] = nullptr;
927  }
928 
929  if (solverChoice.advChoice.zero_zflux.size() > 0) {
930  amrex::Print() << "Setting up thin immersed body for "
931  << solverChoice.advChoice.zero_zflux.size() << " zfaces" << std::endl;
932  BoxArray ba_zf(ba);
933  ba_zf.surroundingNodes(2);
934  thin_zforce[lev] = std::make_unique<MultiFab>(ba_zf,dm,1,0);
935  thin_zforce[lev]->setVal(0.0);
936  zflux_imask[lev] = std::make_unique<iMultiFab>(ba_zf,dm,1,0);
937  zflux_imask[lev]->setVal(1);
938  for ( MFIter mfi(*zflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
939  {
940  Array4<int> const& imask_arr = zflux_imask[lev]->array(mfi);
941  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
942  Box zbx = mfi.nodaltilebox(2);
943  for (int iv=0; iv < solverChoice.advChoice.zero_zflux.size(); ++iv) {
944  const auto& faceidx = solverChoice.advChoice.zero_zflux[iv];
945  if ((faceidx[0] >= zbx.smallEnd(0)) && (faceidx[0] <= zbx.bigEnd(0)) &&
946  (faceidx[1] >= zbx.smallEnd(1)) && (faceidx[1] <= zbx.bigEnd(1)) &&
947  (faceidx[2] >= zbx.smallEnd(2)) && (faceidx[2] <= zbx.bigEnd(2)))
948  {
949  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
950  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
951  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]-1) = 0;
952  amrex::AllPrint() << " mask zface at " << faceidx << std::endl;
953  }
954  }
955  }
956  } else {
957  thin_zforce[lev] = nullptr;
958  zflux_imask[lev] = nullptr;
959  }
960 }
amrex::Vector< amrex::IntVect > zero_yflux
Definition: ERF_AdvStruct.H:438
amrex::Vector< amrex::IntVect > zero_xflux
Definition: ERF_AdvStruct.H:437
amrex::Vector< amrex::IntVect > zero_zflux
Definition: ERF_AdvStruct.H:439

◆ init_uniform()

void ERF::init_uniform ( int  lev)
private

Use problem-specific reference density and temperature to set the background state to a uniform value.

Parameters
levInteger specifying the current level
18 {
19  auto& lev_new = vars_new[lev];
20  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
21  const Box &gbx = mfi.growntilebox(1);
22  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
23  prob->init_uniform(gbx, cons_arr);
24  }
25 }

◆ init_zphys()

void ERF::init_zphys ( int  lev,
amrex::Real  time 
)
642 {
643  if (solverChoice.init_type != InitType::WRFInput && solverChoice.init_type != InitType::Metgrid)
644  {
645  if (lev > 0) {
646  //
647  // First interpolate from coarser level if there is one
648  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
649  // have been pre-filled - this includes ghost cells both inside and outside
650  // the domain
651  //
652  InterpFromCoarseLevel(*z_phys_nd[lev], z_phys_nd[lev]->nGrowVect(),
653  IntVect(0,0,0), // do NOT fill ghost cells outside the domain
654  *z_phys_nd[lev-1], 0, 0, 1,
655  geom[lev-1], geom[lev],
656  refRatio(lev-1), &node_bilinear_interp,
658  }
659 
660  int ngrow = ComputeGhostCells(solverChoice) + 2;
661  Box bx(surroundingNodes(Geom(lev).Domain())); bx.grow(ngrow);
662  FArrayBox terrain_fab(makeSlab(bx,2,0),1);
663 
664  //
665  // If we are using fitted mesh then we use the surface as defined above
666  // If we are not using fitted mesh but are using z_levels, we still need z_phys (for now)
667  // but we need to use a flat terrain for the mesh itself (the EB data has already been made
668  // from the correct terrain)
669  //
670  if (solverChoice.terrain_type != TerrainType::StaticFittedMesh &&
671  solverChoice.terrain_type != TerrainType::MovingFittedMesh) {
672  terrain_fab.template setVal<RunOn::Device>(0.0);
673  } else {
674  //
675  // Fill the values of the terrain height at k=0 only
676  //
677  prob->init_terrain_surface(geom[lev],terrain_fab,time);
678  }
679 
680  for (MFIter mfi(*z_phys_nd[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
681  {
682  Box isect = terrain_fab.box() & (*z_phys_nd[lev])[mfi].box();
683  if (!isect.isEmpty()) {
684  (*z_phys_nd[lev])[mfi].template copy<RunOn::Device>(terrain_fab,isect,0,isect,0,1);
685  }
686  }
687 
689 
690  z_phys_nd[lev]->FillBoundary(geom[lev].periodicity());
691 
692  if (lev == 0) {
693  Real zmax = z_phys_nd[0]->max(0,0,false);
694  Real rel_diff = (zmax - zlevels_stag[0][zlevels_stag[0].size()-1]) / zmax;
695  if (rel_diff < 1.e-8) {
696  amrex::Print() << "max of zphys_nd " << zmax << std::endl;
697  amrex::Print() << "max of zlevels " << zlevels_stag[0][zlevels_stag[0].size()-1] << std::endl;
698  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(rel_diff < 1.e-8, "Terrain is taller than domain top!");
699  }
700  } // lev == 0
701 
702  } else {
703  // NOTE: If a WRFInput file is NOT provided for a finer level,
704  // we simply interpolate from the coarse. This is necessary
705  // since we average_down the terrain (ERF_MakeNewLevel.cpp L351).
706  // If a WRFInput file IS present, it overwrites the terrain data.
707  if (lev > 0) {
708  //
709  // First interpolate from coarser level if there is one
710  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
711  // have been pre-filled - this includes ghost cells both inside and outside
712  // the domain
713  //
714  InterpFromCoarseLevel(*z_phys_nd[lev], z_phys_nd[lev]->nGrowVect(),
715  z_phys_nd[lev]->nGrowVect(), // DO fill ghost cells outside the domain
716  *z_phys_nd[lev-1], 0, 0, 1,
717  geom[lev-1], geom[lev],
718  refRatio(lev-1), &node_bilinear_interp,
720  }
721  } // init_type
722 
723  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
724  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
725  terrain_blanking[lev]->setVal(1.0);
726  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ComputeGhostCells(solverChoice) + 2);
727  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
728  init_immersed_forcing(lev); // needed for real cases
729  }
730 
731  // Compute the min dz and pass to the micro model
732  Real dzmin = get_dzmin_terrain(*z_phys_nd[lev]);
733  micro->Set_dzmin(lev, dzmin);
734 }
Real get_dzmin_terrain(MultiFab &z_phys_nd)
Definition: ERF_TerrainMetrics.cpp:649
void make_terrain_fitted_coords(int lev, const Geometry &geom, MultiFab &z_phys_nd, Vector< Real > const &z_levels_h, GpuArray< ERF_BC, AMREX_SPACEDIM *2 > &phys_bc_type)
Definition: ERF_TerrainMetrics.cpp:46
Here is the call graph for this function:

◆ InitData()

void ERF::InitData ( )
919 {
920  BL_PROFILE_VAR("ERF::InitData()", InitData);
921  InitData_pre();
922  InitData_post();
923  BL_PROFILE_VAR_STOP(InitData);
924 }
void InitData_pre()
Definition: ERF.cpp:927
void InitData_post()
Definition: ERF.cpp:951
void InitData()
Definition: ERF.cpp:918

Referenced by main().

Here is the caller graph for this function:

◆ InitData_post()

void ERF::InitData_post ( )
952 {
954  {
955  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(finest_level == 0,
956  "Thin immersed body with refinement not currently supported.");
957  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
958  amrex::Print() << "NOTE: Thin immersed body with non-constant dz has not been tested." << std::endl;
959  }
960  }
961 
962  if (!restart_chkfile.empty()) {
963  restart();
964  }
965  //
966  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one and if two way coupling
967  //
968  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
969  if (solverChoice.coupling_type == CouplingType::TwoWay) {
970  for (int crse_lev = finest_level-1; crse_lev >= 0; crse_lev--) {
971  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
972  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
973  }
974  }
975  for (int crse_lev = finest_level-1; crse_lev >= 0; crse_lev--) {
976  detJ_cc[crse_lev]->FillBoundary(geom[crse_lev].periodicity());
977  z_phys_cc[crse_lev]->FillBoundary(geom[crse_lev].periodicity());
978  }
979  }
980 
981 #ifdef ERF_IMPLICIT_W
982  if (SolverChoice::mesh_type == MeshType::VariableDz &&
985  solverChoice.vert_implicit_fac[2] > 0 ) &&
987  {
988  Warning("Doing implicit solve for u, v, and w with terrain -- this has not been tested");
989  }
990 #endif
991 
992  //
993  // Copy vars_new into vars_old, then use vars_old to fill covered cells in vars_new during AverageDown
994  //
995  if (SolverChoice::terrain_type == TerrainType::EB) {
996  for (int lev = 0; lev <= finest_level; lev++) {
997  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
998  MultiFab::Copy(vars_old[lev][Vars::cons],vars_new[lev][Vars::cons],0,0,ncomp_cons,vars_new[lev][Vars::cons].nGrowVect());
999  }
1000  }
1001 
1002  if (restart_chkfile.empty()) {
1003  if (solverChoice.coupling_type == CouplingType::TwoWay) {
1004  AverageDown();
1005  }
1006  }
1007 
1008 #ifdef ERF_USE_PARTICLES
1009  if (restart_chkfile.empty()) {
1010  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1012  Warning("Tight coupling has not been tested with Lagrangian microphysics");
1013  }
1014 
1015  for (int lev = 0; lev <= finest_level; lev++) {
1016  dynamic_cast<LagrangianMicrophysics&>(*micro).initParticles(z_phys_nd[lev]);
1017  }
1018  }
1019  }
1020 #endif
1021 
1022  if (!restart_chkfile.empty()) { // Restart from a checkpoint
1023 
1024  // Create the physbc objects for {cons, u, v, w, base state}
1025  // We fill the additional base state ghost cells just in case we have read the old format
1026  for (int lev(0); lev <= finest_level; ++lev) {
1027  make_physbcs(lev);
1028  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
1029  }
1030 
1032  for (int lev(0); lev <= finest_level; ++lev) {
1033  m_forest_drag[lev]->define_drag_field(grids[lev], dmap[lev], geom[lev],
1034  z_phys_cc[lev].get(), z_phys_nd[lev].get());
1035  }
1036  }
1037 
1038 #ifdef ERF_USE_NETCDF
1039  //
1040  // Create the needed bdy_data_xlo etc ... since we don't read it in from checkpoint any more
1041  // This follows init_from_wrfinput()
1042  //
1043  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
1044  if (solverChoice.use_real_bcs) {
1045 
1046  if ( geom[0].isPeriodic(0) || geom[0].isPeriodic(1) ) {
1047  amrex::Error("Cannot set periodic lateral boundary conditions when reading in real boundary values");
1048  }
1049 
1050  bdy_time_interval = read_times_from_wrfbdy(nc_bdy_file,
1051  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
1052  start_bdy_time);
1053  Real dT = bdy_time_interval;
1054 
1055  int n_time_old = static_cast<int>(t_new[0] / dT);
1056 
1057  int lev = 0;
1058 
1059  int ntimes = std::min(n_time_old+3, static_cast<int>(bdy_data_xlo.size()));
1060 
1061  for (int itime = n_time_old; itime < ntimes; itime++)
1062  {
1063  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
1064  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
1065  real_width);
1066  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
1067  *mf_MUB, *mf_C1H, *mf_C2H,
1069  geom[lev], use_moist);
1070  } // itime
1071  } // use_real_bcs
1072 
1073  if (!nc_low_file.empty())
1074  {
1075  low_time_interval = read_times_from_wrflow(nc_low_file,
1076  low_data_zlo,
1077  start_low_time);
1078  Real dT = low_time_interval;
1079 
1080  int lev = 0;
1081  sst_lev[lev].resize(low_data_zlo.size());
1082  tsk_lev[lev].resize(low_data_zlo.size());
1083 
1084  int n_time_old = static_cast<int>(t_new[0] / dT);
1085 
1086  int ntimes = std::min(n_time_old+2, static_cast<int>(low_data_zlo.size()));
1087 
1088  for (int itime = n_time_old; itime < ntimes; itime++)
1089  {
1090  read_from_wrflow(itime, nc_low_file, geom[lev].Domain(), low_data_zlo);
1091 
1092  // Need to read PSFC
1093  FArrayBox NC_fab_var_file;
1094  for (int idx = 0; idx < num_boxes_at_level[lev]; idx++) {
1095  int success, use_theta_m;
1096  read_from_wrfinput(lev, boxes_at_level[lev][idx], nc_init_file[lev][0],
1097  NC_fab_var_file, "PSFC", geom[lev],
1098  use_theta_m, success);
1099  auto& var_fab = NC_fab_var_file;
1100 #ifdef _OPENMP
1101 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1102 #endif
1103  for ( MFIter mfi(*mf_PSFC[lev], false); mfi.isValid(); ++mfi )
1104  {
1105  FArrayBox &cur_fab = (*mf_PSFC[lev])[mfi];
1106  cur_fab.template copy<RunOn::Device>(var_fab, 0, 0, 1);
1107  }
1108  var_fab.clear();
1109  }
1110 
1111  update_sst_tsk(itime, geom[lev], ba2d[lev],
1112  sst_lev[lev], tsk_lev[lev],
1113  m_SurfaceLayer, low_data_zlo,
1114  vars_new[lev][Vars::cons], *mf_PSFC[lev],
1115  solverChoice.rdOcp, lmask_lev[lev][0], use_moist);
1116  } // itime
1117  }
1118 #endif
1119  } // end restart
1120 
1121 #ifdef ERF_USE_PARTICLES
1122  /* If using a Lagrangian microphysics model, its particle container has now been
1123  constructed and initialized (calls to micro->Init). So, add its pointer to
1124  ERF::particleData and remove its name from list of unallocated particle containers. */
1125  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1126  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1127  const auto& pc_ptr( dynamic_cast<LagrangianMicrophysics&>(*micro).getParticleContainer() );
1128  particleData.pushBack(pc_name, pc_ptr);
1129  particleData.getNamesUnalloc().remove(pc_name);
1130  }
1131 #endif
1132 
1133  if (input_bndry_planes) {
1134  // Read the "time.dat" file to know what data is available
1135  m_r2d->read_time_file();
1136 
1137  // We haven't populated dt yet, set to 0 to ensure assert doesn't crash
1138  Real dt_dummy = 0.0;
1139  m_r2d->read_input_files(t_new[0],dt_dummy,m_bc_extdir_vals);
1140  }
1141 
1143  {
1144  h_rhotheta_src.resize(max_level+1, Vector<Real>(0));
1145  d_rhotheta_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1146  for (int lev = 0; lev <= finest_level; lev++) {
1147  const int domlen = geom[lev].Domain().length(2);
1148  h_rhotheta_src[lev].resize(domlen, 0.0_rt);
1149  d_rhotheta_src[lev].resize(domlen, 0.0_rt);
1150  prob->update_rhotheta_sources(t_new[0],
1151  h_rhotheta_src[lev], d_rhotheta_src[lev],
1152  geom[lev], z_phys_cc[lev]);
1153  }
1154  }
1155 
1157  {
1158  h_u_geos.resize(max_level+1, Vector<Real>(0));
1159  d_u_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1160  h_v_geos.resize(max_level+1, Vector<Real>(0));
1161  d_v_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1162  for (int lev = 0; lev <= finest_level; lev++) {
1163  const int domlen = geom[lev].Domain().length(2);
1164  h_u_geos[lev].resize(domlen, 0.0_rt);
1165  d_u_geos[lev].resize(domlen, 0.0_rt);
1166  h_v_geos[lev].resize(domlen, 0.0_rt);
1167  d_v_geos[lev].resize(domlen, 0.0_rt);
1169  prob->update_geostrophic_profile(t_new[0],
1170  h_u_geos[lev], d_u_geos[lev],
1171  h_v_geos[lev], d_v_geos[lev],
1172  geom[lev], z_phys_cc[lev]);
1173  } else {
1174  if (SolverChoice::mesh_type == MeshType::VariableDz) {
1175  amrex::Print() << "Note: 1-D geostrophic wind profile input is not defined for real terrain" << std::endl;
1176  }
1178  h_u_geos[lev], d_u_geos[lev],
1179  h_v_geos[lev], d_v_geos[lev],
1180  geom[lev],
1181  zlevels_stag[0]);
1182  }
1183  }
1184  }
1185 
1187  {
1188  h_rhoqt_src.resize(max_level+1, Vector<Real>(0));
1189  d_rhoqt_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1190  for (int lev = 0; lev <= finest_level; lev++) {
1191  const int domlen = geom[lev].Domain().length(2);
1192  h_rhoqt_src[lev].resize(domlen, 0.0_rt);
1193  d_rhoqt_src[lev].resize(domlen, 0.0_rt);
1194  prob->update_rhoqt_sources(t_new[0],
1195  h_rhoqt_src[lev], d_rhoqt_src[lev],
1196  geom[lev], z_phys_cc[lev]);
1197  }
1198  }
1199 
1201  {
1202  h_w_subsid.resize(max_level+1, Vector<Real>(0));
1203  d_w_subsid.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1204  for (int lev = 0; lev <= finest_level; lev++) {
1205  const int domlen = geom[lev].Domain().length(2) + 1; // lives on z-faces
1206  h_w_subsid[lev].resize(domlen, 0.0_rt);
1207  d_w_subsid[lev].resize(domlen, 0.0_rt);
1208  prob->update_w_subsidence(t_new[0],
1209  h_w_subsid[lev], d_w_subsid[lev],
1210  geom[lev], z_phys_nd[lev]);
1211  }
1212  }
1213 
1216  {
1217  initRayleigh();
1218  if (solverChoice.init_type == InitType::Input_Sounding)
1219  {
1220  // Overwrite ubar, vbar, and thetabar with input profiles;
1221  // wbar is assumed to be 0. Note: the tau coefficient set by
1222  // prob->erf_init_rayleigh() is still used
1223  bool restarting = (!restart_chkfile.empty());
1224  setRayleighRefFromSounding(restarting);
1225  }
1226  }
1227 
1228  // Read in sponge data from input file
1229  if(solverChoice.spongeChoice.sponge_type == "input_sponge")
1230  {
1231  initSponge();
1232  bool restarting = (!restart_chkfile.empty());
1233  setSpongeRefFromSounding(restarting);
1234  }
1235 
1236  if (solverChoice.pert_type == PerturbationType::Source ||
1237  solverChoice.pert_type == PerturbationType::Direct ||
1238  solverChoice.pert_type == PerturbationType::CPM) {
1239  if (is_it_time_for_action(istep[0], t_new[0], dt[0], pert_interval, -1.)) {
1240  turbPert.debug(t_new[0]);
1241  }
1242  }
1243 
1244  // We only write the file at level 0 for now
1245  if (output_bndry_planes)
1246  {
1247  // Create the WriteBndryPlanes object so we can handle writing of boundary plane data
1248  m_w2d = std::make_unique<WriteBndryPlanes>(grids,geom);
1249 
1250  Real time = 0.;
1251  if (time >= bndry_output_planes_start_time) {
1252  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
1253  m_w2d->write_planes(0, time, vars_new, is_moist);
1254  }
1255  }
1256 
1257  // Fill boundary conditions in vars_new
1258  for (int lev = 0; lev <= finest_level; ++lev)
1259  {
1260  auto& lev_new = vars_new[lev];
1261 
1262  // ***************************************************************************
1263  // Physical bc's at domain boundary
1264  // ***************************************************************************
1265  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
1266  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
1267 
1268  int ncomp_cons = lev_new[Vars::cons].nComp();
1269  bool do_fb = true;
1270 
1271 #ifdef ERF_USE_NETCDF
1272  // We call this here because it is an ERF routine
1273  if (solverChoice.use_real_bcs && (lev==0)) {
1274  int icomp_cons = 0;
1275  bool cons_only = false;
1276  Vector<MultiFab*> mfs_vec = {&lev_new[Vars::cons],&lev_new[Vars::xvel],
1277  &lev_new[Vars::yvel],&lev_new[Vars::zvel]};
1279  fill_from_realbdy_upwind(mfs_vec,t_new[lev],cons_only,icomp_cons,
1280  ncomp_cons,ngvect_cons,ngvect_vels);
1281  } else {
1282  fill_from_realbdy(mfs_vec,t_new[lev],cons_only,icomp_cons,
1283  ncomp_cons,ngvect_cons,ngvect_vels);
1284  }
1285  do_fb = false;
1286  }
1287 #endif
1288 
1289  (*physbcs_cons[lev])(lev_new[Vars::cons],lev_new[Vars::xvel],lev_new[Vars::yvel],0,ncomp_cons,
1290  ngvect_cons,t_new[lev],BCVars::cons_bc,do_fb);
1291  ( *physbcs_u[lev])(lev_new[Vars::xvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1292  ngvect_vels,t_new[lev],BCVars::xvel_bc,do_fb);
1293  ( *physbcs_v[lev])(lev_new[Vars::yvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1294  ngvect_vels,t_new[lev],BCVars::yvel_bc,do_fb);
1295  ( *physbcs_w[lev])(lev_new[Vars::zvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1296  ngvect_vels,t_new[lev],BCVars::zvel_bc,do_fb);
1297  }
1298 
1299  //
1300  // If we are starting from scratch, we have the option to project the initial velocity field
1301  // regardless of how we initialized. Note that project_initial_velocity operates on vars_new.
1302  // pp_inc is used as scratch space here; we zero it out after the projection
1303  //
1304  if (restart_chkfile == "")
1305  {
1306  for (int lev = 0; lev <= finest_level; ++lev)
1307  {
1308  if (solverChoice.project_initial_velocity[lev] == 1) {
1309  Real dummy_dt = 1.0;
1310  if (verbose > 0) {
1311  amrex::Print() << "Projecting initial velocity field at level " << lev << std::endl;
1312  }
1313 
1314  project_initial_velocity(lev, t_new[lev], dummy_dt);
1315 
1316  pp_inc[lev].setVal(0.);
1317  gradp[lev][GpVars::gpx].setVal(0.);
1318  gradp[lev][GpVars::gpy].setVal(0.);
1319  gradp[lev][GpVars::gpz].setVal(0.);
1320  } // project
1321  } // lev
1322  }
1323 
1324  // Copy from new into old just in case (after filling boundary conditions and possibly projecting)
1325  for (int lev = 0; lev <= finest_level; ++lev)
1326  {
1327  int nc = vars_new[lev][Vars::cons].nComp();
1328 
1329  MultiFab::Copy(vars_old[lev][Vars::cons],vars_new[lev][Vars::cons],0,0,nc,vars_new[lev][Vars::cons].nGrowVect());
1330  MultiFab::Copy(vars_old[lev][Vars::xvel],vars_new[lev][Vars::xvel],0,0, 1,vars_new[lev][Vars::xvel].nGrowVect());
1331  MultiFab::Copy(vars_old[lev][Vars::yvel],vars_new[lev][Vars::yvel],0,0, 1,vars_new[lev][Vars::yvel].nGrowVect());
1332  MultiFab::Copy(vars_old[lev][Vars::zvel],vars_new[lev][Vars::zvel],0,0, 1,vars_new[lev][Vars::zvel].nGrowVect());
1333  }
1334 
1335  // Compute the minimum dz in the domain at each level (to be used for setting the timestep)
1336  dz_min.resize(max_level+1);
1337  for (int lev = 0; lev <= finest_level; ++lev)
1338  {
1339  dz_min[lev] = geom[lev].CellSize(2);
1340  if ( SolverChoice::mesh_type != MeshType::ConstantDz ) {
1341  dz_min[lev] *= (*detJ_cc[lev]).min(0);
1342  }
1343  }
1344 
1345  // We don't need to recompute dt[lev] on restart because we read it in from the checkpoint file.
1346  if (restart_chkfile.empty()) {
1347  ComputeDt();
1348  }
1349 
1350  // Check the viscous limit
1354  Real delta = std::min({geom[finest_level].CellSize(0),
1355  geom[finest_level].CellSize(1),
1356  dz_min[finest_level]});
1357  if (dc.dynamic_viscosity == 0) {
1358  Print() << "Note: Molecular diffusion specified but dynamic_viscosity has not been specified" << std::endl;
1359  } else {
1360  Real nu = dc.dynamic_viscosity / dc.rho0_trans;
1361  Real viscous_limit = 2.0 * delta*delta / nu;
1362  Print() << "smallest grid spacing at level " << finest_level << " = " << delta << std::endl;
1363  Print() << "dt at level " << finest_level << " = " << dt[finest_level] << std::endl;
1364  Print() << "Viscous CFL is " << dt[finest_level] / viscous_limit << std::endl;
1365  if (fixed_dt[finest_level] >= viscous_limit) {
1366  Warning("Specified fixed_dt is above the viscous limit");
1367  } else if (dt[finest_level] >= viscous_limit) {
1368  Warning("Adaptive dt based on convective CFL only is above the viscous limit");
1369  }
1370  }
1371  }
1372 
1373  // Fill ghost cells/faces
1374  for (int lev = 0; lev <= finest_level; ++lev)
1375  {
1376  if (lev > 0 && cf_width >= 0) {
1378  }
1379 
1380  auto& lev_new = vars_new[lev];
1381 
1382  //
1383  // Fill boundary conditions -- not sure why we need this here
1384  //
1385  bool fillset = false;
1386  if (lev == 0) {
1387  FillPatchCrseLevel(lev, t_new[lev],
1388  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]});
1389  } else {
1390  FillPatchFineLevel(lev, t_new[lev],
1391  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]},
1392  {&lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
1393  base_state[lev], base_state[lev],
1394  fillset);
1395  }
1396 
1397  //
1398  // We do this here to make sure level (lev-1) boundary conditions are filled
1399  // before we interpolate to level (lev) ghost cells
1400  //
1401  if (lev < finest_level) {
1402  auto& lev_old = vars_old[lev];
1403  MultiFab::Copy(lev_old[Vars::cons],lev_new[Vars::cons],0,0,lev_old[Vars::cons].nComp(),lev_old[Vars::cons].nGrowVect());
1404  MultiFab::Copy(lev_old[Vars::xvel],lev_new[Vars::xvel],0,0,lev_old[Vars::xvel].nComp(),lev_old[Vars::xvel].nGrowVect());
1405  MultiFab::Copy(lev_old[Vars::yvel],lev_new[Vars::yvel],0,0,lev_old[Vars::yvel].nComp(),lev_old[Vars::yvel].nGrowVect());
1406  MultiFab::Copy(lev_old[Vars::zvel],lev_new[Vars::zvel],0,0,lev_old[Vars::zvel].nComp(),lev_old[Vars::zvel].nGrowVect());
1407  }
1408 
1409  //
1410  // We fill the ghost cell values of the base state in case it wasn't done in the initialization
1411  //
1412  base_state[lev].FillBoundary(geom[lev].periodicity());
1413 
1414  // For moving terrain only
1415  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
1416  MultiFab::Copy(base_state_new[lev],base_state[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
1417  base_state_new[lev].FillBoundary(geom[lev].periodicity());
1418  }
1419 
1420  }
1421 
1422  // Allow idealized cases over water, used to set lmask
1423  ParmParse pp("erf");
1424  int is_land;
1425  for (int lev = 0; lev <= finest_level; ++lev)
1426  {
1427  if (pp.query("is_land", is_land, lev)) {
1428  if (is_land == 1) {
1429  amrex::Print() << "Level " << lev << " is land" << std::endl;
1430  } else if (is_land == 0) {
1431  amrex::Print() << "Level " << lev << " is water" << std::endl;
1432  } else {
1433  Error("is_land should be 0 or 1");
1434  }
1435  lmask_lev[lev][0]->setVal(is_land);
1436  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
1437  }
1438  }
1439 
1440  // If lev > 0, we need to fill bc's by interpolation from coarser grid
1441  for (int lev = 1; lev <= finest_level; ++lev)
1442  {
1443  Interp2DArrays(lev,grids[lev],dmap[lev]);
1444  } // lev
1445 
1446 #ifdef ERF_USE_WW3_COUPLING
1447  int my_lev = 0;
1448  amrex::Print() << " About to call send_to_ww3 from ERF.cpp" << std::endl;
1449  send_to_ww3(my_lev);
1450  amrex::Print() << " About to call read_waves from ERF.cpp" << std::endl;
1451  read_waves(my_lev);
1452  // send_to_ww3(my_lev);
1453 #endif
1454 
1455  // Configure SurfaceLayer params if used
1456  // NOTE: we must set up the MOST routine after calling FillPatch
1457  // in order to have lateral ghost cells filled (MOST + terrain interp).
1458  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1459  {
1461  (solverChoice.turbChoice[0].les_type != LESType::None) ||
1462  (solverChoice.turbChoice[0].rans_type != RANSType::None) ||
1463  (solverChoice.turbChoice[0].pbl_type != PBLType::None) );
1464  AMREX_ALWAYS_ASSERT(has_diff);
1465 
1466  bool rotate = solverChoice.use_rotate_surface_flux;
1467  if (rotate) {
1468  Print() << "Using surface layer model with stress rotations" << std::endl;
1469  }
1470 
1471  //
1472  // This constructor will make the SurfaceLayer object but not allocate the arrays at each level.
1473  //
1474  m_SurfaceLayer = std::make_unique<SurfaceLayer>(geom, rotate, pp_prefix, Qv_prim,
1475  z_phys_nd,
1479 #ifdef ERF_USE_NETCDF
1480  , bdy_time_interval
1481 #endif
1482  );
1483  // This call will allocate the arrays at each level. If we regrid later, either changing
1484  // the number of levels or just the grids at each existing level, we will call an update routine
1485  // to redefine the internal arrays in m_SurfaceLayer.
1486  for (int lev = 0; lev <= finest_level; lev++)
1487  {
1488  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
1489  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
1490  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,finest_level+1,
1491  mfv_old, Theta_prim[lev], Qv_prim[lev],
1492  Qr_prim[lev], z_phys_nd[lev],
1493  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
1495  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
1496  }
1497 
1498  // If initializing from an input_sounding, make sure the surface layer
1499  // is using the same surface conditions
1500  if (solverChoice.init_type == InitType::Input_Sounding) {
1503  for (int lev = 0; lev <= finest_level; lev++) {
1504  m_SurfaceLayer->set_t_surf(lev, theta0);
1505  m_SurfaceLayer->set_q_surf(lev, qv0);
1506  }
1507  }
1508 
1509  if (restart_chkfile != "") {
1510  // Update surface fields if needed (and available)
1512  }
1513 
1514  // We now configure ABLMost params here so that we can print the averages at t=0
1515  // Note we don't fill ghost cells here because this is just for diagnostics
1516  for (int lev = 0; lev <= finest_level; ++lev)
1517  {
1518  Real time = t_new[lev];
1519  IntVect ng = Theta_prim[lev]->nGrowVect();
1520 
1521  MultiFab::Copy( *Theta_prim[lev], vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, ng);
1522  MultiFab::Divide(*Theta_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1523 
1524  if (solverChoice.moisture_type != MoistureType::None) {
1525  ng = Qv_prim[lev]->nGrowVect();
1526 
1527  MultiFab::Copy( *Qv_prim[lev], vars_new[lev][Vars::cons], RhoQ1_comp, 0, 1, ng);
1528  MultiFab::Divide(*Qv_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1529 
1530  int rhoqr_comp = solverChoice.moisture_indices.qr;
1531  if (rhoqr_comp > -1) {
1532  MultiFab::Copy( *Qr_prim[lev], vars_new[lev][Vars::cons], rhoqr_comp, 0, 1, ng);
1533  MultiFab::Divide(*Qr_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1534  } else {
1535  Qr_prim[lev]->setVal(0.0);
1536  }
1537  }
1538  m_SurfaceLayer->update_mac_ptrs(lev, vars_new, Theta_prim, Qv_prim, Qr_prim);
1539 
1540  if (restart_chkfile == "") {
1541  // Only do this if starting from scratch; if restarting, then
1542  // we don't want to call update_fluxes multiple times because
1543  // it will change u* and theta* from their previous values
1544  m_SurfaceLayer->update_pblh(lev, vars_new, z_phys_cc[lev].get(),
1546  m_SurfaceLayer->update_fluxes(lev, time, vars_new[lev][Vars::cons], z_phys_nd[lev]);
1547 
1548  // Initialize tke(x,y,z) as a function of u*(x,y)
1549  if (solverChoice.turbChoice[lev].init_tke_from_ustar) {
1550  Real qkefac = 1.0;
1551  if (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25 ||
1552  solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF)
1553  {
1554  // https://github.com/NCAR/MYNN-EDMF/blob/90f36c25259ec1960b24325f5b29ac7c5adeac73/module_bl_mynnedmf.F90#L1325-L1333
1555  const Real B1 = solverChoice.turbChoice[lev].pbl_mynn.B1;
1556  qkefac = 1.5 * std::pow(B1, 2.0/3.0);
1557  }
1558  m_SurfaceLayer->init_tke_from_ustar(lev, vars_new[lev][Vars::cons], z_phys_nd[lev], qkefac);
1559  }
1560  }
1561  }
1562  } // end if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1563 
1564  // Update micro vars before first plot file
1565  if (solverChoice.moisture_type != MoistureType::None) {
1566  for (int lev = 0; lev <= finest_level; ++lev) micro->Update_Micro_Vars_Lev(lev, vars_new[lev][Vars::cons]);
1567  }
1568 
1569  // Fill time averaged velocities before first plot file
1570  if (solverChoice.time_avg_vel) {
1571  for (int lev = 0; lev <= finest_level; ++lev) {
1572  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(),
1573  vars_new[lev][Vars::xvel],
1574  vars_new[lev][Vars::yvel],
1575  vars_new[lev][Vars::zvel]);
1576  }
1577  }
1578 
1579  // check for additional plotting variables that are available after particle containers
1580  // are setup.
1581  const std::string& pv3d_1 = "plot_vars_1" ; appendPlotVariables(pv3d_1,plot3d_var_names_1);
1582  const std::string& pv3d_2 = "plot_vars_2" ; appendPlotVariables(pv3d_2,plot3d_var_names_2);
1583  const std::string& pv2d_1 = "plot2d_vars_1"; appendPlotVariables(pv2d_1,plot2d_var_names_1);
1584  const std::string& pv2d_2 = "plot2d_vars_2"; appendPlotVariables(pv2d_2,plot2d_var_names_2);
1585 
1586  if ( restart_chkfile.empty() && (m_check_int > 0 || m_check_per > 0.) )
1587  {
1591  }
1592 
1593  if ( (restart_chkfile.empty()) ||
1594  (!restart_chkfile.empty() && plot_file_on_restart) )
1595  {
1596  if (m_plot3d_int_1 > 0 || m_plot3d_per_1 > 0.)
1597  {
1601  }
1602  if (m_plot3d_int_2 > 0 || m_plot3d_per_2 > 0.)
1603  {
1607  }
1608  if (m_plot2d_int_1 > 0 || m_plot2d_per_1 > 0.)
1609  {
1613  }
1614  if (m_plot2d_int_2 > 0 || m_plot2d_per_2 > 0.)
1615  {
1619  }
1620  for (int i = 0; i < m_subvol_int.size(); i++) {
1621  if (m_subvol_int[i] > 0 || m_subvol_per[i] > 0.) {
1623  last_subvol_step[i] = istep[0];
1624  if (m_subvol_per[i] > 0.) {last_subvol_time[i] += m_subvol_per[i];}
1625  }
1626  }
1627  }
1628 
1629  // Set these up here because we need to know which MPI rank "cell" is on...
1630  if (pp.contains("data_log"))
1631  {
1632  int num_datalogs = pp.countval("data_log");
1633  datalog.resize(num_datalogs);
1634  datalogname.resize(num_datalogs);
1635  pp.queryarr("data_log",datalogname,0,num_datalogs);
1636  for (int i = 0; i < num_datalogs; i++) {
1638  }
1639  }
1640 
1641  if (pp.contains("der_data_log"))
1642  {
1643  int num_der_datalogs = pp.countval("der_data_log");
1644  der_datalog.resize(num_der_datalogs);
1645  der_datalogname.resize(num_der_datalogs);
1646  pp.queryarr("der_data_log",der_datalogname,0,num_der_datalogs);
1647  for (int i = 0; i < num_der_datalogs; i++) {
1649  }
1650  }
1651 
1652  if (pp.contains("energy_data_log"))
1653  {
1654  int num_energy_datalogs = pp.countval("energy_data_log");
1655  tot_e_datalog.resize(num_energy_datalogs);
1656  tot_e_datalogname.resize(num_energy_datalogs);
1657  pp.queryarr("energy_data_log",tot_e_datalogname,0,num_energy_datalogs);
1658  for (int i = 0; i < num_energy_datalogs; i++) {
1660  }
1661  }
1662 
1663  if (solverChoice.rad_type != RadiationType::None)
1664  {
1665  // Create data log for radiation model if requested
1666  rad[0]->setupDataLog();
1667  }
1668 
1669 
1670  if (restart_chkfile.empty() && profile_int > 0) {
1671  if (destag_profiles) {
1672  // all variables cell-centered
1674  } else {
1675  // some variables staggered
1677  }
1678  }
1679 
1680  if (pp.contains("sample_point_log") && pp.contains("sample_point"))
1681  {
1682  int lev = 0;
1683 
1684  int num_samplepts = pp.countval("sample_point") / AMREX_SPACEDIM;
1685  if (num_samplepts > 0) {
1686  Vector<int> index; index.resize(num_samplepts*AMREX_SPACEDIM);
1687  samplepoint.resize(num_samplepts);
1688 
1689  pp.queryarr("sample_point",index,0,num_samplepts*AMREX_SPACEDIM);
1690  for (int i = 0; i < num_samplepts; i++) {
1691  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1692  samplepoint[i] = iv;
1693  }
1694  }
1695 
1696  int num_sampleptlogs = pp.countval("sample_point_log");
1697  AMREX_ALWAYS_ASSERT(num_sampleptlogs == num_samplepts);
1698  if (num_sampleptlogs > 0) {
1699  sampleptlog.resize(num_sampleptlogs);
1700  sampleptlogname.resize(num_sampleptlogs);
1701  pp.queryarr("sample_point_log",sampleptlogname,0,num_sampleptlogs);
1702 
1703  for (int i = 0; i < num_sampleptlogs; i++) {
1705  }
1706  }
1707 
1708  }
1709 
1710  if (pp.contains("sample_line_log") && pp.contains("sample_line"))
1711  {
1712  int lev = 0;
1713 
1714  int num_samplelines = pp.countval("sample_line") / AMREX_SPACEDIM;
1715  if (num_samplelines > 0) {
1716  Vector<int> index; index.resize(num_samplelines*AMREX_SPACEDIM);
1717  sampleline.resize(num_samplelines);
1718 
1719  pp.queryarr("sample_line",index,0,num_samplelines*AMREX_SPACEDIM);
1720  for (int i = 0; i < num_samplelines; i++) {
1721  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1722  sampleline[i] = iv;
1723  }
1724  }
1725 
1726  int num_samplelinelogs = pp.countval("sample_line_log");
1727  AMREX_ALWAYS_ASSERT(num_samplelinelogs == num_samplelines);
1728  if (num_samplelinelogs > 0) {
1729  samplelinelog.resize(num_samplelinelogs);
1730  samplelinelogname.resize(num_samplelinelogs);
1731  pp.queryarr("sample_line_log",samplelinelogname,0,num_samplelinelogs);
1732 
1733  for (int i = 0; i < num_samplelinelogs; i++) {
1735  }
1736  }
1737 
1738  }
1739 
1744  }
1745 
1746  // Create object to do line and plane sampling if needed
1747  bool do_line = false; bool do_plane = false;
1748  pp.query("do_line_sampling",do_line); pp.query("do_plane_sampling",do_plane);
1749  if (do_line) {
1750  if (line_sampling_interval < 0 && line_sampling_per < 0) {
1751  Abort("Need to specify line_sampling_interval or line_sampling_per");
1752  }
1753  line_sampler = std::make_unique<LineSampler>();
1754  line_sampler->write_coords(z_phys_cc);
1755  }
1756  if (do_plane) {
1758  Abort("Need to specify plane_sampling_interval or plane_sampling_per");
1759  }
1760  plane_sampler = std::make_unique<PlaneSampler>();
1761  }
1762 
1763  if ( solverChoice.terrain_type == TerrainType::EB ||
1764  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
1765  solverChoice.buildings_type == BuildingsType::ImmersedForcing )
1766  {
1767  bool write_eb_surface = false;
1768  pp.query("write_eb_surface", write_eb_surface);
1769  if (write_eb_surface) {
1770  if (verbose > 0) {
1771  amrex::Print() << "Writing the geometry to a vtp file.\n" << std::endl;
1772  }
1773  WriteEBSurface(grids[finest_level],dmap[finest_level],Geom(finest_level),&EBFactory(finest_level));
1774  }
1775  }
1776 
1777 }
void initRayleigh()
Initialize Rayleigh damping profiles.
Definition: ERF_InitRayleigh.cpp:14
amrex::Vector< std::string > samplelinelogname
Definition: ERF.H:1603
void setRayleighRefFromSounding(bool restarting)
Set Rayleigh mean profiles from input sounding.
Definition: ERF_InitRayleigh.cpp:94
amrex::Vector< amrex::IntVect > sampleline
Definition: ERF.H:1604
void project_initial_velocity(int lev, amrex::Real time, amrex::Real dt)
Definition: ERF_PoissonSolve.cpp:31
amrex::Real plane_sampling_per
Definition: ERF.H:1587
static amrex::Real sum_per
Definition: ERF.H:1203
void setRecordDataInfo(int i, const std::string &filename)
Definition: ERF.H:1510
static bool plot_file_on_restart
Definition: ERF.H:1015
amrex::Vector< std::string > lsm_flux_name
Definition: ERF.H:868
void write_1D_profiles_stag(amrex::Real time)
Definition: ERF_Write1DProfiles_stag.cpp:25
void sum_energy_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:312
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
Definition: ERF.H:1602
static int sum_interval
Definition: ERF.H:1201
static int pert_interval
Definition: ERF.H:1202
amrex::Real line_sampling_per
Definition: ERF.H:1586
void restart()
Definition: ERF.cpp:1964
void write_1D_profiles(amrex::Real time)
Definition: ERF_Write1DProfiles.cpp:17
int profile_int
Definition: ERF.H:1084
bool destag_profiles
Definition: ERF.H:1085
void appendPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:229
amrex::Vector< std::string > tot_e_datalogname
Definition: ERF.H:1596
static int output_bndry_planes
Definition: ERF.H:1264
static std::string nc_bdy_file
Definition: ERF.H:1224
void AverageDown()
Definition: ERF_AverageDown.cpp:16
static amrex::Real bndry_output_planes_start_time
Definition: ERF.H:1267
std::string restart_chkfile
Definition: ERF.H:1037
amrex::Vector< std::string > sampleptlogname
Definition: ERF.H:1599
void sum_derived_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:177
void sum_integrated_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:15
void setRecordDerDataInfo(int i, const std::string &filename)
Definition: ERF.H:1523
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
Definition: ERF.H:1598
std::unique_ptr< WriteBndryPlanes > m_w2d
Definition: ERF.H:1330
void init_geo_wind_profile(const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
Definition: ERF_InitGeowind.cpp:10
amrex::Vector< std::string > lsm_data_name
Definition: ERF.H:866
void initSponge()
Initialize sponge profiles.
Definition: ERF_InitSponge.cpp:35
std::unique_ptr< PlaneSampler > plane_sampler
Definition: ERF.H:1589
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
Definition: ERF.H:1593
int real_width
Definition: ERF.H:1225
void setRecordEnergyDataInfo(int i, const std::string &filename)
Definition: ERF.H:1536
void Interp2DArrays(int lev, const amrex::BoxArray &my_ba2d, const amrex::DistributionMapping &my_dm)
Definition: ERF.cpp:1780
int plane_sampling_interval
Definition: ERF.H:1585
static bool is_it_time_for_action(int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
Definition: ERF_WriteScalarProfiles.cpp:653
static std::string nc_low_file
Definition: ERF.H:1230
void Construct_ERFFillPatchers(int lev)
Definition: ERF.cpp:2850
void setRecordSampleLineInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1566
void setSpongeRefFromSounding(bool restarting)
Set sponge mean profiles from input sounding.
Definition: ERF_InitSponge.cpp:65
int line_sampling_interval
Definition: ERF.H:1584
amrex::Vector< amrex::IntVect > samplepoint
Definition: ERF.H:1600
std::unique_ptr< LineSampler > line_sampler
Definition: ERF.H:1588
void setRecordSamplePointInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1549
void ReadCheckpointFileSurfaceLayer()
Definition: ERF_Checkpoint.cpp:1039
static MoistureModelType modelType(const MoistureType a_moisture_type)
query if a specified moisture model is Eulerian or Lagrangian
Definition: ERF_Microphysics.H:90
@ nc
Definition: ERF_Morrison.H:44
bool have_zero_flux_faces
Definition: ERF_AdvStruct.H:440
amrex::Real rho0_trans
Definition: ERF_DiffStruct.H:91
amrex::Real dynamic_viscosity
Definition: ERF_DiffStruct.H:96
amrex::Real theta_ref_inp_sound
Definition: ERF_InputSoundingData.H:401
amrex::Real qv_ref_inp_sound
Definition: ERF_InputSoundingData.H:401
bool have_geo_wind_profile
Definition: ERF_DataStruct.H:1150
amrex::Vector< amrex::Real > vert_implicit_fac
Definition: ERF_DataStruct.H:1055
std::string abl_geo_wind_table
Definition: ERF_DataStruct.H:1149
bool implicit_momentum_diffusion
Definition: ERF_DataStruct.H:1058
bool use_rotate_surface_flux
Definition: ERF_DataStruct.H:1121
bool do_forest_drag
Definition: ERF_DataStruct.H:1171
void debug(amrex::Real)
Definition: ERF_TurbPertStruct.H:613
Here is the call graph for this function:

◆ InitData_pre()

void ERF::InitData_pre ( )
928 {
929  // Initialize the start time for our CPU-time tracker
930  startCPUTime = ParallelDescriptor::second();
931 
932  // Create the ReadBndryPlanes object so we can read boundary plane data
933  // m_r2d is used by init_bcs so we must instantiate this class before
934  if (input_bndry_planes) {
935  Print() << "Defining r2d for the first time " << std::endl;
936  m_r2d = std::make_unique<ReadBndryPlanes>(geom[0], solverChoice.rdOcp);
937  }
938 
939  if (restart_chkfile.empty()) {
940  // Start simulation from the beginning
941  InitFromScratch(0.0);
942  } else {
943  // For initialization this is done in init_only; it is done here for restart
944  init_bcs();
945  }
946 
947  solverChoice.check_params(max_level,geom,phys_bc_type);
948 }
void init_bcs()
Definition: ERF_InitBCs.cpp:287
void check_params(int max_level, const amrex::Vector< amrex::Geometry > &geom_vect, amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type)
Definition: ERF_DataStruct.H:720

◆ initHSE() [1/2]

void ERF::initHSE ( )
private

Initialize HSE.

147 {
148  for (int lev = 0; lev <= finest_level; lev++)
149  {
150  initHSE(lev);
151  }
152 }

◆ initHSE() [2/2]

void ERF::initHSE ( int  lev)
private

Initialize density and pressure base state in hydrostatic equilibrium.

21 {
22  // This integrates up through column to update p_hse, pi_hse, th_hse;
23  // r_hse is not const b/c FillBoundary is called at the end for r_hse and p_hse
24 
25  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
26  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
27  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
28  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
29  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
30 
31  bool all_boxes_touch_bottom = true;
32  Box domain(geom[lev].Domain());
33 
34  int icomp = 0; int ncomp = BaseState::num_comps;
35 
36  if (lev == 0) {
37  BoxArray ba(base_state[lev].boxArray());
38  for (int i = 0; i < ba.size(); i++) {
39  if (ba[i].smallEnd(2) != domain.smallEnd(2)) {
40  all_boxes_touch_bottom = false;
41  }
42  }
43  }
44  else
45  {
46  //
47  // We need to do this interp from coarse level in order to set the values of
48  // the base state inside the domain but outside of the fine region
49  //
50  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
51  //
52  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
53  // have been pre-filled - this includes ghost cells both inside and outside
54  // the domain
55  //
56  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
57  IntVect(0,0,0), // do not fill ghost cells outside the domain
58  base_state[lev-1], icomp, icomp, ncomp,
59  geom[lev-1], geom[lev],
60  refRatio(lev-1), &cell_cons_interp,
62 
63  // We need to do this here because the interpolation above may leave corners unfilled
64  // when the corners need to be filled by, for example, reflection of the fine ghost
65  // cell outside the fine region but inide the domain.
66  (*physbcs_base[lev])(base_state[lev],icomp,ncomp,base_state[lev].nGrowVect());
67  }
68 
69  if (all_boxes_touch_bottom || lev > 0) {
70 
71  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
73  prob->erf_init_dens_hse_moist(r_hse, z_phys_nd[lev], geom[lev]);
74  } else {
75  prob->erf_init_dens_hse(r_hse, z_phys_nd[lev], z_phys_cc[lev], geom[lev]);
76  }
77 
78  erf_enforce_hse(lev, r_hse, p_hse, pi_hse, th_hse, qv_hse, z_phys_cc[lev]);
79 
80  //
81  // Impose physical bc's on the base state
82  //
83  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
84 
85  } else {
86 
87  BoxArray ba_new(domain);
88 
89  ChopGrids2D(ba_new, domain, ParallelDescriptor::NProcs());
90 
91  DistributionMapping dm_new(ba_new);
92 
93  MultiFab new_base_state(ba_new, dm_new, BaseState::num_comps, base_state[lev].nGrowVect());
94  new_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
95  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
96 
97  MultiFab new_r_hse (new_base_state, make_alias, BaseState::r0_comp, 1);
98  MultiFab new_p_hse (new_base_state, make_alias, BaseState::p0_comp, 1);
99  MultiFab new_pi_hse(new_base_state, make_alias, BaseState::pi0_comp, 1);
100  MultiFab new_th_hse(new_base_state, make_alias, BaseState::th0_comp, 1);
101  MultiFab new_qv_hse(new_base_state, make_alias, BaseState::qv0_comp, 1);
102 
103  std::unique_ptr<MultiFab> new_z_phys_cc;
104  std::unique_ptr<MultiFab> new_z_phys_nd;
105  if (solverChoice.mesh_type != MeshType::ConstantDz) {
106  new_z_phys_cc = std::make_unique<MultiFab>(ba_new,dm_new,1,1);
107  new_z_phys_cc->ParallelCopy(*z_phys_cc[lev],0,0,1,1,1);
108 
109  BoxArray ba_new_nd(ba_new);
110  ba_new_nd.surroundingNodes();
111  new_z_phys_nd = std::make_unique<MultiFab>(ba_new_nd,dm_new,1,1);
112  new_z_phys_nd->ParallelCopy(*z_phys_nd[lev],0,0,1,1,1);
113  }
114 
115  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
117  prob->erf_init_dens_hse_moist(new_r_hse, new_z_phys_nd, geom[lev]);
118  } else {
119  prob->erf_init_dens_hse(new_r_hse, new_z_phys_nd, new_z_phys_cc, geom[lev]);
120  }
121 
122  erf_enforce_hse(lev, new_r_hse, new_p_hse, new_pi_hse, new_th_hse, new_qv_hse, new_z_phys_cc);
123 
124  //
125  // Impose physical bc's on the base state (we must make new, temporary bcs object because the z_phys_nd is different)
126  //
127  ERFPhysBCFunct_base* temp_physbcs_base =
128  new ERFPhysBCFunct_base(lev, geom[lev], domain_bcs_type, domain_bcs_type_d, new_z_phys_nd,
129  (solverChoice.terrain_type == TerrainType::MovingFittedMesh));
130  (*temp_physbcs_base)(new_base_state,0,new_base_state.nComp(),new_base_state.nGrowVect());
131  delete temp_physbcs_base;
132 
133  // Now copy back into the original arrays
134  base_state[lev].ParallelCopy(new_base_state,0,0,base_state[lev].nComp(),
135  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
136  }
137 
138  //
139  // Impose physical bc's on the base state -- the values outside the fine region
140  // but inside the domain have already been filled in the call above to InterpFromCoarseLevel
141  //
142  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
143 }
void ChopGrids2D(BoxArray &ba, const Box &domain, int target_size)
Definition: ERF_ChopGrids.cpp:21
Definition: ERF_PhysBCFunct.H:286
void erf_enforce_hse(int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
Definition: ERF_Init1D.cpp:164
bool use_moist_background
Definition: ERF_DataStruct.H:1158
Here is the call graph for this function:

◆ initialize_integrator()

void ERF::initialize_integrator ( int  lev,
amrex::MultiFab &  cons_mf,
amrex::MultiFab &  vel_mf 
)
private
815 {
816  const BoxArray& ba(cons_mf.boxArray());
817  const DistributionMapping& dm(cons_mf.DistributionMap());
818 
819  int ncomp_cons = cons_mf.nComp();
820 
821  // Initialize the integrator memory
822  Vector<MultiFab> int_state; // integration state data structure example
823  int_state.push_back(MultiFab(cons_mf, make_alias, 0, ncomp_cons)); // cons
824  int_state.push_back(MultiFab(convert(ba,IntVect(1,0,0)), dm, 1, vel_mf.nGrow())); // xmom
825  int_state.push_back(MultiFab(convert(ba,IntVect(0,1,0)), dm, 1, vel_mf.nGrow())); // ymom
826  int_state.push_back(MultiFab(convert(ba,IntVect(0,0,1)), dm, 1, vel_mf.nGrow())); // zmom
827 
828  mri_integrator_mem[lev] = std::make_unique<MRISplitIntegrator<Vector<MultiFab> > >(int_state);
829  mri_integrator_mem[lev]->setNoSubstepping((solverChoice.substepping_type[lev] == SubsteppingType::None));
830  mri_integrator_mem[lev]->setAnelastic(solverChoice.anelastic[lev]);
831  mri_integrator_mem[lev]->setNcompCons(ncomp_cons);
832  mri_integrator_mem[lev]->setForceFirstStageSingleSubstep(solverChoice.force_stage1_single_substep);
833 }

◆ InitializeFromFile()

void ERF::InitializeFromFile ( )
private

◆ InitializeLevelFromData()

void ERF::InitializeLevelFromData ( int  lev,
const amrex::MultiFab &  initial_data 
)
private

◆ initializeMicrophysics()

void ERF::initializeMicrophysics ( const int &  a_nlevsmax)
private
Parameters
a_nlevsmaxnumber of AMR levels
1931 {
1932  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Eulerian) {
1933 
1934  micro = std::make_unique<EulerianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1935 
1936  } else if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1937 #ifdef ERF_USE_PARTICLES
1938  micro = std::make_unique<LagrangianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1939  /* Lagrangian microphysics models will have a particle container; it needs to be added
1940  to ERF::particleData */
1941  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1942  /* The particle container has not yet been constructed and initialized, so just add
1943  its name here for now (so that functions to set plotting variables can see it). */
1944  particleData.addName( pc_name );
1945 
1946 #else
1947  Abort("Lagrangian microphysics can be used when compiled with ERF_USE_PARTICLES");
1948 #endif
1949  }
1950 
1951  qmoist.resize(a_nlevsmax);
1952  return;
1953 }
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
Definition: ERF.H:850
Here is the call graph for this function:

◆ initRayleigh()

void ERF::initRayleigh ( )
private

Initialize Rayleigh damping profiles.

Initialization function for host and device vectors used to store averaged quantities when calculating the effects of Rayleigh Damping.

15 {
16  const int khi = geom[0].Domain().bigEnd(2);
17  solverChoice.dampingChoice.rayleigh_ztop = (solverChoice.terrain_type == TerrainType::None) ? geom[0].ProbHi(2) : zlevels_stag[0][khi+1];
18 
19  h_rayleigh_ptrs.resize(max_level+1);
20  d_rayleigh_ptrs.resize(max_level+1);
21 
22  h_sinesq_ptrs.resize(max_level+1);
23  d_sinesq_ptrs.resize(max_level+1);
24 
25  h_sinesq_stag_ptrs.resize(max_level+1);
26  d_sinesq_stag_ptrs.resize(max_level+1);
27 
28  for (int lev = 0; lev <= finest_level; lev++)
29  {
30  // These have 4 components: ubar, vbar, wbar, thetabar
31  h_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
32  d_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
33 
34  const int zlen_rayleigh = geom[lev].Domain().length(2);
35 
36  // Allocate space for these 1D vectors
37  for (int n = 0; n < Rayleigh::nvars; n++) {
38  h_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
39  d_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
40  }
41 
42  h_sinesq_ptrs[lev].resize(zlen_rayleigh);
43  d_sinesq_ptrs[lev].resize(zlen_rayleigh);
44 
45  h_sinesq_stag_ptrs[lev].resize(zlen_rayleigh+1);
46  d_sinesq_stag_ptrs[lev].resize(zlen_rayleigh+1);
47 
50 
51  for (int k = 0; k < zlen_rayleigh; k++) {
52  Real z = 0.5 * (zlevels_stag[lev][k] + zlevels_stag[lev][k+1]);
53  if (z > (ztop - zdamp)) {
54  Real zfrac = 1.0 - (ztop - z) / zdamp;
55  Real s = std::sin(PIoTwo*zfrac);
56  h_sinesq_ptrs[lev][k] = s*s;
57  } else {
58  h_sinesq_ptrs[lev][k] = 0.0;
59  }
60  }
61 
62  for (int k = 0; k < zlen_rayleigh+1; k++) {
63  Real z = zlevels_stag[lev][k];
64  if (z > (ztop - zdamp)) {
65  Real zfrac = 1.0 - (ztop - z) / zdamp;
66  Real s = std::sin(PIoTwo*zfrac);
67  h_sinesq_stag_ptrs[lev][k] = s*s;
68  } else {
69  h_sinesq_stag_ptrs[lev][k] = 0.0;
70  }
71  }
72 
73  // Init the host vectors for the reference states
74  prob->erf_init_rayleigh(h_rayleigh_ptrs[lev], geom[lev], z_phys_nd[lev], solverChoice.dampingChoice.rayleigh_zdamp);
75 
76  // Copy from host vectors to device vectors
77  for (int n = 0; n < Rayleigh::nvars; n++) {
78  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][n].begin(), h_rayleigh_ptrs[lev][n].end(),
79  d_rayleigh_ptrs[lev][n].begin());
80  }
81  Gpu::copy(Gpu::hostToDevice, h_sinesq_ptrs[lev].begin(), h_sinesq_ptrs[lev].end(), d_sinesq_ptrs[lev].begin());
82  Gpu::copy(Gpu::hostToDevice, h_sinesq_stag_ptrs[lev].begin(), h_sinesq_stag_ptrs[lev].end(), d_sinesq_stag_ptrs[lev].begin());
83  }
84 }
constexpr amrex::Real PIoTwo
Definition: ERF_Constants.H:7
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_ptrs
Definition: ERF.H:1305
amrex::Vector< amrex::Vector< amrex::Real > > h_sinesq_stag_ptrs
Definition: ERF.H:1306
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
Definition: ERF.H:1301
amrex::Real rayleigh_ztop
Definition: ERF_DampingStruct.H:90
amrex::Real rayleigh_zdamp
Definition: ERF_DampingStruct.H:89

◆ initSponge()

void ERF::initSponge ( )
private

Initialize sponge profiles.

Initialization function for host and device vectors used to store the effects of sponge Damping.

36 {
37  h_sponge_ptrs.resize(max_level+1);
38  d_sponge_ptrs.resize(max_level+1);
39 
40  for (int lev = 0; lev <= finest_level; lev++)
41  {
42  // These have 2 components: ubar, vbar
45 
46  const int zlen_sponge = geom[lev].Domain().length(2);
47 
48  // Allocate space for these 1D vectors
49  for (int n = 0; n < Sponge::nvars_sponge; n++) {
50  h_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
51  d_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
52  }
53 
54  }
55 }
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
Definition: ERF.H:1302

◆ input_sponge()

void ERF::input_sponge ( int  lev)

High level wrapper for sponge x and y velocities level data from input sponge data.

Parameters
levInteger specifying the current level
18 {
19  // We only want to read the file once
20  if (lev == 0) {
22  Error("input_sounding file name must be provided via input");
23 
24  // this will interpolate the input profiles to the nominal height levels
25  // (ranging from 0 to the domain top)
27  }
28 }
InputSpongeData input_sponge_data
Definition: ERF.H:757
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag)
Definition: ERF_InputSpongeData.H:28
std::string input_sponge_file
Definition: ERF_InputSpongeData.H:108

◆ Interp2DArrays()

void ERF::Interp2DArrays ( int  lev,
const amrex::BoxArray &  my_ba2d,
const amrex::DistributionMapping &  my_dm 
)
1781 {
1782  if (lon_m[lev-1] && !lon_m[lev]) {
1783  auto ngv = lon_m[lev-1]->nGrowVect(); ngv[2] = 0;
1784  lon_m[lev] = std::make_unique<MultiFab>(my_ba2d,my_dm,1,ngv);
1785  InterpFromCoarseLevel(*lon_m[lev], ngv, IntVect(0,0,0), // do not fill ghost cells outside the domain
1786  *lon_m[lev-1], 0, 0, 1,
1787  geom[lev-1], geom[lev],
1788  refRatio(lev-1), &cell_cons_interp,
1790  }
1791  if (lat_m[lev-1] && !lat_m[lev]) {
1792  auto ngv = lat_m[lev-1]->nGrowVect(); ngv[2] = 0;
1793  lat_m[lev] = std::make_unique<MultiFab>(my_ba2d,my_dm,1,ngv);
1794  InterpFromCoarseLevel(*lat_m[lev], ngv, IntVect(0,0,0), // do not fill ghost cells outside the domain
1795  *lat_m[lev-1], 0, 0, 1,
1796  geom[lev-1], geom[lev],
1797  refRatio(lev-1), &cell_cons_interp,
1799  }
1800  if (sinPhi_m[lev-1] && !sinPhi_m[lev]) {
1801  auto ngv = sinPhi_m[lev-1]->nGrowVect(); ngv[2] = 0;
1802  sinPhi_m[lev] = std::make_unique<MultiFab>(my_ba2d,my_dm,1,ngv);
1803  InterpFromCoarseLevel(*sinPhi_m[lev], ngv, IntVect(0,0,0), // do not fill ghost cells outside the domain
1804  *sinPhi_m[lev-1], 0, 0, 1,
1805  geom[lev-1], geom[lev],
1806  refRatio(lev-1), &cell_cons_interp,
1808  }
1809  if (cosPhi_m[lev-1] && !cosPhi_m[lev]) {
1810  auto ngv = cosPhi_m[lev-1]->nGrowVect(); ngv[2] = 0;
1811  cosPhi_m[lev] = std::make_unique<MultiFab>(my_ba2d,my_dm,1,ngv);
1812  InterpFromCoarseLevel(*cosPhi_m[lev], ngv, IntVect(0,0,0), // do not fill ghost cells outside the domain
1813  *cosPhi_m[lev-1], 0, 0, 1,
1814  geom[lev-1], geom[lev],
1815  refRatio(lev-1), &cell_cons_interp,
1817  }
1818  if (sst_lev[lev-1][0] && !sst_lev[lev][0]) {
1819  int ntimes = sst_lev[lev-1].size();
1820  sst_lev[lev].resize(ntimes);
1821  auto ngv = sst_lev[lev-1][0]->nGrowVect(); ngv[2] = 0;
1822  for (int n = 0; n < ntimes; n++) {
1823  sst_lev[lev][n] = std::make_unique<MultiFab>(my_ba2d,my_dm,1,ngv);
1824  InterpFromCoarseLevel(*sst_lev[lev][n], ngv, IntVect(0,0,0), // do not fill ghost cells outside the domain
1825  *sst_lev[lev-1][n], 0, 0, 1,
1826  geom[lev-1], geom[lev],
1827  refRatio(lev-1), &cell_cons_interp,
1829  }
1830  }
1831  if (tsk_lev[lev-1][0] && !tsk_lev[lev][0]) {
1832  int ntimes = tsk_lev[lev-1].size();
1833  tsk_lev[lev].resize(ntimes);
1834  auto ngv = tsk_lev[lev-1][0]->nGrowVect(); ngv[2] = 0;
1835  for (int n = 0; n < ntimes; n++) {
1836  tsk_lev[lev][n] = std::make_unique<MultiFab>(my_ba2d,my_dm,1,ngv);
1837  InterpFromCoarseLevel(*tsk_lev[lev][n], ngv, IntVect(0,0,0), // do not fill ghost cells outside the domain
1838  *tsk_lev[lev-1][n], 0, 0, 1,
1839  geom[lev-1], geom[lev],
1840  refRatio(lev-1), &cell_cons_interp,
1842  }
1843  }
1844 
1845  Real time_for_fp = 0.; // This is not actually used
1846  Vector<Real> ftime = {time_for_fp, time_for_fp};
1847  Vector<Real> ctime = {time_for_fp, time_for_fp};
1848  if (lat_m[lev]) {
1849  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1850  Vector<MultiFab*> fmf = {lat_m[lev ].get(), lat_m[lev ].get()};
1851  Vector<MultiFab*> cmf = {lat_m[lev-1].get(), lat_m[lev-1].get()};
1852  IntVect ngv = lat_m[lev]->nGrowVect(); ngv[2] = 0;
1853  Interpolater* mapper = &cell_cons_interp;
1854  FillPatchTwoLevels(*lat_m[lev].get(), ngv, IntVect(0,0,0),
1855  time_for_fp, cmf, ctime, fmf, ftime,
1856  0, 0, 1, geom[lev-1], geom[lev],
1857  refRatio(lev-1), mapper, domain_bcs_type,
1858  BCVars::cons_bc);
1859  }
1860  if (lon_m[lev]) {
1861  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1862  Vector<MultiFab*> fmf = {lon_m[lev ].get(), lon_m[lev ].get()};
1863  Vector<MultiFab*> cmf = {lon_m[lev-1].get(), lon_m[lev-1].get()};
1864  IntVect ngv = lon_m[lev]->nGrowVect(); ngv[2] = 0;
1865  Interpolater* mapper = &cell_cons_interp;
1866  FillPatchTwoLevels(*lon_m[lev].get(), ngv, IntVect(0,0,0),
1867  time_for_fp, cmf, ctime, fmf, ftime,
1868  0, 0, 1, geom[lev-1], geom[lev],
1869  refRatio(lev-1), mapper, domain_bcs_type,
1870  BCVars::cons_bc);
1871  } // lon_m
1872  if (sinPhi_m[lev]) {
1873  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1874  Vector<MultiFab*> fmf = {sinPhi_m[lev ].get(), sinPhi_m[lev ].get()};
1875  Vector<MultiFab*> cmf = {sinPhi_m[lev-1].get(), sinPhi_m[lev-1].get()};
1876  IntVect ngv = sinPhi_m[lev]->nGrowVect(); ngv[2] = 0;
1877  Interpolater* mapper = &cell_cons_interp;
1878  FillPatchTwoLevels(*sinPhi_m[lev].get(), ngv, IntVect(0,0,0),
1879  time_for_fp, cmf, ctime, fmf, ftime,
1880  0, 0, 1, geom[lev-1], geom[lev],
1881  refRatio(lev-1), mapper, domain_bcs_type,
1882  BCVars::cons_bc);
1883  } // sinPhi
1884  if (cosPhi_m[lev]) {
1885  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1886  Vector<MultiFab*> fmf = {cosPhi_m[lev ].get(), cosPhi_m[lev ].get()};
1887  Vector<MultiFab*> cmf = {cosPhi_m[lev-1].get(), cosPhi_m[lev-1].get()};
1888  IntVect ngv = cosPhi_m[lev]->nGrowVect(); ngv[2] = 0;
1889  Interpolater* mapper = &cell_cons_interp;
1890  FillPatchTwoLevels(*cosPhi_m[lev].get(), ngv, IntVect(0,0,0),
1891  time_for_fp, cmf, ctime, fmf, ftime,
1892  0, 0, 1, geom[lev-1], geom[lev],
1893  refRatio(lev-1), mapper, domain_bcs_type,
1894  BCVars::cons_bc);
1895  } // cosPhi
1896  if (sst_lev[lev][0]) {
1897  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1898  int ntimes = sst_lev[lev].size();
1899  for (int n = 0; n < ntimes; n++) {
1900  Vector<MultiFab*> fmf = {sst_lev[lev ][n].get(), sst_lev[lev ][n].get()};
1901  Vector<MultiFab*> cmf = {sst_lev[lev-1][n].get(), sst_lev[lev-1][n].get()};
1902  IntVect ngv = sst_lev[lev][n]->nGrowVect(); ngv[2] = 0;
1903  Interpolater* mapper = &cell_cons_interp;
1904  FillPatchTwoLevels(*sst_lev[lev][n].get(), ngv, IntVect(0,0,0),
1905  time_for_fp, cmf, ctime, fmf, ftime,
1906  0, 0, 1, geom[lev-1], geom[lev],
1907  refRatio(lev-1), mapper, domain_bcs_type,
1908  BCVars::cons_bc);
1909  } // ntimes
1910  } // sst_lev
1911  if (tsk_lev[lev][0]) {
1912  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1913  int ntimes = tsk_lev[lev].size();
1914  for (int n = 0; n < ntimes; n++) {
1915  Vector<MultiFab*> fmf = {tsk_lev[lev ][n].get(), tsk_lev[lev ][n].get()};
1916  Vector<MultiFab*> cmf = {tsk_lev[lev-1][n].get(), tsk_lev[lev-1][n].get()};
1917  IntVect ngv = tsk_lev[lev][n]->nGrowVect(); ngv[2] = 0;
1918  Interpolater* mapper = &cell_cons_interp;
1919  FillPatchTwoLevels(*tsk_lev[lev][n].get(), ngv, IntVect(0,0,0),
1920  time_for_fp, cmf, ctime, fmf, ftime,
1921  0, 0, 1, geom[lev-1], geom[lev],
1922  refRatio(lev-1), mapper, domain_bcs_type,
1923  BCVars::cons_bc);
1924  } // ntimes
1925  } // tsk_lev
1926 }

◆ is_it_time_for_action()

bool ERF::is_it_time_for_action ( int  nstep,
amrex::Real  time,
amrex::Real  dt,
int  action_interval,
amrex::Real  action_per 
)
static

Helper function which uses the current step number, time, and timestep to determine whether it is time to take an action specified at every interval of timesteps.

Parameters
nstepTimestep number
timeCurrent time
dtlevTimestep for the current level
action_intervalInterval in number of timesteps for taking action
action_perInterval in simulation time for taking action
654 {
655  bool int_test = (action_interval > 0 && nstep % action_interval == 0);
656 
657  bool per_test = false;
658  if (action_per > 0.0) {
659  const int num_per_old = static_cast<int>(amrex::Math::floor((time - dtlev) / action_per));
660  const int num_per_new = static_cast<int>(amrex::Math::floor((time) / action_per));
661 
662  if (num_per_old != num_per_new) {
663  per_test = true;
664  }
665  }
666 
667  return int_test || per_test;
668 }

◆ make_eb_box()

void ERF::make_eb_box ( )

◆ make_eb_regular()

void ERF::make_eb_regular ( )

◆ make_physbcs()

void ERF::make_physbcs ( int  lev)
private
837 {
838  if (SolverChoice::mesh_type == MeshType::VariableDz) {
839  AMREX_ALWAYS_ASSERT(z_phys_nd[lev] != nullptr);
840  }
841 
842  physbcs_cons[lev] = std::make_unique<ERFPhysBCFunct_cons> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
844  z_phys_nd[lev], solverChoice.use_real_bcs, th_bc_data[lev].data());
845  physbcs_u[lev] = std::make_unique<ERFPhysBCFunct_u> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
847  z_phys_nd[lev], solverChoice.use_real_bcs, xvel_bc_data[lev].data());
848  physbcs_v[lev] = std::make_unique<ERFPhysBCFunct_v> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
850  z_phys_nd[lev], solverChoice.use_real_bcs, yvel_bc_data[lev].data());
851  physbcs_w[lev] = std::make_unique<ERFPhysBCFunct_w> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
854  solverChoice.use_real_bcs, zvel_bc_data[lev].data());
855  physbcs_base[lev] = std::make_unique<ERFPhysBCFunct_base> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d, z_phys_nd[lev],
856  (solverChoice.terrain_type == TerrainType::MovingFittedMesh));
857 }

◆ make_subdomains()

void ERF::make_subdomains ( const amrex::BoxList &  ba,
amrex::Vector< amrex::BoxArray > &  bins 
)
7 {
8  Vector<BoxList> bins_bl;
9 
10  // Clear out any old bins
11  bins.clear();
12 
13  // Iterate over boxes
14  for (auto bx : bl)
15  {
16  bool added = false;
17 
18  // Try to add box to existing bin
19  for (int j = 0; j < bins_bl.size(); ++j) {
20  BoxList& bin = bins_bl[j];
21  bool touches = false;
22 
23  for (auto& b : bin)
24  {
25  Box gbx(bx); gbx.grow(1);
26  if (gbx.intersects(b)) {
27  touches = true;
28  break;
29  }
30  }
31 
32  if (touches) {
33  bin.push_back(bx);
34  added = true;
35  break;
36  }
37  }
38 
39  // If box couldn't be added to existing bin, create new bin
40  if (!added) {
41  BoxList new_bin;
42  new_bin.push_back(bx);
43  bins_bl.push_back(new_bin);
44  }
45  }
46 
47  // Convert the BoxLists to BoxArrays
48  for (int i = 0; i < bins_bl.size(); ++i) {
49  bins.push_back(BoxArray(bins_bl[i]));
50  }
51 }

◆ MakeDiagnosticAverage()

void ERF::MakeDiagnosticAverage ( amrex::Vector< amrex::Real > &  h_havg,
amrex::MultiFab &  S,
int  n 
)
2805 {
2806  // Get the number of cells in z at level 0
2807  int dir_z = AMREX_SPACEDIM-1;
2808  auto domain = geom[0].Domain();
2809  int size_z = domain.length(dir_z);
2810  int start_z = domain.smallEnd()[dir_z];
2811  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2812 
2813  // resize the level 0 horizontal average vectors
2814  h_havg.resize(size_z, 0.0_rt);
2815 
2816  // Get the cell centered data and construct sums
2817 #ifdef _OPENMP
2818 #pragma omp parallel if (Gpu::notInLaunchRegion())
2819 #endif
2820  for (MFIter mfi(S); mfi.isValid(); ++mfi) {
2821  const Box& box = mfi.validbox();
2822  const IntVect& se = box.smallEnd();
2823  const IntVect& be = box.bigEnd();
2824 
2825  auto fab_arr = S[mfi].array();
2826 
2827  FArrayBox fab_reduce(box, 1, The_Async_Arena());
2828  auto arr_reduce = fab_reduce.array();
2829 
2830  ParallelFor(box, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2831  arr_reduce(i, j, k, 0) = fab_arr(i,j,k,n);
2832  });
2833 
2834  for (int k=se[dir_z]; k <= be[dir_z]; ++k) {
2835  Box kbox(box); kbox.setSmall(dir_z,k); kbox.setBig(dir_z,k);
2836  h_havg[k-start_z] += fab_reduce.sum<RunOn::Device>(kbox,0);
2837  }
2838  }
2839 
2840  // combine sums from different MPI ranks
2841  ParallelDescriptor::ReduceRealSum(h_havg.dataPtr(), h_havg.size());
2842 
2843  // divide by the total number of cells we are averaging over
2844  for (int k = 0; k < size_z; ++k) {
2845  h_havg[k] /= area_z;
2846  }
2847 }

◆ MakeEBGeometry()

void ERF::MakeEBGeometry ( )

◆ MakeFilename_EyeTracker_latlon()

std::string ERF::MakeFilename_EyeTracker_latlon ( int  nstep)
52  {
53  // Ensure output directory exists
54  const std::string dir = "Output_StormTracker/latlon";
55  if (!fs::exists(dir)) {
56  fs::create_directories(dir);
57  }
58 
59  // Construct filename with zero-padded step
60  std::ostringstream oss;
61  oss << dir << "/storm_track_latlon" << std::setw(7) << std::setfill('0') << nstep << ".txt";
62  return oss.str();
63 }

◆ MakeFilename_EyeTracker_maxvel()

std::string ERF::MakeFilename_EyeTracker_maxvel ( int  nstep)
66  {
67  // Ensure output directory exists
68  const std::string dir = "Output_StormTracker/maxvel";
69  if (!fs::exists(dir)) {
70  fs::create_directories(dir);
71  }
72 
73  // Construct filename with zero-padded step
74  std::ostringstream oss;
75  oss << dir << "/storm_maxvel_" << std::setw(7) << std::setfill('0') << nstep << ".txt";
76  return oss.str();
77 }

◆ MakeHorizontalAverages()

void ERF::MakeHorizontalAverages ( )
2699 {
2700  int lev = 0;
2701 
2702  // First, average down all levels (if doing two-way coupling)
2703  if (solverChoice.coupling_type == CouplingType::TwoWay) {
2704  AverageDown();
2705  }
2706 
2707  MultiFab mf(grids[lev], dmap[lev], 5, 0);
2708 
2709  int zdir = 2;
2710  auto domain = geom[0].Domain();
2711 
2712  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
2713  bool is_anelastic = (solverChoice.anelastic[lev] == 1);
2714 
2715  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2716  const Box& bx = mfi.validbox();
2717  auto fab_arr = mf.array(mfi);
2718  auto const hse_arr = base_state[lev].const_array(mfi);
2719  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2720  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2721  Real dens = cons_arr(i, j, k, Rho_comp);
2722  fab_arr(i, j, k, 0) = dens;
2723  fab_arr(i, j, k, 1) = cons_arr(i, j, k, RhoTheta_comp) / dens;
2724  if (!use_moisture) {
2725  if (is_anelastic) {
2726  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2727  } else {
2728  fab_arr(i,j,k,2) = getPgivenRTh(cons_arr(i,j,k,RhoTheta_comp));
2729  }
2730  }
2731  });
2732  }
2733 
2734  if (use_moisture)
2735  {
2736  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2737  const Box& bx = mfi.validbox();
2738  auto fab_arr = mf.array(mfi);
2739  auto const hse_arr = base_state[lev].const_array(mfi);
2740  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2741  int ncomp = vars_new[lev][Vars::cons].nComp();
2742 
2743  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2744  Real dens = cons_arr(i, j, k, Rho_comp);
2745  if (is_anelastic) {
2746  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2747  } else {
2748  Real qv = cons_arr(i, j, k, RhoQ1_comp) / dens;
2749  fab_arr(i, j, k, 2) = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
2750  }
2751  fab_arr(i, j, k, 3) = (ncomp > RhoQ1_comp ? cons_arr(i, j, k, RhoQ1_comp) / dens : 0.0);
2752  fab_arr(i, j, k, 4) = (ncomp > RhoQ2_comp ? cons_arr(i, j, k, RhoQ2_comp) / dens : 0.0);
2753  });
2754  }
2755 
2756  Gpu::HostVector<Real> h_avg_qv = sumToLine(mf,3,1,domain,zdir);
2757  Gpu::HostVector<Real> h_avg_qc = sumToLine(mf,4,1,domain,zdir);
2758  }
2759 
2760  // Sum in the horizontal plane
2761  Gpu::HostVector<Real> h_avg_density = sumToLine(mf,0,1,domain,zdir);
2762  Gpu::HostVector<Real> h_avg_temperature = sumToLine(mf,1,1,domain,zdir);
2763  Gpu::HostVector<Real> h_avg_pressure = sumToLine(mf,2,1,domain,zdir);
2764 
2765  // Divide by the total number of cells we are averaging over
2766  int size_z = domain.length(zdir);
2767  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2768  int klen = static_cast<int>(h_avg_density.size());
2769 
2770  for (int k = 0; k < klen; ++k) {
2771  h_havg_density[k] /= area_z;
2772  h_havg_temperature[k] /= area_z;
2773  h_havg_pressure[k] /= area_z;
2774  if (solverChoice.moisture_type != MoistureType::None)
2775  {
2776  h_havg_qc[k] /= area_z;
2777  h_havg_qv[k] /= area_z;
2778  }
2779  } // k
2780 
2781  // resize device vectors
2782  d_havg_density.resize(size_z, 0.0_rt);
2783  d_havg_temperature.resize(size_z, 0.0_rt);
2784  d_havg_pressure.resize(size_z, 0.0_rt);
2785 
2786  // copy host vectors to device vectors
2787  Gpu::copy(Gpu::hostToDevice, h_havg_density.begin(), h_havg_density.end(), d_havg_density.begin());
2788  Gpu::copy(Gpu::hostToDevice, h_havg_temperature.begin(), h_havg_temperature.end(), d_havg_temperature.begin());
2789  Gpu::copy(Gpu::hostToDevice, h_havg_pressure.begin(), h_havg_pressure.end(), d_havg_pressure.begin());
2790 
2791  if (solverChoice.moisture_type != MoistureType::None)
2792  {
2793  d_havg_qv.resize(size_z, 0.0_rt);
2794  d_havg_qc.resize(size_z, 0.0_rt);
2795  Gpu::copy(Gpu::hostToDevice, h_havg_qv.begin(), h_havg_qv.end(), d_havg_qv.begin());
2796  Gpu::copy(Gpu::hostToDevice, h_havg_qc.begin(), h_havg_qc.end(), d_havg_qc.begin());
2797  }
2798 }
amrex::Gpu::DeviceVector< amrex::Real > d_havg_temperature
Definition: ERF.H:1323
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qv
Definition: ERF.H:1325
amrex::Vector< amrex::Real > h_havg_pressure
Definition: ERF.H:1318
amrex::Vector< amrex::Real > h_havg_qc
Definition: ERF.H:1320
amrex::Vector< amrex::Real > h_havg_density
Definition: ERF.H:1316
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qc
Definition: ERF.H:1326
amrex::Gpu::DeviceVector< amrex::Real > d_havg_density
Definition: ERF.H:1322
amrex::Vector< amrex::Real > h_havg_temperature
Definition: ERF.H:1317
amrex::Gpu::DeviceVector< amrex::Real > d_havg_pressure
Definition: ERF.H:1324
amrex::Vector< amrex::Real > h_havg_qv
Definition: ERF.H:1319
Here is the call graph for this function:

◆ MakeNewLevelFromCoarse()

void ERF::MakeNewLevelFromCoarse ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
292 {
293  AMREX_ALWAYS_ASSERT(lev > 0);
294 
295  if (verbose) {
296  amrex::Print() <<" NEW BA FROM COARSE AT LEVEL " << lev << " " << ba << std::endl;
297  }
298 
299  //
300  // Grow the subdomains vector and build the subdomains vector at this level
301  //
302  subdomains.resize(lev+1);
303  //
304  // Create subdomains at each level within the domain such that
305  // 1) all boxes in a given subdomain are "connected"
306  // 2) no boxes in a subdomain touch any boxes in any other subdomain
307  //
308  if ( (solverChoice.anelastic[lev] == 0) && (solverChoice.project_initial_velocity[lev] == 0) ) {
309  BoxArray dom(geom[lev].Domain());
310  subdomains[lev].push_back(dom);
311  } else {
312  make_subdomains(ba.simplified_list(), subdomains[lev]);
313  }
314 
315  if (lev == 0) init_bcs();
316 
317  //********************************************************************************************
318  // This allocates all kinds of things, including but not limited to: solution arrays,
319  // terrain arrays, ba2d, metric terms and base state.
320  // *******************************************************************************************
321  init_stuff(lev, ba, dm, vars_new[lev], vars_old[lev], base_state[lev], z_phys_nd[lev]);
322 
323  t_new[lev] = time;
324  t_old[lev] = time - 1.e200;
325 
326  // ********************************************************************************************
327  // Build the data structures for metric quantities used with terrain-fitted coordinates
328  // ********************************************************************************************
329  if ( solverChoice.terrain_type == TerrainType::EB ||
330  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
331  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
332  {
333  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
334  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
335  if (solverChoice.terrain_type == TerrainType::EB) {
336  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
337  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
338  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
339  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
340  }
341  }
342  init_zphys(lev, time);
344 
345  //
346  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
347  // *and* if there is two-way coupling
348  //
349  if ( (SolverChoice::mesh_type != MeshType::ConstantDz) && (solverChoice.coupling_type == CouplingType::TwoWay) ) {
350  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
351  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
352  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
353  }
354  }
355 
356  // ********************************************************************************************
357  // Build the data structures for canopy model (depends upon z_phys)
358  // ********************************************************************************************
360  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
361  }
362 
363  //********************************************************************************************
364  // Radiation
365  // *******************************************************************************************
366  if (solverChoice.rad_type != RadiationType::None)
367  {
368  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
369  }
370 
371  // *****************************************************************************************************
372  // Initialize the boundary conditions (after initializing the terrain but before calling
373  // initHSE or FillCoarsePatch)
374  // *****************************************************************************************************
375  make_physbcs(lev);
376 
377  // ********************************************************************************************
378  // Update the base state at this level by interpolation from coarser level
379  // ********************************************************************************************
380  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
381  IntVect(0,0,0), // do not fill ghost cells outside the domain
382  base_state[lev-1], 0, 0, base_state[lev].nComp(),
383  geom[lev-1], geom[lev],
384  refRatio(lev-1), &cell_cons_interp,
386 
387  // Impose bc's outside the domain
388  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
389 
390  //********************************************************************************************
391  // Microphysics
392  // *******************************************************************************************
393  int q_size = micro->Get_Qmoist_Size(lev);
394  qmoist[lev].resize(q_size);
395  micro->Define(lev, solverChoice);
396  if (solverChoice.moisture_type != MoistureType::None)
397  {
398  micro->Init(lev, vars_new[lev][Vars::cons],
399  grids[lev], Geom(lev), 0.0,
400  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
401  }
402  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
403  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
404  }
405 
406  // ********************************************************************************************
407  // Build the data structures for calculating diffusive/turbulent terms
408  // ********************************************************************************************
409  update_diffusive_arrays(lev, ba, dm);
410 
411  // ********************************************************************************************
412  // Build the data structures for holding sea surface temps and skin temps
413  // ********************************************************************************************
414  sst_lev[lev].resize(1); sst_lev[lev][0] = nullptr;
415  tsk_lev[lev].resize(1); tsk_lev[lev][0] = nullptr;
416 
417  // ********************************************************************************************
418  // Fill data at the new level by interpolation from the coarser level
419  // Note that internal to FillCoarsePatch we will convert velocity to momentum,
420  // then interpolate momentum, then convert momentum back to velocity
421  // Also note that FillCoarsePatch is hard-wired to act only on lev_new at coarse and fine
422  // ********************************************************************************************
423 
424 #ifdef ERF_USE_NETCDF
425  if ( ( (solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid) ) &&
426  !nc_init_file[lev].empty() )
427  {
428  // Just making sure that ghost cells aren't uninitialized...
429  vars_new[lev][Vars::cons].setVal(0.0); vars_old[lev][Vars::cons].setVal(0.0);
430  vars_new[lev][Vars::xvel].setVal(0.0); vars_old[lev][Vars::xvel].setVal(0.0);
431  vars_new[lev][Vars::yvel].setVal(0.0); vars_old[lev][Vars::yvel].setVal(0.0);
432  vars_new[lev][Vars::zvel].setVal(0.0); vars_old[lev][Vars::zvel].setVal(0.0);
433 
434  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type == TerrainType::StaticFittedMesh);
435  if (solverChoice.init_type == InitType::Metgrid) {
436  init_from_metgrid(lev);
437  } else if (solverChoice.init_type == InitType::WRFInput) {
438  init_from_wrfinput(lev, *mf_C1H, *mf_C2H, *mf_MUB, *mf_PSFC[lev]);
439  }
440  init_zphys(lev, time);
442  make_physbcs(lev);
443 
444  dz_min[lev] = (*detJ_cc[lev]).min(0) * geom[lev].CellSize(2);
445 
446  } else {
447 #endif
448  //
449  // Interpolate the solution data
450  //
451  FillCoarsePatch(lev, time);
452  //
453  // Interpolate the 2D arrays at the lower boundary
454  // Note that ba2d is constructed already in init_stuff, but we have not yet defined dmap[lev]
455  // so we must explicitly pass dm.
456  Interp2DArrays(lev,ba2d[lev],dm);
457 #ifdef ERF_USE_NETCDF
458  }
459 #endif
460 
461  // ********************************************************************************************
462  // Initialize the integrator class
463  // ********************************************************************************************
464  dt_mri_ratio[lev] = dt_mri_ratio[lev-1];
466 
467  // ********************************************************************************************
468  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
469  // ********************************************************************************************
470  if (lev > 0 && cf_width >= 0) {
473  }
474 
475  //********************************************************************************************
476  // Land Surface Model
477  // *******************************************************************************************
478  int lsm_data_size = lsm.Get_Data_Size();
479  int lsm_flux_size = lsm.Get_Flux_Size();
480  lsm_data[lev].resize(lsm_data_size);
481  lsm_data_name.resize(lsm_data_size);
482  lsm_flux[lev].resize(lsm_flux_size);
483  lsm_flux_name.resize(lsm_flux_size);
484  lsm.Define(lev, solverChoice);
485  if (solverChoice.lsm_type != LandSurfaceType::None)
486  {
487  lsm.Init(lev, vars_new[lev][Vars::cons], Geom(lev), 0.0); // dummy dt value
488  }
489  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
490  lsm_data[lev][mvar] = lsm.Get_Data_Ptr(lev,mvar);
491  lsm_data_name[mvar] = lsm.Get_DataName(mvar);
492  }
493  for (int mvar(0); mvar<lsm_flux[lev].size(); ++mvar) {
494  lsm_flux[lev][mvar] = lsm.Get_Flux_Ptr(lev,mvar);
495  lsm_flux_name[mvar] = lsm.Get_FluxName(mvar);
496  }
497 
498  // ********************************************************************************************
499  // Create the SurfaceLayer arrays at this (new) level
500  // ********************************************************************************************
501  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
502  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
503  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
504  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,lev+1,
505  mfv_old, Theta_prim[lev], Qv_prim[lev],
506  Qr_prim[lev], z_phys_nd[lev],
507  Hwave[lev].get(), Lwave[lev].get(), eddyDiffs_lev[lev].get(),
509  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
510  }
511 
512 #ifdef ERF_USE_PARTICLES
513  // particleData.Redistribute();
514 #endif
515 }
void update_diffusive_arrays(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewArrays.cpp:516
void initialize_integrator(int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
Definition: ERF_MakeNewArrays.cpp:814
void make_subdomains(const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
Definition: ERF_MakeSubdomains.cpp:6
void update_terrain_arrays(int lev)
Definition: ERF_MakeNewArrays.cpp:797
void init_zphys(int lev, amrex::Real time)
Definition: ERF_MakeNewArrays.cpp:641
void init_stuff(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:24
void Define_ERFFillPatchers(int lev)
Definition: ERF.cpp:2876
int Get_Data_Size()
Definition: ERF_LandSurface.H:98
std::string Get_DataName(const int &varIdx)
Definition: ERF_LandSurface.H:104
std::string Get_FluxName(const int &varIdx)
Definition: ERF_LandSurface.H:110
amrex::MultiFab * Get_Flux_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:92
void Init(const int &lev, const amrex::MultiFab &cons_in, const amrex::Geometry &geom, const amrex::Real &dt_advance)
Definition: ERF_LandSurface.H:43
void Define(const int &lev, SolverChoice &sc)
Definition: ERF_LandSurface.H:36
int Get_Flux_Size()
Definition: ERF_LandSurface.H:101

◆ MakeNewLevelFromScratch()

void ERF::MakeNewLevelFromScratch ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
27 {
28  BoxArray ba;
29  DistributionMapping dm;
30  Box domain(Geom(0).Domain());
31  if (lev == 0 && restart_chkfile.empty() &&
32  (max_grid_size[0][0] >= domain.length(0)) &&
33  (max_grid_size[0][1] >= domain.length(1)) &&
34  ba_in.size() != ParallelDescriptor::NProcs())
35  {
36  // We only decompose in z if max_grid_size_z indicates we should
37  bool decompose_in_z = (max_grid_size[0][2] < domain.length(2));
38 
39  ba = ERFPostProcessBaseGrids(Geom(0).Domain(),decompose_in_z);
40  dm = DistributionMapping(ba);
41  } else {
42  ba = ba_in;
43  dm = dm_in;
44  }
45 
46  // ********************************************************************************************
47  // Define grids[lev] to be ba
48  // ********************************************************************************************
49  SetBoxArray(lev, ba);
50 
51  // ********************************************************************************************
52  // Define dmap[lev] to be dm
53  // ********************************************************************************************
54  SetDistributionMap(lev, dm);
55 
56  if (verbose) {
57  amrex::Print() << "BA FROM SCRATCH AT LEVEL " << lev << " " << ba << std::endl;
58  // amrex::Print() <<" SIMPLIFIED BA FROM SCRATCH AT LEVEL " << lev << " " << ba.simplified_list() << std::endl;
59  }
60 
61  subdomains.resize(lev+1);
62  if ( (lev == 0) || (
63  (solverChoice.anelastic[lev] == 0) && (solverChoice.project_initial_velocity[lev] == 0) &&
64  (solverChoice.init_type != InitType::WRFInput) && (solverChoice.init_type != InitType::Metgrid) ) ) {
65  BoxArray dom(geom[lev].Domain());
66  subdomains[lev].push_back(dom);
67  } else {
68  //
69  // Create subdomains at each level within the domain such that
70  // 1) all boxes in a given subdomain are "connected"
71  // 2) no boxes in a subdomain touch any boxes in any other subdomain
72  //
73  make_subdomains(ba.simplified_list(), subdomains[lev]);
74  }
75 
76  if (lev == 0) init_bcs();
77 
78  if ( solverChoice.terrain_type == TerrainType::EB ||
79  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
80  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
81  {
82  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
83  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
84  if (solverChoice.terrain_type == TerrainType::EB) {
85  eb[lev]->make_all_factories(lev, geom[lev], grids[lev], dmap[lev], eb_level);
86  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
87  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
88  eb[lev]->make_cc_factory(lev, geom[lev], grids[lev], dmap[lev], eb_level);
89  }
90  }
91 
92  auto& lev_new = vars_new[lev];
93  auto& lev_old = vars_old[lev];
94 
95  //********************************************************************************************
96  // This allocates all kinds of things, including but not limited to: solution arrays,
97  // terrain arrays, metric terms and base state.
98  // *******************************************************************************************
99  init_stuff(lev, ba, dm, lev_new, lev_old, base_state[lev], z_phys_nd[lev]);
100 
101  //********************************************************************************************
102  // Land Surface Model
103  // *******************************************************************************************
104  int lsm_data_size = lsm.Get_Data_Size();
105  int lsm_flux_size = lsm.Get_Flux_Size();
106  lsm_data[lev].resize(lsm_data_size);
107  lsm_data_name.resize(lsm_data_size);
108  lsm_flux[lev].resize(lsm_flux_size);
109  lsm_flux_name.resize(lsm_flux_size);
110  lsm.Define(lev, solverChoice);
111  if (solverChoice.lsm_type != LandSurfaceType::None)
112  {
113  lsm.Init(lev, vars_new[lev][Vars::cons], Geom(lev), 0.0); // dummy dt value
114  }
115  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
116  lsm_data[lev][mvar] = lsm.Get_Data_Ptr(lev,mvar);
117  lsm_data_name[mvar] = lsm.Get_DataName(mvar);
118  }
119  for (int mvar(0); mvar<lsm_flux[lev].size(); ++mvar) {
120  lsm_flux[lev][mvar] = lsm.Get_Flux_Ptr(lev,mvar);
121  lsm_flux_name[mvar] = lsm.Get_FluxName(mvar);
122  }
123 
124 
125 
126  // ********************************************************************************************
127  // Build the data structures for calculating diffusive/turbulent terms
128  // ********************************************************************************************
129  update_diffusive_arrays(lev, ba, dm);
130 
131  // ********************************************************************************************
132  // Build the data structures for holding sea surface temps and skin temps
133  // ********************************************************************************************
134  sst_lev[lev].resize(1); sst_lev[lev][0] = nullptr;
135  tsk_lev[lev].resize(1); tsk_lev[lev][0] = nullptr;
136 
137  // ********************************************************************************************
138  // Thin immersed body
139  // *******************************************************************************************
140  init_thin_body(lev, ba, dm);
141 
142  // ********************************************************************************************
143  // Initialize the integrator class
144  // ********************************************************************************************
145  initialize_integrator(lev, lev_new[Vars::cons],lev_new[Vars::xvel]);
146 
147  // ********************************************************************************************
148  // Initialize the data itself
149  // If (init_type == InitType::WRFInput) then we are initializing terrain and the initial data in
150  // the same call so we must call init_only before update_terrain_arrays
151  // If (init_type != InitType::WRFInput) then we want to initialize the terrain before the initial data
152  // since we may need to use the grid information before constructing
153  // initial idealized data
154  // ********************************************************************************************
155  if (restart_chkfile.empty()) {
156  if ( (solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid) )
157  {
158  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type == TerrainType::StaticFittedMesh);
159  init_only(lev, time);
160  init_zphys(lev, time);
162  make_physbcs(lev);
163  } else {
164  init_zphys(lev, time);
166  // Note that for init_type != InitType::WRFInput and != InitType::Metgrid,
167  // make_physbcs is called inside init_only
168  init_only(lev, time);
169  }
170  } else {
171  // if restarting and nudging from input sounding, load the input sounding files
172  if (lev == 0 && solverChoice.init_type == InitType::Input_Sounding && solverChoice.nudging_from_input_sounding)
173  {
175  Error("input_sounding file name must be provided via input");
176  }
177 
179 
180  // this will interpolate the input profiles to the nominal height levels
181  // (ranging from 0 to the domain top)
182  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
183  input_sounding_data.read_from_file(geom[lev], zlevels_stag[lev], n);
184  }
185 
186  // this will calculate the hydrostatically balanced density and pressure
187  // profiles following WRF ideal.exe
188  if (solverChoice.sounding_type == SoundingType::Ideal) {
190  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
191  solverChoice.sounding_type == SoundingType::DryIsentropic) {
192  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
194  }
195  }
196 
197  // We re-create terrain_blanking on restart rather than storing it in the checkpoint
198  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
199  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
200  int ngrow = ComputeGhostCells(solverChoice) + 2;
201  terrain_blanking[lev]->setVal(1.0);
202  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ngrow);
203  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
204  }
205  }
206 
207  // Read in tables needed for windfarm simulations
208  // fill in Nturb multifab - number of turbines in each mesh cell
209  // write out the vtk files for wind turbine location and/or
210  // actuator disks
211  #ifdef ERF_USE_WINDFARM
212  init_windfarm(lev);
213  #endif
214 
215  // ********************************************************************************************
216  // Build the data structures for canopy model (depends upon z_phys)
217  // ********************************************************************************************
218  if (restart_chkfile.empty()) {
220  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
221  }
222  }
223 
224  //********************************************************************************************
225  // Create wall distance field for RANS model (depends upon z_phys)
226  // *******************************************************************************************
227  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
228  // Handle bottom boundary
229  poisson_wall_dist(lev);
230 
231  // Correct the wall distance for immersed bodies
237  geom[lev],
238  z_phys_cc[lev]);
239  }
240  }
241 
242  //********************************************************************************************
243  // Microphysics
244  // *******************************************************************************************
245  int q_size = micro->Get_Qmoist_Size(lev);
246  qmoist[lev].resize(q_size);
247  micro->Define(lev, solverChoice);
248  if (solverChoice.moisture_type != MoistureType::None)
249  {
250  micro->Init(lev, vars_new[lev][Vars::cons],
251  grids[lev], Geom(lev), 0.0,
252  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
253  }
254  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
255  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
256  }
257 
258  //********************************************************************************************
259  // Radiation
260  // *******************************************************************************************
261  if (solverChoice.rad_type != RadiationType::None)
262  {
263  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
264  }
265 
266  // ********************************************************************************************
267  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
268  // ********************************************************************************************
269  if (lev > 0 && cf_width >= 0) {
272  }
273 
274 #ifdef ERF_USE_PARTICLES
275  if (restart_chkfile.empty()) {
276  if (lev == 0) {
277  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,time);
278  } else {
279  particleData.Redistribute();
280  }
281  }
282 #endif
283 }
BoxArray ERFPostProcessBaseGrids(const Box &domain, bool decompose_in_z)
Definition: ERF_ChopGrids.cpp:6
void thinbody_wall_dist(std::unique_ptr< MultiFab > &wdist, Vector< IntVect > &xfaces, Vector< IntVect > &yfaces, Vector< IntVect > &zfaces, const Geometry &geomdata, std::unique_ptr< MultiFab > &z_phys_cc)
Definition: ERF_ThinBodyWallDist.cpp:12
void init_only(int lev, amrex::Real time)
Definition: ERF.cpp:2026
void poisson_wall_dist(int lev)
Definition: ERF_PoissonWallDist.cpp:20
void init_thin_body(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewLevel.cpp:850
bool nudging_from_input_sounding
Definition: ERF_DataStruct.H:1118
Here is the call graph for this function:

◆ MakeVTKFilename()

std::string ERF::MakeVTKFilename ( int  nstep)
11  {
12  // Ensure output directory exists
13  const std::string dir = "Output_StormTracker";
14  if (!fs::exists(dir)) {
15  fs::create_directory(dir);
16  }
17 
18  std::ostringstream oss;
19  oss << dir << "/storm_track_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
20  return oss.str();
21 }

◆ MakeVTKFilename_EyeTracker_xy()

std::string ERF::MakeVTKFilename_EyeTracker_xy ( int  nstep)
38  {
39  // Ensure output directory exists
40  const std::string dir = "Output_StormTracker/xy";
41  if (!fs::exists(dir)) {
42  fs::create_directories(dir);
43  }
44 
45  // Construct filename with zero-padded step
46  std::ostringstream oss;
47  oss << dir << "/storm_track_xy_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
48  return oss.str();
49 }

◆ MakeVTKFilename_TrackerCircle()

std::string ERF::MakeVTKFilename_TrackerCircle ( int  nstep)
24  {
25  // Ensure output directory exists
26  const std::string dir = "Output_StormTracker/tracker_circle";
27  if (!fs::exists(dir)) {
28  fs::create_directories(dir);
29  }
30 
31  // Construct filename with zero-padded step
32  std::ostringstream oss;
33  oss << dir << "/storm_tracker_circle_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
34  return oss.str();
35 }

◆ nghost_eb_basic()

static int ERF::nghost_eb_basic ( )
inlinestaticprivate
1630  { return 5; }

◆ nghost_eb_full()

static int ERF::nghost_eb_full ( )
inlinestaticprivate
1637  { return 4; }

◆ nghost_eb_volume()

static int ERF::nghost_eb_volume ( )
inlinestaticprivate
1634  { return 5; }

◆ NumDataLogs()

AMREX_FORCE_INLINE int ERF::NumDataLogs ( )
inlineprivatenoexcept
1426  {
1427  return datalog.size();
1428  }

◆ NumDerDataLogs()

AMREX_FORCE_INLINE int ERF::NumDerDataLogs ( )
inlineprivatenoexcept
1433  {
1434  return der_datalog.size();
1435  }

◆ NumSampleLineLogs()

AMREX_FORCE_INLINE int ERF::NumSampleLineLogs ( )
inlineprivatenoexcept
1462  {
1463  return samplelinelog.size();
1464  }

◆ NumSampleLines()

AMREX_FORCE_INLINE int ERF::NumSampleLines ( )
inlineprivatenoexcept
1488  {
1489  return sampleline.size();
1490  }

◆ NumSamplePointLogs()

AMREX_FORCE_INLINE int ERF::NumSamplePointLogs ( )
inlineprivatenoexcept
1448  {
1449  return sampleptlog.size();
1450  }

◆ NumSamplePoints()

AMREX_FORCE_INLINE int ERF::NumSamplePoints ( )
inlineprivatenoexcept
1475  {
1476  return samplepoint.size();
1477  }

◆ operator=() [1/2]

ERF& ERF::operator= ( const ERF other)
delete

◆ operator=() [2/2]

ERF& ERF::operator= ( ERF &&  other)
deletenoexcept

◆ ParameterSanityChecks()

void ERF::ParameterSanityChecks ( )
private
2632 {
2633  AMREX_ALWAYS_ASSERT(cfl > 0. || fixed_dt[0] > 0.);
2634 
2635  // We don't allow use_real_bcs to be true if init_type is not either InitType::WRFInput or InitType::Metgrid
2636  AMREX_ALWAYS_ASSERT( !solverChoice.use_real_bcs ||
2637  ((solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid)) );
2638 
2639  AMREX_ALWAYS_ASSERT(real_width >= 0);
2640  AMREX_ALWAYS_ASSERT(real_set_width >= 0);
2641  AMREX_ALWAYS_ASSERT(real_width >= real_set_width);
2642 
2643  if (cf_width < 0 || cf_set_width < 0 || cf_width < cf_set_width) {
2644  Abort("You must set cf_width >= cf_set_width >= 0");
2645  }
2646  if (max_level > 0 && cf_set_width > 0) {
2647  for (int lev = 1; lev <= max_level; lev++) {
2648  if (cf_set_width%ref_ratio[lev-1][0] != 0 ||
2649  cf_set_width%ref_ratio[lev-1][1] != 0 ||
2650  cf_set_width%ref_ratio[lev-1][2] != 0 ) {
2651  Abort("You must set cf_width to be a multiple of ref_ratio");
2652  }
2653  }
2654  }
2655 
2656  // If fixed_mri_dt_ratio is set, it must be even
2657  if (fixed_mri_dt_ratio > 0 && (fixed_mri_dt_ratio%2 != 0) )
2658  {
2659  Abort("If you specify fixed_mri_dt_ratio, it must be even");
2660  }
2661 
2662  for (int lev = 0; lev <= max_level; lev++)
2663  {
2664  // We ignore fixed_fast_dt if not substepping
2665  if (solverChoice.substepping_type[lev] == SubsteppingType::None) {
2666  fixed_fast_dt[lev] = -1.0;
2667  }
2668 
2669  // If both fixed_dt and fast_dt are specified, their ratio must be an even integer
2670  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio <= 0)
2671  {
2672  Real eps = 1.e-12;
2673  int ratio = static_cast<int>( ( (1.0+eps) * fixed_dt[lev] ) / fixed_fast_dt[lev] );
2674  if (fixed_dt[lev] / fixed_fast_dt[lev] != ratio)
2675  {
2676  Abort("Ratio of fixed_dt to fixed_fast_dt must be an even integer");
2677  }
2678  }
2679 
2680  // If all three are specified, they must be consistent
2681  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio > 0)
2682  {
2683  if (fixed_dt[lev] / fixed_fast_dt[lev] != fixed_mri_dt_ratio)
2684  {
2685  Abort("Dt is over-specfied");
2686  }
2687  }
2688  } // lev
2689 
2690  if (solverChoice.coupling_type == CouplingType::TwoWay && cf_width > 0) {
2691  Abort("For two-way coupling you must set cf_width = 0");
2692  }
2693 }
int real_set_width
Definition: ERF.H:1226

◆ PlotFileName()

std::string ERF::PlotFileName ( int  lev) const
private

◆ PlotFileVarNames()

Vector< std::string > ERF::PlotFileVarNames ( amrex::Vector< std::string >  plot_var_names)
staticprivate
297 {
298  Vector<std::string> names;
299 
300  names.insert(names.end(), plot_var_names.begin(), plot_var_names.end());
301 
302  return names;
303 
304 }

◆ poisson_wall_dist()

void ERF::poisson_wall_dist ( int  lev)

Calculate wall distances using the Poisson equation

The zlo boundary is assumed to correspond to the land surface. If there are no boundary walls, then the other use case is to calculate wall distances for immersed boundaries (embedded or thin body).

See Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248. https://doi.org/10.1016/S0021-9991(03)00272-9

21 {
22  BL_PROFILE("ERF::poisson_wall_dist()");
23 
24  bool havewall{false};
25  Orientation zlo(Direction::z, Orientation::low);
26  if ( ( phys_bc_type[zlo] == ERF_BC::surface_layer ) ||
27  ( phys_bc_type[zlo] == ERF_BC::no_slip_wall ) )/*||
28  ((phys_bc_type[zlo] == ERF_BC::slip_wall) && (dom_hi.z > dom_lo.z)) )*/
29  {
30  havewall = true;
31  }
32 
33  auto const& geomdata = geom[lev];
34 
35  if (havewall) {
36  if (solverChoice.mesh_type == MeshType::ConstantDz) {
37 // Comment this out to test the wall dist calc in the trivial case:
38 //#if 0
39  Print() << "Directly calculating direct wall distance for constant dz" << std::endl;
40  const Real* prob_lo = geomdata.ProbLo();
41  const Real* dx = geomdata.CellSize();
42  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
43  const Box& bx = mfi.validbox();
44  auto dist_arr = walldist[lev]->array(mfi);
45  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
46  dist_arr(i, j, k) = prob_lo[2] + (k + 0.5) * dx[2];
47  });
48  }
49  return;
50 //#endif
51  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
52  // TODO: Handle this trivial case
53  Error("Wall dist calc not implemented with grid stretching yet");
54  } else {
55  // TODO
56  Error("Wall dist calc not implemented over terrain yet");
57  }
58  }
59 
60  Print() << "Calculating Poisson wall distance" << std::endl;
61 
62  // Make sure the solver only sees the levels over which we are solving
63  BoxArray nba = walldist[lev]->boxArray();
64  nba.surroundingNodes();
65  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
66  Vector<BoxArray> ba_tmp; ba_tmp.push_back(nba);
67  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(walldist[lev]->DistributionMap());
68 
69  Vector<MultiFab> rhs;
70  Vector<MultiFab> phi;
71 
72  if (solverChoice.terrain_type == TerrainType::EB) {
73  amrex::Error("Wall dist calc not implemented for EB");
74  } else {
75  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
76  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
77  }
78 
79  rhs[0].setVal(-1.0);
80 
81  // Define an overset mask to set dirichlet nodes on walls
82  iMultiFab mask(ba_tmp[0], dm_tmp[0], 1, 0);
83  Vector<const iMultiFab*> overset_mask = {&mask};
84 
85  auto const dom_lo = lbound(geom[lev].Domain());
86  auto const dom_hi = ubound(geom[lev].Domain());
87 
88  // ****************************************************************************
89  // Initialize phi
90  // (It is essential that we do this in order to fill the corners; this is
91  // used if we include blanking.)
92  // ****************************************************************************
93  phi[0].setVal(0.0);
94 
95  // ****************************************************************************
96  // Interior boundaries are marked with phi=0
97  // ****************************************************************************
98  // Overset mask is 0/1: 1 means the node is an unknown. 0 means it's known.
99  mask.setVal(1);
101  Warning("Poisson distance is inaccurate for bodies in open domains that are small compared to the domain size, skipping");
102  return;
103 #if 0
104  Gpu::DeviceVector<IntVect> xfacelist, yfacelist, zfacelist;
105 
106  xfacelist.resize(solverChoice.advChoice.zero_xflux.size());
107  yfacelist.resize(solverChoice.advChoice.zero_yflux.size());
108  zfacelist.resize(solverChoice.advChoice.zero_zflux.size());
109 
110  if (xfacelist.size() > 0) {
111  Gpu::copy(amrex::Gpu::hostToDevice,
114  xfacelist.begin());
115  Print() << " masking interior xfaces" << std::endl;
116  }
117  if (yfacelist.size() > 0) {
118  Gpu::copy(amrex::Gpu::hostToDevice,
121  yfacelist.begin());
122  Print() << " masking interior yfaces" << std::endl;
123  }
124  if (zfacelist.size() > 0) {
125  Gpu::copy(amrex::Gpu::hostToDevice,
128  zfacelist.begin());
129  Print() << " masking interior zfaces" << std::endl;
130  }
131 
132  for (MFIter mfi(phi[0]); mfi.isValid(); ++mfi) {
133  const Box& bx = mfi.validbox();
134 
135  auto phi_arr = phi[0].array(mfi);
136  auto mask_arr = mask.array(mfi);
137 
138  if (xfacelist.size() > 0) {
139  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
140  for (int iface=0; iface < xfacelist.size(); ++iface) {
141  if ((i == xfacelist[iface][0]) &&
142  (j == xfacelist[iface][1]) &&
143  (k == xfacelist[iface][2]))
144  {
145  mask_arr(i, j , k ) = 0;
146  mask_arr(i, j , k+1) = 0;
147  mask_arr(i, j+1, k ) = 0;
148  mask_arr(i, j+1, k+1) = 0;
149  }
150  }
151  });
152  }
153 
154  if (yfacelist.size() > 0) {
155  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
156  for (int iface=0; iface < yfacelist.size(); ++iface) {
157  if ((i == yfacelist[iface][0]) &&
158  (j == yfacelist[iface][1]) &&
159  (k == yfacelist[iface][2]))
160  {
161  mask_arr(i , j, k ) = 0;
162  mask_arr(i , j, k+1) = 0;
163  mask_arr(i+1, j, k ) = 0;
164  mask_arr(i+1, j, k+1) = 0;
165  }
166  }
167  });
168  }
169 
170  if (zfacelist.size() > 0) {
171  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
172  for (int iface=0; iface < zfacelist.size(); ++iface) {
173  if ((i == xfacelist[iface][0]) &&
174  (j == xfacelist[iface][1]) &&
175  (k == xfacelist[iface][2]))
176  {
177  mask_arr(i , j , k) = 0;
178  mask_arr(i , j+1, k) = 0;
179  mask_arr(i+1, j , k) = 0;
180  mask_arr(i+1, j+1, k) = 0;
181  }
182  }
183  });
184  }
185  }
186 #endif
187  }
188 
189  // ****************************************************************************
190  // Setup BCs, with solid domain boundaries being dirichlet
191  // ****************************************************************************
192  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> bc3d_lo, bc3d_hi;
193  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
194  if (geom[0].isPeriodic(dir)) {
195  bc3d_lo[dir] = LinOpBCType::Periodic;
196  bc3d_hi[dir] = LinOpBCType::Periodic;
197  } else {
198  bc3d_lo[dir] = LinOpBCType::Neumann;
199  bc3d_hi[dir] = LinOpBCType::Neumann;
200  }
201  }
202  if (havewall) {
203  Print() << " Poisson zlo BC is dirichlet" << std::endl;
204  bc3d_lo[2] = LinOpBCType::Dirichlet;
205  }
206  Print() << " bc lo : " << bc3d_lo << std::endl;
207  Print() << " bc hi : " << bc3d_hi << std::endl;
208 
209  if (!solverChoice.advChoice.have_zero_flux_faces && !havewall) {
210  Error("No solid boundaries in the computational domain");
211  }
212 
213  LPInfo info;
214 /* Nodal solver cannot have hidden dimensions */
215 #if 0
216  // Allow a hidden direction if the domain is one cell wide
217  if (dom_lo.x == dom_hi.x) {
218  info.setHiddenDirection(0);
219  Print() << " domain is 2D in yz" << std::endl;
220  } else if (dom_lo.y == dom_hi.y) {
221  info.setHiddenDirection(1);
222  Print() << " domain is 2D in xz" << std::endl;
223  } else if (dom_lo.z == dom_hi.z) {
224  info.setHiddenDirection(2);
225  Print() << " domain is 2D in xy" << std::endl;
226  }
227 #endif
228 
229  // ****************************************************************************
230  // Solve nodal masked Poisson problem with MLMG
231  // TODO: different solver for terrain?
232  // ****************************************************************************
233  const Real reltol = solverChoice.poisson_reltol;
234  const Real abstol = solverChoice.poisson_abstol;
235 
236  Real sigma = 1.0;
237  Vector<EBFArrayBoxFactory const*> factory_vec = { &EBFactory(lev) };
238  MLNodeLaplacian mlpoisson(geom_tmp, ba_tmp, dm_tmp, info, factory_vec, sigma);
239 
240  mlpoisson.setDomainBC(bc3d_lo, bc3d_hi);
241 
242  if (lev > 0) {
243  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
244  }
245 
246  mlpoisson.setLevelBC(0, nullptr);
247 
248  mlpoisson.setOversetMask(0, mask);
249 
250  // Solve
251  MLMG mlmg(mlpoisson);
252  int max_iter = 100;
253  mlmg.setMaxIter(max_iter);
254 
255  mlmg.setVerbose(mg_verbose);
256  mlmg.setBottomVerbose(0);
257 
258  mlmg.solve(GetVecOfPtrs(phi),
259  GetVecOfConstPtrs(rhs),
260  reltol, abstol);
261 
262  // Now overwrite with periodic fill outside domain and fine-fine fill inside
263  phi[0].FillBoundary(geom[lev].periodicity());
264 
265  // ****************************************************************************
266  // Compute grad(phi) to get distances
267  // - Note that phi is nodal and walldist is cell-centered
268  // - TODO: include terrain metrics for dphi/dz
269  // ****************************************************************************
270  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
271  const Box& bx = mfi.validbox();
272 
273  const auto invCellSize = geomdata.InvCellSizeArray();
274 
275  auto const& phi_arr = phi[0].const_array(mfi);
276  auto dist_arr = walldist[lev]->array(mfi);
277 
278  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
279  Real dpdx{0}, dpdy{0}, dpdz{0};
280 
281  // dphi/dx
282  if (dom_lo.x != dom_hi.x) {
283  dpdx = 0.25 * invCellSize[0] * (
284  (phi_arr(i+1, j , k ) - phi_arr(i, j , k ))
285  + (phi_arr(i+1, j , k+1) - phi_arr(i, j , k+1))
286  + (phi_arr(i+1, j+1, k ) - phi_arr(i, j+1, k ))
287  + (phi_arr(i+1, j+1, k+1) - phi_arr(i, j+1, k+1)) );
288  }
289 
290  // dphi/dy
291  if (dom_lo.y != dom_hi.y) {
292  dpdy = 0.25 * invCellSize[1] * (
293  (phi_arr(i , j+1, k ) - phi_arr(i , j, k ))
294  + (phi_arr(i , j+1, k+1) - phi_arr(i , j, k+1))
295  + (phi_arr(i+1, j+1, k ) - phi_arr(i+1, j, k ))
296  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j, k+1)) );
297  }
298 
299  // dphi/dz
300  if (dom_lo.z != dom_hi.z) {
301  dpdz = 0.25 * invCellSize[2] * (
302  (phi_arr(i , j , k+1) - phi_arr(i , j , k))
303  + (phi_arr(i , j+1, k+1) - phi_arr(i , j+1, k))
304  + (phi_arr(i+1, j , k+1) - phi_arr(i+1, j , k))
305  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j+1, k)) );
306  }
307 
308  Real dp_dot_dp = dpdx*dpdx + dpdy*dpdy + dpdz*dpdz;
309  Real phi_avg = 0.125 * (
310  phi_arr(i , j , k ) + phi_arr(i , j , k+1) + phi_arr(i , j+1, k ) + phi_arr(i , j+1, k+1)
311  + phi_arr(i+1, j , k ) + phi_arr(i+1, j , k+1) + phi_arr(i+1, j+1, k ) + phi_arr(i+1, j+1, k+1) );
312  dist_arr(i, j, k) = -std::sqrt(dp_dot_dp) + std::sqrt(dp_dot_dp + 2*phi_avg);
313 
314  // DEBUG: output phi instead
315  //dist_arr(i, j, k) = phi_arr(i, j, k);
316  });
317  }
318 }
if(l_use_mynn &&start_comp<=RhoKE_comp &&end_comp >=RhoKE_comp)
Definition: ERF_AddQKESources.H:2
static int mg_verbose
Definition: ERF.H:1195
amrex::Real poisson_reltol
Definition: ERF_DataStruct.H:1063
amrex::Real poisson_abstol
Definition: ERF_DataStruct.H:1062
Here is the call graph for this function:

◆ post_timestep()

void ERF::post_timestep ( int  nstep,
amrex::Real  time,
amrex::Real  dt_lev 
)
716 {
717  BL_PROFILE("ERF::post_timestep()");
718 
719 #ifdef ERF_USE_PARTICLES
720  particleData.Redistribute();
721 #endif
722 
723  if (solverChoice.coupling_type == CouplingType::TwoWay)
724  {
725  int ncomp = vars_new[0][Vars::cons].nComp();
726  for (int lev = finest_level-1; lev >= 0; lev--)
727  {
728  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
729  // m is the map scale factor at cell centers
730  // Here we pre-divide (rho S) by m^2 before refluxing
731  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
732  const Box& bx = mfi.tilebox();
733  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
734  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
735  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
736  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
737  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
738  {
739  cons_arr(i,j,k,n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
740  });
741  } else {
742  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
743  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
744  {
745  cons_arr(i,j,k,n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
746  });
747  }
748  } // mfi
749 
750  // This call refluxes all "slow" cell-centered variables
751  // (i.e. not density or (rho theta) or velocities) from the lev/lev+1 interface onto lev
752  getAdvFluxReg(lev+1)->Reflux(vars_new[lev][Vars::cons], 2, 2, ncomp-2);
753 
754  // Here we multiply (rho S) by m^2 after refluxing
755  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
756  const Box& bx = mfi.tilebox();
757  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
758  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
759  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
760  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
761  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
762  {
763  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
764  });
765  } else {
766  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
767  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
768  {
769  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
770  });
771  }
772  } // mfi
773 
774  // We need to do this before anything else because refluxing changes the
775  // values of coarse cells underneath fine grids with the assumption they'll
776  // be over-written by averaging down
777  int src_comp;
778  if (solverChoice.anelastic[lev]) {
779  src_comp = 1;
780  } else {
781  src_comp = 0;
782  }
783  int num_comp = ncomp - src_comp;
784  AverageDownTo(lev,src_comp,num_comp);
785  }
786  }
787 
788  if (is_it_time_for_action(nstep, time, dt_lev0, sum_interval, sum_per)) {
791  sum_energy_quantities(time);
792  }
793 
794  if (solverChoice.pert_type == PerturbationType::Source ||
795  solverChoice.pert_type == PerturbationType::Direct ||
796  solverChoice.pert_type == PerturbationType::CPM) {
797  if (is_it_time_for_action(nstep, time, dt_lev0, pert_interval, -1.)) {
798  turbPert.debug(time);
799  }
800  }
801 
802  if (profile_int > 0 && (nstep+1) % profile_int == 0) {
803  if (destag_profiles) {
804  // all variables cell-centered
805  write_1D_profiles(time);
806  } else {
807  // some variables staggered
809  }
810  }
811 
812  if (solverChoice.rad_type != RadiationType::None)
813  {
814  if ( rad_datalog_int > 0 &&
815  (((nstep+1) % rad_datalog_int == 0) || (nstep==0)) ) {
816  if (rad[0]->hasDatalog()) {
817  rad[0]->WriteDataLog(time+start_time);
818  }
819  }
820  }
821 
822  if (output_1d_column) {
823 #ifdef ERF_USE_NETCDF
824  if (is_it_time_for_action(nstep, time, dt_lev0, column_interval, column_per))
825  {
826  int lev_column = 0;
827  for (int lev = finest_level; lev >= 0; lev--)
828  {
829  Real dx_lev = geom[lev].CellSize(0);
830  Real dy_lev = geom[lev].CellSize(1);
831  int i_lev = static_cast<int>(std::floor(column_loc_x / dx_lev));
832  int j_lev = static_cast<int>(std::floor(column_loc_y / dy_lev));
833  if (grids[lev].contains(IntVect(i_lev,j_lev,0))) lev_column = lev;
834  }
835  writeToNCColumnFile(lev_column, column_file_name, column_loc_x, column_loc_y, time);
836  }
837 #else
838  Abort("To output 1D column files ERF must be compiled with NetCDF");
839 #endif
840  }
841 
843  {
846  {
847  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
848  m_w2d->write_planes(istep[0], time, vars_new, is_moist);
849  }
850  }
851 
852  // Write plane/line sampler data
854  line_sampler->get_sample_data(geom, vars_new);
855  line_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
856  }
858  plane_sampler->get_sample_data(geom, vars_new);
859  plane_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
860  }
861 
862  // Moving terrain
863  if ( solverChoice.terrain_type == TerrainType::MovingFittedMesh )
864  {
865  for (int lev = finest_level; lev >= 0; lev--)
866  {
867  // Copy z_phs_nd and detJ_cc at end of timestep
868  MultiFab::Copy(*z_phys_nd[lev], *z_phys_nd_new[lev], 0, 0, 1, z_phys_nd[lev]->nGrowVect());
869  MultiFab::Copy( *detJ_cc[lev], *detJ_cc_new[lev], 0, 0, 1, detJ_cc[lev]->nGrowVect());
870  MultiFab::Copy(base_state[lev],base_state_new[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
871 
872  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
873  }
874  }
875 
876  if ( solverChoice.io_hurricane_eye_tracker and (nstep == 0 or (nstep+1)%m_plot3d_int_1 == 0) )
877  {
878  int levc=finest_level;
879 
880  HurricaneEyeTracker(geom[levc],
881  vars_new[levc],
889 
890  MultiFab& U_new = vars_new[levc][Vars::xvel];
891  MultiFab& V_new = vars_new[levc][Vars::yvel];
892  MultiFab& W_new = vars_new[levc][Vars::zvel];
893 
894  MultiFab mf_cc_vel(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
895  average_face_to_cellcenter(mf_cc_vel,0,{AMREX_D_DECL(&U_new,&V_new,&W_new)},0);
896 
897  HurricaneMaxVelTracker(geom[levc],
898  mf_cc_vel,
899  t_new[0],
902 
903  std::string filename_tracker = MakeVTKFilename_TrackerCircle(nstep);
904  std::string filename_xy = MakeVTKFilename_EyeTracker_xy(nstep);
905  std::string filename_latlon = MakeFilename_EyeTracker_latlon(nstep);
906  std::string filename_maxvel = MakeFilename_EyeTracker_maxvel(nstep);
907  if (ParallelDescriptor::IOProcessor()) {
908  WriteVTKPolyline(filename_tracker, hurricane_tracker_circle);
910  WriteLinePlot(filename_latlon, hurricane_eye_track_latlon);
911  WriteLinePlot(filename_maxvel, hurricane_maxvel_vs_time);
912  }
913  }
914 } // post_timestep
void HurricaneMaxVelTracker(const amrex::Geometry &geom, const amrex::MultiFab &mf_cc_vel, const amrex::Real &time, const amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_xy, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_maxvel_vs_time)
Definition: ERF_HurricaneDiagnostics.H:281
void HurricaneEyeTracker(const amrex::Geometry &geom, const amrex::Vector< amrex::MultiFab > &S_data, MoistureType moisture_type, const amrex::Vector< amrex::MultiFab > *forecast_state_at_lev, const amrex::Real &hurricane_eye_latitude, const amrex::Real &hurricane_eye_longitude, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_xy, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_latlon, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_tracker_circle)
Definition: ERF_HurricaneDiagnostics.H:255
void make_zcc(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:624
std::string MakeFilename_EyeTracker_maxvel(int nstep)
Definition: ERF_TrackerOutput.cpp:66
static amrex::Real column_loc_y
Definition: ERF.H:1260
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_tracker_circle
Definition: ERF.H:160
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_maxvel_vs_time
Definition: ERF.H:159
static std::string column_file_name
Definition: ERF.H:1261
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg(int lev)
Definition: ERF.H:1404
static amrex::Real bndry_output_planes_per
Definition: ERF.H:1266
static amrex::Real column_per
Definition: ERF.H:1258
static amrex::Real column_loc_x
Definition: ERF.H:1259
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_latlon
Definition: ERF.H:158
std::string MakeVTKFilename_TrackerCircle(int nstep)
Definition: ERF_TrackerOutput.cpp:24
std::string MakeVTKFilename_EyeTracker_xy(int nstep)
Definition: ERF_TrackerOutput.cpp:38
static int bndry_output_planes_interval
Definition: ERF.H:1265
void WriteLinePlot(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_Write1DProfiles.cpp:574
static int output_1d_column
Definition: ERF.H:1256
void WriteVTKPolyline(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_TrackerOutput.cpp:80
std::string MakeFilename_EyeTracker_latlon(int nstep)
Definition: ERF_TrackerOutput.cpp:52
static int column_interval
Definition: ERF.H:1257
amrex::Real hurricane_eye_latitude
Definition: ERF_DataStruct.H:1190
amrex::Real hurricane_eye_longitude
Definition: ERF_DataStruct.H:1190
bool io_hurricane_eye_tracker
Definition: ERF_DataStruct.H:1189
Here is the call graph for this function:

◆ post_update()

void ERF::post_update ( amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ print_banner()

void ERF::print_banner ( MPI_Comm  comm,
std::ostream &  out 
)
static
65  : " << msg << std::endl;
66 }
67 
68 void ERF::print_banner (MPI_Comm comm, std::ostream& out)
69 {
70 #ifdef AMREX_USE_MPI
71  int irank = 0;
72  int num_ranks = 1;
73  MPI_Comm_size(comm, &num_ranks);
74  MPI_Comm_rank(comm, &irank);
75 
76  // Only root process does the printing
77  if (irank != 0) return;
78 #else
79  amrex::ignore_unused(comm);
80 #endif
81 
82  auto etime = std::chrono::system_clock::now();
83  auto etimet = std::chrono::system_clock::to_time_t(etime);
84 #ifndef _WIN32
85  char time_buf[64];
86  ctime_r(&etimet, time_buf);
87  const std::string tstamp(time_buf);
88 #else
89  char* time_buf = new char[64];
90  ctime_s(time_buf, 64, &etimet);
91  const std::string tstamp(time_buf);
92 #endif
93 
94  const char* githash1 = amrex::buildInfoGetGitHash(1);
95  const char* githash2 = amrex::buildInfoGetGitHash(2);
96 
97  // clang-format off
98  out << dbl_line
99  << " ERF (https://github.com/erf-model/ERF)"
100  << std::endl << std::endl
101  << " ERF Git SHA :: " << githash1 << std::endl
102  << " AMReX Git SHA :: " << githash2 << std::endl
103  << " AMReX version :: " << amrex::Version() << std::endl << std::endl
104  << " Exec. time :: " << tstamp
105  << " Build time :: " << amrex::buildInfoGetBuildDate() << std::endl
106  << " C++ compiler :: " << amrex::buildInfoGetComp()
107  << " " << amrex::buildInfoGetCompVersion() << std::endl << std::endl
108  << " MPI :: "
109 #ifdef AMREX_USE_MPI
110  << "ON (Num. ranks = " << num_ranks << ")" << std::endl
111 #else
112  << "OFF " << std::endl
113 #endif
114  << " GPU :: "
115 #ifdef AMREX_USE_GPU
116  << "ON "
117 #if defined(AMREX_USE_CUDA)
118  << "(Backend: CUDA)"
119 #elif defined(AMREX_USE_HIP)
120  << "(Backend: HIP)"
121 #elif defined(AMREX_USE_SYCL)
122  << "(Backend: SYCL)"
123 #endif
124  << std::endl
125 #else
126  << "OFF" << std::endl
127 #endif
128  << " OpenMP :: "
129 #ifdef AMREX_USE_OMP
130  << "ON (Num. threads = " << omp_get_max_threads() << ")" << std::endl
131 #else
132  << "OFF" << std::endl
133 #endif
134  << std::endl;
135 
ERF()
Definition: ERF.cpp:130
const char * buildInfoGetBuildDate()
const char * buildInfoGetComp()
const char * buildInfoGetCompVersion()

Referenced by main().

Here is the caller graph for this function:

◆ print_error()

void ERF::print_error ( MPI_Comm  comm,
const std::string &  msg 
)
static
43  :
44  input_file : Input file with simulation settings
45 
46 Optional:
47  param=value : Overrides for parameters during runtime
48 )doc" << std::endl;
49 }
50 
51 void ERF::print_error (MPI_Comm comm, const std::string& msg)
52 {
53 #ifdef AMREX_USE_MPI
54  int irank = 0;
55  int num_ranks = 1;
56  MPI_Comm_size(comm, &num_ranks);
57  MPI_Comm_rank(comm, &irank);
58 
amrex::Real value
Definition: ERF_HurricaneDiagnostics.H:20

Referenced by main().

Here is the caller graph for this function:

◆ print_summary()

static void ERF::print_summary ( std::ostream &  )
static

◆ print_tpls()

void ERF::print_tpls ( std::ostream &  out)
static
140  ://github.com/erf-model/ERF/blob/development/LICENSE for details. "
141  << dash_line << std::endl;
142  // clang-format on
143 }
144 
145 void ERF::print_tpls (std::ostream& out)
146 {
147  amrex::Vector<std::string> tpls;
148 
149 #ifdef ERF_USE_NETCDF
150  tpls.push_back(std::string("NetCDF ") + NC_VERSION);
151 #endif
152 #ifdef AMREX_USE_SUNDIALS
153  tpls.push_back(std::string("SUNDIALS ") + SUNDIALS_VERSION);
154 #endif
155 
156  if (!tpls.empty()) {
157  out << " Enabled third-party libraries: ";
158  for (const auto& val : tpls) {
struct @19 out
static void print_tpls(std::ostream &)
Definition: ERF_ConsoleIO.cpp:137

◆ print_usage()

void ERF::print_usage ( MPI_Comm  comm,
std::ostream &  out 
)
static
27 {
28 #ifdef AMREX_USE_MPI
29  int irank = 0;
30  int num_ranks = 1;
31  MPI_Comm_size(comm, &num_ranks);
32  MPI_Comm_rank(comm, &irank);
33 
34  // Only root process does the printing
35  if (irank != 0) return;
36 #else
37  amrex::ignore_unused(comm);
38 #endif
39 
40  out << R"doc(Usage:
41  ERF3d.*.ex <input_file> [param=value] [param=value] ...

Referenced by main().

Here is the caller graph for this function:

◆ project_initial_velocity()

void ERF::project_initial_velocity ( int  lev,
amrex::Real  time,
amrex::Real  dt 
)

Project the single-level velocity field to enforce the anelastic constraint Note that the level may or may not be level 0.

32 {
33  BL_PROFILE("ERF::project_initial_velocity()");
34  // Impose FillBoundary on density since we use it in the conversion of velocity to momentum
35  vars_new[lev][Vars::cons].FillBoundary(geom[lev].periodicity());
36 
37  const MultiFab* c_vfrac = nullptr;
38  if (solverChoice.terrain_type == TerrainType::EB) {
39  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
40  }
41 
42  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
43  vars_new[lev][Vars::yvel], IntVect{0},
44  vars_new[lev][Vars::zvel], IntVect{0},
45  vars_new[lev][Vars::cons],
46  rU_new[lev], rV_new[lev], rW_new[lev],
47  Geom(lev).Domain(), domain_bcs_type, c_vfrac);
48 
49  Vector<MultiFab> tmp_mom;
50 
51  tmp_mom.push_back(MultiFab(vars_new[lev][Vars::cons],make_alias,0,1));
52  tmp_mom.push_back(MultiFab(rU_new[lev],make_alias,0,1));
53  tmp_mom.push_back(MultiFab(rV_new[lev],make_alias,0,1));
54  tmp_mom.push_back(MultiFab(rW_new[lev],make_alias,0,1));
55 
56  // If at lev > 0 we must first fill the velocities at the c/f interface -- this must
57  // be done *after* the projection at lev-1
58  if (lev > 0) {
59  int levc = lev-1;
60 
61  const MultiFab* c_vfrac_crse = nullptr;
62  if (solverChoice.terrain_type == TerrainType::EB) {
63  c_vfrac_crse = &((get_eb(levc).get_const_factory())->getVolFrac());
64  }
65 
66  MultiFab& S_new_crse = vars_new[levc][Vars::cons];
67  MultiFab& U_new_crse = vars_new[levc][Vars::xvel];
68  MultiFab& V_new_crse = vars_new[levc][Vars::yvel];
69  MultiFab& W_new_crse = vars_new[levc][Vars::zvel];
70 
71  VelocityToMomentum(U_new_crse, IntVect{0}, V_new_crse, IntVect{0}, W_new_crse, IntVect{0}, S_new_crse,
72  rU_new[levc], rV_new[levc], rW_new[levc],
73  Geom(levc).Domain(), domain_bcs_type, c_vfrac_crse);
74 
75  rU_new[levc].FillBoundary(geom[levc].periodicity());
76  FPr_u[levc].RegisterCoarseData({&rU_new[levc], &rU_new[levc]}, {time, time+l_dt});
77 
78  rV_new[levc].FillBoundary(geom[levc].periodicity());
79  FPr_v[levc].RegisterCoarseData({&rV_new[levc], &rV_new[levc]}, {time, time+l_dt});
80 
81  rW_new[levc].FillBoundary(geom[levc].periodicity());
82  FPr_w[levc].RegisterCoarseData({&rW_new[levc], &rW_new[levc]}, {time, time+l_dt});
83  }
84 
85  Real l_time = 0.0;
86  project_momenta(lev, l_time, l_dt, tmp_mom);
87 
89  vars_new[lev][Vars::yvel],
90  vars_new[lev][Vars::zvel],
91  vars_new[lev][Vars::cons],
92  rU_new[lev], rV_new[lev], rW_new[lev],
93  Geom(lev).Domain(), domain_bcs_type, c_vfrac);
94  }
void project_momenta(int lev, amrex::Real l_time, amrex::Real l_dt, amrex::Vector< amrex::MultiFab > &vars)
Definition: ERF_PoissonSolve.cpp:100
Here is the call graph for this function:

◆ project_momenta()

void ERF::project_momenta ( int  lev,
amrex::Real  l_time,
amrex::Real  l_dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level momenta to enforce the anelastic constraint Note that the level may or may not be level 0.

101 {
102  BL_PROFILE("ERF::project_momenta()");
103  //
104  // If at lev > 0 we must first fill the momenta at the c/f interface with interpolated coarse values
105  //
106  if (lev > 0) {
107  PhysBCFunctNoOp null_bc;
108  FPr_u[lev-1].FillSet(mom_mf[IntVars::xmom], l_time, null_bc, domain_bcs_type);
109  FPr_v[lev-1].FillSet(mom_mf[IntVars::ymom], l_time, null_bc, domain_bcs_type);
110  FPr_w[lev-1].FillSet(mom_mf[IntVars::zmom], l_time, null_bc, domain_bcs_type);
111  }
112 
113  // Make sure the solver only sees the levels over which we are solving
114  Vector<BoxArray> ba_tmp; ba_tmp.push_back(mom_mf[Vars::cons].boxArray());
115  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(mom_mf[Vars::cons].DistributionMap());
116  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
117 
118  Box domain = geom[lev].Domain();
119 
120  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
121 
122  Vector<MultiFab> rhs;
123  Vector<MultiFab> phi;
124 
125  if (solverChoice.terrain_type == TerrainType::EB)
126  {
127  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
128  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1, MFInfo(), EBFactory(lev));
129  } else {
130  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
131  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
132  }
133 
134  MultiFab rhs_lev(rhs[0], make_alias, 0, 1);
135  MultiFab phi_lev(phi[0], make_alias, 0, 1);
136 
137  auto dx = geom[lev].CellSizeArray();
138  auto dxInv = geom[lev].InvCellSizeArray();
139 
140  // Inflow on an x-face -- note only the normal velocity is used in the projection
141  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow") {
143  IntVect{1,0,0},t_new[lev],BCVars::xvel_bc,false);
144  }
145 
146  // Inflow on a y-face -- note only the normal velocity is used in the projection
147  if (domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
149  IntVect{0,1,0},t_new[lev],BCVars::yvel_bc,false);
150  }
151 
152  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow" ||
153  domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
154 
155  const MultiFab* c_vfrac = nullptr;
156  if (solverChoice.terrain_type == TerrainType::EB) {
157  c_vfrac = &((get_eb(lev).get_const_factory())->getVolFrac());
158  }
159 
160  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
161  vars_new[lev][Vars::yvel], IntVect{0},
162  vars_new[lev][Vars::zvel], IntVect{0},
163  vars_new[lev][Vars::cons],
164  mom_mf[IntVars::xmom],
165  mom_mf[IntVars::ymom],
166  mom_mf[IntVars::zmom],
167  Geom(lev).Domain(),
168  domain_bcs_type, c_vfrac);
169  }
170 
171  // If !fixed_density, we must convert (rho u) which came in
172  // to (rho0 u) which is what we will project
173  if (!solverChoice.fixed_density[lev]) {
174  ConvertForProjection(mom_mf[Vars::cons], r_hse,
175  mom_mf[IntVars::xmom],
176  mom_mf[IntVars::ymom],
177  mom_mf[IntVars::zmom],
178  Geom(lev).Domain(),
180  }
181 
182  //
183  // ****************************************************************************
184  // Now convert the rho0w MultiFab to hold Omega rather than rhow
185  // ****************************************************************************
186  //
187  if (solverChoice.mesh_type == MeshType::VariableDz)
188  {
189  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
190  {
191  const Array4<Real const>& rho0u_arr = mom_mf[IntVars::xmom].const_array(mfi);
192  const Array4<Real const>& rho0v_arr = mom_mf[IntVars::ymom].const_array(mfi);
193  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
194 
195  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
196  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
197  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
198 
199  //
200  // Define Omega from (rho0 W) but store it in the same array
201  //
202  Box tbz = mfi.nodaltilebox(2);
203  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
204  if (k == 0) {
205  rho0w_arr(i,j,k) = Real(0.0);
206  } else {
207  Real rho0w = rho0w_arr(i,j,k);
208  rho0w_arr(i,j,k) = OmegaFromW(i,j,k,rho0w,
209  rho0u_arr,rho0v_arr,
210  mf_u,mf_v,z_nd,dxInv);
211  }
212  });
213  } // mfi
214  }
215 
216  // ****************************************************************************
217  // Allocate fluxes
218  // ****************************************************************************
219  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
220  fluxes.resize(1);
221  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
222  if (solverChoice.terrain_type == TerrainType::EB) {
223  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
224  } else {
225  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
226  }
227  }
228 
229  // ****************************************************************************
230  // Initialize phi to 0
231  // (It is essential that we do this in order to fill the corners; these are never
232  // used but the Saxpy requires the values to be initialized.)
233  // ****************************************************************************
234  phi_lev.setVal(0.0);
235 
236  // ****************************************************************************
237  // Break into subdomains
238  // ****************************************************************************
239 
240  std::map<int,int> index_map;
241 
242  BoxArray ba(grids[lev]);
243 
244  Vector<MultiFab> rhs_sub; rhs_sub.resize(1);
245  Vector<MultiFab> phi_sub; phi_sub.resize(1);
246  Vector<Array<MultiFab,AMREX_SPACEDIM>> fluxes_sub; fluxes_sub.resize(1);
247 
248  MultiFab ax_sub, ay_sub, az_sub, dJ_sub, znd_sub;
249  MultiFab mfmx_sub, mfmy_sub;
250 
251  Array<MultiFab,AMREX_SPACEDIM> rho0_u_sub;
252  Array<MultiFab const*, AMREX_SPACEDIM> rho0_u_const;
253 
254  // If we are going to solve with MLMG then we do not need to break this into subdomains
255  bool will_solve_with_mlmg = false;
256  if (solverChoice.mesh_type == MeshType::ConstantDz) {
257  will_solve_with_mlmg = true;
258 #ifdef ERF_USE_FFT
259  if (use_fft) {
260  bool all_boxes_ok = true;
261  for (int isub = 0; isub < subdomains[lev].size(); ++isub) {
262  Box my_region(subdomains[lev][isub].minimalBox());
263  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][isub].numPts());
264  if (!boxes_make_rectangle) {
265  all_boxes_ok = false;
266  }
267  } // isub
268  if (all_boxes_ok) {
269  will_solve_with_mlmg = false;
270  }
271  } // use_fft
272 #else
273  if (use_fft) {
274  amrex::Warning("You set use_fft=true but didn't build with USE_FFT = TRUE; defaulting to MLMG");
275  }
276 #endif
277  } // No terrain or grid stretching
278 
279  for (int isub = 0; isub < subdomains[lev].size(); ++isub)
280  {
281  BoxList bl_sub;
282  Vector<int> dm_sub;
283 
284  for (int j = 0; j < ba.size(); j++)
285  {
286  if (subdomains[lev][isub].intersects(ba[j]))
287  {
288  //
289  // Note that bl_sub.size() is effectively a counter which is
290  // incremented above
291  //
292  // if (ParallelDescriptor::MyProc() == j) {
293  // }
294  index_map[bl_sub.size()] = j;
295 
296  bl_sub.push_back(grids[lev][j]);
297  dm_sub.push_back(dmap[lev][j]);
298  } // intersects
299  } // loop over ba (j)
300 
301  BoxArray ba_sub(bl_sub);
302 
303  BoxList bl2d_sub = ba_sub.boxList();
304  for (auto& b : bl2d_sub) {
305  b.setRange(2,0);
306  }
307  BoxArray ba2d_sub(std::move(bl2d_sub));
308 
309  // Define MultiFabs that hold only the data in this particular subdomain
310  if (solverChoice.terrain_type == TerrainType::EB) {
311  if (ba_sub != ba) {
312  amrex::Print() << "EB Solves with multiple regions is not yet supported" << std::endl;
313  }
314  rhs_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, rhs_lev.nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
315  phi_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, phi_lev.nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
316 
317  mfmx_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_x]->nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
318  mfmy_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_y]->nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
319  dJ_sub.define(ba_sub, DistributionMapping(dm_sub), 1, detJ_cc[lev]->nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
320 
321  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
322  fluxes_sub[0][idim].define(convert(ba_sub, IntVect::TheDimensionVector(idim)), DistributionMapping(dm_sub), 1,
323  IntVect::TheZeroVector(), MFInfo{}.SetAlloc(false), EBFactory(lev));
324  }
325  rho0_u_sub[0].define(convert(ba_sub, IntVect::TheDimensionVector(0)), DistributionMapping(dm_sub), 1,
326  mom_mf[IntVars::xmom].nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
327  rho0_u_sub[1].define(convert(ba_sub, IntVect::TheDimensionVector(1)), DistributionMapping(dm_sub), 1,
328  mom_mf[IntVars::ymom].nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
329  rho0_u_sub[2].define(convert(ba_sub, IntVect::TheDimensionVector(2)), DistributionMapping(dm_sub), 1,
330  mom_mf[IntVars::zmom].nGrowVect(), MFInfo{}.SetAlloc(false), EBFactory(lev));
331  } else {
332  rhs_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, rhs_lev.nGrowVect(), MFInfo{}.SetAlloc(false));
333  phi_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, phi_lev.nGrowVect(), MFInfo{}.SetAlloc(false));
334 
335  mfmx_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_x]->nGrowVect(), MFInfo{}.SetAlloc(false));
336  mfmy_sub.define(ba2d_sub, DistributionMapping(dm_sub), 1, mapfac[lev][MapFacType::m_y]->nGrowVect(), MFInfo{}.SetAlloc(false));
337  dJ_sub.define(ba_sub, DistributionMapping(dm_sub), 1, detJ_cc[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
338 
339  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
340  fluxes_sub[0][idim].define(convert(ba_sub, IntVect::TheDimensionVector(idim)), DistributionMapping(dm_sub), 1,
341  IntVect::TheZeroVector(), MFInfo{}.SetAlloc(false));
342  }
343  rho0_u_sub[0].define(convert(ba_sub, IntVect::TheDimensionVector(0)), DistributionMapping(dm_sub), 1,
344  mom_mf[IntVars::xmom].nGrowVect(), MFInfo{}.SetAlloc(false));
345  rho0_u_sub[1].define(convert(ba_sub, IntVect::TheDimensionVector(1)), DistributionMapping(dm_sub), 1,
346  mom_mf[IntVars::ymom].nGrowVect(), MFInfo{}.SetAlloc(false));
347  rho0_u_sub[2].define(convert(ba_sub, IntVect::TheDimensionVector(2)), DistributionMapping(dm_sub), 1,
348  mom_mf[IntVars::zmom].nGrowVect(), MFInfo{}.SetAlloc(false));
349  }
350 
351  // Link the new MultiFabs to the FABs in the original MultiFabs (no copy required)
352  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi)
353  {
354  int orig_index = index_map[mfi.index()];
355  rhs_sub[0].setFab(mfi, FArrayBox(rhs_lev[orig_index], amrex::make_alias, 0, 1));
356  phi_sub[0].setFab(mfi, FArrayBox(phi_lev[orig_index], amrex::make_alias, 0, 1));
357 
358  mfmx_sub.setFab(mfi, FArrayBox((*mapfac[lev][MapFacType::m_x])[orig_index], amrex::make_alias, 0, 1));
359  mfmy_sub.setFab(mfi, FArrayBox((*mapfac[lev][MapFacType::m_y])[orig_index], amrex::make_alias, 0, 1));
360 
361  fluxes_sub[0][0].setFab(mfi,FArrayBox(fluxes[0][0][orig_index], amrex::make_alias, 0, 1));
362  fluxes_sub[0][1].setFab(mfi,FArrayBox(fluxes[0][1][orig_index], amrex::make_alias, 0, 1));
363  fluxes_sub[0][2].setFab(mfi,FArrayBox(fluxes[0][2][orig_index], amrex::make_alias, 0, 1));
364 
365  rho0_u_sub[0].setFab(mfi,FArrayBox(mom_mf[IntVars::xmom][orig_index], amrex::make_alias, 0, 1));
366  rho0_u_sub[1].setFab(mfi,FArrayBox(mom_mf[IntVars::ymom][orig_index], amrex::make_alias, 0, 1));
367  rho0_u_sub[2].setFab(mfi,FArrayBox(mom_mf[IntVars::zmom][orig_index], amrex::make_alias, 0, 1));
368  }
369 
370  rho0_u_const[0] = &rho0_u_sub[0];
371  rho0_u_const[1] = &rho0_u_sub[1];
372  rho0_u_const[2] = &rho0_u_sub[2];
373 
374  if (solverChoice.mesh_type != MeshType::ConstantDz) {
375  ax_sub.define(convert(ba_sub,IntVect(1,0,0)), DistributionMapping(dm_sub), 1,
376  ax[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
377  ay_sub.define(convert(ba_sub,IntVect(0,1,0)), DistributionMapping(dm_sub), 1,
378  ay[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
379  az_sub.define(convert(ba_sub,IntVect(0,0,1)), DistributionMapping(dm_sub), 1,
380  az[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
381  znd_sub.define(convert(ba_sub,IntVect(1,1,1)), DistributionMapping(dm_sub), 1,
382  z_phys_nd[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
383 
384  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi) {
385  int orig_index = index_map[mfi.index()];
386  ax_sub.setFab(mfi, FArrayBox((*ax[lev])[orig_index], amrex::make_alias, 0, 1));
387  ay_sub.setFab(mfi, FArrayBox((*ay[lev])[orig_index], amrex::make_alias, 0, 1));
388  az_sub.setFab(mfi, FArrayBox((*az[lev])[orig_index], amrex::make_alias, 0, 1));
389  znd_sub.setFab(mfi, FArrayBox((*z_phys_nd[lev])[orig_index], amrex::make_alias, 0, 1));
390  dJ_sub.setFab(mfi, FArrayBox((*detJ_cc[lev])[orig_index], amrex::make_alias, 0, 1));
391  }
392  }
393 
394  if (solverChoice.terrain_type == TerrainType::EB) {
395  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi) {
396  int orig_index = index_map[mfi.index()];
397  dJ_sub.setFab(mfi, FArrayBox((*detJ_cc[lev])[orig_index], amrex::make_alias, 0, 1));
398  }
399  }
400 
401  // ****************************************************************************
402  // Compute divergence which will form RHS
403  // Note that we replace "rho0w" with the contravariant momentum, Omega
404  // ****************************************************************************
405 
406  compute_divergence(lev, rhs_sub[0], rho0_u_const, geom_tmp[0]);
407 
408  Real rhsnorm;
409 
410  // Max norm over the entire MultiFab
411  rhsnorm = rhs_sub[0].norm0();
412 
413  if (mg_verbose > 0) {
414  bool local = false;
415  Real sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
416  Print() << "Max/L2 norm of divergence before solve in subdomain " << isub << " at level " << lev << " : " << rhsnorm << " " <<
417  rhs_sub[0].norm2() << " and volume-weighted sum " << sum << std::endl;
418  }
419 
420  if (lev == 0 && solverChoice.use_real_bcs)
421  {
422  // We always use VariableDz if use_real_bcs is true
423  AMREX_ALWAYS_ASSERT(solverChoice.mesh_type == MeshType::VariableDz);
424 
425  // Note that we always impose the projections one level at a time so this will always be a vector of length 1
426  Array<MultiFab*, AMREX_SPACEDIM> rho0_u_vec =
427  {&mom_mf[IntVars::xmom], &mom_mf[IntVars::ymom], &mom_mf[IntVars::zmom]};
428  Array<MultiFab*, AMREX_SPACEDIM> area_vec = {ax[lev].get(), ay[lev].get(), az[lev].get()};
429  //
430  // Modify ax,ay,ax to include the map factors as used in the divergence calculation
431  // We do this here so that it is seen in the call to enforceInOutSolvability
432  //
433  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
434  {
435  Box xbx = mfi.nodaltilebox(0);
436  Box ybx = mfi.nodaltilebox(1);
437  Box zbx = mfi.nodaltilebox(2);
438  const Array4<Real >& ax_ar = ax[lev]->array(mfi);
439  const Array4<Real >& ay_ar = ay[lev]->array(mfi);
440  const Array4<Real >& az_ar = az[lev]->array(mfi);
441  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
442  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
443  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
444  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
445  ParallelFor(xbx,ybx,zbx,
446  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
447  {
448  ax_ar(i,j,k) /= mf_uy(i,j,0);
449  },
450  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
451  {
452  ay_ar(i,j,k) /= mf_vx(i,j,0);
453  },
454  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
455  {
456  az_ar(i,j,k) /= (mf_mx(i,j,0)*mf_my(i,j,0));
457  });
458  } // mfi
459 
460  if (mg_verbose > 0) {
461  Print() << "Calling enforceInOutSolvability" << std::endl;
462  }
463  enforceInOutSolvability(lev, rho0_u_vec, area_vec, geom[lev]);
464 
465  //
466  // Return ax,ay,ax to their original definition
467  //
468  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
469  {
470  Box xbx = mfi.nodaltilebox(0);
471  Box ybx = mfi.nodaltilebox(1);
472  Box zbx = mfi.nodaltilebox(2);
473  const Array4<Real >& ax_ar = ax[lev]->array(mfi);
474  const Array4<Real >& ay_ar = ay[lev]->array(mfi);
475  const Array4<Real >& az_ar = az[lev]->array(mfi);
476  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
477  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
478  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
479  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
480  ParallelFor(xbx,ybx,zbx,
481  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
482  {
483  ax_ar(i,j,k) *= mf_uy(i,j,0);
484  },
485  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
486  {
487  ay_ar(i,j,k) *= mf_vx(i,j,0);
488  },
489  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
490  {
491  az_ar(i,j,k) *= (mf_mx(i,j,0)*mf_my(i,j,0));
492  });
493  } // mfi
494 
495  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
496 
497  // Re-define max norm over the entire MultiFab
498  rhsnorm = rhs_lev.norm0();
499 
500  if (mg_verbose > 0)
501  {
502  bool local = false;
503  Real sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
504  Print() << "Max/L2 norm of divergence before solve at level " << lev << " : " << rhsnorm << " " <<
505  rhs_lev.norm2() << " and volume-weighted sum " << sum << std::endl;
506  }
507  } // lev 0 && use_real_bcs
508 
509  // *******************************************************************************************
510  // Enforce solvability if the problem is singular (i.e all sides Neumann or periodic)
511  // Note that solves at lev > 0 are always singular because we impose Neumann bc's on all sides
512  // *******************************************************************************************
513  bool is_singular = true;
514  if (lev == 0) {
515  if ( (domain_bc_type[0] == "Outflow" || domain_bc_type[0] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
516  if ( (domain_bc_type[1] == "Outflow" || domain_bc_type[1] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
517  if ( (domain_bc_type[3] == "Outflow" || domain_bc_type[3] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
518  if ( (domain_bc_type[4] == "Outflow" || domain_bc_type[4] == "Open") && !solverChoice.use_real_bcs ) is_singular = false;
519  if ( (domain_bc_type[5] == "Outflow" || domain_bc_type[5] == "Open") ) is_singular = false;
520  } else {
521  Box my_region(subdomains[lev][isub].minimalBox());
522  if ( (domain_bc_type[5] == "Outflow" || domain_bc_type[5] == "Open") && (my_region.bigEnd(2) == domain.bigEnd(2)) ) is_singular = false;
523  }
524 
525  if (is_singular)
526  {
527  bool local = false;
528  Real sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
529 
530  Real vol;
531  if (solverChoice.mesh_type == MeshType::ConstantDz) {
532  vol = rhs_sub[0].boxArray().numPts();
533  } else {
534  vol = dJ_sub.sum();
535  }
536 
537  sum /= (vol * dx[0] * dx[1] * dx[2]);
538 
539  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi)
540  {
541  rhs_sub[0][mfi.index()].template minus<RunOn::Device>(sum);
542  }
543  if (mg_verbose > 0) {
544  amrex::Print() << " Subtracting " << sum << " from rhs in subdomain " << isub << std::endl;
545 
546  sum = volWgtSumMF(lev,rhs_sub[0],0,dJ_sub,mfmx_sub,mfmy_sub,false,local);
547  Print() << "Sum after subtraction " << sum << " in subdomain " << isub << std::endl;
548  }
549 
550  } // if is_singular
551 
552  rhsnorm = rhs_sub[0].norm0();
553 
554  // ****************************************************************************
555  // No need to build the solver if RHS == 0
556  // ****************************************************************************
557  if (rhsnorm <= solverChoice.poisson_abstol) return;
558 
559  Real start_step = static_cast<Real>(ParallelDescriptor::second());
560 
561  if (mg_verbose > 0) {
562  amrex::Print() << " Solving in subdomain " << isub << " of " << subdomains[lev].size() << " bins at level " << lev << std::endl;
563  }
564 
565  if (solverChoice.mesh_type == MeshType::VariableDz) {
566  //
567  // Modify ax,ay,ax to include the map factors as used in the divergence calculation
568  // We do this here to set the coefficients used in the stencil -- the extra factor
569  // of the mapfac comes from the gradient
570  //
571  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi)
572  {
573  Box xbx = mfi.nodaltilebox(0);
574  Box ybx = mfi.nodaltilebox(1);
575  Box zbx = mfi.nodaltilebox(2);
576  const Array4<Real >& ax_ar = ax_sub.array(mfi);
577  const Array4<Real >& ay_ar = ay_sub.array(mfi);
578  const Array4<Real >& az_ar = az_sub.array(mfi);
579  const Array4<Real const>& mf_ux = mapfac[lev][MapFacType::u_x]->const_array(mfi);
580  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
581  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
582  const Array4<Real const>& mf_vy = mapfac[lev][MapFacType::v_y]->const_array(mfi);
583  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
584  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
585  ParallelFor(xbx,ybx,zbx,
586  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
587  {
588  ax_ar(i,j,k) *= (mf_ux(i,j,0) / mf_uy(i,j,0));
589  },
590  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
591  {
592  ay_ar(i,j,k) *= (mf_vy(i,j,0) / mf_vx(i,j,0));
593  },
594  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
595  {
596  az_ar(i,j,k) /= (mf_mx(i,j,0)*mf_my(i,j,0));
597  });
598  } // mfi
599  }
600 
601  if (solverChoice.terrain_type != TerrainType::EB) {
602 
603 #ifdef ERF_USE_FFT
604  Box my_region(subdomains[lev][isub].minimalBox());
605 #endif
606 
607  // ****************************************************************************
608  // No terrain or grid stretching
609  // ****************************************************************************
610  if (solverChoice.mesh_type == MeshType::ConstantDz) {
611  if (will_solve_with_mlmg) {
612  solve_with_mlmg(lev, rhs_sub, phi_sub, fluxes_sub, geom[lev], ref_ratio, domain_bc_type,
614  } else {
615 #ifdef ERF_USE_FFT
616  solve_with_fft(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0]);
617 #endif
618  }
619  } // No terrain or grid stretching
620  // ****************************************************************************
621  // Grid stretching (flat terrain)
622  // ****************************************************************************
623  else if (solverChoice.mesh_type == MeshType::StretchedDz) {
624 #ifndef ERF_USE_FFT
625  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT solver");
626 #else
627  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][isub].numPts());
628  if (!boxes_make_rectangle) {
629  amrex::Abort("FFT won't work unless the union of boxes is rectangular");
630  } else {
631  if (!use_fft) {
632  amrex::Warning("Using FFT even though you didn't set use_fft to true; it's the best choice");
633  }
634  solve_with_fft(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0]);
635  }
636 #endif
637  } // grid stretching
638 
639  // ****************************************************************************
640  // General terrain
641  // ****************************************************************************
642  else if (solverChoice.mesh_type == MeshType::VariableDz) {
643 #ifdef ERF_USE_FFT
644  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][isub].numPts());
645  if (!boxes_make_rectangle) {
646  amrex::Abort("FFT preconditioner for GMRES won't work unless the union of boxes is rectangular");
647  } else {
648  solve_with_gmres(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0], ax_sub, ay_sub, az_sub, dJ_sub, znd_sub);
649  }
650 #else
651  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT preconditioner for GMRES");
652 #endif
653 
654  //
655  // Restore ax,ay,ax to their original definitions
656  //
657  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
658  {
659  Box xbx = mfi.nodaltilebox(0);
660  Box ybx = mfi.nodaltilebox(1);
661  Box zbx = mfi.nodaltilebox(2);
662  const Array4<Real >& ax_ar = ax_sub.array(mfi);
663  const Array4<Real >& ay_ar = ay_sub.array(mfi);
664  const Array4<Real >& az_ar = az_sub.array(mfi);
665  const Array4<Real const>& mf_ux = mapfac[lev][MapFacType::u_x]->const_array(mfi);
666  const Array4<Real const>& mf_uy = mapfac[lev][MapFacType::u_y]->const_array(mfi);
667  const Array4<Real const>& mf_vx = mapfac[lev][MapFacType::v_x]->const_array(mfi);
668  const Array4<Real const>& mf_vy = mapfac[lev][MapFacType::v_y]->const_array(mfi);
669  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
670  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
671  ParallelFor(xbx,ybx,zbx,
672  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
673  {
674  ax_ar(i,j,k) *= (mf_uy(i,j,0) / mf_ux(i,j,0));
675  },
676  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
677  {
678  ay_ar(i,j,k) *= (mf_vx(i,j,0) / mf_vy(i,j,0));
679  },
680  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
681  {
682  az_ar(i,j,k) *= (mf_mx(i,j,0)*mf_my(i,j,0));
683  });
684  } // mfi
685 
686  } // MeshType::VariableDz
687 
688  // ****************************************************************************
689  // Print time in solve
690  // ****************************************************************************
691  Real end_step = static_cast<Real>(ParallelDescriptor::second());
692  if (mg_verbose > 0) {
693  amrex::Print() << "Time in solve " << end_step - start_step << std::endl;
694  }
695 
696  } // not EB
697  } // loop over subdomains (i)
698 
699  // ****************************************************************************
700  // When using multigrid we can solve for all of the level at once, even if there
701  // are disjoint regions
702  // ****************************************************************************
703  if (solverChoice.terrain_type == TerrainType::EB) {
704  Real start_step_eb = static_cast<Real>(ParallelDescriptor::second());
705  solve_with_EB_mlmg(lev, rhs_sub, phi_sub, fluxes_sub,
706  *(get_eb(lev).get_const_factory()),
707  *(get_eb(lev).get_u_const_factory()),
708  *(get_eb(lev).get_v_const_factory()),
709  *(get_eb(lev).get_w_const_factory()),
710  geom[lev], ref_ratio, domain_bc_type,
712  Real end_step_eb = static_cast<Real>(ParallelDescriptor::second());
713  if (mg_verbose > 0) {
714  amrex::Print() << "Time in solve " << end_step_eb - start_step_eb << std::endl;
715  }
716  }
717 
718  // ****************************************************************************
719  // Subtract dt grad(phi) from the momenta (rho0u, rho0v, Omega)
720  // ****************************************************************************
721  MultiFab::Add(mom_mf[IntVars::xmom],fluxes[0][0],0,0,1,0);
722  MultiFab::Add(mom_mf[IntVars::ymom],fluxes[0][1],0,0,1,0);
723  MultiFab::Add(mom_mf[IntVars::zmom],fluxes[0][2],0,0,1,0);
724 
725  // ****************************************************************************
726  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
727  // (weighted by map factor!)
728  // ****************************************************************************
729  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
730  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
731  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
732 
733  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
734  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
735  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
736 
737  //
738  // This call is only to verify the divergence after the solve
739  // It is important we do this before computing the rho0w_arr from Omega back to rho0w
740  //
741  // ****************************************************************************
742  // THIS IS SIMPLY VERIFYING THE DIVERGENCE AFTER THE SOLVE
743  // ****************************************************************************
744  //
745  if (mg_verbose > 0)
746  {
747  rho0_u_const[0] = &mom_mf[IntVars::xmom];
748  rho0_u_const[1] = &mom_mf[IntVars::ymom];
749  rho0_u_const[2] = &mom_mf[IntVars::zmom];
750 
751  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
752 
753  bool local = false;
754  Real sum = volWgtSumMF(lev,rhs_lev,0,*detJ_cc[lev],*mapfac[lev][MapFacType::m_x],*mapfac[lev][MapFacType::m_y],false,local);
755 
756  if (mg_verbose > 0) {
757  Print() << "Max/L2 norm of divergence after solve at level " << lev << " : " << rhs_lev.norm0() << " " <<
758  rhs_lev.norm2() << " and volume-weighted sum " << sum << std::endl;
759  }
760 
761 #if 0
762  // FOR DEBUGGING ONLY
763  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
764  {
765  const Array4<Real const>& rhs_arr = rhs_lev.const_array(mfi);
766  Box bx = mfi.validbox();
767  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
768  if (std::abs(rhs_arr(i,j,k)) > 1.e-10) {
769  amrex::AllPrint() << "RHS after solve at " <<
770  IntVect(i,j,k) << " " << rhs_arr(i,j,k) << std::endl;
771  }
772  });
773  } // mfi
774 #endif
775 
776  } // mg_verbose
777 
778  //
779  // ****************************************************************************
780  // Now convert the rho0w MultiFab back to holding (rho0w) rather than Omega
781  // ****************************************************************************
782  //
783  if (solverChoice.mesh_type == MeshType::VariableDz)
784  {
785  for (MFIter mfi(mom_mf[Vars::cons],TilingIfNotGPU()); mfi.isValid(); ++mfi)
786  {
787  Box tbz = mfi.nodaltilebox(2);
788  const Array4<Real >& rho0u_arr = mom_mf[IntVars::xmom].array(mfi);
789  const Array4<Real >& rho0v_arr = mom_mf[IntVars::ymom].array(mfi);
790  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
791  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
792  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
793  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
794  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
795  Real omega = rho0w_arr(i,j,k);
796  rho0w_arr(i,j,k) = WFromOmega(i,j,k,omega,
797  rho0u_arr,rho0v_arr,
798  mf_u,mf_v,z_nd,dxInv);
799  });
800  } // mfi
801  }
802 
803  // If !fixed_density, we must convert (rho0 u) back
804  // to (rho0 u) which is what we will pass back out
805  if (!solverChoice.fixed_density[lev]) {
806  ConvertForProjection(r_hse, mom_mf[Vars::cons],
807  mom_mf[IntVars::xmom],
808  mom_mf[IntVars::ymom],
809  mom_mf[IntVars::zmom],
810  Geom(lev).Domain(),
812  }
813 
814  // ****************************************************************************
815  // Update pressure variable with phi -- note that phi is dt * change in pressure
816  // ****************************************************************************
817  MultiFab::Saxpy(pp_inc[lev], 1.0/l_dt, phi_lev,0,0,1,1);
818 }
void ConvertForProjection(const MultiFab &den_div, const MultiFab &den_mlt, MultiFab &xmom, MultiFab &ymom, MultiFab &zmom, const Box &domain, const Vector< BCRec > &domain_bcs_type_h)
Definition: ERF_ConvertForProjection.cpp:25
void enforceInOutSolvability(int, Array< MultiFab *, AMREX_SPACEDIM > &vels_vec, Array< MultiFab *, AMREX_SPACEDIM > &area_vec, const Geometry &geom)
Definition: ERF_ConvertForProjection.cpp:326
void solve_with_mlmg(int lev, Vector< amrex::MultiFab > &rhs, Vector< MultiFab > &p, Vector< amrex::Array< MultiFab, AMREX_SPACEDIM >> &fluxes, const Geometry &geom, const amrex::Vector< amrex::IntVect > &ref_ratio, Array< std::string, 2 *AMREX_SPACEDIM > l_domain_bc_type, int mg_verbose, Real reltol, Real abstol)
void solve_with_EB_mlmg(int lev, Vector< amrex::MultiFab > &rhs, Vector< MultiFab > &p, Vector< amrex::Array< MultiFab, AMREX_SPACEDIM >> &fluxes, EBFArrayBoxFactory const &ebfact, eb_aux_ const &ebfact_u, eb_aux_ const &ebfact_v, eb_aux_ const &ebfact_w, const Geometry &geom, const amrex::Vector< amrex::IntVect > &ref_ratio, Array< std::string, 2 *AMREX_SPACEDIM > l_domain_bc_type, int mg_verbose, Real reltol, Real abstol)
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real OmegaFromW(int &i, int &j, int &k, amrex::Real w, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:412
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real WFromOmega(int &i, int &j, int &k, amrex::Real omega, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:462
static bool use_fft
Definition: ERF.H:1196
void solve_with_gmres(int lev, const amrex::Box &subdomain, amrex::MultiFab &rhs, amrex::MultiFab &p, amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &fluxes, amrex::MultiFab &ax_sub, amrex::MultiFab &ay_sub, amrex::MultiFab &az_sub, amrex::MultiFab &, amrex::MultiFab &znd_sub)
Definition: ERF_SolveWithGMRES.cpp:12
void compute_divergence(int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
Definition: ERF_ComputeDivergence.cpp:10
amrex::Real volWgtSumMF(int lev, const amrex::MultiFab &mf, int comp, const amrex::MultiFab &dJ, const amrex::MultiFab &mfx, const amrex::MultiFab &mfy, bool finemask, bool local=true)
Definition: ERF_VolWgtSum.cpp:20
@ omega
Definition: ERF_Morrison.H:53
Here is the call graph for this function:

◆ project_velocity_tb()

void ERF::project_velocity_tb ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level velocity field to enforce incompressibility with a thin body

23 {
24  BL_PROFILE("ERF::project_velocity_tb()");
25  AMREX_ALWAYS_ASSERT(solverChoice.mesh_type == MeshType::ConstantDz);
26 
27  // Make sure the solver only sees the levels over which we are solving
28  Vector<BoxArray> ba_tmp; ba_tmp.push_back(vmf[Vars::cons].boxArray());
29  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(vmf[Vars::cons].DistributionMap());
30  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
31 
32  // Use the default settings
33  LPInfo info;
34  std::unique_ptr<MLPoisson> p_mlpoisson;
35 #if 0
36  if (overset_imask[0]) {
37  // Add overset mask around thin body
38  p_mlpoisson = std::make_unique<MLPoisson>(geom, grids, dmap, GetVecOfConstPtrs(overset_imask), info);
39  }
40  else
41 #endif
42  {
43  // Use the default settings
44  p_mlpoisson = std::make_unique<MLPoisson>(geom_tmp, ba_tmp, dm_tmp, info);
45  }
46 
47  auto bclo = get_lo_projection_bc(geom[lev],domain_bc_type);
48  auto bchi = get_hi_projection_bc(geom[lev],domain_bc_type);
49 
50  bool need_adjust_rhs = (projection_has_dirichlet(bclo) || projection_has_dirichlet(bchi)) ? false : true;
51  p_mlpoisson->setDomainBC(bclo, bchi);
52 
53  if (lev > 0) {
54  p_mlpoisson->setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
55  }
56 
57  p_mlpoisson->setLevelBC(0, nullptr);
58 
59  Vector<MultiFab> rhs;
60  Vector<MultiFab> phi;
61  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
62  Vector<Array<MultiFab,AMREX_SPACEDIM> > deltaf; // f^* - f^{n-1}
63  Vector<Array<MultiFab,AMREX_SPACEDIM> > u_plus_dtdf; // u + dt*deltaf
64 
65  // Used to pass array of const MFs to ComputeDivergence
66  Array<MultiFab const*, AMREX_SPACEDIM> u;
67 
68  rhs.resize(1);
69  phi.resize(1);
70  fluxes.resize(1);
71  deltaf.resize(1);
72  u_plus_dtdf.resize(1);
73 
74  rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
75  phi[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
76  rhs[0].setVal(0.0);
77  phi[0].setVal(0.0);
78 
79  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
80  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
81  u_plus_dtdf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
82 
83  deltaf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
84  deltaf[0][idim].setVal(0.0); // start with f^* == f^{n-1}
85  }
86 
87 #if 0
88  // DEBUG
89  u[0] = &(vmf[Vars::xvel]);
90  u[1] = &(vmf[Vars::yvel]);
91  u[2] = &(vmf[Vars::zvel]);
92  computeDivergence(rhs[0], u, geom[0]);
93  Print() << "Max norm of divergence before solve at level 0 : " << rhs[0].norm0() << std::endl;
94 #endif
95 
96  for (int itp = 0; itp < solverChoice.ncorr; ++itp)
97  {
98  // Calculate u + dt*deltaf
99  for (int idim = 0; idim < 3; ++idim) {
100  MultiFab::Copy(u_plus_dtdf[0][idim], deltaf[0][idim], 0, 0, 1, 0);
101  u_plus_dtdf[0][0].mult(-l_dt,0,1,0);
102  }
103  MultiFab::Add(u_plus_dtdf[0][0], vmf[Vars::xvel], 0, 0, 1, 0);
104  MultiFab::Add(u_plus_dtdf[0][1], vmf[Vars::yvel], 0, 0, 1, 0);
105  MultiFab::Add(u_plus_dtdf[0][2], vmf[Vars::zvel], 0, 0, 1, 0);
106 
107  u[0] = &(u_plus_dtdf[0][0]);
108  u[1] = &(u_plus_dtdf[0][1]);
109  u[2] = &(u_plus_dtdf[0][2]);
110  computeDivergence(rhs[0], u, geom_tmp[0]);
111 
112 #if 0
113  // DEBUG
114  if (itp==0) {
115  for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
116  {
117  const Box& bx = mfi.tilebox();
118  const Array4<Real const>& divU = rhs[0].const_array(mfi);
119  const Array4<Real const>& uarr = vmf[Vars::xvel].const_array(mfi);
120  const Array4<Real const>& varr = vmf[Vars::yvel].const_array(mfi);
121  const Array4<Real const>& warr = vmf[Vars::zvel].const_array(mfi);
122  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
123  {
124  if ((i>=120) && (i<=139) && (j==0) && ((k>=127)&&(k<=128))) {
125  amrex::AllPrint() << "before project div"<<IntVect(i,j,k)<<" = "<< divU(i,j,k)
126  << " u: " << uarr(i,j,k) << " " << uarr(i+1,j,k)
127  << " v: " << varr(i,j,k) << " " << varr(i,j+1,k)
128  << " w: " << warr(i,j,k) << " " << warr(i,j,k+1)
129  << std::endl;
130  }
131  });
132  }
133  }
134 #endif
135 
136  // If all Neumann BCs, adjust RHS to make sure we can converge
137  if (need_adjust_rhs) {
138  bool local = false;
139  Real offset = volWgtSumMF(lev,rhs[0],0,*detJ_cc[lev],*mapfac[lev][MapFacType::m_x],*mapfac[lev][MapFacType::m_y],false,local);
140  // amrex::Print() << "Poisson solvability offset = " << offset << std::endl;
141  rhs[0].plus(-offset, 0, 1);
142  }
143 
144  // Initialize phi to 0
145  phi[0].setVal(0.0);
146 
147  MLMG mlmg(*p_mlpoisson);
148  int max_iter = 100;
149  mlmg.setMaxIter(max_iter);
150 
151  mlmg.setVerbose(mg_verbose);
152  //mlmg.setBottomVerbose(mg_verbose);
153 
154  // solve for dt*p
155  mlmg.solve(GetVecOfPtrs(phi),
156  GetVecOfConstPtrs(rhs),
159 
160  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
161 
162  // Calculate new intermediate body force with updated gradp
163  if (thin_xforce[lev]) {
164  MultiFab::Copy( deltaf[0][0], fluxes[0][0], 0, 0, 1, 0);
165  ApplyInvertedMask(deltaf[0][0], *xflux_imask[0]);
166  }
167  if (thin_yforce[lev]) {
168  MultiFab::Copy( deltaf[0][1], fluxes[0][1], 0, 0, 1, 0);
169  ApplyInvertedMask(deltaf[0][1], *yflux_imask[0]);
170  }
171  if (thin_zforce[lev]) {
172  MultiFab::Copy( deltaf[0][2], fluxes[0][2], 0, 0, 1, 0);
173  ApplyInvertedMask(deltaf[0][2], *zflux_imask[0]);
174  }
175 
176  // DEBUG
177  // for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
178  // {
179  // const Box& bx = mfi.tilebox();
180  // const Array4<Real const>& dfz_arr = deltaf[0][2].const_array(mfi);
181  // ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
182  // {
183  // if ((i>=120) && (i<=139) && (j==0) && (k==128)) {
184  // amrex::AllPrint()
185  // << " piter" << itp
186  // << " dfz"<<IntVect(i,j,k)<<" = "<< dfz_arr(i,j,k)
187  // << std::endl;
188  // }
189  // });
190  // }
191 
192  // Update pressure variable with phi -- note that phi is change in pressure, not the full pressure
193  MultiFab::Saxpy(pp_inc[lev], 1.0, phi[0],0,0,1,0);
194 
195  // Subtract grad(phi) from the velocity components
196  Real beta = 1.0;
197  MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
198  MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
199  MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
200  if (thin_xforce[lev]) {
201  ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
202  }
203  if (thin_yforce[lev]) {
204  ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
205  }
206  if (thin_zforce[lev]) {
207  ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
208  }
209  } // itp: pressure-force iterations
210 
211  // ****************************************************************************
212  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
213  // ****************************************************************************
214  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
215  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
216  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
217 
218  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
219  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
220  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
221 
222  // Subtract grad(phi) from the velocity components
223 // Real beta = 1.0;
224 // for (int ilev = lev_min; ilev <= lev_max; ++ilev) {
225 // MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
226 // MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
227 // MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
228 // if (thin_xforce[lev]) {
229 // ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
230 // }
231 // if (thin_yforce[lev]) {
232 // ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
233 // }
234 // if (thin_zforce[lev]) {
235 // ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
236 // }
237 // }
238 
239 #if 0
240  // Confirm that the velocity is now divergence free
241  u[0] = &(vmf[Vars::xvel]);
242  u[1] = &(vmf[Vars::yvel]);
243  u[2] = &(vmf[Vars::zvel]);
244  computeDivergence(rhs[0], u, geom_tmp[0]);
245  Print() << "Max norm of divergence after solve at level " << lev << " : " << rhs[0].norm0() << std::endl;
246 
247 #endif
248 }
bool projection_has_dirichlet(Array< LinOpBCType, AMREX_SPACEDIM > bcs)
Definition: ERF_PoissonSolve_tb.cpp:10
AMREX_FORCE_INLINE IntVect offset(const int face_dir, const int normal)
Definition: ERF_ReadBndryPlanes.cpp:28
Array< LinOpBCType, AMREX_SPACEDIM > get_lo_projection_bc(Geometry const &lev_geom, Array< std::string, 2 *AMREX_SPACEDIM > l_domain_bc_type)
Definition: ERF_SolverUtils.H:13
Array< LinOpBCType, AMREX_SPACEDIM > get_hi_projection_bc(Geometry const &lev_geom, Array< std::string, 2 *AMREX_SPACEDIM > l_domain_bc_type)
Definition: ERF_SolverUtils.H:34
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyInvertedMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:430
int ncorr
Definition: ERF_DataStruct.H:1061
Here is the call graph for this function:

◆ ReadCheckpointFile()

void ERF::ReadCheckpointFile ( )

ERF function for reading data from a checkpoint file during restart.

448 {
449  Print() << "Restart from native checkpoint " << restart_chkfile << "\n";
450 
451  // Header
452  std::string File(restart_chkfile + "/Header");
453 
454  VisMF::IO_Buffer io_buffer(VisMF::GetIOBufferSize());
455 
456  Vector<char> fileCharPtr;
457  ParallelDescriptor::ReadAndBcastFile(File, fileCharPtr);
458  std::string fileCharPtrString(fileCharPtr.dataPtr());
459  std::istringstream is(fileCharPtrString, std::istringstream::in);
460 
461  std::string line, word;
462 
463  int chk_ncomp_cons, chk_ncomp;
464 
465  // read in title line
466  std::getline(is, line);
467 
468  // read in finest_level
469  is >> finest_level;
470  GotoNextLine(is);
471 
472  // read the number of components
473  // for each variable we store
474 
475  // conservative, cell-centered vars
476  is >> chk_ncomp_cons;
477  GotoNextLine(is);
478 
479  // x-velocity on faces
480  is >> chk_ncomp;
481  GotoNextLine(is);
482  AMREX_ASSERT(chk_ncomp == 1);
483 
484  // y-velocity on faces
485  is >> chk_ncomp;
486  GotoNextLine(is);
487  AMREX_ASSERT(chk_ncomp == 1);
488 
489  // z-velocity on faces
490  is >> chk_ncomp;
491  GotoNextLine(is);
492  AMREX_ASSERT(chk_ncomp == 1);
493 
494  // read in array of istep
495  std::getline(is, line);
496  {
497  std::istringstream lis(line);
498  int i = 0;
499  while (lis >> word) {
500  istep[i++] = std::stoi(word);
501  }
502  }
503 
504  // read in array of dt
505  std::getline(is, line);
506  {
507  std::istringstream lis(line);
508  int i = 0;
509  while (lis >> word) {
510  dt[i++] = std::stod(word);
511  }
512  }
513 
514  // read in array of t_new
515  std::getline(is, line);
516  {
517  std::istringstream lis(line);
518  int i = 0;
519  while (lis >> word) {
520  t_new[i++] = std::stod(word);
521  }
522  }
523 
524  for (int lev = 0; lev <= finest_level; ++lev) {
525  // read in level 'lev' BoxArray from Header
526  BoxArray ba;
527  ba.readFrom(is);
528  GotoNextLine(is);
529 
530  // create a distribution mapping
531  DistributionMapping dm { ba, ParallelDescriptor::NProcs() };
532 
533  MakeNewLevelFromScratch (lev, t_new[lev], ba, dm);
534  }
535 
536  // ncomp is only valid after we MakeNewLevelFromScratch (asks micro how many vars)
537  // NOTE: Data is written over ncomp, so check that we match the header file
538  int ncomp_cons = vars_new[0][Vars::cons].nComp();
539 
540  // NOTE: QKE was removed so this is for backward compatibility
541  AMREX_ASSERT((chk_ncomp_cons==ncomp_cons) || ((chk_ncomp_cons-1)==ncomp_cons));
542  //
543  // See if we have a written separate file that tells how many components and how many ghost cells
544  // we have of the base state
545  //
546  // If we can't find the file, then set the number of components to the original number = 3
547  //
548  int ncomp_base_to_read = 3;
549  IntVect ng_base = IntVect{1};
550  {
551  std::string BaseStateFile(restart_chkfile + "/num_base_state_comps");
552 
553  if (amrex::FileExists(BaseStateFile))
554  {
555  Vector<char> BaseStatefileCharPtr;
556  ParallelDescriptor::ReadAndBcastFile(BaseStateFile, BaseStatefileCharPtr);
557  std::string BaseStatefileCharPtrString(BaseStatefileCharPtr.dataPtr());
558 
559  // We set this to the default value of 3 but allow it be larger if th0 and qv0 were written
560  std::istringstream isb(BaseStatefileCharPtrString, std::istringstream::in);
561  isb >> ncomp_base_to_read;
562  isb >> ng_base;
563  }
564  }
565 
566  // read in the MultiFab data
567  for (int lev = 0; lev <= finest_level; ++lev)
568  {
569  // NOTE: For backward compatibility (chk file has QKE)
570  if ((chk_ncomp_cons-1)==ncomp_cons) {
571  MultiFab cons(grids[lev],dmap[lev],chk_ncomp_cons,0);
572  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
573 
574  // Copy up to RhoKE_comp
575  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,(RhoKE_comp+1),0);
576 
577  // Only if we have a PBL model do we need to copy QKE is src to KE in dst
578  if ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
579  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ) {
580  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+1),RhoKE_comp,1,0);
581  vars_new[lev][Vars::cons].mult(0.5,RhoKE_comp,1,0);
582  }
583 
584  // Copy other components
585  int ncomp_remainder = ncomp_cons - (RhoKE_comp + 1);
586  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+2),(RhoKE_comp+1),ncomp_remainder,0);
587 
588  vars_new[lev][Vars::cons].setBndry(1.0e34);
589  } else {
590  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
591  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
592  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,ncomp_cons,0);
593  vars_new[lev][Vars::cons].setBndry(1.0e34);
594  }
595 
596  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
597  VisMF::Read(xvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "XFace"));
598  MultiFab::Copy(vars_new[lev][Vars::xvel],xvel,0,0,1,0);
599  vars_new[lev][Vars::xvel].setBndry(1.0e34);
600 
601  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
602  VisMF::Read(yvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "YFace"));
603  MultiFab::Copy(vars_new[lev][Vars::yvel],yvel,0,0,1,0);
604  vars_new[lev][Vars::yvel].setBndry(1.0e34);
605 
606  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
607  VisMF::Read(zvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "ZFace"));
608  MultiFab::Copy(vars_new[lev][Vars::zvel],zvel,0,0,1,0);
609  vars_new[lev][Vars::zvel].setBndry(1.0e34);
610 
611  if (solverChoice.anelastic[lev] == 1) {
612  MultiFab ppinc(grids[lev],dmap[lev],1,0);
613  VisMF::Read(ppinc, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PP_Inc"));
614  MultiFab::Copy(pp_inc[lev],ppinc,0,0,1,0);
615  pp_inc[lev].FillBoundary(geom[lev].periodicity());
616 
617  MultiFab gpx(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
618  VisMF::Read(gpx, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpx"));
619  MultiFab::Copy(gradp[lev][GpVars::gpx],gpx,0,0,1,0);
620  gradp[lev][GpVars::gpx].FillBoundary(geom[lev].periodicity());
621 
622  MultiFab gpy(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
623  VisMF::Read(gpy, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpy"));
624  MultiFab::Copy(gradp[lev][GpVars::gpy],gpy,0,0,1,0);
625  gradp[lev][GpVars::gpy].FillBoundary(geom[lev].periodicity());
626 
627  MultiFab gpz(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
628  VisMF::Read(gpz, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpz"));
629  MultiFab::Copy(gradp[lev][GpVars::gpz],gpz,0,0,1,0);
630  gradp[lev][GpVars::gpz].FillBoundary(geom[lev].periodicity());
631  }
632 
633  // Note that we read the ghost cells of the base state (unlike above)
634 
635  // The original base state only had 3 components and 1 ghost cell -- we read this
636  // here to be consistent with the old style
637  MultiFab base(grids[lev],dmap[lev],ncomp_base_to_read,ng_base);
638  VisMF::Read(base, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "BaseState"));
639 
640  MultiFab::Copy(base_state[lev],base,0,0,ncomp_base_to_read,ng_base);
641 
642  // Create theta0 from p0, rh0
643  if (ncomp_base_to_read < 4) {
644  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
645  {
646  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
647  const Box& bx = mfi.tilebox();
648  Array4<Real> const& fab = base_state[lev].array(mfi);
649  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
650  {
652  / fab(i,j,k,BaseState::r0_comp);
653  });
654  }
655  }
656  // Default theta0 to 0
657  if (ncomp_base_to_read < 5) {
658  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
659  {
660  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
661  const Box& bx = mfi.tilebox();
662  Array4<Real> const& fab = base_state[lev].array(mfi);
663  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
664  {
665  fab(i,j,k,BaseState::qv0_comp) = 0.0;
666  });
667  }
668  }
669  base_state[lev].FillBoundary(geom[lev].periodicity());
670 
671  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
672  // Note that we also read the ghost cells of z_phys_nd
673  IntVect ng = z_phys_nd[lev]->nGrowVect();
674  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
675  VisMF::Read(z_height, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z_Phys_nd"));
676  MultiFab::Copy(*z_phys_nd[lev],z_height,0,0,1,ng);
678 
679  // Compute the min dz and pass to the micro model
680  Real dzmin = get_dzmin_terrain(*z_phys_nd[lev]);
681  micro->Set_dzmin(lev, dzmin);
682 
683  if (SolverChoice::mesh_type == MeshType::VariableDz) {
684  MultiFab z_slab(convert(ba2d[lev],IntVect(1,1,1)),dmap[lev],1,0);
685  int klo = geom[lev].Domain().smallEnd(2);
686  for (MFIter mfi(z_slab); mfi.isValid(); ++mfi) {
687  Box nbx = mfi.tilebox();
688  Array4<Real const> const& z_arr = z_phys_nd[lev]->const_array(mfi);
689  Array4<Real > const& z_slab_arr = z_slab.array(mfi);
690  ParallelFor(nbx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
691  {
692  z_slab_arr(i,j,k) = z_arr(i,j,klo);
693  });
694  }
695  Real z_min = z_slab.min(0);
696  Real z_max = z_slab.max(0);
697 
698  auto dz = geom[lev].CellSize()[2];
699  if (z_max - z_min < 1.e-8 * dz) {
700  SolverChoice::set_mesh_type(MeshType::StretchedDz);
701  if (verbose > 0) {
702  amrex::Print() << "Resetting mesh type to StretchedDz since terrain is flat" << std::endl;
703  }
704  }
705  }
706  }
707 
708  // Read in the moisture model restart variables
709  std::vector<int> qmoist_indices;
710  std::vector<std::string> qmoist_names;
711  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
712  int qmoist_nvar = qmoist_indices.size();
713  for (int var = 0; var < qmoist_nvar; var++) {
714  const int ncomp = 1;
715  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
716  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
717  VisMF::Read(moist_vars, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", qmoist_names[var]));
718  MultiFab::Copy(*(qmoist[lev][qmoist_indices[var]]),moist_vars,0,0,ncomp,ng_moist);
719  }
720 
721 #if defined(ERF_USE_WINDFARM)
722  if(solverChoice.windfarm_type == WindFarmType::Fitch or
723  solverChoice.windfarm_type == WindFarmType::EWP or
724  solverChoice.windfarm_type == WindFarmType::SimpleAD){
725  IntVect ng = Nturb[lev].nGrowVect();
726  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng);
727  VisMF::Read(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "NumTurb"));
728  MultiFab::Copy(Nturb[lev],mf_Nturb,0,0,1,ng);
729  }
730 #endif
731 
732  if (solverChoice.lsm_type != LandSurfaceType::None) {
733  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
734  BoxArray ba = lsm_data[lev][mvar]->boxArray();
735  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
736  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
737  int nvar = lsm_data[lev][mvar]->nComp();
738  MultiFab lsm_vars(ba,dm,nvar,ng);
739  VisMF::Read(lsm_vars, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LsmVars"));
740  MultiFab::Copy(*(lsm_data[lev][mvar]),lsm_vars,0,0,nvar,ng);
741  }
742  }
743 
744 
745  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
746  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
747 
748  std::string MapFacMFileName(restart_chkfile + "/Level_0/MapFactor_mx_H");
749  if (amrex::FileExists(MapFacMFileName)) {
750  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_mx"));
751  } else {
752  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_m"));
753  }
754  MultiFab::Copy(*mapfac[lev][MapFacType::m_x],mf_m,0,0,1,ng);
755 
756 #if 0
758  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_my"));
759  MultiFab::Copy(*mapfac[lev][MapFacType::m_y],mf_m,0,0,1,ng);
760  }
761 #endif
762 
763  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
764  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
765 
766  std::string MapFacUFileName(restart_chkfile + "/Level_0/MapFactor_ux_H");
767  if (amrex::FileExists(MapFacUFileName)) {
768  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_ux"));
769  } else {
770  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_u"));
771  }
772  MultiFab::Copy(*mapfac[lev][MapFacType::u_x],mf_u,0,0,1,ng);
773 
774 #if 0
776  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_uy"));
777  MultiFab::Copy(*mapfac[lev][MapFacType::u_y],mf_u,0,0,1,ng);
778  }
779 #endif
780 
781  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
782  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
783 
784  std::string MapFacVFileName(restart_chkfile + "/Level_0/MapFactor_vx_H");
785  if (amrex::FileExists(MapFacVFileName)) {
786  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vx"));
787  } else {
788  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_v"));
789  }
790  MultiFab::Copy(*mapfac[lev][MapFacType::v_x],mf_v,0,0,1,ng);
791 
792 #if 0
794  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vy"));
795  MultiFab::Copy(*mapfac[lev][MapFacType::v_y],mf_v,0,0,1,ng);
796  }
797 #endif
798 
799 
800  // NOTE: We read MOST data in ReadCheckpointFileMOST (see below)!
801 
802  // See if we wrote out SST data
803  std::string FirstSSTFileName(restart_chkfile + "/Level_0/SST_0_H");
804  if (amrex::FileExists(FirstSSTFileName))
805  {
806  amrex::Print() << "Reading SST data" << std::endl;
807  int ntimes = 1;
808  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
809  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
810  sst_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
811  for (int nt(0); nt<ntimes; ++nt) {
812  VisMF::Read(sst_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
813  "SST_" + std::to_string(nt)));
814  MultiFab::Copy(*sst_lev[lev][nt],sst_at_t,0,0,1,ng);
815  }
816  }
817 
818  // See if we wrote out TSK data
819  std::string FirstTSKFileName(restart_chkfile + "/Level_0/TSK_0_H");
820  if (amrex::FileExists(FirstTSKFileName))
821  {
822  amrex::Print() << "Reading TSK data" << std::endl;
823  int ntimes = 1;
824  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
825  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
826  tsk_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
827  for (int nt(0); nt<ntimes; ++nt) {
828  VisMF::Read(tsk_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
829  "TSK_" + std::to_string(nt)));
830  MultiFab::Copy(*tsk_lev[lev][nt],tsk_at_t,0,0,1,ng);
831  }
832  }
833 
834  std::string LMaskFileName(restart_chkfile + "/Level_0/LMASK_0_H");
835  if (amrex::FileExists(LMaskFileName))
836  {
837  amrex::Print() << "Reading LMASK data" << std::endl;
838  int ntimes = 1;
839  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
840  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
841  for (int nt(0); nt<ntimes; ++nt) {
842  VisMF::Read(lmask_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
843  "LMASK_" + std::to_string(nt)));
844  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
845  const Box& bx = mfi.growntilebox();
846  Array4<int> const& dst_arr = lmask_lev[lev][nt]->array(mfi);
847  Array4<Real> const& src_arr = lmask_at_t.array(mfi);
848  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
849  {
850  dst_arr(i,j,k) = int(src_arr(i,j,k));
851  });
852  }
853  }
854  } else {
855  // Allow idealized cases over water, used to set lmask
856  ParmParse pp("erf");
857  int is_land;
858  if (pp.query("is_land", is_land, lev)) {
859  if (is_land == 1) {
860  amrex::Print() << "Level " << lev << " is land" << std::endl;
861  } else if (is_land == 0) {
862  amrex::Print() << "Level " << lev << " is water" << std::endl;
863  } else {
864  Error("is_land should be 0 or 1");
865  }
866  lmask_lev[lev][0]->setVal(is_land);
867  } else {
868  // Default to land everywhere if not specified
869  lmask_lev[lev][0]->setVal(1);
870  }
871  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
872  }
873 
874  IntVect ngv = ng; ngv[2] = 0;
875 
876  // Read lat/lon if it exists
878  amrex::Print() << "Reading Lat/Lon variables" << std::endl;
879  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
880  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
881  VisMF::Read(lat, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LAT"));
882  VisMF::Read(lon, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LON"));
883  lat_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
884  lon_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
885  MultiFab::Copy(*lat_m[lev],lat,0,0,1,ngv);
886  MultiFab::Copy(*lon_m[lev],lon,0,0,1,ngv);
887  }
888 
889 #ifdef ERF_USE_NETCDF
890  // Read sinPhi and cosPhi if it exists
892  amrex::Print() << "Reading Coriolis factors" << std::endl;
893  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
894  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
895  VisMF::Read(sphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "SinPhi"));
896  VisMF::Read(cphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "CosPhi"));
897  sinPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
898  cosPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
899  MultiFab::Copy(*sinPhi_m[lev],sphi,0,0,1,ngv);
900  MultiFab::Copy(*cosPhi_m[lev],cphi,0,0,1,ngv);
901  }
902 
903  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
904 
905  if (lev == 0) {
906  MultiFab tmp1d(ba1d[0],dmap[0],1,0);
907 
908  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C1H"));
909  MultiFab::Copy(*mf_C1H,tmp1d,0,0,1,0);
910 
911  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C2H"));
912  MultiFab::Copy(*mf_C2H,tmp1d,0,0,1,0);
913 
914  MultiFab tmp2d(ba2d[0],dmap[0],1,mf_MUB->nGrowVect());
915 
916  VisMF::Read(tmp2d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MUB"));
917  MultiFab::Copy(*mf_MUB,tmp2d,0,0,1,mf_MUB->nGrowVect());
918  }
919  }
920 #endif
921 
922  } // for lev
923 
924 #ifdef ERF_USE_PARTICLES
925  restartTracers((ParGDBBase*)GetParGDB(),restart_chkfile);
926  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
927  dynamic_cast<LagrangianMicrophysics&>(*micro).restartParticles((ParGDBBase*)GetParGDB(),restart_chkfile);
928  }
929 #endif
930 
931 #if 0
932 #ifdef ERF_USE_NETCDF
933  // Read bdy_data files
934  if ( ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
936  {
937  int ioproc = ParallelDescriptor::IOProcessorNumber(); // I/O rank
938  int num_time;
939  int num_var;
940  Vector<Box> bx_v;
941  if (ParallelDescriptor::IOProcessor()) {
942  // Open header file and read from it
943  std::ifstream bdy_h_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_H"));
944  bdy_h_file >> num_time;
945  bdy_h_file >> num_var;
946  bdy_h_file >> start_bdy_time;
947  bdy_h_file >> bdy_time_interval;
948  bdy_h_file >> real_width;
949  bx_v.resize(4*num_var);
950  for (int ivar(0); ivar<num_var; ++ivar) {
951  bdy_h_file >> bx_v[4*ivar ];
952  bdy_h_file >> bx_v[4*ivar+1];
953  bdy_h_file >> bx_v[4*ivar+2];
954  bdy_h_file >> bx_v[4*ivar+3];
955  }
956 
957  // IO size the FABs
958  bdy_data_xlo.resize(num_time);
959  bdy_data_xhi.resize(num_time);
960  bdy_data_ylo.resize(num_time);
961  bdy_data_yhi.resize(num_time);
962  for (int itime(0); itime<num_time; ++itime) {
963  bdy_data_xlo[itime].resize(num_var);
964  bdy_data_xhi[itime].resize(num_var);
965  bdy_data_ylo[itime].resize(num_var);
966  bdy_data_yhi[itime].resize(num_var);
967  for (int ivar(0); ivar<num_var; ++ivar) {
968  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
969  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
970  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
971  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
972  }
973  }
974 
975  // Open data file and read from it
976  std::ifstream bdy_d_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_D"));
977  for (int itime(0); itime<num_time; ++itime) {
978  for (int ivar(0); ivar<num_var; ++ivar) {
979  bdy_data_xlo[itime][ivar].readFrom(bdy_d_file);
980  bdy_data_xhi[itime][ivar].readFrom(bdy_d_file);
981  bdy_data_ylo[itime][ivar].readFrom(bdy_d_file);
982  bdy_data_yhi[itime][ivar].readFrom(bdy_d_file);
983  }
984  }
985  } // IO
986 
987  // Broadcast the data
988  ParallelDescriptor::Barrier();
989  ParallelDescriptor::Bcast(&start_bdy_time,1,ioproc);
990  ParallelDescriptor::Bcast(&bdy_time_interval,1,ioproc);
991  ParallelDescriptor::Bcast(&real_width,1,ioproc);
992  ParallelDescriptor::Bcast(&num_time,1,ioproc);
993  ParallelDescriptor::Bcast(&num_var,1,ioproc);
994 
995  // Everyone size their boxes
996  bx_v.resize(4*num_var);
997 
998  ParallelDescriptor::Bcast(bx_v.dataPtr(),bx_v.size(),ioproc);
999 
1000  // Everyone but IO size their FABs
1001  if (!ParallelDescriptor::IOProcessor()) {
1002  bdy_data_xlo.resize(num_time);
1003  bdy_data_xhi.resize(num_time);
1004  bdy_data_ylo.resize(num_time);
1005  bdy_data_yhi.resize(num_time);
1006  for (int itime(0); itime<num_time; ++itime) {
1007  bdy_data_xlo[itime].resize(num_var);
1008  bdy_data_xhi[itime].resize(num_var);
1009  bdy_data_ylo[itime].resize(num_var);
1010  bdy_data_yhi[itime].resize(num_var);
1011  for (int ivar(0); ivar<num_var; ++ivar) {
1012  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
1013  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
1014  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
1015  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
1016  }
1017  }
1018  }
1019 
1020  for (int itime(0); itime<num_time; ++itime) {
1021  for (int ivar(0); ivar<num_var; ++ivar) {
1022  ParallelDescriptor::Bcast(bdy_data_xlo[itime][ivar].dataPtr(),bdy_data_xlo[itime][ivar].box().numPts(),ioproc);
1023  ParallelDescriptor::Bcast(bdy_data_xhi[itime][ivar].dataPtr(),bdy_data_xhi[itime][ivar].box().numPts(),ioproc);
1024  ParallelDescriptor::Bcast(bdy_data_ylo[itime][ivar].dataPtr(),bdy_data_ylo[itime][ivar].box().numPts(),ioproc);
1025  ParallelDescriptor::Bcast(bdy_data_yhi[itime][ivar].dataPtr(),bdy_data_yhi[itime][ivar].box().numPts(),ioproc);
1026  }
1027  }
1028  } // init_type == WRFInput or Metgrid
1029 #endif
1030 #endif
1031 }
struct @19 in
static void GotoNextLine(std::istream &is)
Definition: ERF_Checkpoint.cpp:16
void MakeNewLevelFromScratch(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:25
bool variable_coriolis
Definition: ERF_DataStruct.H:1153
bool has_lat_lon
Definition: ERF_DataStruct.H:1152
static void set_mesh_type(MeshType new_mesh_type)
Definition: ERF_DataStruct.H:1024
Here is the call graph for this function:

◆ ReadCheckpointFileSurfaceLayer()

void ERF::ReadCheckpointFileSurfaceLayer ( )

ERF function for reading additional data for MOST from a checkpoint file during restart.

This is called after the ABLMost object is instantiated.

1040 {
1041  for (int lev = 0; lev <= finest_level; ++lev)
1042  {
1043  amrex::Print() << "Reading MOST variables" << std::endl;
1044 
1045  IntVect ng(1,1,0);
1046  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
1047  MultiFab* dst = nullptr;
1048 
1049  // U*
1050  std::string UstarFileName(restart_chkfile + "/Level_0/Ustar_H");
1051  if (amrex::FileExists(UstarFileName)) {
1052  dst = m_SurfaceLayer->get_u_star(lev);
1053  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Ustar"));
1054  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1055  }
1056 
1057  // W*
1058  std::string WstarFileName(restart_chkfile + "/Level_0/Wstar_H");
1059  if (amrex::FileExists(WstarFileName)) {
1060  dst = m_SurfaceLayer->get_w_star(lev);
1061  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Wstar"));
1062  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1063  }
1064 
1065  // T*
1066  std::string TstarFileName(restart_chkfile + "/Level_0/Tstar_H");
1067  if (amrex::FileExists(TstarFileName)) {
1068  dst = m_SurfaceLayer->get_t_star(lev);
1069  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Tstar"));
1070  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1071  }
1072 
1073  // Q*
1074  std::string QstarFileName(restart_chkfile + "/Level_0/Qstar_H");
1075  if (amrex::FileExists(QstarFileName)) {
1076  dst = m_SurfaceLayer->get_q_star(lev);
1077  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qstar"));
1078  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1079  }
1080 
1081  // Olen
1082  std::string OlenFileName(restart_chkfile + "/Level_0/Olen_H");
1083  if (amrex::FileExists(OlenFileName)) {
1084  dst = m_SurfaceLayer->get_olen(lev);
1085  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Olen"));
1086  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1087  }
1088 
1089  // Qsurf
1090  std::string QsurfFileName(restart_chkfile + "/Level_0/Qsurf_H");
1091  if (amrex::FileExists(QsurfFileName)) {
1092  dst = m_SurfaceLayer->get_q_surf(lev);
1093  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qsurf"));
1094  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1095  }
1096 
1097  // PBLH
1098  std::string PBLHFileName(restart_chkfile + "/Level_0/PBLH_H");
1099  if (amrex::FileExists(PBLHFileName)) {
1100  dst = m_SurfaceLayer->get_pblh(lev);
1101  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PBLH"));
1102  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1103  }
1104 
1105  // Z0
1106  std::string Z0FileName(restart_chkfile + "/Level_0/Z0_H");
1107  if (amrex::FileExists(Z0FileName)) {
1108  dst = m_SurfaceLayer->get_z0(lev);
1109  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z0"));
1110  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1111  }
1112  }
1113 }

◆ ReadParameters()

void ERF::ReadParameters ( )
private
2168 {
2169  {
2170  ParmParse pp; // Traditionally, max_step and stop_time do not have prefix.
2171  pp.query("max_step", max_step);
2172  if (max_step < 0) {
2173  max_step = std::numeric_limits<int>::max();
2174  }
2175 
2176  // TODO: more robust general datetime parsing
2177  std::string start_datetime, stop_datetime;
2178  if (pp.query("start_datetime", start_datetime)) {
2179  if (start_datetime.length() == 16) { // YYYY-MM-DD HH:MM
2180  start_datetime += ":00"; // add seconds
2181  }
2182  if (start_datetime.length() != 19) {
2183  Print() << "Got start_datetime = \"" << start_datetime
2184  << "\", format should be " << datetime_format << std::endl;
2185  exit(0);
2186  }
2187  start_time = getEpochTime(start_datetime, datetime_format);
2188  Print() << "Start datetime : " << start_datetime << std::endl;
2189 
2190  if (pp.query("stop_datetime", stop_datetime)) {
2191  if (stop_datetime.length() == 16) { // YYYY-MM-DD HH:MM
2192  stop_datetime += ":00"; // add seconds
2193  }
2194  if (stop_datetime.length() != 19) {
2195  Print() << "Got stop_datetime = \"" << stop_datetime
2196  << "\", format should be " << datetime_format << std::endl;
2197  exit(0);
2198  }
2199  stop_time = getEpochTime(stop_datetime, datetime_format);
2200  Print() << "Stop datetime : " << start_datetime << std::endl;
2201  } else if (pp.query("stop_time", stop_time)) {
2202  Print() << "Sim length : " << stop_time << " s" << std::endl;
2203  stop_time += start_time;
2204  }
2205 
2206  use_datetime = true;
2207 
2208  } else {
2209  pp.query("stop_time", stop_time);
2210  pp.query("start_time", start_time); // This is optional, it defaults to 0
2211  }
2212  }
2213 
2214  ParmParse pp(pp_prefix);
2215  ParmParse pp_amr("amr");
2216  {
2217  pp.query("regrid_level_0_on_restart", regrid_level_0_on_restart);
2218  pp.query("regrid_int", regrid_int);
2219  pp.query("check_file", check_file);
2220 
2221  // The regression tests use "amr.restart" and "amr.m_check_int" so we allow
2222  // for those or "erf.restart" / "erf.m_check_int" with the former taking
2223  // precedence if both are specified
2224  pp.query("check_int", m_check_int);
2225  pp.query("check_per", m_check_per);
2226  pp_amr.query("check_int", m_check_int);
2227  pp_amr.query("check_per", m_check_per);
2228 
2229  pp.query("restart", restart_chkfile);
2230  pp_amr.query("restart", restart_chkfile);
2231 
2232  // Verbosity
2233  pp.query("v", verbose);
2234  pp.query("mg_v", mg_verbose);
2235  pp.query("use_fft", use_fft);
2236 #ifndef ERF_USE_FFT
2237  if (use_fft) {
2238  Abort("You must build with USE_FFT in order to set use_fft = true in your inputs file");
2239  }
2240 #endif
2241 
2242  // Check for NaNs?
2243  pp.query("check_for_nans", check_for_nans);
2244 
2245  // Frequency of diagnostic output
2246  pp.query("sum_interval", sum_interval);
2247  pp.query("sum_period" , sum_per);
2248 
2249  pp.query("pert_interval", pert_interval);
2250 
2251  // Time step controls
2252  pp.query("cfl", cfl);
2253  pp.query("substepping_cfl", sub_cfl);
2254  pp.query("init_shrink", init_shrink);
2255  pp.query("change_max", change_max);
2256  pp.query("dt_max_initial", dt_max_initial);
2257  pp.query("dt_max", dt_max);
2258 
2259  fixed_dt.resize(max_level+1,-1.);
2260  fixed_fast_dt.resize(max_level+1,-1.);
2261 
2262  pp.query("fixed_dt", fixed_dt[0]);
2263  pp.query("fixed_fast_dt", fixed_fast_dt[0]);
2264 
2265  int nlevs_max = max_level + 1;
2266  istep.resize(nlevs_max, 0);
2267  nsubsteps.resize(nlevs_max, 1);
2268  // This is the default
2269  for (int lev = 1; lev <= max_level; ++lev) {
2270  nsubsteps[lev] = MaxRefRatio(lev-1);
2271  }
2272 
2273  if (max_level > 0) {
2274  ParmParse pp_erf("erf");
2275  int count = pp_erf.countval("dt_ref_ratio");
2276  if (count > 0) {
2277  Vector<int> nsub;
2278  nsub.resize(nlevs_max, 0);
2279  if (count == 1) {
2280  pp_erf.queryarr("dt_ref_ratio", nsub, 0, 1);
2281  for (int lev = 1; lev <= max_level; ++lev) {
2282  nsubsteps[lev] = nsub[0];
2283  }
2284  } else {
2285  pp_erf.queryarr("dt_ref_ratio", nsub, 0, max_level);
2286  for (int lev = 1; lev <= max_level; ++lev) {
2287  nsubsteps[lev] = nsub[lev-1];
2288  }
2289  }
2290  }
2291  }
2292 
2293  // Make sure we do this after we have defined nsubsteps above
2294  for (int lev = 1; lev <= max_level; lev++)
2295  {
2296  fixed_dt[lev] = fixed_dt[lev-1] / static_cast<Real>(nsubsteps[lev]);
2297  fixed_fast_dt[lev] = fixed_fast_dt[lev-1] / static_cast<Real>(nsubsteps[lev]);
2298  }
2299 
2300  pp.query("fixed_mri_dt_ratio", fixed_mri_dt_ratio);
2301 
2302  // We use this to keep track of how many boxes we read in from WRF initialization
2303  num_files_at_level.resize(max_level+1,0);
2304 
2305  // We use this to keep track of how many boxes are specified thru the refinement indicators
2306  num_boxes_at_level.resize(max_level+1,0);
2307  boxes_at_level.resize(max_level+1);
2308 
2309  // We always have exactly one file at level 0
2310  num_boxes_at_level[0] = 1;
2311  boxes_at_level[0].resize(1);
2312  boxes_at_level[0][0] = geom[0].Domain();
2313 
2314 #ifdef ERF_USE_NETCDF
2315  nc_init_file.resize(max_level+1);
2316  have_read_nc_init_file.resize(max_level+1);
2317 
2318  // NetCDF wrfinput initialization files -- possibly multiple files at each of multiple levels
2319  // but we always have exactly one file at level 0
2320  for (int lev = 0; lev <= max_level; lev++) {
2321  const std::string nc_file_names = Concatenate("nc_init_file_",lev,1);
2322  if (pp.contains(nc_file_names.c_str())) {
2323  int num_files = pp.countval(nc_file_names.c_str());
2324  num_files_at_level[lev] = num_files;
2325  nc_init_file[lev].resize(num_files);
2326  have_read_nc_init_file[lev].resize(num_files);
2327  pp.queryarr(nc_file_names.c_str(), nc_init_file[lev],0,num_files);
2328  for (int j = 0; j < num_files; j++) {
2329  Print() << "Reading NC init file names at level " << lev << " and index " << j << " : " << nc_init_file[lev][j] << std::endl;
2330  have_read_nc_init_file[lev][j] = 0;
2331  } // j
2332  } // if pp.contains
2333  } // lev
2334 
2335  // NetCDF wrfbdy lateral boundary file
2336  if (pp.query("nc_bdy_file", nc_bdy_file)) {
2337  Print() << "Reading NC bdy file name " << nc_bdy_file << std::endl;
2338  }
2339 
2340  // NetCDF wrflow lateral boundary file
2341  if (pp.query("nc_low_file", nc_low_file)) {
2342  Print() << "Reading NC low file name " << nc_low_file << std::endl;
2343  }
2344 
2345 #endif
2346 
2347  // Options for vertical interpolation of met_em*.nc data.
2348  pp.query("metgrid_debug_quiescent", metgrid_debug_quiescent);
2349  pp.query("metgrid_debug_isothermal", metgrid_debug_isothermal);
2350  pp.query("metgrid_debug_dry", metgrid_debug_dry);
2351  pp.query("metgrid_debug_psfc", metgrid_debug_psfc);
2352  pp.query("metgrid_debug_msf", metgrid_debug_msf);
2353  pp.query("metgrid_interp_theta", metgrid_interp_theta);
2354  pp.query("metgrid_basic_linear", metgrid_basic_linear);
2355  pp.query("metgrid_use_below_sfc", metgrid_use_below_sfc);
2356  pp.query("metgrid_use_sfc", metgrid_use_sfc);
2357  pp.query("metgrid_retain_sfc", metgrid_retain_sfc);
2358  pp.query("metgrid_proximity", metgrid_proximity);
2359  pp.query("metgrid_order", metgrid_order);
2360  pp.query("metgrid_force_sfc_k", metgrid_force_sfc_k);
2361 
2362  // Set default to FullState for now ... later we will try Perturbation
2363  interpolation_type = StateInterpType::FullState;
2364  pp.query_enum_case_insensitive("interpolation_type" ,interpolation_type);
2365 
2366  PlotFileType plotfile3d_type_temp = PlotFileType::None;
2367  pp.query_enum_case_insensitive("plotfile_type" ,plotfile3d_type_temp);
2368  pp.query_enum_case_insensitive("plotfile_type_1",plotfile3d_type_1);
2369  pp.query_enum_case_insensitive("plotfile_type_2",plotfile3d_type_2);
2370 
2371  PlotFileType plotfile2d_type_temp = PlotFileType::None;
2372  pp.query_enum_case_insensitive("plotfile2d_type" ,plotfile2d_type_temp);
2373  pp.query_enum_case_insensitive("plotfile2d_type_1",plotfile2d_type_1);
2374  pp.query_enum_case_insensitive("plotfile2d_type_2",plotfile2d_type_2);
2375  //
2376  // This option is for backward consistency -- if only plotfile_type is set,
2377  // then it will be used for both 1 and 2 if and only if they are not set
2378  //
2379  // Default is native amrex if no type is specified
2380  //
2381  if (plotfile3d_type_temp == PlotFileType::None) {
2382  if (plotfile3d_type_1 == PlotFileType::None) {
2383  plotfile3d_type_1 = PlotFileType::Amrex;
2384  }
2385  if (plotfile3d_type_2 == PlotFileType::None) {
2386  plotfile3d_type_2 = PlotFileType::Amrex;
2387  }
2388  } else {
2389  if (plotfile3d_type_1 == PlotFileType::None) {
2390  plotfile3d_type_1 = plotfile3d_type_temp;
2391  } else {
2392  Abort("You must set either plotfile_type or plotfile_type_1, not both");
2393  }
2394  if (plotfile3d_type_2 == PlotFileType::None) {
2395  plotfile3d_type_2 = plotfile3d_type_temp;
2396  } else {
2397  Abort("You must set either plotfile_type or plotfile_type_2, not both");
2398  }
2399  }
2400  if (plotfile2d_type_temp == PlotFileType::None) {
2401  if (plotfile2d_type_1 == PlotFileType::None) {
2402  plotfile2d_type_1 = PlotFileType::Amrex;
2403  }
2404  if (plotfile2d_type_2 == PlotFileType::None) {
2405  plotfile2d_type_2 = PlotFileType::Amrex;
2406  }
2407  } else {
2408  if (plotfile2d_type_1 == PlotFileType::None) {
2409  plotfile2d_type_1 = plotfile2d_type_temp;
2410  } else {
2411  Abort("You must set either plotfile2d_type or plotfile2d_type_1, not both");
2412  }
2413  if (plotfile2d_type_2 == PlotFileType::None) {
2414  plotfile2d_type_2 = plotfile2d_type_temp;
2415  } else {
2416  Abort("You must set either plotfile2d_type or plotfile2d_type_2, not both");
2417  }
2418  }
2419 #ifndef ERF_USE_NETCDF
2420  if (plotfile3d_type_1 == PlotFileType::Netcdf ||
2421  plotfile3d_type_2 == PlotFileType::Netcdf ||
2422  plotfile2d_type_1 == PlotFileType::Netcdf ||
2423  plotfile2d_type_2 == PlotFileType::Netcdf) {
2424  Abort("Plotfile type = Netcdf is not allowed without USE_NETCDF = TRUE");
2425  }
2426 #endif
2427 
2428  pp.query("plot_file_1" , plot3d_file_1);
2429  pp.query("plot_file_2" , plot3d_file_2);
2430  pp.query("plot2d_file_1", plot2d_file_1);
2431  pp.query("plot2d_file_2", plot2d_file_2);
2432 
2433  pp.query("plot_int_1" , m_plot3d_int_1);
2434  pp.query("plot_int_2" , m_plot3d_int_2);
2435  pp.query("plot_per_1" , m_plot3d_per_1);
2436  pp.query("plot_per_2" , m_plot3d_per_2);
2437 
2438  pp.query("plot2d_int_1" , m_plot2d_int_1);
2439  pp.query("plot2d_int_2" , m_plot2d_int_2);
2440  pp.query("plot2d_per_1", m_plot2d_per_1);
2441  pp.query("plot2d_per_2", m_plot2d_per_2);
2442 
2443  pp.query("subvol_file", subvol_file);
2444 
2445  // Should we use format like plt1970-01-01_00:00:00.000000 (if true) or plt00001 (if false)
2446  pp.query("use_real_time_in_pltname", use_real_time_in_pltname);
2447 
2448  // If use_real_time_in_pltname is false, how many digits should we use for the timestep?
2449  pp.query("file_name_digits", file_name_digits);
2450 
2451  // Default if subvol_int not specified
2452  m_subvol_int.resize(1); m_subvol_int[0] = -1;
2453  m_subvol_per.resize(1); m_subvol_per[0] = -1.0;
2454  last_subvol_step.resize(1);
2455  last_subvol_time.resize(1);
2456 
2457  int nsi = pp.countval("subvol_int");
2458  int nsr = pp.countval("subvol_per");
2459 
2460  // We must specify only subvol_int OR subvol_per
2461  AMREX_ALWAYS_ASSERT (!(nsi > 0 && nsr > 0));
2462 
2463  int nsub = -1;
2464  if (nsi > 0 || nsr > 0) {
2465  ParmParse pp_sv("erf.subvol");
2466  int n1 = pp_sv.countval("origin"); int n2 = pp_sv.countval("nxnynz"); int n3 = pp_sv.countval("dxdydz");
2467  if (n1 != n2 || n1 != n3 || n2 != n3) {
2468  Abort("WriteSubvolume: must have same number of entries in origin, nxnynz, and dxdydz.");
2469  }
2470  if ( n1%AMREX_SPACEDIM != 0) {
2471  Abort("WriteSubvolume: origin, nxnynz, and dxdydz must have multiples of AMReX_SPACEDIM");
2472  }
2473  nsub = n1/AMREX_SPACEDIM;
2474  m_subvol_int.resize(nsub);
2475  last_subvol_step.resize(nsub);
2476  last_subvol_time.resize(nsub);
2477  m_subvol_int.resize(nsub);
2478  m_subvol_per.resize(nsub);
2479  }
2480 
2481  if (nsi > 0) {
2482  for (int i = 1; i < nsub; i++) m_subvol_per[i] = -1.0;
2483  if ( nsi == 1) {
2484  m_subvol_int[0] = -1;
2485  pp.get("subvol_int" , m_subvol_int[0]);
2486  } else if ( nsi == nsub) {
2487  pp.getarr("subvol_int" , m_subvol_int);
2488  } else {
2489  Abort("There must either be a single value of subvol_int or one for every subdomain");
2490  }
2491  }
2492 
2493  if (nsr > 0) {
2494  for (int i = 1; i < nsub; i++) m_subvol_int[i] = -1.0;
2495  if ( nsr == 1) {
2496  m_subvol_per[0] = -1.0;
2497  pp.get("subvol_per" , m_subvol_per[0]);
2498  } else if ( nsr == nsub) {
2499  pp.getarr("subvol_per" , m_subvol_per);
2500  } else {
2501  Abort("There must either be a single value of subvol_per or one for every subdomain");
2502  }
2503  }
2504 
2505  setSubVolVariables("subvol_sampling_vars",subvol3d_var_names);
2506 
2507  pp.query("expand_plotvars_to_unif_rr",m_expand_plotvars_to_unif_rr);
2508 
2509  pp.query("plot_face_vels",m_plot_face_vels);
2510 
2511  if ( (m_plot3d_int_1 > 0 && m_plot3d_per_1 > 0) ||
2512  (m_plot3d_int_2 > 0 && m_plot3d_per_2 > 0.) ) {
2513  Abort("Must choose only one of plot_int or plot_per");
2514  }
2515  if ( (m_plot2d_int_1 > 0 && m_plot2d_per_1 > 0) ||
2516  (m_plot2d_int_2 > 0 && m_plot2d_per_2 > 0.) ) {
2517  Abort("Must choose only one of plot_int or plot_per");
2518  }
2519 
2520  pp.query("profile_int", profile_int);
2521  pp.query("destag_profiles", destag_profiles);
2522 
2523  pp.query("plot_lsm", plot_lsm);
2524 #ifdef ERF_USE_RRTMGP
2525  pp.query("plot_rad", plot_rad);
2526 #endif
2527  pp.query("profile_rad_int", rad_datalog_int);
2528 
2529  pp.query("output_1d_column", output_1d_column);
2530  pp.query("column_per", column_per);
2531  pp.query("column_interval", column_interval);
2532  pp.query("column_loc_x", column_loc_x);
2533  pp.query("column_loc_y", column_loc_y);
2534  pp.query("column_file_name", column_file_name);
2535 
2536  // Sampler output frequency
2537  pp.query("line_sampling_per", line_sampling_per);
2538  pp.query("line_sampling_interval", line_sampling_interval);
2539  pp.query("plane_sampling_per", plane_sampling_per);
2540  pp.query("plane_sampling_interval", plane_sampling_interval);
2541 
2542  // Specify information about outputting planes of data
2543  pp.query("output_bndry_planes", output_bndry_planes);
2544  pp.query("bndry_output_planes_interval", bndry_output_planes_interval);
2545  pp.query("bndry_output_planes_per", bndry_output_planes_per);
2546  pp.query("bndry_output_start_time", bndry_output_planes_start_time);
2547 
2548  // Specify whether ingest boundary planes of data
2549  pp.query("input_bndry_planes", input_bndry_planes);
2550 
2551  // Query the set and total widths for wrfbdy interior ghost cells
2552  pp.query("real_width", real_width);
2553  pp.query("real_set_width", real_set_width);
2554 
2555  // If using real boundaries, do we extrapolate w (or set to 0)
2556  pp.query("real_extrap_w", real_extrap_w);
2557 
2558  // Query the set and total widths for crse-fine interior ghost cells
2559  pp.query("cf_width", cf_width);
2560  pp.query("cf_set_width", cf_set_width);
2561 
2562  // AmrMesh iterate on grids?
2563  bool iterate(true);
2564  pp_amr.query("iterate_grids",iterate);
2565  if (!iterate) SetIterateToFalse();
2566  }
2567 
2568 #ifdef ERF_USE_PARTICLES
2569  readTracersParams();
2570 #endif
2571 
2572  solverChoice.init_params(max_level,pp_prefix);
2573 
2574 #ifndef ERF_USE_NETCDF
2575  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(( (solverChoice.init_type != InitType::WRFInput) &&
2576  (solverChoice.init_type != InitType::Metgrid ) &&
2577  (solverChoice.init_type != InitType::NCFile ) ),
2578  "init_type cannot be 'WRFInput', 'MetGrid' or 'NCFile' if we don't build with netcdf!");
2579 #endif
2580 
2581  // Query the canopy model file name
2582  std::string forestfile;
2583  solverChoice.do_forest_drag = pp.query("forest_file", forestfile);
2585  for (int lev = 0; lev <= max_level; ++lev) {
2586  m_forest_drag[lev] = std::make_unique<ForestDrag>(forestfile);
2587  }
2588  }
2589 
2590  // If init from WRFInput or Metgrid make sure a valid file name is present at level 0.
2591  // We allow for the possibility that finer levels may use native refinement rather than reading from a file
2592  if ((solverChoice.init_type == InitType::WRFInput) ||
2593  (solverChoice.init_type == InitType::Metgrid) ||
2594  (solverChoice.init_type == InitType::NCFile) ) {
2595  int num_files = nc_init_file[0].size();
2596  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(num_files>0, "A file name must be present at level 0 for init type WRFInput, Metgrid or NCFile.");
2597  for (int j = 0; j < num_files; j++) {
2598  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!nc_init_file[0][j].empty(), "Valid file name must be present at level 0 for init type WRFInput, Metgrid or NCFile.");
2599  } //j
2600  } // InitType
2601 
2602  // What type of land surface model to use
2603  // NOTE: Must be checked after init_params
2604  if (solverChoice.lsm_type == LandSurfaceType::SLM) {
2605  lsm.SetModel<SLM>();
2606  Print() << "SLM land surface model!\n";
2607  } else if (solverChoice.lsm_type == LandSurfaceType::MM5) {
2608  lsm.SetModel<MM5>();
2609  Print() << "MM5 land surface model!\n";
2610 #ifdef ERF_USE_NOAHMP
2611  } else if (solverChoice.lsm_type == LandSurfaceType::NOAHMP) {
2612  lsm.SetModel<NOAHMP>();
2613  Print() << "Noah-MP land surface model!\n";
2614 #endif
2615  } else if (solverChoice.lsm_type == LandSurfaceType::None) {
2616  lsm.SetModel<NullSurf>();
2617  Print() << "Null land surface model!\n";
2618  } else {
2619  Abort("Dont know this LandSurfaceType!") ;
2620  }
2621 
2622  if (verbose > 0) {
2623  solverChoice.display(max_level,pp_prefix);
2624  }
2625 
2627 }
AMREX_GPU_HOST AMREX_FORCE_INLINE std::time_t getEpochTime(const std::string &dateTime, const std::string &dateTimeFormat)
Definition: ERF_EpochTime.H:15
bool metgrid_basic_linear
Definition: ERF.H:1239
bool metgrid_debug_msf
Definition: ERF.H:1237
std::string plot2d_file_2
Definition: ERF.H:1064
std::string plot3d_file_1
Definition: ERF.H:1061
bool plot_rad
Definition: ERF.H:886
bool m_plot_face_vels
Definition: ERF.H:1079
std::string plot3d_file_2
Definition: ERF.H:1062
int regrid_int
Definition: ERF.H:1054
bool metgrid_retain_sfc
Definition: ERF.H:1242
int file_name_digits
Definition: ERF.H:1211
bool metgrid_use_sfc
Definition: ERF.H:1241
amrex::Vector< int > num_files_at_level
Definition: ERF.H:789
bool metgrid_debug_quiescent
Definition: ERF.H:1233
bool metgrid_interp_theta
Definition: ERF.H:1238
bool regrid_level_0_on_restart
Definition: ERF.H:1058
int metgrid_force_sfc_k
Definition: ERF.H:1245
void setSubVolVariables(const std::string &pp_subvol_var_names, amrex::Vector< std::string > &subvol_var_names)
Definition: ERF_WriteSubvolume.cpp:9
bool real_extrap_w
Definition: ERF.H:1227
bool metgrid_use_below_sfc
Definition: ERF.H:1240
std::string subvol_file
Definition: ERF.H:1065
amrex::Real metgrid_proximity
Definition: ERF.H:1243
std::string plot2d_file_1
Definition: ERF.H:1063
bool metgrid_debug_dry
Definition: ERF.H:1235
bool metgrid_debug_isothermal
Definition: ERF.H:1234
bool use_real_time_in_pltname
Definition: ERF.H:1212
bool metgrid_debug_psfc
Definition: ERF.H:1236
void ParameterSanityChecks()
Definition: ERF.cpp:2631
bool m_expand_plotvars_to_unif_rr
Definition: ERF.H:1066
std::string check_file
Definition: ERF.H:1088
int metgrid_order
Definition: ERF.H:1244
bool plot_lsm
Definition: ERF.H:1081
void SetModel()
Definition: ERF_LandSurface.H:28
Definition: ERF_MM5.H:26
Definition: ERF_NOAHMP.H:49
Definition: ERF_NullSurf.H:8
Definition: ERF_SLM.H:26
void display(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:808
void init_params(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:131
Here is the call graph for this function:

◆ refinement_criteria_setup()

void ERF::refinement_criteria_setup ( )
private

Function to define the refinement criteria based on user input

321 {
322  if (max_level > 0)
323  {
324  ParmParse pp(pp_prefix);
325  Vector<std::string> refinement_indicators;
326  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
327 
328  for (int i=0; i<refinement_indicators.size(); ++i)
329  {
330  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
331 
332  ParmParse ppr(ref_prefix);
333  RealBox realbox;
334  int lev_for_box;
335 
336  int num_real_lo = ppr.countval("in_box_lo");
337  int num_indx_lo = ppr.countval("in_box_lo_indices");
338  int num_real_hi = ppr.countval("in_box_hi");
339  int num_indx_hi = ppr.countval("in_box_hi_indices");
340 
341  AMREX_ALWAYS_ASSERT(num_real_lo == num_real_hi);
342  AMREX_ALWAYS_ASSERT(num_indx_lo == num_indx_hi);
343 
344  if ( !((num_real_lo >= AMREX_SPACEDIM-1 && num_indx_lo == 0) ||
345  (num_indx_lo >= AMREX_SPACEDIM-1 && num_real_lo == 0) ||
346  (num_indx_lo == 0 && num_real_lo == 0)) )
347  {
348  amrex::Abort("Must only specify box for refinement using real OR index space");
349  }
350 
351  if (num_real_lo > 0) {
352  std::vector<Real> rbox_lo(3), rbox_hi(3);
353  ppr.get("max_level",lev_for_box);
354  if (lev_for_box <= max_level)
355  {
356  if (n_error_buf[0] != IntVect::TheZeroVector()) {
357  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
358  }
359 
360  const Real* plo = geom[lev_for_box].ProbLo();
361  const Real* phi = geom[lev_for_box].ProbHi();
362 
363  ppr.getarr("in_box_lo",rbox_lo,0,num_real_lo);
364  ppr.getarr("in_box_hi",rbox_hi,0,num_real_hi);
365 
366  if (rbox_lo[0] < plo[0]) rbox_lo[0] = plo[0];
367  if (rbox_lo[1] < plo[1]) rbox_lo[1] = plo[1];
368  if (rbox_hi[0] > phi[0]) rbox_hi[0] = phi[0];
369  if (rbox_hi[1] > phi[1]) rbox_hi[1] = phi[1];
370  if (num_real_lo < AMREX_SPACEDIM) {
371  rbox_lo[2] = plo[2];
372  rbox_hi[2] = phi[2];
373  }
374 
375  realbox = RealBox(&(rbox_lo[0]),&(rbox_hi[0]));
376 
377  Print() << "Realbox read in and intersected laterally with domain is " << realbox << std::endl;
378 
379  num_boxes_at_level[lev_for_box] += 1;
380 
381  int ilo, jlo, klo;
382  int ihi, jhi, khi;
383  const auto* dx = geom[lev_for_box].CellSize();
384  ilo = static_cast<int>((rbox_lo[0] - plo[0])/dx[0]);
385  jlo = static_cast<int>((rbox_lo[1] - plo[1])/dx[1]);
386  ihi = static_cast<int>((rbox_hi[0] - plo[0])/dx[0]-1);
387  jhi = static_cast<int>((rbox_hi[1] - plo[1])/dx[1]-1);
388  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
389  // Search for k indices corresponding to nominal grid
390  // AGL heights
391  const Box& domain = geom[lev_for_box].Domain();
392  klo = domain.smallEnd(2) - 1;
393  khi = domain.smallEnd(2) - 1;
394 
395  if (rbox_lo[2] <= zlevels_stag[lev_for_box][domain.smallEnd(2)])
396  {
397  klo = domain.smallEnd(2);
398  }
399  else
400  {
401  for (int k=domain.smallEnd(2); k<=domain.bigEnd(2)+1; ++k) {
402  if (zlevels_stag[lev_for_box][k] > rbox_lo[2]) {
403  klo = k-1;
404  break;
405  }
406  }
407  }
408  AMREX_ASSERT(klo >= domain.smallEnd(2));
409 
410  if (rbox_hi[2] >= zlevels_stag[lev_for_box][domain.bigEnd(2)+1])
411  {
412  khi = domain.bigEnd(2);
413  }
414  else
415  {
416  for (int k=klo+1; k<=domain.bigEnd(2)+1; ++k) {
417  if (zlevels_stag[lev_for_box][k] > rbox_hi[2]) {
418  khi = k-1;
419  break;
420  }
421  }
422  }
423  AMREX_ASSERT((khi <= domain.bigEnd(2)) && (khi > klo));
424 
425  // Need to update realbox because tagging is based on
426  // the initial _un_deformed grid
427  realbox = RealBox(plo[0]+ ilo *dx[0], plo[1]+ jlo *dx[1], plo[2]+ klo *dx[2],
428  plo[0]+(ihi+1)*dx[0], plo[1]+(jhi+1)*dx[1], plo[2]+(khi+1)*dx[2]);
429  } else {
430  klo = static_cast<int>((rbox_lo[2] - plo[2])/dx[2]);
431  khi = static_cast<int>((rbox_hi[2] - plo[2])/dx[2]-1);
432  }
433 
434  Box bx(IntVect(ilo,jlo,klo),IntVect(ihi,jhi,khi));
435  if ( (ilo%ref_ratio[lev_for_box-1][0] != 0) || ((ihi+1)%ref_ratio[lev_for_box-1][0] != 0) ||
436  (jlo%ref_ratio[lev_for_box-1][1] != 0) || ((jhi+1)%ref_ratio[lev_for_box-1][1] != 0) ||
437  (klo%ref_ratio[lev_for_box-1][2] != 0) || ((khi+1)%ref_ratio[lev_for_box-1][2] != 0) )
438  {
439  amrex::Print() << "Box : " << bx << std::endl;
440  amrex::Print() << "RealBox : " << realbox << std::endl;
441  amrex::Print() << "ilo, ihi+1, jlo, jhi+1, klo, khi+1 by ref_ratio : "
442  << ilo%ref_ratio[lev_for_box-1][0] << " " << (ihi+1)%ref_ratio[lev_for_box-1][0] << " "
443  << jlo%ref_ratio[lev_for_box-1][1] << " " << (jhi+1)%ref_ratio[lev_for_box-1][1] << " "
444  << klo%ref_ratio[lev_for_box-1][2] << " " << (khi+1)%ref_ratio[lev_for_box-1][2] << std::endl;
445  amrex::Error("Fine box is not legit with this ref_ratio");
446  }
447  boxes_at_level[lev_for_box].push_back(bx);
448  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
449  } // lev
450 
451  if (solverChoice.init_type == InitType::WRFInput) {
452  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
453  amrex::Error("Number of boxes doesn't match number of input files");
454 
455  }
456  }
457 
458  } else if (num_indx_lo > 0) {
459 
460  std::vector<int> box_lo(3), box_hi(3);
461  ppr.get("max_level",lev_for_box);
462  if (lev_for_box <= max_level)
463  {
464  if (n_error_buf[0] != IntVect::TheZeroVector()) {
465  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
466  }
467 
468  ppr.getarr("in_box_lo_indices",box_lo,0,AMREX_SPACEDIM);
469  ppr.getarr("in_box_hi_indices",box_hi,0,AMREX_SPACEDIM);
470 
471  Box bx(IntVect(box_lo[0],box_lo[1],box_lo[2]),IntVect(box_hi[0],box_hi[1],box_hi[2]));
472  amrex::Print() << "BOX " << bx << std::endl;
473 
474  const auto* dx = geom[lev_for_box].CellSize();
475  const Real* plo = geom[lev_for_box].ProbLo();
476  realbox = RealBox(plo[0]+ box_lo[0] *dx[0], plo[1]+ box_lo[1] *dx[1], plo[2]+ box_lo[2] *dx[2],
477  plo[0]+(box_hi[0]+1)*dx[0], plo[1]+(box_hi[1]+1)*dx[1], plo[2]+(box_hi[2]+1)*dx[2]);
478 
479  Print() << "Reading " << bx << " at level " << lev_for_box << std::endl;
480  num_boxes_at_level[lev_for_box] += 1;
481 
482  if ( (box_lo[0]%ref_ratio[lev_for_box-1][0] != 0) || ((box_hi[0]+1)%ref_ratio[lev_for_box-1][0] != 0) ||
483  (box_lo[1]%ref_ratio[lev_for_box-1][1] != 0) || ((box_hi[1]+1)%ref_ratio[lev_for_box-1][1] != 0) ||
484  (box_lo[2]%ref_ratio[lev_for_box-1][2] != 0) || ((box_hi[2]+1)%ref_ratio[lev_for_box-1][2] != 0) )
485  amrex::Error("Fine box is not legit with this ref_ratio");
486  boxes_at_level[lev_for_box].push_back(bx);
487  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
488  } // lev
489 
490  if (solverChoice.init_type == InitType::WRFInput) {
491  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
492  amrex::Error("Number of boxes doesn't match number of input files");
493 
494  }
495  }
496  }
497 
498  AMRErrorTagInfo info;
499 
500  if (realbox.ok()) {
501  info.SetRealBox(realbox);
502  }
503  if (ppr.countval("start_time") > 0) {
504  Real ref_min_time; ppr.get("start_time",ref_min_time);
505  info.SetMinTime(ref_min_time);
506  }
507  if (ppr.countval("end_time") > 0) {
508  Real ref_max_time; ppr.get("end_time",ref_max_time);
509  info.SetMaxTime(ref_max_time);
510  }
511  if (ppr.countval("max_level") > 0) {
512  int ref_max_level; ppr.get("max_level",ref_max_level);
513  info.SetMaxLevel(ref_max_level);
514  }
515 
516  if (ppr.countval("value_greater")) {
517  int num_val = ppr.countval("value_greater");
518  Vector<Real> value(num_val);
519  ppr.getarr("value_greater",value,0,num_val);
520  std::string field; ppr.get("field_name",field);
521  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GREATER,field,info));
522  }
523  else if (ppr.countval("value_less")) {
524  int num_val = ppr.countval("value_less");
525  Vector<Real> value(num_val);
526  ppr.getarr("value_less",value,0,num_val);
527  std::string field; ppr.get("field_name",field);
528  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::LESS,field,info));
529  }
530  else if (ppr.countval("adjacent_difference_greater")) {
531  int num_val = ppr.countval("adjacent_difference_greater");
532  Vector<Real> value(num_val);
533  ppr.getarr("adjacent_difference_greater",value,0,num_val);
534  std::string field; ppr.get("field_name",field);
535  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GRAD,field,info));
536  }
537  else if (realbox.ok())
538  {
539  ref_tags.push_back(AMRErrorTag(info));
540  } else if (refinement_indicators[i] != "storm_tracker") {
541  Abort(std::string("Unrecognized refinement indicator for " + refinement_indicators[i]).c_str());
542  }
543  } // loop over criteria
544  } // if max_level > 0
545 }
Here is the call graph for this function:

◆ remake_zphys()

void ERF::remake_zphys ( int  lev,
amrex::Real  time,
std::unique_ptr< amrex::MultiFab > &  temp_zphys_nd 
)
738 {
739  if (solverChoice.init_type != InitType::WRFInput && solverChoice.init_type != InitType::Metgrid)
740  {
741  if (lev > 0)
742  {
743  //
744  // First interpolate from coarser level
745  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
746  // have been pre-filled - this includes ghost cells both inside and outside
747  // the domain
748  //
749  InterpFromCoarseLevel(*temp_zphys_nd, z_phys_nd[lev]->nGrowVect(),
750  IntVect(0,0,0), // do NOT fill ghost cells outside the domain
751  *z_phys_nd[lev-1], 0, 0, 1,
752  geom[lev-1], geom[lev],
753  refRatio(lev-1), &node_bilinear_interp,
755 
756  // This recomputes the fine values using the bottom terrain at the fine resolution,
757  // and also fills values of z_phys_nd outside the domain
758  make_terrain_fitted_coords(lev,geom[lev],*temp_zphys_nd,zlevels_stag[lev],phys_bc_type);
759 
760  std::swap(temp_zphys_nd, z_phys_nd[lev]);
761  } // lev > 0
762  } else {
763  if (lev > 0)
764  {
765  //
766  // First interpolate from coarser level
767  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
768  // have been pre-filled - this includes ghost cells both inside and outside
769  // the domain
770  //
771  InterpFromCoarseLevel(*temp_zphys_nd, z_phys_nd[lev]->nGrowVect(),
772  z_phys_nd[lev]->nGrowVect(), // DO fill ghost cells outside the domain
773  *z_phys_nd[lev-1], 0, 0, 1,
774  geom[lev-1], geom[lev],
775  refRatio(lev-1), &node_bilinear_interp,
777 
778  std::swap(temp_zphys_nd, z_phys_nd[lev]);
779  } // lev > 0
780  }
781 
782  if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
783  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
784  //
785  // This assumes we have already remade the EBGeometry
786  //
787  terrain_blanking[lev]->setVal(1.0);
788  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, z_phys_nd[lev]->nGrowVect());
789  }
790 
791  // Compute the min dz and pass to the micro model
792  Real dzmin = get_dzmin_terrain(*z_phys_nd[lev]);
793  micro->Set_dzmin(lev, dzmin);
794 }
Here is the call graph for this function:

◆ RemakeLevel()

void ERF::RemakeLevel ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
523 {
524  if (verbose) {
525  amrex::Print() <<" REMAKING WITH NEW BA AT LEVEL " << lev << " " << ba << std::endl;
526  }
527 
528  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::MovingFittedMesh);
529 
530  BoxArray ba_old(vars_new[lev][Vars::cons].boxArray());
531  DistributionMapping dm_old(vars_new[lev][Vars::cons].DistributionMap());
532 
533  if (verbose) {
534  amrex::Print() <<" OLD BA AT LEVEL " << lev << " " << ba_old << std::endl;
535  }
536 
537  //
538  // Re-define subdomain at this level within the domain such that
539  // 1) all boxes in a given subdomain are "connected"
540  // 2) no boxes in a subdomain touch any boxes in any other subdomain
541  //
542  if (solverChoice.anelastic[lev] == 1) {
543  make_subdomains(ba.simplified_list(), subdomains[lev]);
544  }
545 
546  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
547  IntVect ngrow_state = vars_new[lev][Vars::cons].nGrowVect();
548 
549  int ngrow_vels = ComputeGhostCells(solverChoice);
550 
551  Vector<MultiFab> temp_lev_new(Vars::NumTypes);
552  Vector<MultiFab> temp_lev_old(Vars::NumTypes);
553  MultiFab temp_base_state;
554 
555  std::unique_ptr<MultiFab> temp_zphys_nd;
556 
557  //********************************************************************************************
558  // This allocates all kinds of things, including but not limited to: solution arrays,
559  // terrain arrays and metrics, and base state.
560  // *******************************************************************************************
561  init_stuff(lev, ba, dm, temp_lev_new, temp_lev_old, temp_base_state, temp_zphys_nd);
562 
563  // ********************************************************************************************
564  // Build the data structures for terrain-related quantities
565  // ********************************************************************************************
566  if ( solverChoice.terrain_type == TerrainType::EB ||
567  solverChoice.terrain_type == TerrainType::ImmersedForcing ||
568  solverChoice.buildings_type == BuildingsType::ImmersedForcing)
569  {
570  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
571  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
572  if (solverChoice.terrain_type == TerrainType::EB) {
573  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
574  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing ||
575  solverChoice.buildings_type == BuildingsType::ImmersedForcing) {
576  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
577  }
578  }
579  remake_zphys(lev, time, temp_zphys_nd);
581 
582  // ********************************************************************************************
583  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
584  // Note that this shouldn't be necessary because the fine grid is created by interpolation
585  // from the coarse ... but just in case ...
586  // ********************************************************************************************
587  if ( (SolverChoice::mesh_type != MeshType::ConstantDz) && (solverChoice.coupling_type == CouplingType::TwoWay) ) {
588  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
589  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
590  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
591  }
592  }
593 
594  // ********************************************************************************************
595  // Build the data structures for canopy model (depends upon z_phys)
596  // ********************************************************************************************
598  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
599  }
600 
601  // *****************************************************************************************************
602  // Create the physbcs objects (after initializing the terrain but before calling FillCoarsePatch
603  // *****************************************************************************************************
604  make_physbcs(lev);
605 
606  // ********************************************************************************************
607  // Update the base state at this level by interpolation from coarser level AND copy
608  // from previous (pre-regrid) base_state array
609  // ********************************************************************************************
610  if (lev > 0) {
611  Interpolater* mapper = &cell_cons_interp;
612 
613  Vector<MultiFab*> fmf = {&base_state[lev ], &base_state[lev ]};
614  Vector<MultiFab*> cmf = {&base_state[lev-1], &base_state[lev-1]};
615  Vector<Real> ftime = {time, time};
616  Vector<Real> ctime = {time, time};
617 
618  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
619  FillPatchTwoLevels(temp_base_state, temp_base_state.nGrowVect(), IntVect(0,0,0),
620  time, cmf, ctime, fmf, ftime,
621  0, 0, temp_base_state.nComp(), geom[lev-1], geom[lev],
622  refRatio(lev-1), mapper, domain_bcs_type,
624 
625  // Impose bc's outside the domain
626  (*physbcs_base[lev])(temp_base_state,0,temp_base_state.nComp(),base_state[lev].nGrowVect());
627 
628  // *************************************************************************************************
629  // This will fill the temporary MultiFabs with data from vars_new
630  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
631  // NOTE: we must create the new base state before calling FillPatch because we will
632  // interpolate perturbational quantities
633  // *************************************************************************************************
634  FillPatchFineLevel(lev, time, {&temp_lev_new[Vars::cons],&temp_lev_new[Vars::xvel],
635  &temp_lev_new[Vars::yvel],&temp_lev_new[Vars::zvel]},
636  {&temp_lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
637  base_state[lev], temp_base_state, false);
638  } else {
639  temp_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
640  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
641  temp_lev_new[Vars::cons].ParallelCopy(vars_new[lev][Vars::cons],0,0,ncomp_cons,ngrow_state,ngrow_state);
642  temp_lev_new[Vars::xvel].ParallelCopy(vars_new[lev][Vars::xvel],0,0, 1,ngrow_vels,ngrow_vels);
643  temp_lev_new[Vars::yvel].ParallelCopy(vars_new[lev][Vars::yvel],0,0, 1,ngrow_vels,ngrow_vels);
644 
645  temp_lev_new[Vars::zvel].setVal(0.);
646  temp_lev_new[Vars::zvel].ParallelCopy(vars_new[lev][Vars::zvel],0,0, 1,
647  IntVect(ngrow_vels,ngrow_vels,0),IntVect(ngrow_vels,ngrow_vels,0));
648  }
649 
650  // Now swap the pointers since we needed both old and new in the FillPatch
651  std::swap(temp_base_state, base_state[lev]);
652 
653  // ********************************************************************************************
654  // Copy from new into old just in case
655  // ********************************************************************************************
656  MultiFab::Copy(temp_lev_old[Vars::cons],temp_lev_new[Vars::cons],0,0,ncomp_cons,ngrow_state);
657  MultiFab::Copy(temp_lev_old[Vars::xvel],temp_lev_new[Vars::xvel],0,0, 1,ngrow_vels);
658  MultiFab::Copy(temp_lev_old[Vars::yvel],temp_lev_new[Vars::yvel],0,0, 1,ngrow_vels);
659  MultiFab::Copy(temp_lev_old[Vars::zvel],temp_lev_new[Vars::zvel],0,0, 1,IntVect(ngrow_vels,ngrow_vels,0));
660 
661  // ********************************************************************************************
662  // Now swap the pointers
663  // ********************************************************************************************
664  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
665  std::swap(temp_lev_new[var_idx], vars_new[lev][var_idx]);
666  std::swap(temp_lev_old[var_idx], vars_old[lev][var_idx]);
667  }
668 
669  t_new[lev] = time;
670  t_old[lev] = time - 1.e200;
671 
672  // ********************************************************************************************
673  // Build the data structures for calculating diffusive/turbulent terms
674  // ********************************************************************************************
675  update_diffusive_arrays(lev, ba, dm);
676 
677  //********************************************************************************************
678  // Microphysics
679  // *******************************************************************************************
680  int q_size = micro->Get_Qmoist_Size(lev);
681  qmoist[lev].resize(q_size);
682  micro->Define(lev, solverChoice);
683  if (solverChoice.moisture_type != MoistureType::None)
684  {
685  micro->Init(lev, vars_new[lev][Vars::cons],
686  grids[lev], Geom(lev), 0.0,
687  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
688  }
689  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
690  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
691  }
692 
693  //********************************************************************************************
694  // Radiation
695  // *******************************************************************************************
696  if (solverChoice.rad_type != RadiationType::None)
697  {
698  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
699  }
700 
701  // ********************************************************************************************
702  // Initialize the integrator class
703  // ********************************************************************************************
705 
706  // We need to re-define the FillPatcher if the grids have changed
707  if (lev > 0 && cf_width >= 0) {
708  bool ba_changed = (ba != ba_old);
709  bool dm_changed = (dm != dm_old);
710  if (ba_changed || dm_changed) {
712  }
713  }
714 
715  // ********************************************************************************************
716  // Update the SurfaceLayer arrays at this level
717  // ********************************************************************************************
718  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
719  int nlevs = finest_level+1;
720  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
721  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
722  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
723  mfv_old, Theta_prim[lev], Qv_prim[lev],
724  Qr_prim[lev], z_phys_nd[lev],
725  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
727  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
728  }
729 
730  // These calls are done in AmrCore::regrid if this is a regrid at lev > 0
731  // For a level 0 regrid we must explicitly do them here
732  if (lev == 0) {
733  // Define grids[lev] to be ba
734  SetBoxArray(lev, ba);
735 
736  // Define dmap[lev] to be dm
737  SetDistributionMap(lev, dm);
738  }
739 
740  // Clear the 2D arrays
741  if (sst_lev[lev][0]) {
742  for (int n = 0; n < sst_lev[lev].size(); n++) {
743  sst_lev[lev][n].reset();
744  }
745  }
746  if (tsk_lev[lev][0]) {
747  for (int n = 0; n < tsk_lev[lev].size(); n++) {
748  tsk_lev[lev][n].reset();
749  }
750  }
751  if (lat_m[lev]) {
752  lat_m[lev].reset();
753  }
754  if (lon_m[lev]) {
755  lon_m[lev].reset();
756  }
757  if (sinPhi_m[lev]) {
758  sinPhi_m[lev].reset();
759  }
760  if (cosPhi_m[lev]) {
761  cosPhi_m[lev].reset();
762  }
763 
764  //
765  // Interpolate the 2D arrays at the lower boundary. We assume that since we created
766  // them by interpolation it is ok just to recreate them by interpolation.
767  // Note that ba2d is constructed already in init_stuff, but we have not yet defined dmap[lev]
768  // so we must explicitly pass dm.
769  Interp2DArrays(lev,ba2d[lev],dm);
770 
771 #ifdef ERF_USE_PARTICLES
772  particleData.Redistribute();
773 #endif
774 }
void remake_zphys(int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:737

◆ restart()

void ERF::restart ( )
1965 {
1966  auto dRestartTime0 = amrex::second();
1967 
1969 
1971  //
1972  // Coarsening before we split the grids ensures that each resulting
1973  // grid will have an even number of cells in each direction.
1974  //
1975  BoxArray new_ba(amrex::coarsen(Geom(0).Domain(),2));
1976  //
1977  // Now split up into list of grids within max_grid_size[0] limit.
1978  //
1979  new_ba.maxSize(max_grid_size[0]/2);
1980  //
1981  // Now refine these boxes back to level 0.
1982  //
1983  new_ba.refine(2);
1984 
1985  if (refine_grid_layout) {
1986  ChopGrids(0, new_ba, ParallelDescriptor::NProcs());
1987  }
1988 
1989  if (new_ba != grids[0]) {
1990  DistributionMapping new_dm(new_ba);
1991  RemakeLevel(0,t_new[0],new_ba,new_dm);
1992  }
1993  }
1994 
1995 #ifdef ERF_USE_PARTICLES
1996  // We call this here without knowing whether the particles have already been initialized or not
1997  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,t_new[0]);
1998 #endif
1999 
2000  Real cur_time = t_new[0];
2001  if (m_check_per > 0.) {last_check_file_time = cur_time;}
2002  if (m_plot2d_per_1 > 0.) {last_plot2d_file_time_1 = std::floor(cur_time/m_plot2d_per_1) * m_plot2d_per_1;}
2003  if (m_plot2d_per_2 > 0.) {last_plot2d_file_time_2 = std::floor(cur_time/m_plot2d_per_2) * m_plot2d_per_2;}
2004  if (m_plot3d_per_1 > 0.) {last_plot3d_file_time_1 = std::floor(cur_time/m_plot3d_per_1) * m_plot3d_per_1;}
2005  if (m_plot3d_per_2 > 0.) {last_plot3d_file_time_2 = std::floor(cur_time/m_plot3d_per_2) * m_plot3d_per_2;}
2006 
2007  if (m_check_int > 0.) {last_check_file_step = istep[0];}
2008  if (m_plot2d_int_1 > 0.) {last_plot2d_file_step_1 = istep[0];}
2009  if (m_plot2d_int_2 > 0.) {last_plot2d_file_step_2 = istep[0];}
2010  if (m_plot3d_int_1 > 0.) {last_plot3d_file_step_1 = istep[0];}
2011  if (m_plot3d_int_2 > 0.) {last_plot3d_file_step_2 = istep[0];}
2012 
2013  if (verbose > 0)
2014  {
2015  auto dRestartTime = amrex::second() - dRestartTime0;
2016  ParallelDescriptor::ReduceRealMax(dRestartTime,ParallelDescriptor::IOProcessorNumber());
2017  amrex::Print() << "Restart time = " << dRestartTime << " seconds." << '\n';
2018  }
2019 }
void RemakeLevel(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:522
void ReadCheckpointFile()
Definition: ERF_Checkpoint.cpp:447

◆ sample_lines()

void ERF::sample_lines ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling data along a line along the z-dimension at the (x,y) indices specified and writes it to an output file.

Parameters
levCurrent level
timeCurrent time
cellIntVect containing the x,y-dimension indices to sample along z
mfMultiFab from which we sample the data
564 {
565  int ifile = 0;
566 
567  const int ncomp = mf.nComp(); // cell-centered state vars
568 
569  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
570  average_face_to_cellcenter(mf_vels, 0,
571  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
572 
573  //
574  // Sample the data at a line (in direction "dir") in space
575  // In this case we sample in the vertical direction so dir = 2
576  // The "k" value of "cell" is ignored
577  //
578  int dir = 2;
579  MultiFab my_line = get_line_data(mf, dir, cell);
580  MultiFab my_line_vels = get_line_data(mf_vels, dir, cell);
581  MultiFab my_line_tau11 = get_line_data(*Tau[lev][TauType::tau11], dir, cell);
582  MultiFab my_line_tau12 = get_line_data(*Tau[lev][TauType::tau12], dir, cell);
583  MultiFab my_line_tau13 = get_line_data(*Tau[lev][TauType::tau13], dir, cell);
584  MultiFab my_line_tau22 = get_line_data(*Tau[lev][TauType::tau22], dir, cell);
585  MultiFab my_line_tau23 = get_line_data(*Tau[lev][TauType::tau23], dir, cell);
586  MultiFab my_line_tau33 = get_line_data(*Tau[lev][TauType::tau33], dir, cell);
587 
588  for (MFIter mfi(my_line, false); mfi.isValid(); ++mfi)
589  {
590  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
591 
592  std::ostream& sample_log = SampleLineLog(ifile);
593  if (sample_log.good()) {
594  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << time;
595  const auto& my_line_arr = my_line[0].const_array();
596  const auto& my_line_vels_arr = my_line_vels[0].const_array();
597  const auto& my_line_tau11_arr = my_line_tau11[0].const_array();
598  const auto& my_line_tau12_arr = my_line_tau12[0].const_array();
599  const auto& my_line_tau13_arr = my_line_tau13[0].const_array();
600  const auto& my_line_tau22_arr = my_line_tau22[0].const_array();
601  const auto& my_line_tau23_arr = my_line_tau23[0].const_array();
602  const auto& my_line_tau33_arr = my_line_tau33[0].const_array();
603  const Box& my_box = my_line[0].box();
604  const int klo = my_box.smallEnd(2);
605  const int khi = my_box.bigEnd(2);
606  int i = cell[0];
607  int j = cell[1];
608  for (int n = 0; n < ncomp; n++) {
609  for (int k = klo; k <= khi; k++) {
610  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_arr(i,j,k,n);
611  }
612  }
613  for (int n = 0; n < AMREX_SPACEDIM; n++) {
614  for (int k = klo; k <= khi; k++) {
615  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_vels_arr(i,j,k,n);
616  }
617  }
618  for (int k = klo; k <= khi; k++) {
619  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau11_arr(i,j,k);
620  }
621  for (int k = klo; k <= khi; k++) {
622  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau12_arr(i,j,k);
623  }
624  for (int k = klo; k <= khi; k++) {
625  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau13_arr(i,j,k);
626  }
627  for (int k = klo; k <= khi; k++) {
628  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau22_arr(i,j,k);
629  }
630  for (int k = klo; k <= khi; k++) {
631  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau23_arr(i,j,k);
632  }
633  for (int k = klo; k <= khi; k++) {
634  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau33_arr(i,j,k);
635  }
636  sample_log << std::endl;
637  } // if good
638  } // mfi
639 }
const int datwidth
Definition: ERF.H:1018
AMREX_FORCE_INLINE std::ostream & SampleLineLog(int i)
Definition: ERF.H:1454
const int datprecision
Definition: ERF.H:1019

◆ sample_points()

void ERF::sample_points ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling MultiFab data at a specified cell index.

Parameters
levLevel for the associated MultiFab data
timeCurrent time
cellIntVect containing the indexes for the cell where we want to sample
mfMultiFab from which we wish to sample data
528 {
529  int ifile = 0;
530 
531  //
532  // Sample the data at a single point in space
533  //
534  int ncomp = mf.nComp();
535  Vector<Real> my_point = get_cell_data(mf, cell);
536 
537  if (!my_point.empty()) {
538 
539  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
540 
541  std::ostream& sample_log = SamplePointLog(ifile);
542  if (sample_log.good()) {
543  sample_log << std::setw(datwidth) << time;
544  for (int i = 0; i < ncomp; ++i)
545  {
546  sample_log << std::setw(datwidth) << my_point[i];
547  }
548  sample_log << std::endl;
549  } // if good
550  } // only write from processor that holds the cell
551 }
AMREX_FORCE_INLINE std::ostream & SamplePointLog(int i)
Definition: ERF.H:1440

◆ SampleLine()

amrex::IntVect& ERF::SampleLine ( int  i)
inlineprivate
1481  {
1482  return sampleline[i];
1483  }

◆ SampleLineLog()

AMREX_FORCE_INLINE std::ostream& ERF::SampleLineLog ( int  i)
inlineprivate
1455  {
1456  return *samplelinelog[i];
1457  }

◆ SampleLineLogName()

std::string ERF::SampleLineLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith samplelinelog file.

1614 { return samplelinelogname[i]; }

◆ SamplePoint()

amrex::IntVect& ERF::SamplePoint ( int  i)
inlineprivate
1468  {
1469  return samplepoint[i];
1470  }

◆ SamplePointLog()

AMREX_FORCE_INLINE std::ostream& ERF::SamplePointLog ( int  i)
inlineprivate
1441  {
1442  return *sampleptlog[i];
1443  }

◆ SamplePointLogName()

std::string ERF::SamplePointLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith sampleptlog file.

1611 { return sampleptlogname[i]; }

◆ setPlotVariables()

void ERF::setPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
26 {
27  ParmParse pp(pp_prefix);
28 
29  if (pp.contains(pp_plot_var_names.c_str()))
30  {
31  std::string nm;
32 
33  int nPltVars = pp.countval(pp_plot_var_names.c_str());
34 
35  for (int i = 0; i < nPltVars; i++)
36  {
37  pp.get(pp_plot_var_names.c_str(), nm, i);
38 
39  // Add the named variable to our list of plot variables
40  // if it is not already in the list
41  if (!containerHasElement(plot_var_names, nm)) {
42  plot_var_names.push_back(nm);
43  }
44  }
45  } else {
46  //
47  // The default is to add none of the variables to the list
48  //
49  plot_var_names.clear();
50  }
51 
52  // Get state variables in the same order as we define them,
53  // since they may be in any order in the input list
54  Vector<std::string> tmp_plot_names;
55 
56  for (int i = 0; i < cons_names.size(); ++i) {
57  if ( containerHasElement(plot_var_names, cons_names[i]) ) {
58  if (solverChoice.moisture_type == MoistureType::None) {
59  if (cons_names[i] != "rhoQ1" && cons_names[i] != "rhoQ2" && cons_names[i] != "rhoQ3" &&
60  cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
61  {
62  tmp_plot_names.push_back(cons_names[i]);
63  }
64  } else if (solverChoice.moisture_type == MoistureType::Kessler) { // allow rhoQ1, rhoQ2, rhoQ3
65  if (cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
66  {
67  tmp_plot_names.push_back(cons_names[i]);
68  }
69  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
70  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
71  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow rhoQ1, rhoQ2
72  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ4" &&
73  cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
74  {
75  tmp_plot_names.push_back(cons_names[i]);
76  }
77  } else if ( (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
78  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow rhoQ1, rhoQ2, rhoQ4
79  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
80  {
81  tmp_plot_names.push_back(cons_names[i]);
82  }
83  } else
84  {
85  // For moisture_type SAM and Morrison we have all six variables
86  tmp_plot_names.push_back(cons_names[i]);
87  }
88  }
89  }
90 
91  // check for velocity since it's not in cons_names
92  // if we are asked for any velocity component, we will need them all
93  if (containerHasElement(plot_var_names, "x_velocity") ||
94  containerHasElement(plot_var_names, "y_velocity") ||
95  containerHasElement(plot_var_names, "z_velocity")) {
96  tmp_plot_names.push_back("x_velocity");
97  tmp_plot_names.push_back("y_velocity");
98  tmp_plot_names.push_back("z_velocity");
99  }
100 
101  //
102  // If the model we are running doesn't have the variable listed in the inputs file,
103  // just ignore it rather than aborting
104  //
105  for (int i = 0; i < derived_names.size(); ++i) {
106  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
107  bool ok_to_add = ( (solverChoice.terrain_type == TerrainType::ImmersedForcing || solverChoice.buildings_type == BuildingsType::ImmersedForcing ) ||
108  (derived_names[i] != "terrain_IB_mask") );
109  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
110  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
111  (derived_names[i] != "detJ") );
112  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
113  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
114  (derived_names[i] != "z_phys") );
115 #ifndef ERF_USE_WINDFARM
116  ok_to_add &= (derived_names[i] != "SMark0" && derived_names[i] != "SMark1");
117 #endif
118  if (ok_to_add)
119  {
120  if (solverChoice.moisture_type == MoistureType::None) { // no moist quantities allowed
121  if (derived_names[i] != "qv" && derived_names[i] != "qc" && derived_names[i] != "qrain" &&
122  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
123  derived_names[i] != "qt" && derived_names[i] != "qn" && derived_names[i] != "qp" &&
124  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
125  {
126  tmp_plot_names.push_back(derived_names[i]);
127  }
128  } else if ( (solverChoice.moisture_type == MoistureType::Kessler ) ||
129  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
130  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow qv, qc, qrain
131  if (derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
132  derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
133  {
134  tmp_plot_names.push_back(derived_names[i]);
135  }
136  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
137  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
138  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow qv, qc
139  if (derived_names[i] != "qrain" &&
140  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
141  derived_names[i] != "qp" &&
142  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
143  {
144  tmp_plot_names.push_back(derived_names[i]);
145  }
146  } else
147  {
148  // For moisture_type SAM and Morrison we have all moist quantities
149  tmp_plot_names.push_back(derived_names[i]);
150  }
151  } // use_terrain?
152  } // hasElement
153  }
154 
155 #ifdef ERF_USE_WINDFARM
156  for (int i = 0; i < derived_names.size(); ++i) {
157  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
158  if(solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP) {
159  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0") {
160  tmp_plot_names.push_back(derived_names[i]);
161  }
162  }
163  if( solverChoice.windfarm_type == WindFarmType::SimpleAD or
164  solverChoice.windfarm_type == WindFarmType::GeneralAD ) {
165  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0" or derived_names[i] == "SMark1") {
166  tmp_plot_names.push_back(derived_names[i]);
167  }
168  }
169  }
170  }
171 #endif
172 
173 #ifdef ERF_USE_PARTICLES
174  const auto& particles_namelist( particleData.getNamesUnalloc() );
175  for (auto it = particles_namelist.cbegin(); it != particles_namelist.cend(); ++it) {
176  std::string tmp( (*it)+"_count" );
177  if (containerHasElement(plot_var_names, tmp) ) {
178  tmp_plot_names.push_back(tmp);
179  }
180  }
181 #endif
182 
183  plot_var_names = tmp_plot_names;
184 }
const amrex::Vector< std::string > derived_names
Definition: ERF.H:1105
const amrex::Vector< std::string > cons_names
Definition: ERF.H:1098
Here is the call graph for this function:

◆ setPlotVariables2D()

void ERF::setPlotVariables2D ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
188 {
189  ParmParse pp(pp_prefix);
190 
191  if (pp.contains(pp_plot_var_names.c_str()))
192  {
193  std::string nm;
194 
195  int nPltVars = pp.countval(pp_plot_var_names.c_str());
196 
197  for (int i = 0; i < nPltVars; i++)
198  {
199  pp.get(pp_plot_var_names.c_str(), nm, i);
200 
201  // Add the named variable to our list of plot variables
202  // if it is not already in the list
203  if (!containerHasElement(plot_var_names, nm)) {
204  plot_var_names.push_back(nm);
205  }
206  }
207  } else {
208  //
209  // The default is to add none of the variables to the list
210  //
211  plot_var_names.clear();
212  }
213 
214  // Get state variables in the same order as we define them,
215  // since they may be in any order in the input list
216  Vector<std::string> tmp_plot_names;
217 
218  // 2D plot variables
219  for (int i = 0; i < derived_names_2d.size(); ++i) {
220  if (containerHasElement(plot_var_names, derived_names_2d[i]) ) {
221  tmp_plot_names.push_back(derived_names_2d[i]);
222  }
223  }
224 
225  plot_var_names = tmp_plot_names;
226 }
const amrex::Vector< std::string > derived_names_2d
Definition: ERF.H:1146
Here is the call graph for this function:

◆ setRayleighRefFromSounding()

void ERF::setRayleighRefFromSounding ( bool  restarting)
private

Set Rayleigh mean profiles from input sounding.

Sets the Rayleigh Damping averaged quantities from an externally supplied input sounding data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
95 {
96  // If we are restarting then we haven't read the input_sounding file yet
97  // so we need to read it here
98  // TODO: should we store this information in the checkpoint file instead?
99  if (restarting) {
101  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
103  }
104  }
105 
106  const Real* z_inp_sound = input_sounding_data.z_inp_sound[0].dataPtr();
107  const Real* U_inp_sound = input_sounding_data.U_inp_sound[0].dataPtr();
108  const Real* V_inp_sound = input_sounding_data.V_inp_sound[0].dataPtr();
109  const Real* theta_inp_sound = input_sounding_data.theta_inp_sound[0].dataPtr();
110  const int inp_sound_size = input_sounding_data.size(0);
111 
112  int refine_fac{1};
113  for (int lev = 0; lev <= finest_level; lev++)
114  {
115  const int klo = geom[lev].Domain().smallEnd(2);
116  const int khi = geom[lev].Domain().bigEnd(2);
117  const int Nz = khi - klo + 1;
118 
119  Vector<Real> zcc(Nz);
120  Vector<Real> zlevels_sub(zlevels_stag[0].begin()+klo/refine_fac,
121  zlevels_stag[0].begin()+khi/refine_fac+2);
122  expand_and_interpolate_1d(zcc, zlevels_sub, refine_fac, true);
123 #if 0
124  amrex::AllPrint() << "lev="<<lev<<" : (refine_fac="<<refine_fac<<",klo="<<klo<<",khi="<<khi<<") ";
125  for (int k = 0; k < zlevels_sub.size(); k++) { amrex::AllPrint() << zlevels_sub[k] << " "; }
126  amrex::AllPrint() << " --> ";
127  for (int k = 0; k < Nz; k++) { amrex::AllPrint() << zcc[k] << " "; }
128  amrex::AllPrint() << std::endl;
129 #endif
130 
131  for (int k = 0; k < Nz; k++)
132  {
133  h_rayleigh_ptrs[lev][Rayleigh::ubar][k] = interpolate_1d(z_inp_sound, U_inp_sound, zcc[k], inp_sound_size);
134  h_rayleigh_ptrs[lev][Rayleigh::vbar][k] = interpolate_1d(z_inp_sound, V_inp_sound, zcc[k], inp_sound_size);
135  h_rayleigh_ptrs[lev][Rayleigh::wbar][k] = Real(0.0);
136  h_rayleigh_ptrs[lev][Rayleigh::thetabar][k] = interpolate_1d(z_inp_sound, theta_inp_sound, zcc[k], inp_sound_size);
137  }
138 
139  // Copy from host version to device version
140  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::ubar].begin(), h_rayleigh_ptrs[lev][Rayleigh::ubar].end(),
141  d_rayleigh_ptrs[lev][Rayleigh::ubar].begin());
142  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::vbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::vbar].end(),
143  d_rayleigh_ptrs[lev][Rayleigh::vbar].begin());
144  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::wbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::wbar].end(),
145  d_rayleigh_ptrs[lev][Rayleigh::wbar].begin());
146  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::thetabar].begin(), h_rayleigh_ptrs[lev][Rayleigh::thetabar].end(),
147  d_rayleigh_ptrs[lev][Rayleigh::thetabar].begin());
148 
149  refine_fac *= ref_ratio[lev][2];
150  }
151 }
AMREX_FORCE_INLINE void expand_and_interpolate_1d(amrex::Vector< amrex::Real > &znew, const amrex::Vector< amrex::Real > &zorig, int refine_fac, bool destag=false)
Definition: ERF_Interpolation_1D.H:85
amrex::Vector< amrex::Vector< amrex::Real > > theta_inp_sound
Definition: ERF_InputSoundingData.H:404
amrex::Vector< amrex::Vector< amrex::Real > > z_inp_sound
Definition: ERF_InputSoundingData.H:404
amrex::Vector< amrex::Vector< amrex::Real > > U_inp_sound
Definition: ERF_InputSoundingData.H:404
amrex::Vector< amrex::Vector< amrex::Real > > V_inp_sound
Definition: ERF_InputSoundingData.H:404
int size(int itime) const
Definition: ERF_InputSoundingData.H:379
Here is the call graph for this function:

◆ setRecordDataInfo()

void ERF::setRecordDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1511  {
1512  if (amrex::ParallelDescriptor::IOProcessor())
1513  {
1514  datalog[i] = std::make_unique<std::fstream>();
1515  datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1516  if (!datalog[i]->good()) {
1517  amrex::FileOpenFailed(filename);
1518  }
1519  }
1520  amrex::ParallelDescriptor::Barrier("ERF::setRecordDataInfo");
1521  }

◆ setRecordDerDataInfo()

void ERF::setRecordDerDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1524  {
1525  if (amrex::ParallelDescriptor::IOProcessor())
1526  {
1527  der_datalog[i] = std::make_unique<std::fstream>();
1528  der_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1529  if (!der_datalog[i]->good()) {
1530  amrex::FileOpenFailed(filename);
1531  }
1532  }
1533  amrex::ParallelDescriptor::Barrier("ERF::setRecordDerDataInfo");
1534  }

◆ setRecordEnergyDataInfo()

void ERF::setRecordEnergyDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1537  {
1538  if (amrex::ParallelDescriptor::IOProcessor())
1539  {
1540  tot_e_datalog[i] = std::make_unique<std::fstream>();
1541  tot_e_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1542  if (!tot_e_datalog[i]->good()) {
1543  amrex::FileOpenFailed(filename);
1544  }
1545  }
1546  amrex::ParallelDescriptor::Barrier("ERF::setRecordEnergyDataInfo");
1547  }

◆ setRecordSampleLineInfo()

void ERF::setRecordSampleLineInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1567  {
1568  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1569  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1570  {
1571  const amrex::Box& bx = mfi.validbox();
1572  if (bx.contains(cell)) {
1573  samplelinelog[i] = std::make_unique<std::fstream>();
1574  samplelinelog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1575  if (!samplelinelog[i]->good()) {
1576  amrex::FileOpenFailed(filename);
1577  }
1578  }
1579  }
1580  amrex::ParallelDescriptor::Barrier("ERF::setRecordSampleLineInfo");
1581  }

◆ setRecordSamplePointInfo()

void ERF::setRecordSamplePointInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1550  {
1551  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1552  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1553  {
1554  const amrex::Box& bx = mfi.validbox();
1555  if (bx.contains(cell)) {
1556  sampleptlog[i] = std::make_unique<std::fstream>();
1557  sampleptlog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1558  if (!sampleptlog[i]->good()) {
1559  amrex::FileOpenFailed(filename);
1560  }
1561  }
1562  }
1563  amrex::ParallelDescriptor::Barrier("ERF::setRecordSamplePointInfo");
1564  }

◆ setSpongeRefFromSounding()

void ERF::setSpongeRefFromSounding ( bool  restarting)
private

Set sponge mean profiles from input sounding.

Sets the sponge damping averaged quantities from an externally supplied input sponge data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
66 {
67  // If we are restarting then we haven't read the input_sponge file yet
68  // so we need to read it here
69  // TODO: should we store this information in the checkpoint file instead?
70  if (restarting) {
72  }
73 
74  const Real* z_inp_sponge = input_sponge_data.z_inp_sponge.dataPtr();
75  const Real* U_inp_sponge = input_sponge_data.U_inp_sponge.dataPtr();
76  const Real* V_inp_sponge = input_sponge_data.V_inp_sponge.dataPtr();
77  const int inp_sponge_size = input_sponge_data.size();
78 
79  for (int lev = 0; lev <= finest_level; lev++)
80  {
81  const int khi = geom[lev].Domain().bigEnd()[2];
82  Vector<Real> zcc(khi+1);
83 
84  if (z_phys_cc[lev]) {
85  // use_terrain=1
86  // calculate the damping strength based on the max height at each k
88  } else {
89  const auto *const prob_lo = geom[lev].ProbLo();
90  const auto *const dx = geom[lev].CellSize();
91  for (int k = 0; k <= khi; k++)
92  {
93  zcc[k] = prob_lo[2] + (k+0.5) * dx[2];
94  }
95  }
96 
97  for (int k = 0; k <= khi; k++)
98  {
99  h_sponge_ptrs[lev][Sponge::ubar_sponge][k] = interpolate_1d(z_inp_sponge, U_inp_sponge, zcc[k], inp_sponge_size);
100  h_sponge_ptrs[lev][Sponge::vbar_sponge][k] = interpolate_1d(z_inp_sponge, V_inp_sponge, zcc[k], inp_sponge_size);
101  }
102 
103  // Copy from host version to device version
104  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::ubar_sponge].begin(), h_sponge_ptrs[lev][Sponge::ubar_sponge].end(),
105  d_sponge_ptrs[lev][Sponge::ubar_sponge].begin());
106  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::vbar_sponge].begin(), h_sponge_ptrs[lev][Sponge::vbar_sponge].end(),
107  d_sponge_ptrs[lev][Sponge::vbar_sponge].begin());
108  }
109 }
AMREX_FORCE_INLINE void reduce_to_max_per_height(amrex::Vector< amrex::Real > &v, std::unique_ptr< amrex::MultiFab > &mf)
Definition: ERF_ParFunctions.H:8
amrex::Vector< amrex::Real > V_inp_sponge
Definition: ERF_InputSpongeData.H:111
amrex::Vector< amrex::Real > z_inp_sponge
Definition: ERF_InputSpongeData.H:111
amrex::Vector< amrex::Real > U_inp_sponge
Definition: ERF_InputSpongeData.H:111
int size() const
Definition: ERF_InputSpongeData.H:99
Here is the call graph for this function:

◆ setSubVolVariables()

void ERF::setSubVolVariables ( const std::string &  pp_subvol_var_names,
amrex::Vector< std::string > &  subvol_var_names 
)
private
11 {
12  ParmParse pp(pp_prefix);
13 
14  std::string nm;
15 
16  int nSubVolVars = pp.countval(pp_subvol_var_names.c_str());
17 
18  // We pre-populate the list with velocities, but allow these to be over-written
19  // by user input
20  if (nSubVolVars == 0)
21  {
22  subvol_var_names.push_back("x_velocity");
23  subvol_var_names.push_back("y_velocity");
24  subvol_var_names.push_back("z_velocity");
25 
26  } else {
27  for (int i = 0; i < nSubVolVars; i++)
28  {
29  pp.get(pp_subvol_var_names.c_str(), nm, i);
30 
31  // Add the named variable to our list of subvol variables
32  // if it is not already in the list
33  if (!containerHasElement(subvol_var_names, nm)) {
34  subvol_var_names.push_back(nm);
35  }
36  }
37  }
38 
39  // Get state variables in the same order as we define them,
40  // since they may be in any order in the input list
41  Vector<std::string> tmp_plot_names;
42 
43  for (int i = 0; i < cons_names.size(); ++i) {
44  if ( containerHasElement(subvol_var_names, cons_names[i]) ) {
45  if (solverChoice.moisture_type == MoistureType::None) {
46  if (cons_names[i] != "rhoQ1" && cons_names[i] != "rhoQ2" && cons_names[i] != "rhoQ3" &&
47  cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
48  {
49  tmp_plot_names.push_back(cons_names[i]);
50  }
51  } else if (solverChoice.moisture_type == MoistureType::Kessler) { // allow rhoQ1, rhoQ2, rhoQ3
52  if (cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
53  {
54  tmp_plot_names.push_back(cons_names[i]);
55  }
56  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
57  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
58  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow rhoQ1, rhoQ2
59  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ4" &&
60  cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
61  {
62  tmp_plot_names.push_back(cons_names[i]);
63  }
64  } else if ( (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
65  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow rhoQ1, rhoQ2, rhoQ4
66  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
67  {
68  tmp_plot_names.push_back(cons_names[i]);
69  }
70  } else
71  {
72  // For moisture_type SAM and Morrison we have all six variables
73  tmp_plot_names.push_back(cons_names[i]);
74  }
75  }
76  }
77 
78  // Check for velocity since it's not in cons_names
79  if (containerHasElement(subvol_var_names, "x_velocity")) {
80  tmp_plot_names.push_back("x_velocity");
81  }
82  if (containerHasElement(subvol_var_names, "y_velocity")) {
83  tmp_plot_names.push_back("y_velocity");
84  }
85  if (containerHasElement(subvol_var_names, "z_velocity")) {
86  tmp_plot_names.push_back("z_velocity");
87  }
88 
89  //
90  // If the model we are running doesn't have the variable listed in the inputs file,
91  // just ignore it rather than aborting
92  //
93  for (int i = 0; i < derived_subvol_names.size(); ++i) {
94  if ( containerHasElement(subvol_var_names, derived_names[i]) ) {
95  bool ok_to_add = ( (solverChoice.terrain_type == TerrainType::ImmersedForcing) ||
96  (derived_names[i] != "terrain_IB_mask") );
97  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
98  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
99  (derived_names[i] != "detJ") );
100  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
101  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
102  (derived_names[i] != "z_phys") );
103  if (ok_to_add)
104  {
105  if (solverChoice.moisture_type == MoistureType::None) { // no moist quantities allowed
106  if (derived_names[i] != "qv" && derived_names[i] != "qc" && derived_names[i] != "qrain" &&
107  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
108  derived_names[i] != "qt" && derived_names[i] != "qn" && derived_names[i] != "qp" &&
109  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
110  {
111  tmp_plot_names.push_back(derived_names[i]);
112  }
113  } else if ( (solverChoice.moisture_type == MoistureType::Kessler ) ||
114  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
115  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow qv, qc, qrain
116  if (derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
117  derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
118  {
119  tmp_plot_names.push_back(derived_names[i]);
120  }
121  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
122  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
123  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow qv, qc
124  if (derived_names[i] != "qrain" &&
125  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
126  derived_names[i] != "qp" &&
127  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
128  {
129  tmp_plot_names.push_back(derived_names[i]);
130  }
131  } else
132  {
133  // For moisture_type SAM and Morrison we have all moist quantities
134  tmp_plot_names.push_back(derived_names[i]);
135  }
136  } // use_terrain?
137  } // hasElement
138  }
139 
140  subvol_var_names = tmp_plot_names;
141 }
const amrex::Vector< std::string > derived_subvol_names
Definition: ERF.H:1156
Here is the call graph for this function:

◆ solve_with_gmres()

void ERF::solve_with_gmres ( int  lev,
const amrex::Box &  subdomain,
amrex::MultiFab &  rhs,
amrex::MultiFab &  p,
amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &  fluxes,
amrex::MultiFab &  ax_sub,
amrex::MultiFab &  ay_sub,
amrex::MultiFab &  az_sub,
amrex::MultiFab &  ,
amrex::MultiFab &  znd_sub 
)

Solve the Poisson equation using FFT-preconditioned GMRES

16 {
17 #ifdef ERF_USE_FFT
18  BL_PROFILE("ERF::solve_with_gmres()");
19 
22 
23  auto const dom_lo = lbound(Geom(lev).Domain());
24  auto const dom_hi = ubound(Geom(lev).Domain());
25 
26  auto const sub_lo = lbound(subdomain);
27  auto const sub_hi = ubound(subdomain);
28 
29  auto dx = Geom(lev).CellSizeArray();
30 
31  Geometry my_geom;
32 
33  Array<int,AMREX_SPACEDIM> is_per; is_per[0] = 0; is_per[1] = 0; is_per[2] = 0;
34  if (Geom(lev).isPeriodic(0) && sub_lo.x == dom_lo.x && sub_hi.x == dom_hi.x) { is_per[0] = 1;}
35  if (Geom(lev).isPeriodic(1) && sub_lo.y == dom_lo.y && sub_hi.y == dom_hi.y) { is_per[1] = 1;}
36 
37  int coord_sys = 0;
38 
39  // If subdomain == domain then we pass Geom(lev) to the FFT solver
40  if (subdomain == Geom(lev).Domain()) {
41  my_geom.define(Geom(lev).Domain(), Geom(lev).ProbDomain(), coord_sys, is_per);
42  } else {
43  // else we create a new geometry based only on the subdomain
44  // The information in my_geom used by the FFT routines is:
45  // 1) my_geom.Domain()
46  // 2) my_geom.CellSize()
47  // 3) my_geom.isAllPeriodic() / my_geom.periodicity()
48  RealBox rb( sub_lo.x *dx[0], sub_lo.y *dx[1], sub_lo.z *dx[2],
49  (sub_hi.x+1)*dx[0], (sub_hi.y+1)*dx[1], (sub_hi.z+1)*dx[2]);
50  my_geom.define(subdomain, rb, coord_sys, is_per);
51  }
52 
53  amrex::GMRES<MultiFab, TerrainPoisson> gmsolver;
54 
55  TerrainPoisson tp(my_geom, rhs.boxArray(), rhs.DistributionMap(), domain_bc_type,
56  stretched_dz_d[lev], ax_sub, ay_sub, az_sub, dJ_sub, &znd_sub,
58 
59  gmsolver.define(tp);
60 
61  gmsolver.setVerbose(mg_verbose);
62 
63  gmsolver.setRestartLength(50);
64 
65  tp.usePrecond(true);
66 
67  gmsolver.solve(phi, rhs, reltol, abstol);
68 
69  tp.getFluxes(phi, fluxes);
70 
71  for (MFIter mfi(phi); mfi.isValid(); ++mfi)
72  {
73  Box xbx = mfi.nodaltilebox(0);
74  Box ybx = mfi.nodaltilebox(1);
75  const Array4<Real >& fx_ar = fluxes[0].array(mfi);
76  const Array4<Real >& fy_ar = fluxes[1].array(mfi);
77  const Array4<Real const>& mf_ux = mapfac[lev][MapFacType::u_x]->const_array(mfi);
78  const Array4<Real const>& mf_vy = mapfac[lev][MapFacType::v_y]->const_array(mfi);
79  ParallelFor(xbx,ybx,
80  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
81  {
82  fx_ar(i,j,k) *= mf_ux(i,j,0);
83  },
84  [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
85  {
86  fy_ar(i,j,k) *= mf_vy(i,j,0);
87  });
88  } // mfi
89 #else
90  amrex::ignore_unused(lev, rhs, phi, fluxes, ax_sub, ay_sub, az_sub, dJ_sub, znd_sub);
91 #endif
92 
93  // ****************************************************************************
94  // Impose bc's on pprime
95  // ****************************************************************************
96  ImposeBCsOnPhi(lev, phi, subdomain);
97 }
void ImposeBCsOnPhi(int lev, amrex::MultiFab &phi, const amrex::Box &subdomain)
Definition: ERF_ImposeBCsOnPhi.cpp:12

◆ sum_derived_quantities()

void ERF::sum_derived_quantities ( amrex::Real  time)
178 {
179  if (verbose <= 0 || NumDerDataLogs() <= 0) return;
180 
181  int lev = 0;
182 
183  AMREX_ALWAYS_ASSERT(lev == 0);
184 
185  auto& mfx0 = *mapfac[0][MapFacType::m_x];
186  auto& mfy0 = *mapfac[0][MapFacType::m_x];
187  auto& dJ0 = *detJ_cc[0];
188 
189  // ************************************************************************
190  // WARNING: we are not filling ghost cells other than periodic outside the domain
191  // ************************************************************************
192 
193  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
194  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
195 
196  // Average all three components of velocity (on faces) to the cell center
197  average_face_to_cellcenter(mf_cc_vel,0,
198  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
199  &vars_new[lev][Vars::yvel],
200  &vars_new[lev][Vars::zvel]});
201  mf_cc_vel.FillBoundary(geom[lev].periodicity());
202 
203  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
204  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
205  }
206 
207  MultiFab r_wted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
208  MultiFab unwted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
209  MultiFab enstrophysq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
210  MultiFab theta_mf(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
211 
212 #ifdef _OPENMP
213 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
214 #endif
215  for (MFIter mfi(unwted_magvelsq, TilingIfNotGPU()); mfi.isValid(); ++mfi)
216  {
217  const Box& bx = mfi.tilebox();
218  auto& src_fab = mf_cc_vel[mfi];
219 
220  auto& dest1_fab = unwted_magvelsq[mfi];
221  derived::erf_dermagvelsq(bx, dest1_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
222 
223  auto& dest2_fab = enstrophysq[mfi];
224  derived::erf_derenstrophysq(bx, dest2_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
225  }
226 
227  // Copy the MF holding 1/2(u^2 + v^2 + w^2) into the MF that will hold 1/2 rho (u^2 + v^2 + w^2)d
228  MultiFab::Copy(r_wted_magvelsq, unwted_magvelsq, 0, 0, 1, 0);
229 
230  // Multiply the MF holding 1/2(u^2 + v^2 + w^2) by rho to get 1/2 rho (u^2 + v^2 + w^2)
231  MultiFab::Multiply(r_wted_magvelsq, vars_new[lev][Vars::cons], 0, 0, 1, 0);
232 
233  // Copy the MF holding (rho theta) into "theta_mf"
234  MultiFab::Copy(theta_mf, vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, 0);
235 
236  // Divide (rho theta) by rho to get theta in the MF "theta_mf"
237  MultiFab::Divide(theta_mf, vars_new[lev][Vars::cons], Rho_comp, 0, 1, 0);
238 
239  Real unwted_avg = volWgtSumMF(lev, unwted_magvelsq, 0, dJ0, mfx0, mfy0, false);
240  Real r_wted_avg = volWgtSumMF(lev, r_wted_magvelsq, 0, dJ0, mfx0, mfy0, false);
241  Real enstrsq_avg = volWgtSumMF(lev, enstrophysq, 0, dJ0, mfx0, mfy0, false);
242  Real theta_avg = volWgtSumMF(lev, theta_mf, 0, dJ0, mfx0, mfy0, false);
243 
244  // Get volume including terrain (consistent with volWgtSumMF routine)
245  MultiFab volume(grids[lev], dmap[lev], 1, 0);
246  auto const& dx = geom[lev].CellSizeArray();
247  Real cell_vol = dx[0]*dx[1]*dx[2];
248  volume.setVal(cell_vol);
249  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
250  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
251  }
252 #ifdef _OPENMP
253 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
254 #endif
255  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
256  {
257  const Box& tbx = mfi.tilebox();
258  auto dst = volume.array(mfi);
259  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
260  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
261  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
262  {
263  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
264  });
265  }
266  Real vol = volume.sum();
267 
268  unwted_avg /= vol;
269  r_wted_avg /= vol;
270  enstrsq_avg /= vol;
271  theta_avg /= vol;
272 
273  const int nfoo = 4;
274  Real foo[nfoo] = {unwted_avg,r_wted_avg,enstrsq_avg,theta_avg};
275 #ifdef AMREX_LAZY
276  Lazy::QueueReduction([=]() mutable {
277 #endif
278  ParallelDescriptor::ReduceRealSum(
279  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
280 
281  if (ParallelDescriptor::IOProcessor()) {
282  int i = 0;
283  unwted_avg = foo[i++];
284  r_wted_avg = foo[i++];
285  enstrsq_avg = foo[i++];
286  theta_avg = foo[i++];
287 
288  std::ostream& data_log_der = DerDataLog(0);
289 
290  if (time == 0.0) {
291  data_log_der << std::setw(datwidth) << " time";
292  data_log_der << std::setw(datwidth) << " ke_den";
293  data_log_der << std::setw(datwidth) << " velsq";
294  data_log_der << std::setw(datwidth) << " enstrophy";
295  data_log_der << std::setw(datwidth) << " int_energy";
296  data_log_der << std::endl;
297  }
298  data_log_der << std::setw(datwidth) << std::setprecision(timeprecision) << time;
299  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << unwted_avg;
300  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << r_wted_avg;
301  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << enstrsq_avg;
302  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << theta_avg;
303  data_log_der << std::endl;
304 
305  } // if IOProcessor
306 #ifdef AMREX_LAZY
307  }
308 #endif
309 }
AMREX_FORCE_INLINE std::ostream & DerDataLog(int i)
Definition: ERF.H:1418
AMREX_FORCE_INLINE int NumDerDataLogs() noexcept
Definition: ERF.H:1432
void erf_dermagvelsq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:346
void erf_derenstrophysq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:284
Here is the call graph for this function:

◆ sum_energy_quantities()

void ERF::sum_energy_quantities ( amrex::Real  time)
313 {
314  if ( (verbose <= 0) || (tot_e_datalog.size() < 1) ) { return; }
315 
316  int lev = 0;
317 
318  auto& mfx0 = *mapfac[0][MapFacType::m_x];
319  auto& mfy0 = *mapfac[0][MapFacType::m_x];
320  auto& dJ0 = *detJ_cc[0];
321 
322  AMREX_ALWAYS_ASSERT(lev == 0);
323 
324  bool local = true;
325 
326  // ************************************************************************
327  // WARNING: we are not filling ghost cells other than periodic outside the domain
328  // ************************************************************************
329 
330  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
331  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
332 
333  // Average all three components of velocity (on faces) to the cell center
334  average_face_to_cellcenter(mf_cc_vel,0,
335  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
336  &vars_new[lev][Vars::yvel],
337  &vars_new[lev][Vars::zvel]});
338  mf_cc_vel.FillBoundary(geom[lev].periodicity());
339 
340  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
341  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
342  }
343 
344  MultiFab tot_mass (grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
345  MultiFab tot_energy(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
346 
347  auto const& dx = geom[lev].CellSizeArray();
348  bool is_moist = (solverChoice.moisture_type != MoistureType::None);
349 
350 #ifdef _OPENMP
351 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
352 #endif
353  for (MFIter mfi(tot_mass, TilingIfNotGPU()); mfi.isValid(); ++mfi)
354  {
355  const Box& bx = mfi.tilebox();
356 
357  const Array4<Real>& cc_vel_arr = mf_cc_vel.array(mfi);
358  const Array4<Real>& tot_mass_arr = tot_mass.array(mfi);
359  const Array4<Real>& tot_energy_arr = tot_energy.array(mfi);
360  const Array4<const Real>& cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
361  const Array4<const Real>& z_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) :
362  Array4<const Real>{};
363  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
364  {
365  Real Qv = (is_moist) ? cons_arr(i,j,k,RhoQ1_comp) : 0.0;
366  Real Qc = (is_moist) ? cons_arr(i,j,k,RhoQ2_comp) : 0.0;
367  Real Qt = Qv + Qc;
368  Real Rhod = cons_arr(i,j,k,Rho_comp);
369  Real Rhot = Rhod * (1.0 + Qt);
370  Real Temp = getTgivenRandRTh(Rhod, cons_arr(i,j,k,RhoTheta_comp), Qv);
371  Real TKE = 0.5 * ( cc_vel_arr(i,j,k,0)*cc_vel_arr(i,j,k,0)
372  + cc_vel_arr(i,j,k,1)*cc_vel_arr(i,j,k,1)
373  + cc_vel_arr(i,j,k,2)*cc_vel_arr(i,j,k,2) );
374  Real zval = (z_arr) ? z_arr(i,j,k) : Real(k)*dx[2];
375 
376  Real Cv = Cp_d - R_d;
377  Real Cvv = Cp_v - R_v;
378  Real Cpv = Cp_v;
379 
380  tot_mass_arr(i,j,k) = Rhot;
381  tot_energy_arr(i,j,k) = Rhod * ( (Cv + Cvv*Qv + Cpv*Qc)*Temp - L_v*Qc
382  + (1.0 + Qt)*TKE + (1.0 + Qt)*CONST_GRAV*zval );
383 
384  });
385 
386  }
387 
388  Real tot_mass_avg = volWgtSumMF(lev, tot_mass , 0, dJ0, mfx0, mfy0, false, local);
389  Real tot_energy_avg = volWgtSumMF(lev, tot_energy, 0, dJ0, mfx0, mfy0, false, local);
390 
391  // Get volume including terrain (consistent with volWgtSumMF routine)
392  MultiFab volume(grids[lev], dmap[lev], 1, 0);
393  Real cell_vol = dx[0]*dx[1]*dx[2];
394  volume.setVal(cell_vol);
395  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
396  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
397  }
398 #ifdef _OPENMP
399 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
400 #endif
401  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
402  {
403  const Box& tbx = mfi.tilebox();
404  auto dst = volume.array(mfi);
405  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
406  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
407  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
408  {
409  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
410  });
411  }
412  Real vol = volume.sum();
413 
414  // Divide by the volume
415  tot_mass_avg /= vol;
416  tot_energy_avg /= vol;
417 
418  const int nfoo = 2;
419  Real foo[nfoo] = {tot_mass_avg,tot_energy_avg};
420 #ifdef AMREX_LAZY
421  Lazy::QueueReduction([=]() mutable {
422 #endif
423  ParallelDescriptor::ReduceRealSum(
424  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
425 
426  if (ParallelDescriptor::IOProcessor()) {
427  int i = 0;
428  tot_mass_avg = foo[i++];
429  tot_energy_avg = foo[i++];
430 
431  std::ostream& data_log_energy = *tot_e_datalog[0];
432 
433  if (time == 0.0) {
434  data_log_energy << std::setw(datwidth) << " time";
435  data_log_energy << std::setw(datwidth) << " tot_mass";
436  data_log_energy << std::setw(datwidth) << " tot_energy";
437  data_log_energy << std::endl;
438  }
439  data_log_energy << std::setw(datwidth) << std::setprecision(timeprecision) << time;
440  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_mass_avg;
441  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_energy_avg;
442  data_log_energy << std::endl;
443 
444  } // if IOProcessor
445 #ifdef AMREX_LAZY
446  }
447 #endif
448 }
constexpr amrex::Real R_v
Definition: ERF_Constants.H:11
constexpr amrex::Real Cp_d
Definition: ERF_Constants.H:12
constexpr amrex::Real CONST_GRAV
Definition: ERF_Constants.H:21
constexpr amrex::Real Cp_v
Definition: ERF_Constants.H:13
constexpr amrex::Real R_d
Definition: ERF_Constants.H:10
constexpr amrex::Real L_v
Definition: ERF_Constants.H:16
Here is the call graph for this function:

◆ sum_integrated_quantities()

void ERF::sum_integrated_quantities ( amrex::Real  time)

Computes the integrated quantities on the grid such as the total scalar and total mass quantities. Prints and writes to output file.

Parameters
timeCurrent time
16 {
17  BL_PROFILE("ERF::sum_integrated_quantities()");
18 
19  if (verbose <= 0)
20  return;
21 
22  // Single level sum
23  Real mass_sl;
24 
25  // Multilevel sums
26  Real mass_ml = 0.0;
27  Real rhth_ml = 0.0;
28  Real scal_ml = 0.0;
29  Real mois_ml = 0.0;
30 
31  bool local = true;
32 
33  auto& mfx0 = *mapfac[0][MapFacType::m_x];
34  auto& mfy0 = *mapfac[0][MapFacType::m_x];
35  auto& dJ0 = *detJ_cc[0];
36 
37  mass_sl = volWgtSumMF(0,vars_new[0][Vars::cons],Rho_comp,dJ0,mfx0,mfy0,false,local);
38 
39  for (int lev = 0; lev <= finest_level; lev++) {
40  auto& mfx = *mapfac[lev][MapFacType::m_x];
41  auto& mfy = *mapfac[lev][MapFacType::m_x];
42  auto& dJ = *detJ_cc[lev];
43  mass_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],Rho_comp,dJ,mfx,mfy,true);
44  }
45 
46  Real rhth_sl = volWgtSumMF(0,vars_new[0][Vars::cons], RhoTheta_comp,dJ0,mfx0,mfy0,false);
47  Real scal_sl = volWgtSumMF(0,vars_new[0][Vars::cons],RhoScalar_comp,dJ0,mfx0,mfy0,false);
48  Real mois_sl = 0.0;
49  if (solverChoice.moisture_type != MoistureType::None) {
50  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
51  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
52  mois_sl += volWgtSumMF(0,vars_new[0][Vars::cons],RhoQ1_comp+qoff,dJ0,mfx0,mfy0,false);
53  }
54  }
55 
56  for (int lev = 0; lev <= finest_level; lev++) {
57  auto& mfx = *mapfac[lev][MapFacType::m_x];
58  auto& mfy = *mapfac[lev][MapFacType::m_x];
59  auto& dJ = *detJ_cc[lev];
60  rhth_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons], RhoTheta_comp,dJ,mfx,mfy,true);
61  scal_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoScalar_comp,dJ,mfx,mfy,true);
62  if (solverChoice.moisture_type != MoistureType::None) {
63  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
64  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
65  mois_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoQ1_comp+qoff,dJ,mfx,mfy,false);
66  }
67  }
68  }
69 
70  Gpu::HostVector<Real> h_avg_ustar; h_avg_ustar.resize(1);
71  Gpu::HostVector<Real> h_avg_tstar; h_avg_tstar.resize(1);
72  Gpu::HostVector<Real> h_avg_olen; h_avg_olen.resize(1);
73  if ((m_SurfaceLayer != nullptr) && (NumDataLogs() > 0)) {
74  Box domain = geom[0].Domain();
75  int zdir = 2;
76  h_avg_ustar = sumToLine(*m_SurfaceLayer->get_u_star(0),0,1,domain,zdir);
77  h_avg_tstar = sumToLine(*m_SurfaceLayer->get_t_star(0),0,1,domain,zdir);
78  h_avg_olen = sumToLine(*m_SurfaceLayer->get_olen(0) ,0,1,domain,zdir);
79 
80  // Divide by the total number of cells we are averaging over
81  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
82  h_avg_ustar[0] /= area_z;
83  h_avg_tstar[0] /= area_z;
84  h_avg_olen[0] /= area_z;
85 
86  } else {
87  h_avg_ustar[0] = 0.;
88  h_avg_tstar[0] = 0.;
89  h_avg_olen[0] = 0.;
90  }
91 
92  const int nfoo = 8;
93  Real foo[nfoo] = {mass_sl,rhth_sl,scal_sl,mois_sl,mass_ml,rhth_ml,scal_ml,mois_ml};
94 #ifdef AMREX_LAZY
95  Lazy::QueueReduction([=]() mutable {
96 #endif
97  ParallelDescriptor::ReduceRealSum(
98  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
99 
100  if (ParallelDescriptor::IOProcessor()) {
101  int i = 0;
102  mass_sl = foo[i++];
103  rhth_sl = foo[i++];
104  scal_sl = foo[i++];
105  mois_sl = foo[i++];
106  mass_ml = foo[i++];
107  rhth_ml = foo[i++];
108  scal_ml = foo[i++];
109  mois_ml = foo[i++];
110 
111  Print() << '\n';
112  Print() << "TIME= " << std::setw(datwidth) << std::setprecision(timeprecision) << std::left << time << '\n';
113  if (finest_level == 0) {
114 #if 1
115  Print() << " MASS = " << mass_sl << '\n';
116 #else
117  Print() << " PERT MASS = " << mass_sl << '\n';
118 #endif
119  Print() << " RHO THETA = " << rhth_sl << '\n';
120  Print() << " RHO SCALAR = " << scal_sl << '\n';
121  Print() << " RHO QTOTAL = " << mois_sl << '\n';
122  } else {
123 #if 1
124  Print() << " MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
125 #else
126  Print() << " PERT MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
127 #endif
128  Print() << " RHO THETA SL/ML = " << rhth_sl << " " << rhth_ml << '\n';
129  Print() << " RHO SCALAR SL/ML = " << scal_sl << " " << scal_ml << '\n';
130  Print() << " RHO QTOTAL SL/ML = " << mois_sl << " " << mois_ml << '\n';
131  }
132 
133  // The first data log only holds scalars
134  if (NumDataLogs() > 0)
135  {
136  int n_d = 0;
137  std::ostream& data_log1 = DataLog(n_d);
138  if (data_log1.good()) {
139  if (time == 0.0) {
140  data_log1 << std::setw(datwidth) << " time";
141  data_log1 << std::setw(datwidth) << " u_star";
142  data_log1 << std::setw(datwidth) << " t_star";
143  data_log1 << std::setw(datwidth) << " olen";
144  data_log1 << std::endl;
145  } // time = 0
146 
147  // Write the quantities at this time
148  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time;
149  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_ustar[0];
150  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_tstar[0];
151  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_olen[0];
152  data_log1 << std::endl;
153  } // if good
154  } // loop over i
155  } // if IOProcessor
156 #ifdef AMREX_LAZY
157  });
158 #endif
159 
160  // This is just an alias for convenience
161  int lev = 0;
162  if (NumSamplePointLogs() > 0 && NumSamplePoints() > 0) {
163  for (int i = 0; i < NumSamplePoints(); ++i)
164  {
165  sample_points(lev, time, SamplePoint(i), vars_new[lev][Vars::cons]);
166  }
167  }
168  if (NumSampleLineLogs() > 0 && NumSampleLines() > 0) {
169  for (int i = 0; i < NumSampleLines(); ++i)
170  {
171  sample_lines(lev, time, SampleLine(i), vars_new[lev][Vars::cons]);
172  }
173  }
174 }
AMREX_FORCE_INLINE int NumSampleLineLogs() noexcept
Definition: ERF.H:1461
AMREX_FORCE_INLINE int NumSamplePointLogs() noexcept
Definition: ERF.H:1447
amrex::IntVect & SampleLine(int i)
Definition: ERF.H:1480
AMREX_FORCE_INLINE int NumSamplePoints() noexcept
Definition: ERF.H:1474
AMREX_FORCE_INLINE int NumSampleLines() noexcept
Definition: ERF.H:1487
amrex::IntVect & SamplePoint(int i)
Definition: ERF.H:1467
void sample_points(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:527
AMREX_FORCE_INLINE std::ostream & DataLog(int i)
Definition: ERF.H:1411
AMREX_FORCE_INLINE int NumDataLogs() noexcept
Definition: ERF.H:1425
void sample_lines(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:563

◆ timeStep()

void ERF::timeStep ( int  lev,
amrex::Real  time,
int  iteration 
)
private

Function that coordinates the evolution across levels – this calls Advance to do the actual advance at this level, then recursively calls itself at finer levels

Parameters
[in]levlevel of refinement (coarsest level is 0)
[in]timestart time for time advance
[in]iterationtime step counter
18 {
19  //
20  // We need to FillPatch the coarse level before assessing whether to regrid
21  // We have not done the swap yet so we fill the "new" which will become the "old"
22  //
23  MultiFab& S_new = vars_new[lev][Vars::cons];
24  MultiFab& U_new = vars_new[lev][Vars::xvel];
25  MultiFab& V_new = vars_new[lev][Vars::yvel];
26  MultiFab& W_new = vars_new[lev][Vars::zvel];
27 
28 #ifdef ERF_USE_NETCDF
29  //
30  // Since we now only read in a subset of the time slices in wrfbdy and
31  // wrflowinp, we need to check whether it's time to read in more.
32  //
33  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
34  if (solverChoice.use_real_bcs && (lev==0)) {
35  Real dT = bdy_time_interval;
36 
37  int n_time_old = static_cast<int>( (time ) / dT);
38  int n_time_new = static_cast<int>( (time+dt[lev]) / dT);
39 
40  int ntimes = bdy_data_xlo.size();
41  for (int itime = 0; itime < ntimes; itime++)
42  {
43  //if (bdy_data_xlo[itime].size() > 0) {
44  // amrex::Print() << "HAVE DATA AT TIME " << itime << std::endl;
45  //} else {
46  // amrex::Print() << " NO DATA AT TIME " << itime << std::endl;
47  //}
48 
49  bool clear_itime = (itime < n_time_old);
50 
51  if (clear_itime && bdy_data_xlo[itime].size() > 0) {
52  bdy_data_xlo[itime].clear();
53  bdy_data_xhi[itime].clear();
54  bdy_data_ylo[itime].clear();
55  bdy_data_yhi[itime].clear();
56  //amrex::Print() << "CLEAR BDY DATA AT TIME " << itime << std::endl;
57  }
58 
59  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
60  //if (need_itime) amrex::Print() << "NEED BDY DATA AT TIME " << itime << std::endl;
61 
62  if (bdy_data_xlo[itime].size() == 0 && need_itime) {
63  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
64  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
65  real_width);
66 
67  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
68  *mf_MUB, *mf_C1H, *mf_C2H,
70  geom[lev], use_moist);
71  }
72  } // itime
73  } // use_real_bcs && lev == 0
74 
75  if (!nc_low_file.empty() && (lev==0)) {
76  Real dT = low_time_interval;
77 
78  int n_time_old = static_cast<int>( (time ) / dT);
79  int n_time_new = static_cast<int>( (time+dt[lev]) / dT);
80 
81  int ntimes = bdy_data_xlo.size();
82  for (int itime = 0; itime < ntimes; itime++)
83  {
84  bool clear_itime = (itime < n_time_old);
85 
86  if (clear_itime && low_data_zlo[itime].size() > 0) {
87  low_data_zlo[itime].clear();
88  //amrex::Print() << "CLEAR LOW DATA AT TIME " << itime << std::endl;
89  }
90 
91  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
92  //if (need_itime) amrex::Print() << "NEED LOW DATA AT TIME " << itime << std::endl;
93 
94  if (low_data_zlo[itime].size() == 0 && need_itime) {
95  read_from_wrflow(itime, nc_low_file, geom[lev].Domain(), low_data_zlo);
96 
97  update_sst_tsk(itime, geom[lev], ba2d[lev],
98  sst_lev[lev], tsk_lev[lev],
99  m_SurfaceLayer, low_data_zlo,
100  S_new, *mf_PSFC[lev],
101  solverChoice.rdOcp, lmask_lev[lev][0], use_moist);
102  }
103  } // itime
104  } // have nc_low_file && lev == 0
105 #endif
106 
107  //
108  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
109  //
110  if (lev == 0) {
111  FillPatchCrseLevel(lev, time, {&S_new, &U_new, &V_new, &W_new});
112  } else if (lev < finest_level) {
113  FillPatchFineLevel(lev, time, {&S_new, &U_new, &V_new, &W_new},
114  {&S_new, &rU_new[lev], &rV_new[lev], &rW_new[lev]},
115  base_state[lev], base_state[lev]);
116  }
117 
118  if (regrid_int > 0) // We may need to regrid
119  {
120  // help keep track of whether a level was already regridded
121  // from a coarser level call to regrid
122  static Vector<int> last_regrid_step(max_level+1, 0);
123 
124  // regrid changes level "lev+1" so we don't regrid on max_level
125  // also make sure we don't regrid fine levels again if
126  // it was taken care of during a coarser regrid
127  if (lev < max_level)
128  {
129  if ( (istep[lev] % regrid_int == 0) && (istep[lev] > last_regrid_step[lev]) )
130  {
131  // regrid could add newly refine levels (if finest_level < max_level)
132  // so we save the previous finest level index
133  int old_finest = finest_level;
134 
135  regrid(lev, time);
136 
137 #ifdef ERF_USE_PARTICLES
138  if (finest_level != old_finest) {
139  particleData.Redistribute();
140  }
141 #endif
142 
143  // mark that we have regridded this level already
144  for (int k = lev; k <= finest_level; ++k) {
145  last_regrid_step[k] = istep[k];
146  }
147 
148  // if there are newly created levels, set the time step
149  for (int k = old_finest+1; k <= finest_level; ++k) {
150  dt[k] = dt[k-1] / static_cast<Real>(nsubsteps[k]);
151  }
152  } // if
153  } // lev
154  }
155 
156  // Update what we call "old" and "new" time
157  t_old[lev] = t_new[lev];
158  t_new[lev] += dt[lev];
159 
160  if (Verbose()) {
161  amrex::Print() << "[Level " << lev << " step " << istep[lev]+1 << "] ";
162  amrex::Print() << std::setprecision(timeprecision)
163  << "ADVANCE from elapsed time = " << t_old[lev] << " to " << t_new[lev]
164  << " with dt = " << dt[lev] << std::endl;
165  }
166 
167 #ifdef ERF_USE_WW3_COUPLING
168  amrex::Print() << " About to call send_to_ww3 from ERF_Timestep" << std::endl;
169  send_to_ww3(lev);
170  amrex::Print() << " About to call read_waves from ERF_Timestep" << std::endl;
171  read_waves(lev);
172  //send_to_ww3(lev);
173  //read_waves(lev);
174  //send_to_ww3(lev);
175 #endif
176 
177  // Advance a single level for a single time step
178  Advance(lev, time, dt[lev], istep[lev], nsubsteps[lev]);
179 
180  ++istep[lev];
181 
182  if (Verbose()) {
183  amrex::Print() << "[Level " << lev << " step " << istep[lev] << "] ";
184  amrex::Print() << "Advanced " << CountCells(lev) << " cells" << std::endl;
185  }
186 
187  if (lev < finest_level)
188  {
189  // recursive call for next-finer level
190  for (int i = 1; i <= nsubsteps[lev+1]; ++i)
191  {
192  Real strt_time_for_fine = time + (i-1)*dt[lev+1];
193  timeStep(lev+1, strt_time_for_fine, i);
194  }
195  }
196 
197  if (verbose && lev == 0 && solverChoice.moisture_type != MoistureType::None) {
198  amrex::Print() << "Cloud fraction " << time << " " << cloud_fraction(time) << std::endl;
199  }
200 }
amrex::Real cloud_fraction(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:451
void Advance(int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
Definition: ERF_Advance.cpp:20

◆ turbPert_amplitude()

void ERF::turbPert_amplitude ( const int  lev)
private
33 {
34  // Accessing data
35  auto& lev_new = vars_new[lev];
36 
37  // Creating local data
38  int ncons = lev_new[Vars::cons].nComp();
39  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
40 
41  // Defining BoxArray type
42  auto m_ixtype = cons_data.boxArray().ixType();
43 
44 #ifdef _OPENMP
45 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
46 #endif
47  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi) {
48  const Box &bx = mfi.validbox();
49  const auto &cons_pert_arr = cons_data.array(mfi); // Address of perturbation array
50  const amrex::Array4<const amrex::Real> &pert_cell = turbPert.pb_cell[lev].array(mfi); // per-cell perturbation stored in structure
51 
52  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cons_pert_arr, pert_cell);
53  } // mfi
54 }
Here is the call graph for this function:

◆ turbPert_update()

void ERF::turbPert_update ( const int  lev,
const amrex::Real  dt 
)
private
13 {
14  // Accessing data
15  auto& lev_new = vars_new[lev];
16 
17  // Create aliases to state data to pass to calc_tpi_update
18  int ncons = lev_new[Vars::cons].nComp();
19  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
20  MultiFab xvel_data(lev_new[Vars::xvel], make_alias, 0, 1);
21  MultiFab yvel_data(lev_new[Vars::yvel], make_alias, 0, 1);
22 
23  // Computing perturbation update time
24  turbPert.calc_tpi_update(lev, local_dt, xvel_data, yvel_data, cons_data);
25 
26  Print() << "Successfully initialized turbulent perturbation update time and amplitude with type: "<< turbPert.pt_type <<"\n";
27 }
int pt_type
Definition: ERF_TurbPertStruct.H:631

◆ update_diffusive_arrays()

void ERF::update_diffusive_arrays ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
private
517 {
518  // ********************************************************************************************
519  // Diffusive terms
520  // ********************************************************************************************
521  bool l_use_terrain = (SolverChoice::terrain_type != TerrainType::None);
522  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
523  bool l_use_diff = ( (solverChoice.diffChoice.molec_diff_type != MolecDiffType::None) ||
524  l_use_kturb );
525  bool l_need_SmnSmn = solverChoice.turbChoice[lev].use_keqn;
526  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
527  bool l_rotate = ( solverChoice.use_rotate_surface_flux );
528 
529  bool l_implicit_diff = (solverChoice.vert_implicit_fac[0] > 0 ||
532 
533  BoxArray ba12 = convert(ba, IntVect(1,1,0));
534  BoxArray ba13 = convert(ba, IntVect(1,0,1));
535  BoxArray ba23 = convert(ba, IntVect(0,1,1));
536 
537  Tau[lev].resize(9);
538  Tau_corr[lev].resize(3);
539 
540  if (l_use_diff) {
541  //
542  // NOTE: We require ghost cells in the vertical when allowing grids that don't
543  // cover the entire vertical extent of the domain at this level
544  //
545  for (int i = 0; i < 3; i++) {
546  Tau[lev][i] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
547  }
548  Tau[lev][TauType::tau12] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
549  Tau[lev][TauType::tau13] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
550  Tau[lev][TauType::tau23] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
551  Tau[lev][TauType::tau12]->setVal(0.);
552  Tau[lev][TauType::tau13]->setVal(0.);
553  Tau[lev][TauType::tau23]->setVal(0.);
554  if (l_use_terrain) {
555  Tau[lev][TauType::tau21] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
556  Tau[lev][TauType::tau31] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
557  Tau[lev][TauType::tau32] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
558  Tau[lev][TauType::tau21]->setVal(0.);
559  Tau[lev][TauType::tau31]->setVal(0.);
560  Tau[lev][TauType::tau32]->setVal(0.);
561  } else if (l_implicit_diff) {
562  Tau[lev][TauType::tau31] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
563  Tau[lev][TauType::tau32] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
564  Tau[lev][TauType::tau31]->setVal(0.);
565  Tau[lev][TauType::tau32]->setVal(0.);
566  } else {
567  Tau[lev][TauType::tau21] = nullptr;
568  Tau[lev][TauType::tau31] = nullptr;
569  Tau[lev][TauType::tau32] = nullptr;
570  }
571 
572  if (l_implicit_diff && solverChoice.implicit_momentum_diffusion)
573  {
574  Tau_corr[lev][0] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) ); // Tau31
575  Tau_corr[lev][1] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) ); // Tau32
576  Tau_corr[lev][0]->setVal(0.);
577  Tau_corr[lev][1]->setVal(0.);
578 #ifdef ERF_IMPLICIT_W
579  Tau_corr[lev][2] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) ); // Tau33
580  Tau_corr[lev][2]->setVal(0.);
581 #else
582  Tau_corr[lev][2] = nullptr;
583 #endif
584  } else {
585  Tau_corr[lev][0] = nullptr;
586  Tau_corr[lev][1] = nullptr;
587  Tau_corr[lev][2] = nullptr;
588  }
589 
590  SFS_hfx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
591  SFS_hfx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
592  SFS_hfx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
593  SFS_diss_lev[lev] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
594  SFS_hfx1_lev[lev]->setVal(0.);
595  SFS_hfx2_lev[lev]->setVal(0.);
596  SFS_hfx3_lev[lev]->setVal(0.);
597  SFS_diss_lev[lev]->setVal(0.);
598  if (l_use_moist) {
599  SFS_q1fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
600  SFS_q2fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
601  SFS_q1fx3_lev[lev]->setVal(0.0);
602  SFS_q2fx3_lev[lev]->setVal(0.0);
603  if (l_rotate) {
604  SFS_q1fx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
605  SFS_q1fx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
606  SFS_q1fx1_lev[lev]->setVal(0.0);
607  SFS_q1fx2_lev[lev]->setVal(0.0);
608  } else {
609  SFS_q1fx1_lev[lev] = nullptr;
610  SFS_q1fx2_lev[lev] = nullptr;
611  }
612  } else {
613  SFS_q1fx1_lev[lev] = nullptr;
614  SFS_q1fx2_lev[lev] = nullptr;
615  SFS_q1fx3_lev[lev] = nullptr;
616  SFS_q2fx3_lev[lev] = nullptr;
617  }
618  } else {
619  for (int i = 0; i < 9; i++) {
620  Tau[lev][i] = nullptr;
621  }
622  SFS_hfx1_lev[lev] = nullptr; SFS_hfx2_lev[lev] = nullptr; SFS_hfx3_lev[lev] = nullptr;
623  SFS_diss_lev[lev] = nullptr;
624  }
625 
626  if (l_use_kturb) {
627  eddyDiffs_lev[lev] = std::make_unique<MultiFab>(ba, dm, EddyDiff::NumDiffs, 2);
628  eddyDiffs_lev[lev]->setVal(0.0);
629  if(l_need_SmnSmn) {
630  SmnSmn_lev[lev] = std::make_unique<MultiFab>( ba, dm, 1, 0 );
631  } else {
632  SmnSmn_lev[lev] = nullptr;
633  }
634  } else {
635  eddyDiffs_lev[lev] = nullptr;
636  SmnSmn_lev[lev] = nullptr;
637  }
638 }
@ NumDiffs
Definition: ERF_IndexDefines.H:181

◆ update_terrain_arrays()

void ERF::update_terrain_arrays ( int  lev)
798 {
799  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
800  SolverChoice::mesh_type == MeshType::VariableDz) {
801  make_J(geom[lev],*z_phys_nd[lev],*detJ_cc[lev]);
802  make_areas(geom[lev],*z_phys_nd[lev],*ax[lev],*ay[lev],*az[lev]);
803  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
804  } else { // MeshType::ConstantDz
805  if (SolverChoice::terrain_type == TerrainType::EB) {
806  const auto& ebfact = *eb[lev]->get_const_factory();
807  const MultiFab& volfrac = ebfact.getVolFrac();
808  detJ_cc[lev] = std::make_unique<MultiFab>(volfrac, amrex::make_alias, 0, volfrac.nComp());
809  }
810  }
811 }
void make_areas(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &ax, MultiFab &ay, MultiFab &az)
Definition: ERF_TerrainMetrics.cpp:559
void make_J(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &detJ_cc)
Definition: ERF_TerrainMetrics.cpp:521
Here is the call graph for this function:

◆ volWgtColumnSum()

void ERF::volWgtColumnSum ( int  lev,
const amrex::MultiFab &  mf,
int  comp,
amrex::MultiFab &  mf_2d,
const amrex::MultiFab &  dJ 
)
84 {
85  BL_PROFILE("ERF::volWgtSumColumnMF()");
86 
87  mf_2d.setVal(0.);
88 
89  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
90  // m is the map scale factor at cell centers
91 #ifdef _OPENMP
92 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
93 #endif
94  for (MFIter mfi(mf_to_be_summed, TilingIfNotGPU()); mfi.isValid(); ++mfi) {
95  const Box& bx = mfi.tilebox();
96  const auto dst_arr = mf_2d.array(mfi);
97  const auto src_arr = mf_to_be_summed.array(mfi);
98  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
99  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
100  {
101  amrex::HostDevice::Atomic::Add(&dst_arr(i,j,0),src_arr(i,j,k,comp));
102  });
103  } else {
104  const auto& dJ_arr = dJ.const_array(mfi);
105  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
106  {
107  amrex::HostDevice::Atomic::Add(&dst_arr(i,j,0),src_arr(i,j,k,comp)*dJ_arr(i,j,k));
108  });
109  }
110  } // mfi
111 
112  auto const& dx = geom[lev].CellSizeArray();
113 
114  mf_2d.mult(dx[2]);
115 }

◆ volWgtSumMF()

Real ERF::volWgtSumMF ( int  lev,
const amrex::MultiFab &  mf,
int  comp,
const amrex::MultiFab &  dJ,
const amrex::MultiFab &  mfx,
const amrex::MultiFab &  mfy,
bool  finemask,
bool  local = true 
)

Utility function for computing a volume weighted sum of MultiFab data for a single component

Parameters
levCurrent level
mf_to_be_summed: MultiFab on which we do the volume weighted sum
dJ: volume weighting due to metric terms
mfmx: map factor in x-direction at cell centers
mfmy: map factor in y-direction at cell centers
comp: Index of the component we want to sum
finemask: If a finer level is available, determines whether we mask fine data
local: Boolean sets whether or not to reduce the sum over the domain (false) or compute sums local to each MPI rank (true)
25 {
26  BL_PROFILE("ERF::volWgtSumMF()");
27 
28  Real sum = 0.0;
29  MultiFab tmp(mf_to_be_summed.boxArray(), mf_to_be_summed.DistributionMap(), 1, 0);
30 
31  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
32  // m is the map scale factor at cell centers
33 #ifdef _OPENMP
34 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
35 #endif
36  for (MFIter mfi(tmp, TilingIfNotGPU()); mfi.isValid(); ++mfi) {
37  const Box& bx = mfi.tilebox();
38  const auto dst_arr = tmp.array(mfi);
39  const auto src_arr = mf_to_be_summed.array(mfi);
40  const auto& mfx_arr = mfmx.const_array(mfi);
41  const auto& mfy_arr = mfmy.const_array(mfi);
42 
43  if (SolverChoice::terrain_type != TerrainType::EB) {
44  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
45  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
46  {
47  dst_arr(i,j,k,0) = src_arr(i,j,k,comp) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
48  });
49  } else {
50  const auto& dJ_arr = dJ.const_array(mfi);
51  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
52  {
53  dst_arr(i,j,k,0) = src_arr(i,j,k,comp) * dJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
54  });
55  }
56  } else {
57  const auto& dJ_arr = dJ.const_array(mfi);
58  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
59  {
60  dst_arr(i,j,k,0) = src_arr(i,j,k,comp) * dJ_arr(i,j,k);
61  });
62  }
63 
64  } // mfi
65 
66  if (lev < finest_level && finemask) {
67  MultiFab::Multiply(tmp, *fine_mask[lev+1].get(), 0, 0, 1, 0);
68  }
69 
70  // If local = true then "sum" will be the sum only over the FABs on each rank
71  // If local = false then "sum" will be the sum over the whole MultiFab, and will be broadcast to all ranks
72  sum = tmp.sum(0,local);
73 
74  auto const& dx = geom[lev].CellSizeArray();
75 
76  sum *= dx[0]*dx[1]*dx[2];
77 
78  return sum;
79 }

◆ WeatherDataInterpolation()

void ERF::WeatherDataInterpolation ( const int  nlevs,
const amrex::Real  time,
amrex::Vector< std::unique_ptr< amrex::MultiFab >> &  z_phys_nd,
bool  regrid_forces_file_read 
)
351 {
352 
353  static amrex::Vector<Real> next_read_forecast_time;
354  static amrex::Vector<Real> last_read_forecast_time;
355 
356  const int nlevs = a_z_phys_nd.size();
357 
358  Real hindcast_data_interval = solverChoice.hindcast_data_interval_in_hrs*3600.0;
359 
360  // Initialize static vectors once
361  if (next_read_forecast_time.empty()) {
362  next_read_forecast_time.resize(nlevs, -1.0);
363  last_read_forecast_time.resize(nlevs, -1.0);
364  Print() << "Initializing the time vector values here by " << lev << std::endl;
365  }
366 
367  if (next_read_forecast_time[lev] < 0.0) {
368  int next_multiple = static_cast<int>(time / hindcast_data_interval);
369  next_read_forecast_time[lev] = next_multiple * hindcast_data_interval;
370  last_read_forecast_time[lev] = next_read_forecast_time[lev];
371  }
372 
373  if (time >= next_read_forecast_time[lev] or regrid_forces_file_read) {
374 
375  Print() << "Data reading happening at level " << lev << std::endl;
376 
377  std::string folder = solverChoice.hindcast_boundary_data_dir;
378 
379  // Check if folder exists and is a directory
380  if (!fs::exists(folder) || !fs::is_directory(folder)) {
381  throw std::runtime_error("Error: Folder '" + folder + "' does not exist or is not a directory.");
382  }
383 
384  std::vector<std::string> bin_files;
385 
386  for (const auto& entry : fs::directory_iterator(folder)) {
387  if (!entry.is_regular_file()) continue;
388 
389  std::string fname = entry.path().filename().string();
390  if (fname.size() >= 4 && fname.substr(fname.size() - 4) == ".bin") {
391  bin_files.push_back(entry.path().string());
392  }
393  }
394  std::sort(bin_files.begin(), bin_files.end());
395 
396  // Check if no .bin files were found
397  if (bin_files.empty()) {
398  throw std::runtime_error("Error: No .bin files found in folder '" + folder + "'.");
399  }
400 
401  std::string filename1, filename2;
402 
403  int idx1 = static_cast<int>(time / hindcast_data_interval);
404  int idx2 = static_cast<int>(time / hindcast_data_interval)+1;
405  std::cout << "Reading weather data " << time << " " << idx1 << " " << idx2 <<" " << bin_files.size() << std::endl;
406 
407  if (idx2 >= static_cast<int>(bin_files.size())) {
408  throw std::runtime_error("Error: Not enough .bin files to cover time " + std::to_string(time));
409  }
410 
411  filename1 = bin_files[idx1];
412  filename2 = bin_files[idx2];
413 
414  FillForecastStateMultiFabs(lev, filename1, a_z_phys_nd[lev], forecast_state_1);
415  FillForecastStateMultiFabs(lev, filename2, a_z_phys_nd[lev], forecast_state_2);
416 
417  // Create the time-interpolated forecast state
418  //CreateForecastStateMultiFabs(forecast_state_interp);
419  if(!regrid_forces_file_read){
420  last_read_forecast_time[lev] = next_read_forecast_time[lev];
421  next_read_forecast_time[lev] += hindcast_data_interval;
422  Print() << "Next forecast time getting updated here " << std::endl;
423  }
424  }
425 
426  Real prev_read_time = last_read_forecast_time[lev];
427  Real alpha1 = 1.0 - (time - prev_read_time)/hindcast_data_interval;
428  Real alpha2 = 1.0 - alpha1;
429 
430  amrex::Print()<< "The values of alpha1 and alpha2 are " << alpha1 << " "<< alpha2 <<std::endl;
431 
432  if (alpha1 < 0.0 || alpha1 > 1.0 ||
433  alpha2 < 0.0 || alpha2 > 1.0)
434  {
435  std::stringstream ss;
436  ss << "Interpolation weights for hindcast files are incorrect: "
437  << "alpha1 = " << alpha1 << ", alpha2 = " << alpha2;
438  Abort(ss.str());
439  }
440 
441  MultiFab& erf_mf_cons = forecast_state_interp[lev][Vars::cons];
442  MultiFab& erf_mf_xvel = forecast_state_interp[lev][Vars::xvel];
443  MultiFab& erf_mf_yvel = forecast_state_interp[lev][Vars::yvel];
444  //MultiFab& erf_mf_zvel = forecast_state_interp[0][Vars::zvel];
445  MultiFab& erf_mf_latlon = forecast_state_interp[lev][4];
446 
447  // Fill the time-interpolated forecast states
448  MultiFab::LinComb(forecast_state_interp[lev][Vars::cons],
449  alpha1, forecast_state_1[lev][Vars::cons], 0,
450  alpha2, forecast_state_2[lev][Vars::cons], 0,
451  0, erf_mf_cons.nComp(), forecast_state_interp[lev][Vars::cons].nGrow());
452  MultiFab::LinComb(forecast_state_interp[lev][Vars::xvel],
453  alpha1, forecast_state_1[lev][Vars::xvel], 0,
454  alpha2, forecast_state_2[lev][Vars::xvel], 0,
455  0, erf_mf_xvel.nComp(), forecast_state_interp[lev][Vars::xvel].nGrow());
456  MultiFab::LinComb(forecast_state_interp[lev][Vars::yvel],
457  alpha1, forecast_state_1[lev][Vars::yvel], 0,
458  alpha2, forecast_state_2[lev][Vars::yvel], 0,
459  0, erf_mf_yvel.nComp(), forecast_state_interp[lev][Vars::yvel].nGrow());
460  MultiFab::LinComb(forecast_state_interp[lev][4],
461  alpha1, forecast_state_1[lev][4], 0,
462  alpha2, forecast_state_2[lev][4], 0,
463  0, erf_mf_latlon.nComp(), forecast_state_interp[lev][4].nGrow());
464 
465  /*Vector<std::string> varnames_plot_mf = {
466  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel", "latitude", "longitude"
467  }; // Customize variable names
468 
469  std::string pltname = "plt_interp";
470 
471  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
472  10, 0);
473 
474  plot_mf.setVal(0.0);
475 
476  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
477  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
478  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
479  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
480  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
481  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
482  const Array4<Real> &erf_mf_latlon_arr = erf_mf_latlon.array(mfi);
483 
484  const Box& bx = mfi.validbox();
485 
486  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
487  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
488  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
489  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
490  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
491  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
492 
493  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
494  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
495  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
496 
497  plot_mf_arr(i,j,k,8) = erf_mf_latlon_arr(i,j,k,0);
498  plot_mf_arr(i,j,k,9) = erf_mf_latlon_arr(i,j,k,1);
499  });
500  }
501 
502 
503  WriteSingleLevelPlotfile(
504  pltname,
505  plot_mf,
506  varnames_plot_mf,
507  geom[0],
508  time,
509  0 // level
510  );*/
511 }
void FillForecastStateMultiFabs(const int lev, const std::string &filename, const std::unique_ptr< amrex::MultiFab > &z_phys_nd, amrex::Vector< amrex::Vector< amrex::MultiFab >> &weather_forecast_data)
Definition: ERF_WeatherDataInterpolation.cpp:64
amrex::Real hindcast_data_interval_in_hrs
Definition: ERF_DataStruct.H:1183
std::string hindcast_boundary_data_dir
Definition: ERF_DataStruct.H:1182

◆ Write2DPlotFile()

void ERF::Write2DPlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
1932 {
1933  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
1934  const int ncomp_mf = varnames.size();
1935 
1936  if (ncomp_mf == 0) return;
1937 
1938  // Vector of MultiFabs for cell-centered data
1939  Vector<MultiFab> mf(finest_level+1);
1940  for (int lev = 0; lev <= finest_level; ++lev) {
1941  mf[lev].define(ba2d[lev], dmap[lev], ncomp_mf, 0);
1942  }
1943 
1944 
1945  // **********************************************************************************************
1946  // (Effectively) 2D arrays
1947  // **********************************************************************************************
1948  for (int lev = 0; lev <= finest_level; ++lev)
1949  {
1950  // Make sure getPgivenRTh and getTgivenRandRTh don't fail
1951  if (check_for_nans) {
1953  }
1954 
1955  int mf_comp = 0;
1956 
1957  // Set all components to zero in case they aren't defined below
1958  mf[lev].setVal(0.0);
1959 
1960  // Expose domain khi and klo at each level
1961  int klo = geom[lev].Domain().smallEnd(2);
1962  int khi = geom[lev].Domain().bigEnd(2);
1963 
1964  if (containerHasElement(plot_var_names, "z_surf")) {
1965 #ifdef _OPENMP
1966 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1967 #endif
1968  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1969  {
1970  const Box& bx = mfi.tilebox();
1971  const Array4<Real>& derdat = mf[lev].array(mfi);
1972  const Array4<const Real>& z_phys_arr = z_phys_nd[lev]->const_array(mfi);
1973  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1974  derdat(i, j, k, mf_comp) = Compute_Z_AtWFace(i, j, 0, z_phys_arr);
1975  });
1976  }
1977  mf_comp++;
1978  }
1979 
1980  if (containerHasElement(plot_var_names, "landmask")) {
1981 #ifdef _OPENMP
1982 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1983 #endif
1984  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1985  {
1986  const Box& bx = mfi.tilebox();
1987  const Array4<Real>& derdat = mf[lev].array(mfi);
1988  const Array4<const int>& lmask_arr = lmask_lev[lev][0]->const_array(mfi);
1989  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1990  derdat(i, j, k, mf_comp) = lmask_arr(i, j, 0);
1991  });
1992  }
1993  mf_comp++;
1994  }
1995 
1996  if (containerHasElement(plot_var_names, "mapfac")) {
1997 #ifdef _OPENMP
1998 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1999 #endif
2000  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2001  {
2002  const Box& bx = mfi.tilebox();
2003  const Array4<Real>& derdat = mf[lev].array(mfi);
2004  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
2005  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2006  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
2007  });
2008  }
2009  mf_comp++;
2010  }
2011 
2012  if (containerHasElement(plot_var_names, "lat_m")) {
2013  if (lat_m[lev]) {
2014 #ifdef _OPENMP
2015 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2016 #endif
2017  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2018  {
2019  const Box& bx = mfi.tilebox();
2020  const Array4<Real>& derdat = mf[lev].array(mfi);
2021  const Array4<Real>& data = lat_m[lev]->array(mfi);
2022  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2023  derdat(i, j, k, mf_comp) = data(i,j,0);
2024  });
2025  }
2026  }
2027  mf_comp++;
2028  } // lat_m
2029 
2030  if (containerHasElement(plot_var_names, "lon_m")) {
2031  if (lon_m[lev]) {
2032 #ifdef _OPENMP
2033 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2034 #endif
2035  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2036  {
2037  const Box& bx = mfi.tilebox();
2038  const Array4<Real>& derdat = mf[lev].array(mfi);
2039  const Array4<Real>& data = lon_m[lev]->array(mfi);
2040  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2041  derdat(i, j, k, mf_comp) = data(i,j,0);
2042  });
2043  }
2044  } else {
2045  mf[lev].setVal(0.0,mf_comp,1,0);
2046  }
2047 
2048  mf_comp++;
2049 
2050  } // lon_m
2051 
2052  ///////////////////////////////////////////////////////////////////////
2053  // These quantities are diagnosed by the surface layer
2054  if (containerHasElement(plot_var_names, "u_star")) {
2055 #ifdef _OPENMP
2056 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2057 #endif
2058  if (m_SurfaceLayer) {
2059  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2060  {
2061  const Box& bx = mfi.tilebox();
2062  const auto& derdat = mf[lev].array(mfi);
2063  const auto& ustar = m_SurfaceLayer->get_u_star(lev)->const_array(mfi);
2064  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2065  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2066  });
2067  }
2068  } else {
2069  mf[lev].setVal(-999,mf_comp,1,0);
2070  }
2071  mf_comp++;
2072  } // ustar
2073 
2074  if (containerHasElement(plot_var_names, "w_star")) {
2075 #ifdef _OPENMP
2076 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2077 #endif
2078  if (m_SurfaceLayer) {
2079  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2080  {
2081  const Box& bx = mfi.tilebox();
2082  const auto& derdat = mf[lev].array(mfi);
2083  const auto& ustar = m_SurfaceLayer->get_w_star(lev)->const_array(mfi);
2084  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2085  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2086  });
2087  }
2088  } else {
2089  mf[lev].setVal(-999,mf_comp,1,0);
2090  }
2091  mf_comp++;
2092  } // wstar
2093 
2094  if (containerHasElement(plot_var_names, "t_star")) {
2095 #ifdef _OPENMP
2096 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2097 #endif
2098  if (m_SurfaceLayer) {
2099  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2100  {
2101  const Box& bx = mfi.tilebox();
2102  const auto& derdat = mf[lev].array(mfi);
2103  const auto& ustar = m_SurfaceLayer->get_t_star(lev)->const_array(mfi);
2104  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2105  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2106  });
2107  }
2108  } else {
2109  mf[lev].setVal(-999,mf_comp,1,0);
2110  }
2111  mf_comp++;
2112  } // tstar
2113 
2114  if (containerHasElement(plot_var_names, "q_star")) {
2115 #ifdef _OPENMP
2116 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2117 #endif
2118  if (m_SurfaceLayer) {
2119  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2120  {
2121  const Box& bx = mfi.tilebox();
2122  const auto& derdat = mf[lev].array(mfi);
2123  const auto& ustar = m_SurfaceLayer->get_q_star(lev)->const_array(mfi);
2124  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2125  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2126  });
2127  }
2128  } else {
2129  mf[lev].setVal(-999,mf_comp,1,0);
2130  }
2131  mf_comp++;
2132  } // qstar
2133 
2134  if (containerHasElement(plot_var_names, "Olen")) {
2135 #ifdef _OPENMP
2136 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2137 #endif
2138  if (m_SurfaceLayer) {
2139  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2140  {
2141  const Box& bx = mfi.tilebox();
2142  const auto& derdat = mf[lev].array(mfi);
2143  const auto& ustar = m_SurfaceLayer->get_olen(lev)->const_array(mfi);
2144  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2145  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2146  });
2147  }
2148  } else {
2149  mf[lev].setVal(-999,mf_comp,1,0);
2150  }
2151  mf_comp++;
2152  } // Olen
2153 
2154  if (containerHasElement(plot_var_names, "pblh")) {
2155 #ifdef _OPENMP
2156 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2157 #endif
2158  if (m_SurfaceLayer) {
2159  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2160  {
2161  const Box& bx = mfi.tilebox();
2162  const auto& derdat = mf[lev].array(mfi);
2163  const auto& ustar = m_SurfaceLayer->get_pblh(lev)->const_array(mfi);
2164  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2165  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2166  });
2167  }
2168  } else {
2169  mf[lev].setVal(-999,mf_comp,1,0);
2170  }
2171  mf_comp++;
2172  } // pblh
2173 
2174  if (containerHasElement(plot_var_names, "t_surf")) {
2175 #ifdef _OPENMP
2176 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2177 #endif
2178  if (m_SurfaceLayer) {
2179  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2180  {
2181  const Box& bx = mfi.tilebox();
2182  const auto& derdat = mf[lev].array(mfi);
2183  const auto& tsurf = m_SurfaceLayer->get_t_surf(lev)->const_array(mfi);
2184  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2185  derdat(i, j, k, mf_comp) = tsurf(i, j, 0);
2186  });
2187  }
2188  } else {
2189  mf[lev].setVal(-999,mf_comp,1,0);
2190  }
2191  mf_comp++;
2192  } // tsurf
2193 
2194  if (containerHasElement(plot_var_names, "q_surf")) {
2195 #ifdef _OPENMP
2196 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2197 #endif
2198  if (m_SurfaceLayer) {
2199  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2200  {
2201  const Box& bx = mfi.tilebox();
2202  const auto& derdat = mf[lev].array(mfi);
2203  const auto& ustar = m_SurfaceLayer->get_q_surf(lev)->const_array(mfi);
2204  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2205  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2206  });
2207  }
2208  } else {
2209  mf[lev].setVal(-999,mf_comp,1,0);
2210  }
2211  mf_comp++;
2212  } // qsurf
2213 
2214  if (containerHasElement(plot_var_names, "z0")) {
2215 #ifdef _OPENMP
2216 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2217 #endif
2218  if (m_SurfaceLayer) {
2219  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2220  {
2221  const Box& bx = mfi.tilebox();
2222  const auto& derdat = mf[lev].array(mfi);
2223  const auto& ustar = m_SurfaceLayer->get_z0(lev)->const_array(mfi);
2224  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2225  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2226  });
2227  }
2228  } else {
2229  mf[lev].setVal(-999,mf_comp,1,0);
2230  }
2231  mf_comp++;
2232  } // z0
2233 
2234  if (containerHasElement(plot_var_names, "OLR")) {
2235 #ifdef _OPENMP
2236 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2237 #endif
2238  if (solverChoice.rad_type != RadiationType::None) {
2239  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2240  {
2241  const Box& bx = mfi.tilebox();
2242  const auto& derdat = mf[lev].array(mfi);
2243  const auto& olr = rad_fluxes[lev]->const_array(mfi);
2244  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2245  derdat(i, j, k, mf_comp) = olr(i, j, khi, 2);
2246  });
2247  }
2248  } else {
2249  mf[lev].setVal(-999,mf_comp,1,0);
2250  }
2251  mf_comp++;
2252  } // OLR
2253 
2254  if (containerHasElement(plot_var_names, "sens_flux")) {
2255 #ifdef _OPENMP
2256 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2257 #endif
2258  if (SFS_hfx3_lev[lev]) {
2259  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2260  {
2261  const Box& bx = mfi.tilebox();
2262  const auto& derdat = mf[lev].array(mfi);
2263  const auto& hfx_arr = SFS_hfx3_lev[lev]->const_array(mfi);
2264  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2265  derdat(i, j, k, mf_comp) = hfx_arr(i, j, klo);
2266  });
2267  }
2268  } else {
2269  mf[lev].setVal(-999,mf_comp,1,0);
2270  }
2271  mf_comp++;
2272  } // sens_flux
2273 
2274  if (containerHasElement(plot_var_names, "laten_flux")) {
2275 #ifdef _OPENMP
2276 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2277 #endif
2278  if (SFS_hfx3_lev[lev]) {
2279  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2280  {
2281  const Box& bx = mfi.tilebox();
2282  const auto& derdat = mf[lev].array(mfi);
2283  const auto& qfx_arr = SFS_q1fx3_lev[lev]->const_array(mfi);
2284  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2285  derdat(i, j, k, mf_comp) = qfx_arr(i, j, klo);
2286  });
2287  }
2288  } else {
2289  mf[lev].setVal(-999,mf_comp,1,0);
2290  }
2291  mf_comp++;
2292  } // laten_flux
2293 
2294  if (containerHasElement(plot_var_names, "surf_pres")) {
2295  bool moist = (solverChoice.moisture_type != MoistureType::None);
2296 #ifdef _OPENMP
2297 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2298 #endif
2299  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2300  {
2301  const Box& bx = mfi.tilebox();
2302  const auto& derdat = mf[lev].array(mfi);
2303  const auto& cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2304  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2305  auto rt = cons_arr(i,j,klo,RhoTheta_comp);
2306  auto qv = (moist) ? cons_arr(i,j,klo,RhoQ1_comp)/cons_arr(i,j,klo,Rho_comp)
2307  : 0.0;
2308  derdat(i, j, k, mf_comp) = getPgivenRTh(rt, qv);
2309  });
2310  }
2311  mf_comp++;
2312  } // surf_pres
2313 
2314  if (containerHasElement(plot_var_names, "integrated_qv")) {
2315  MultiFab mf_qv_int(mf[lev],make_alias,mf_comp,1);
2316  if (solverChoice.moisture_type != MoistureType::None) {
2317  volWgtColumnSum(lev, vars_new[lev][Vars::cons], RhoQ1_comp, mf_qv_int, *detJ_cc[lev]);
2318  } else {
2319  mf_qv_int.setVal(0.);
2320  }
2321  mf_comp++;
2322  }
2323  } // lev
2324 
2325  std::string plotfilename;
2326  if (which == 1) {
2327  plotfilename = Concatenate(plot2d_file_1, istep[0], file_name_digits);
2328  } else if (which == 2) {
2329  plotfilename = Concatenate(plot2d_file_2, istep[0], file_name_digits);
2330  }
2331 
2332  Vector<Geometry> my_geom(finest_level+1);
2333 
2334  Array<int,AMREX_SPACEDIM> is_per; is_per[0] = 0; is_per[1] = 0; is_per[2] = 0;
2335  if (geom[0].isPeriodic(0)) { is_per[0] = 1;}
2336  if (geom[0].isPeriodic(1)) { is_per[1] = 1;}
2337 
2338  int coord_sys = 0;
2339 
2340  for (int lev = 0; lev <= finest_level; lev++)
2341  {
2342  Box slab = makeSlab(geom[lev].Domain(),2,0);
2343  auto const slab_lo = lbound(slab);
2344  auto const slab_hi = ubound(slab);
2345 
2346  // Create a new geometry based only on the 2D slab
2347  // We need
2348  // 1) my_geom.Domain()
2349  // 2) my_geom.CellSize()
2350  // 3) my_geom.periodicity()
2351  const auto dx = geom[lev].CellSize();
2352  RealBox rb( slab_lo.x *dx[0], slab_lo.y *dx[1], slab_lo.z *dx[2],
2353  (slab_hi.x+1)*dx[0], (slab_hi.y+1)*dx[1], (slab_hi.z+1)*dx[2]);
2354  my_geom[lev].define(slab, rb, coord_sys, is_per);
2355  }
2356 
2357  if (plotfile_type == PlotFileType::Amrex)
2358  {
2359  Print() << "Writing 2D native plotfile " << plotfilename << "\n";
2360  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
2361  GetVecOfConstPtrs(mf),
2362  varnames, my_geom, t_new[0], istep, refRatio());
2363  writeJobInfo(plotfilename);
2364 
2365 #ifdef ERF_USE_NETCDF
2366  } else if (plotfile_type == PlotFileType::Netcdf) {
2367  int lev = 0;
2368  int l_which = 0;
2369  const Real* p_lo = my_geom[lev].ProbLo();
2370  const Real* p_hi = my_geom[lev].ProbHi();
2371  const auto dx = my_geom[lev].CellSize();
2372  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
2373  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],dx[2]}, {dx[0],dx[1],dx[2]},
2374  my_geom[lev].Domain(), t_new[0], start_bdy_time);
2375 #endif
2376  } else {
2377  // Here we assume the plotfile_type is PlotFileType::None
2378  Print() << "Writing no 2D plotfile since plotfile_type is none" << std::endl;
2379  }
2380 }
void writeNCPlotFile(int lev, int which_subdomain, const std::string &dir, const Vector< const MultiFab * > &plotMF, const Vector< std::string > &plot_var_names, const Vector< int > &, Array< Real, AMREX_SPACEDIM > prob_lo, Array< Real, AMREX_SPACEDIM > prob_hi, Array< Real, AMREX_SPACEDIM > dx_in, const Box &subdomain, const Real time, const Real start_bdy_time)
Definition: ERF_NCPlotFile.cpp:14
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real Compute_Z_AtWFace(const int &i, const int &j, const int &k, const amrex::Array4< const amrex::Real > &z_nd)
Definition: ERF_TerrainMetrics.H:374
static amrex::Vector< std::string > PlotFileVarNames(amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:296
void writeJobInfo(const std::string &dir) const
Definition: ERF_WriteJobInfo.cpp:10
Here is the call graph for this function:

◆ Write3DPlotFile()

void ERF::Write3DPlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
309 {
310  auto dPlotTime0 = amrex::second();
311 
312  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
313  const int ncomp_mf = varnames.size();
314 
315  int ncomp_cons = vars_new[0][Vars::cons].nComp();
316 
317  if (ncomp_mf == 0) return;
318 
319  // We Fillpatch here because some of the derived quantities require derivatives
320  // which require ghost cells to be filled. We do not need to call FillPatcher
321  // because we don't need to set interior fine points.
322  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
323 
324  // Level 0 FillPatch
326  &vars_new[0][Vars::yvel], &vars_new[0][Vars::zvel]});
327 
328  for (int lev = 1; lev <= finest_level; ++lev) {
329  bool fillset = false;
330  FillPatchFineLevel(lev, t_new[lev], {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::xvel],
331  &vars_new[lev][Vars::yvel], &vars_new[lev][Vars::zvel]},
332  {&vars_new[lev][Vars::cons], &rU_new[lev], &rV_new[lev], &rW_new[lev]},
333  base_state[lev], base_state[lev], fillset);
334  }
335 
336  // Get qmoist pointers if using moisture
337  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
338  for (int lev = 0; lev <= finest_level; ++lev) {
339  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
340  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
341  }
342  }
343 
344  // Vector of MultiFabs for cell-centered data
345  Vector<MultiFab> mf(finest_level+1);
346  for (int lev = 0; lev <= finest_level; ++lev) {
347  mf[lev].define(grids[lev], dmap[lev], ncomp_mf, 0);
348  }
349 
350  // Vector of MultiFabs for nodal data
351  Vector<MultiFab> mf_nd(finest_level+1);
352  if ( SolverChoice::mesh_type != MeshType::ConstantDz) {
353  for (int lev = 0; lev <= finest_level; ++lev) {
354  BoxArray nodal_grids(grids[lev]); nodal_grids.surroundingNodes();
355  mf_nd[lev].define(nodal_grids, dmap[lev], 3, 0);
356  mf_nd[lev].setVal(0.);
357  }
358  }
359 
360  // Vector of MultiFabs for face-centered velocity
361  Vector<MultiFab> mf_u(finest_level+1);
362  Vector<MultiFab> mf_v(finest_level+1);
363  Vector<MultiFab> mf_w(finest_level+1);
364  if (m_plot_face_vels) {
365  for (int lev = 0; lev <= finest_level; ++lev) {
366  BoxArray grid_stag_u(grids[lev]); grid_stag_u.surroundingNodes(0);
367  BoxArray grid_stag_v(grids[lev]); grid_stag_v.surroundingNodes(1);
368  BoxArray grid_stag_w(grids[lev]); grid_stag_w.surroundingNodes(2);
369  mf_u[lev].define(grid_stag_u, dmap[lev], 1, 0);
370  mf_v[lev].define(grid_stag_v, dmap[lev], 1, 0);
371  mf_w[lev].define(grid_stag_w, dmap[lev], 1, 0);
372  MultiFab::Copy(mf_u[lev],vars_new[lev][Vars::xvel],0,0,1,0);
373  MultiFab::Copy(mf_v[lev],vars_new[lev][Vars::yvel],0,0,1,0);
374  MultiFab::Copy(mf_w[lev],vars_new[lev][Vars::zvel],0,0,1,0);
375  }
376  }
377 
378  // Array of MultiFabs for cell-centered velocity
379  Vector<MultiFab> mf_cc_vel(finest_level+1);
380 
381  if (containerHasElement(plot_var_names, "x_velocity" ) ||
382  containerHasElement(plot_var_names, "y_velocity" ) ||
383  containerHasElement(plot_var_names, "z_velocity" ) ||
384  containerHasElement(plot_var_names, "magvel" ) ||
385  containerHasElement(plot_var_names, "vorticity_x") ||
386  containerHasElement(plot_var_names, "vorticity_y") ||
387  containerHasElement(plot_var_names, "vorticity_z") ) {
388 
389  for (int lev = 0; lev <= finest_level; ++lev) {
390  mf_cc_vel[lev].define(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
391  mf_cc_vel[lev].setVal(-1.e20);
392  average_face_to_cellcenter(mf_cc_vel[lev],0,
393  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
394  &vars_new[lev][Vars::yvel],
395  &vars_new[lev][Vars::zvel]});
396  } // lev
397  } // if (vel or vort)
398 
399  // We need ghost cells if computing vorticity
400  if ( containerHasElement(plot_var_names, "vorticity_x")||
401  containerHasElement(plot_var_names, "vorticity_y") ||
402  containerHasElement(plot_var_names, "vorticity_z") )
403  {
404  amrex::Interpolater* mapper = &cell_cons_interp;
405  for (int lev = 1; lev <= finest_level; ++lev)
406  {
407  Vector<MultiFab*> fmf = {&(mf_cc_vel[lev]), &(mf_cc_vel[lev])};
408  Vector<Real> ftime = {t_new[lev], t_new[lev]};
409  Vector<MultiFab*> cmf = {&mf_cc_vel[lev-1], &mf_cc_vel[lev-1]};
410  Vector<Real> ctime = {t_new[lev], t_new[lev]};
411 
412  FillBdyCCVels(mf_cc_vel,lev-1);
413 
414  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
415  FillPatchTwoLevels(mf_cc_vel[lev], mf_cc_vel[lev].nGrowVect(), IntVect(0,0,0),
416  t_new[lev], cmf, ctime, fmf, ftime,
417  0, 0, mf_cc_vel[lev].nComp(), geom[lev-1], geom[lev],
418  refRatio(lev-1), mapper, domain_bcs_type,
420  } // lev
421  FillBdyCCVels(mf_cc_vel);
422  } // if (vort)
423 
424 
425  for (int lev = 0; lev <= finest_level; ++lev)
426  {
427  // Make sure getPgivenRTh and getTgivenRandRTh don't fail
428  if (check_for_nans) {
430  }
431 
432  int mf_comp = 0;
433 
434  BoxArray ba(vars_new[lev][Vars::cons].boxArray());
435  DistributionMapping dm = vars_new[lev][Vars::cons].DistributionMap();
436 
437  // First, copy any of the conserved state variables into the output plotfile
438  for (int i = 0; i < cons_names.size(); ++i) {
439  if (containerHasElement(plot_var_names, cons_names[i])) {
440  MultiFab::Copy(mf[lev],vars_new[lev][Vars::cons],i,mf_comp,1,0);
441  mf_comp++;
442  }
443  }
444 
445  // Next, check for velocities
446  if (containerHasElement(plot_var_names, "x_velocity")) {
447  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 0, mf_comp, 1, 0);
448  mf_comp += 1;
449  }
450  if (containerHasElement(plot_var_names, "y_velocity")) {
451  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 1, mf_comp, 1, 0);
452  mf_comp += 1;
453  }
454  if (containerHasElement(plot_var_names, "z_velocity")) {
455  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 2, mf_comp, 1, 0);
456  mf_comp += 1;
457  }
458 
459  // Create multifabs for HSE and pressure fields used to derive other quantities
460  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp , 1);
461  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp , 1);
462  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
463 
464  MultiFab pressure;
465 
466  if (solverChoice.anelastic[lev] == 0) {
467  if (containerHasElement(plot_var_names, "pressure") ||
468  containerHasElement(plot_var_names, "pert_pres") ||
469  containerHasElement(plot_var_names, "dpdx") ||
470  containerHasElement(plot_var_names, "dpdy") ||
471  containerHasElement(plot_var_names, "dpdz") ||
472  containerHasElement(plot_var_names, "eq_pot_temp") ||
473  containerHasElement(plot_var_names, "qsat"))
474  {
475  int ng = (containerHasElement(plot_var_names, "dpdx") || containerHasElement(plot_var_names, "dpdy") ||
476  containerHasElement(plot_var_names, "dpdz")) ? 1 : 0;
477 
478  // Allocate space for pressure
479  pressure.define(ba,dm,1,ng);
480 
481  if (ng > 0) {
482  // Default to p_hse as a way of filling ghost cells at domain boundaries
483  MultiFab::Copy(pressure,p_hse,0,0,1,1);
484  }
485 #ifdef _OPENMP
486 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
487 #endif
488  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
489  {
490  const Box& gbx = mfi.growntilebox(IntVect(ng,ng,0));
491 
492  const Array4<Real >& p_arr = pressure.array(mfi);
493  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
494  const int ncomp = vars_new[lev][Vars::cons].nComp();
495 
496  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
497  {
498  Real qv_for_p = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0;
499  const Real rhotheta = S_arr(i,j,k,RhoTheta_comp);
500  p_arr(i, j, k) = getPgivenRTh(rhotheta,qv_for_p);
501  });
502  } // mfi
503  pressure.FillBoundary(geom[lev].periodicity());
504  } // compute compressible pressure
505  } // not anelastic
506  else {
507  if (containerHasElement(plot_var_names, "dpdx") ||
508  containerHasElement(plot_var_names, "dpdy") ||
509  containerHasElement(plot_var_names, "dpdz") ||
510  containerHasElement(plot_var_names, "eq_pot_temp") ||
511  containerHasElement(plot_var_names, "qsat"))
512  {
513  // Copy p_hse into pressure if using anelastic
514  pressure.define(ba,dm,1,0);
515  MultiFab::Copy(pressure,p_hse,0,0,1,0);
516  }
517  }
518 
519  // Finally, check for any derived quantities and compute them, inserting
520  // them into our output multifab
521  auto calculate_derived = [&](const std::string& der_name,
522  MultiFab& src_mf,
523  decltype(derived::erf_dernull)& der_function)
524  {
525  if (containerHasElement(plot_var_names, der_name)) {
526  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
527 #ifdef _OPENMP
528 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
529 #endif
530  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
531  {
532  const Box& bx = mfi.tilebox();
533  auto& dfab = dmf[mfi];
534  auto& sfab = src_mf[mfi];
535  der_function(bx, dfab, 0, 1, sfab, Geom(lev), t_new[0], nullptr, lev);
536  }
537 
538  mf_comp++;
539  }
540  };
541 
542  // *****************************************************************************************
543  // NOTE: All derived variables computed below **MUST MATCH THE ORDER** of "derived_names"
544  // defined in ERF.H
545  // *****************************************************************************************
546 
547  calculate_derived("soundspeed", vars_new[lev][Vars::cons], derived::erf_dersoundspeed);
548  if (use_moisture) {
549  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dermoisttemp);
550  } else {
551  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dertemp);
552  }
553  calculate_derived("theta", vars_new[lev][Vars::cons], derived::erf_dertheta);
554  calculate_derived("KE", vars_new[lev][Vars::cons], derived::erf_derKE);
555  calculate_derived("scalar", vars_new[lev][Vars::cons], derived::erf_derscalar);
556  calculate_derived("vorticity_x", mf_cc_vel[lev] , derived::erf_dervortx);
557  calculate_derived("vorticity_y", mf_cc_vel[lev] , derived::erf_dervorty);
558  calculate_derived("vorticity_z", mf_cc_vel[lev] , derived::erf_dervortz);
559  calculate_derived("magvel" , mf_cc_vel[lev] , derived::erf_dermagvel);
560 
561  if (containerHasElement(plot_var_names, "divU"))
562  {
563  // TODO TODO TODO -- we need to convert w to omega here!!
564  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
565  Array<MultiFab const*, AMREX_SPACEDIM> u;
566  u[0] = &(vars_new[lev][Vars::xvel]);
567  u[1] = &(vars_new[lev][Vars::yvel]);
568  u[2] = &(vars_new[lev][Vars::zvel]);
569  compute_divergence (lev, dmf, u, geom[lev]);
570  mf_comp += 1;
571  }
572 
573  if (containerHasElement(plot_var_names, "pres_hse"))
574  {
575  MultiFab::Copy(mf[lev],p_hse,0,mf_comp,1,0);
576  mf_comp += 1;
577  }
578  if (containerHasElement(plot_var_names, "dens_hse"))
579  {
580  MultiFab::Copy(mf[lev],r_hse,0,mf_comp,1,0);
581  mf_comp += 1;
582  }
583  if (containerHasElement(plot_var_names, "theta_hse"))
584  {
585  MultiFab::Copy(mf[lev],th_hse,0,mf_comp,1,0);
586  mf_comp += 1;
587  }
588 
589  if (containerHasElement(plot_var_names, "pressure"))
590  {
591  if (solverChoice.anelastic[lev] == 1) {
592  MultiFab::Copy(mf[lev], p_hse, 0, mf_comp, 1, 0);
593  } else {
594  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
595  }
596 
597  mf_comp += 1;
598  }
599 
600  if (containerHasElement(plot_var_names, "pert_pres"))
601  {
602  if (solverChoice.anelastic[lev] == 1) {
603  MultiFab::Copy(mf[lev], pp_inc[lev], 0, mf_comp, 1, 0);
604  } else {
605  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
606  MultiFab::Subtract(mf[lev],p_hse,0,mf_comp,1,IntVect{0});
607  }
608  mf_comp += 1;
609  }
610 
611  if (containerHasElement(plot_var_names, "pert_dens"))
612  {
613 #ifdef _OPENMP
614 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
615 #endif
616  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
617  {
618  const Box& bx = mfi.tilebox();
619  const Array4<Real>& derdat = mf[lev].array(mfi);
620  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
621  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
622  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
623  derdat(i, j, k, mf_comp) = S_arr(i,j,k,Rho_comp) - r0_arr(i,j,k);
624  });
625  }
626  mf_comp ++;
627  }
628 
629  if (containerHasElement(plot_var_names, "eq_pot_temp"))
630  {
631 #ifdef _OPENMP
632 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
633 #endif
634  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
635  {
636  const Box& bx = mfi.tilebox();
637  const Array4<Real>& derdat = mf[lev].array(mfi);
638  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
639  const Array4<Real const>& p_arr = pressure.const_array(mfi);
640  const int ncomp = vars_new[lev][Vars::cons].nComp();
641  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
642  Real qv = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
643  Real qc = (use_moisture && (ncomp > RhoQ2_comp)) ? S_arr(i,j,k,RhoQ2_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
644  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
645  Real fac = Cp_d + Cp_l*(qv + qc);
646  Real pv = erf_esatw(T)*100.0;
647 
648  derdat(i, j, k, mf_comp) = T*std::pow((p_arr(i,j,k) - pv)/p_0, -R_d/fac)*std::exp(L_v*qv/(fac*T)) ;
649  });
650  }
651  mf_comp ++;
652  }
653 
654 #ifdef ERF_USE_WINDFARM
655  if ( containerHasElement(plot_var_names, "num_turb") and
656  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
657  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
658  {
659  MultiFab::Copy(mf[lev],Nturb[lev],0,mf_comp,1,0);
660  mf_comp ++;
661  }
662 
663  if ( containerHasElement(plot_var_names, "SMark0") and
664  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
665  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
666  {
667  MultiFab::Copy(mf[lev],SMark[lev],0,mf_comp,1,0);
668  mf_comp ++;
669  }
670 
671  if (containerHasElement(plot_var_names, "SMark1") and
672  (solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD))
673  {
674  MultiFab::Copy(mf[lev],SMark[lev],1,mf_comp,1,0);
675  mf_comp ++;
676  }
677 #endif
678 
679  // **********************************************************************************************
680  // Allocate space if we are computing any pressure gradients
681  // **********************************************************************************************
682 
683  Vector<MultiFab> gradp_temp; gradp_temp.resize(AMREX_SPACEDIM);
684  if (containerHasElement(plot_var_names, "dpdx") ||
685  containerHasElement(plot_var_names, "dpdy") ||
686  containerHasElement(plot_var_names, "dpdz") ||
687  containerHasElement(plot_var_names, "pres_hse_x") ||
688  containerHasElement(plot_var_names, "pres_hse_y"))
689  {
690  gradp_temp[GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp_temp[GpVars::gpx].setVal(0.);
691  gradp_temp[GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp_temp[GpVars::gpy].setVal(0.);
692  gradp_temp[GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp_temp[GpVars::gpz].setVal(0.);
693  }
694 
695  // **********************************************************************************************
696  // These are based on computing gradient of full pressure
697  // **********************************************************************************************
698 
699  if (solverChoice.anelastic[lev] == 0) {
700  if ( (containerHasElement(plot_var_names, "dpdx")) ||
701  (containerHasElement(plot_var_names, "dpdy")) ||
702  (containerHasElement(plot_var_names, "dpdz")) ) {
703  compute_gradp(pressure, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), mapfac[lev],
704  get_eb(lev), gradp_temp, solverChoice);
705  }
706  }
707 
708  if (containerHasElement(plot_var_names, "dpdx"))
709  {
710  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
711  {
712  const Box& bx = mfi.tilebox();
713  const Array4<Real >& derdat = mf[lev].array(mfi);
714  const Array4<Real const>& gpx_arr = (solverChoice.anelastic[lev] == 1) ?
715  gradp[lev][GpVars::gpx].array(mfi) : gradp_temp[GpVars::gpx].array(mfi);
716  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
717  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
718  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
719  });
720  }
721  mf_comp ++;
722  } // dpdx
723  if (containerHasElement(plot_var_names, "dpdy"))
724  {
725  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
726  {
727  const Box& bx = mfi.tilebox();
728  const Array4<Real >& derdat = mf[lev].array(mfi);
729  const Array4<Real const>& gpy_arr = (solverChoice.anelastic[lev] == 1) ?
730  gradp[lev][GpVars::gpy].array(mfi) : gradp_temp[GpVars::gpy].array(mfi);
731  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
732  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
733  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
734  });
735  }
736  mf_comp ++;
737  } // dpdy
738  if (containerHasElement(plot_var_names, "dpdz"))
739  {
740  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
741  {
742  const Box& bx = mfi.tilebox();
743  const Array4<Real >& derdat = mf[lev].array(mfi);
744  const Array4<Real const>& gpz_arr = (solverChoice.anelastic[lev] == 1) ?
745  gradp[lev][GpVars::gpz].array(mfi) : gradp_temp[GpVars::gpz].array(mfi);
746  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
747  derdat(i ,j ,k, mf_comp) = 0.5 * (gpz_arr(i,j,k+1) + gpz_arr(i,j,k));
748  });
749  }
750  mf_comp ++;
751  } // dpdz
752 
753  // **********************************************************************************************
754  // These are based on computing gradient of basestate pressure
755  // **********************************************************************************************
756 
757  if ( (containerHasElement(plot_var_names, "pres_hse_x")) ||
758  (containerHasElement(plot_var_names, "pres_hse_y")) ) {
759  compute_gradp(p_hse, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), mapfac[lev],
760  get_eb(lev), gradp_temp, solverChoice);
761  }
762 
763  if (containerHasElement(plot_var_names, "pres_hse_x"))
764  {
765  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
766  {
767  const Box& bx = mfi.tilebox();
768  const Array4<Real >& derdat = mf[lev].array(mfi);
769  const Array4<Real const>& gpx_arr = gradp_temp[0].array(mfi);
770  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
771  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
772  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
773  });
774  }
775  mf_comp += 1;
776  } // pres_hse_x
777 
778  if (containerHasElement(plot_var_names, "pres_hse_y"))
779  {
780  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
781  {
782  const Box& bx = mfi.tilebox();
783  const Array4<Real >& derdat = mf[lev].array(mfi);
784  const Array4<Real const>& gpy_arr = gradp_temp[1].array(mfi);
785  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
786  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
787  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
788  });
789  }
790  mf_comp += 1;
791  } // pres_hse_y
792 
793  // **********************************************************************************************
794  // Metric terms
795  // **********************************************************************************************
796 
797  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
798  if (containerHasElement(plot_var_names, "z_phys"))
799  {
800  MultiFab::Copy(mf[lev],*z_phys_cc[lev],0,mf_comp,1,0);
801  mf_comp ++;
802  }
803 
804  if (containerHasElement(plot_var_names, "detJ"))
805  {
806  MultiFab::Copy(mf[lev],*detJ_cc[lev],0,mf_comp,1,0);
807  mf_comp ++;
808  }
809  } // use_terrain
810 
811  if (containerHasElement(plot_var_names, "mapfac")) {
812  amrex::Print() << "You are plotting a 3D version of mapfac; we suggest using the 2D plotfile instead" << std::endl;
813 #ifdef _OPENMP
814 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
815 #endif
816  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
817  {
818  const Box& bx = mfi.tilebox();
819  const Array4<Real>& derdat = mf[lev].array(mfi);
820  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
821  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
822  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
823  });
824  }
825  mf_comp ++;
826  }
827 
828  if (containerHasElement(plot_var_names, "lat_m")) {
829  amrex::Print() << "You are plotting a 3D version of lat_m; we suggest using the 2D plotfile instead" << std::endl;
830  if (lat_m[lev]) {
831 #ifdef _OPENMP
832 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
833 #endif
834  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
835  {
836  const Box& bx = mfi.tilebox();
837  const Array4<Real>& derdat = mf[lev].array(mfi);
838  const Array4<Real>& data = lat_m[lev]->array(mfi);
839  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
840  derdat(i, j, k, mf_comp) = data(i,j,0);
841  });
842  }
843  } else {
844  mf[lev].setVal(0.0,mf_comp,1,0);
845  }
846  mf_comp++;
847  } // lat_m
848 
849  if (containerHasElement(plot_var_names, "lon_m")) {
850  amrex::Print() << "You are plotting a 3D version of lon_m; we suggest using the 2D plotfile instead" << std::endl;
851  if (lon_m[lev]) {
852 #ifdef _OPENMP
853 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
854 #endif
855  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
856  {
857  const Box& bx = mfi.tilebox();
858  const Array4<Real>& derdat = mf[lev].array(mfi);
859  const Array4<Real>& data = lon_m[lev]->array(mfi);
860  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
861  derdat(i, j, k, mf_comp) = data(i,j,0);
862  });
863  }
864  } else {
865  mf[lev].setVal(0.0,mf_comp,1,0);
866  }
867  mf_comp++;
868  } // lon_m
869 
871  if (containerHasElement(plot_var_names, "u_t_avg")) {
872 #ifdef _OPENMP
873 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
874 #endif
875  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
876  {
877  const Box& bx = mfi.tilebox();
878  const Array4<Real>& derdat = mf[lev].array(mfi);
879  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
880  const Real norm = t_avg_cnt[lev];
881  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
882  {
883  derdat(i ,j ,k, mf_comp) = data(i,j,k,0) / norm;
884  });
885  }
886  mf_comp ++;
887  }
888 
889  if (containerHasElement(plot_var_names, "v_t_avg")) {
890 #ifdef _OPENMP
891 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
892 #endif
893  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
894  {
895  const Box& bx = mfi.tilebox();
896  const Array4<Real>& derdat = mf[lev].array(mfi);
897  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
898  const Real norm = t_avg_cnt[lev];
899  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
900  {
901  derdat(i ,j ,k, mf_comp) = data(i,j,k,1) / norm;
902  });
903  }
904  mf_comp ++;
905  }
906 
907  if (containerHasElement(plot_var_names, "w_t_avg")) {
908 #ifdef _OPENMP
909 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
910 #endif
911  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
912  {
913  const Box& bx = mfi.tilebox();
914  const Array4<Real>& derdat = mf[lev].array(mfi);
915  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
916  const Real norm = t_avg_cnt[lev];
917  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
918  {
919  derdat(i ,j ,k, mf_comp) = data(i,j,k,2) / norm;
920  });
921  }
922  mf_comp ++;
923  }
924 
925  if (containerHasElement(plot_var_names, "umag_t_avg")) {
926 #ifdef _OPENMP
927 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
928 #endif
929  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
930  {
931  const Box& bx = mfi.tilebox();
932  const Array4<Real>& derdat = mf[lev].array(mfi);
933  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
934  const Real norm = t_avg_cnt[lev];
935  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
936  {
937  derdat(i ,j ,k, mf_comp) = data(i,j,k,3) / norm;
938  });
939  }
940  mf_comp ++;
941  }
942  }
943 
944  if (containerHasElement(plot_var_names, "nut")) {
945  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
946  MultiFab cmf(vars_new[lev][Vars::cons], make_alias, 0, 1); // to provide rho only
947 #ifdef _OPENMP
948 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
949 #endif
950  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
951  {
952  const Box& bx = mfi.tilebox();
953  auto prim = dmf[mfi].array();
954  auto const cons = cmf[mfi].const_array();
955  auto const diff = (*eddyDiffs_lev[lev])[mfi].const_array();
956  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
957  {
958  const Real rho = cons(i, j, k, Rho_comp);
959  const Real Kmv = diff(i, j, k, EddyDiff::Mom_v);
960  prim(i,j,k) = Kmv / rho;
961  });
962  }
963 
964  mf_comp++;
965  }
966 
967  if (containerHasElement(plot_var_names, "Kmv")) {
968  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_v,mf_comp,1,0);
969  mf_comp ++;
970  }
971  if (containerHasElement(plot_var_names, "Kmh")) {
972  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_h,mf_comp,1,0);
973  mf_comp ++;
974  }
975  if (containerHasElement(plot_var_names, "Khv")) {
976  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_v,mf_comp,1,0);
977  mf_comp ++;
978  }
979  if (containerHasElement(plot_var_names, "Khh")) {
980  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_h,mf_comp,1,0);
981  mf_comp ++;
982  }
983  if (containerHasElement(plot_var_names, "Lturb")) {
984  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Turb_lengthscale,mf_comp,1,0);
985  mf_comp ++;
986  }
987  if (containerHasElement(plot_var_names, "walldist")) {
988  MultiFab::Copy(mf[lev],*walldist[lev],0,mf_comp,1,0);
989  mf_comp ++;
990  }
991  if (containerHasElement(plot_var_names, "diss")) {
992  MultiFab::Copy(mf[lev],*SFS_diss_lev[lev],0,mf_comp,1,0);
993  mf_comp ++;
994  }
995 
996  // TODO: The size of the q variables can vary with different
997  // moisture models. Therefore, certain components may
998  // reside at different indices. For example, Kessler is
999  // warm but precipitating. This puts qp at index 3.
1000  // However, SAM is cold and precipitating so qp is index 4.
1001  // Need to built an external enum struct or a better pathway.
1002 
1003  // NOTE: Protect against accessing non-existent data
1004  if (use_moisture) {
1005  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
1006 
1007  // Moist density
1008  if(containerHasElement(plot_var_names, "moist_density"))
1009  {
1010  int n_start = RhoQ1_comp; // qv
1011  int n_end = RhoQ2_comp; // qc
1012  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1013  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1014  for (int n_comp(n_start); n_comp <= n_end; ++n_comp) {
1015  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1016  }
1017  mf_comp += 1;
1018  }
1019 
1020  if(containerHasElement(plot_var_names, "qv") && (n_qstate_moist >= 1))
1021  {
1022  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ1_comp, mf_comp, 1, 0);
1023  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1024  mf_comp += 1;
1025  }
1026 
1027  if(containerHasElement(plot_var_names, "qc") && (n_qstate_moist >= 2))
1028  {
1029  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ2_comp, mf_comp, 1, 0);
1030  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1031  mf_comp += 1;
1032  }
1033 
1034  if(containerHasElement(plot_var_names, "qi") && (n_qstate_moist >= 4))
1035  {
1036  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ3_comp, mf_comp, 1, 0);
1037  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1038  mf_comp += 1;
1039  }
1040 
1041  if(containerHasElement(plot_var_names, "qrain") && (n_qstate_moist >= 3))
1042  {
1043  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1044  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start , mf_comp, 1, 0);
1045  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1046  mf_comp += 1;
1047  }
1048 
1049  if(containerHasElement(plot_var_names, "qsnow") && (n_qstate_moist >= 5))
1050  {
1051  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ5_comp, mf_comp, 1, 0);
1052  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1053  mf_comp += 1;
1054  }
1055 
1056  if(containerHasElement(plot_var_names, "qgraup") && (n_qstate_moist >= 6))
1057  {
1058  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ6_comp, mf_comp, 1, 0);
1059  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1060  mf_comp += 1;
1061  }
1062 
1063  // Precipitating + non-precipitating components
1064  //--------------------------------------------------------------------------
1065  if(containerHasElement(plot_var_names, "qt"))
1066  {
1067  int n_start = RhoQ1_comp; // qv
1068  int n_end = n_start + n_qstate_moist;
1069  MultiFab::Copy(mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1070  for (int n_comp(n_start+1); n_comp < n_end; ++n_comp) {
1071  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1072  }
1073  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1074  mf_comp += 1;
1075  }
1076 
1077  // Non-precipitating components
1078  //--------------------------------------------------------------------------
1079  if (containerHasElement(plot_var_names, "qn"))
1080  {
1081  int n_start = RhoQ1_comp; // qv
1082  int n_end = RhoQ2_comp; // qc
1083  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1084  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1085  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1086  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1087  }
1088  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1089  mf_comp += 1;
1090  }
1091 
1092  // Precipitating components
1093  //--------------------------------------------------------------------------
1094  if(containerHasElement(plot_var_names, "qp") && (n_qstate_moist >= 3))
1095  {
1096  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1097  int n_end = ncomp_cons - 1;
1098  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1099  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1100  MultiFab::Add( mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1101  }
1102  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1103  mf_comp += 1;
1104  }
1105 
1106  if (containerHasElement(plot_var_names, "qsat"))
1107  {
1108 #ifdef _OPENMP
1109 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1110 #endif
1111  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1112  {
1113  const Box& bx = mfi.tilebox();
1114  const Array4<Real>& derdat = mf[lev].array(mfi);
1115  const Array4<Real const>& p_arr = pressure.array(mfi);
1116  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1117  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1118  {
1119  Real qv = S_arr(i,j,k,RhoQ1_comp) / S_arr(i,j,k,Rho_comp);
1120  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
1121  Real p = p_arr(i,j,k) * Real(0.01);
1122  erf_qsatw(T, p, derdat(i,j,k,mf_comp));
1123  });
1124  }
1125  mf_comp ++;
1126  }
1127 
1128  if ( (solverChoice.moisture_type == MoistureType::Kessler) ||
1129  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
1130  (solverChoice.moisture_type == MoistureType::SAM_NoIce) )
1131  {
1132  int offset = (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ? 5 : 0;
1133  if (containerHasElement(plot_var_names, "rain_accum"))
1134  {
1135  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1136  mf_comp += 1;
1137  }
1138  }
1139  else if ( (solverChoice.moisture_type == MoistureType::SAM) ||
1140  (solverChoice.moisture_type == MoistureType::Morrison) )
1141  {
1142  int offset = (solverChoice.moisture_type == MoistureType::Morrison) ? 5 : 0;
1143  if (containerHasElement(plot_var_names, "rain_accum"))
1144  {
1145  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1146  mf_comp += 1;
1147  }
1148  if (containerHasElement(plot_var_names, "snow_accum"))
1149  {
1150  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+1]),0,mf_comp,1,0);
1151  mf_comp += 1;
1152  }
1153  if (containerHasElement(plot_var_names, "graup_accum"))
1154  {
1155  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+2]),0,mf_comp,1,0);
1156  mf_comp += 1;
1157  }
1158  }
1159 
1160  if (containerHasElement(plot_var_names, "reflectivity")) {
1161  if (solverChoice.moisture_type == MoistureType::Morrison) {
1162 
1163  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1164  const Box& bx = mfi.tilebox();
1165  const Array4<Real>& derdat = mf[lev].array(mfi);
1166  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1167  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1168 
1169  Real rho = S_arr(i,j,k,Rho_comp);
1170  Real qv = std::max(0.0,S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp));
1171  Real qpr = std::max(0.0,S_arr(i,j,k,RhoQ4_comp)/S_arr(i,j,k,Rho_comp));
1172  Real qps = std::max(0.0,S_arr(i,j,k,RhoQ5_comp)/S_arr(i,j,k,Rho_comp));
1173  Real qpg = std::max(0.0,S_arr(i,j,k,RhoQ6_comp)/S_arr(i,j,k,Rho_comp));
1174 
1175  Real temp = getTgivenRandRTh(S_arr(i,j,k,Rho_comp),
1176  S_arr(i,j,k,RhoTheta_comp),
1177  qv);
1178  derdat(i, j, k, mf_comp) = compute_max_reflectivity_dbz(rho, temp, qpr, qps, qpg,
1179  1, 1, 1, 1) ;
1180  });
1181  }
1182  mf_comp ++;
1183  }
1184  }
1185 
1186  if (solverChoice.moisture_type == MoistureType::Morrison) {
1187  if (containerHasElement(plot_var_names, "max_reflectivity")) {
1188  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1189  const Box& bx = mfi.tilebox();
1190 
1191  const Array4<Real>& derdat = mf[lev].array(mfi);
1192  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1193 
1194  // collapse to i,j box (ignore vertical for now)
1195  Box b2d = bx;
1196  b2d.setSmall(2,0);
1197  b2d.setBig(2,0);
1198 
1199  ParallelFor(b2d, [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept {
1200 
1201  Real max_dbz = -1.0e30;
1202 
1203  // find max reflectivity over k
1204  for (int k = bx.smallEnd(2); k <= bx.bigEnd(2); ++k) {
1205  Real rho = S_arr(i,j,k,Rho_comp);
1206  Real qv = std::max(0.0, S_arr(i,j,k,RhoQ1_comp)/rho);
1207  Real qpr = std::max(0.0, S_arr(i,j,k,RhoQ4_comp)/rho);
1208  Real qps = std::max(0.0, S_arr(i,j,k,RhoQ5_comp)/rho);
1209  Real qpg = std::max(0.0, S_arr(i,j,k,RhoQ6_comp)/rho);
1210 
1211  Real temp = getTgivenRandRTh(rho, S_arr(i,j,k,RhoTheta_comp), qv);
1212 
1213  Real dbz = compute_max_reflectivity_dbz(rho, temp, qpr, qps, qpg,
1214  1, 1, 1, 1);
1215  max_dbz = amrex::max(max_dbz, dbz);
1216  }
1217 
1218  // store max_dbz into *all* levels for this (i,j)
1219  for (int k = bx.smallEnd(2); k <= bx.bigEnd(2); ++k) {
1220  derdat(i, j, k, mf_comp) = max_dbz;
1221  }
1222  });
1223  }
1224  mf_comp++;
1225  }
1226  }
1227  } // use_moisture
1228 
1229  if (containerHasElement(plot_var_names, "terrain_IB_mask"))
1230  {
1231  MultiFab* terrain_blank = terrain_blanking[lev].get();
1232  MultiFab::Copy(mf[lev],*terrain_blank,0,mf_comp,1,0);
1233  mf_comp ++;
1234  }
1235 
1236  if (containerHasElement(plot_var_names, "volfrac")) {
1237  if ( solverChoice.terrain_type == TerrainType::EB ||
1238  solverChoice.terrain_type == TerrainType::ImmersedForcing)
1239  {
1240  MultiFab::Copy(mf[lev], EBFactory(lev).getVolFrac(), 0, mf_comp, 1, 0);
1241  } else {
1242  mf[lev].setVal(1.0, mf_comp, 1, 0);
1243  }
1244  mf_comp += 1;
1245  }
1246 
1247 #ifdef ERF_COMPUTE_ERROR
1248  // Next, check for error in velocities and if desired, output them -- note we output none or all, not just some
1249  if (containerHasElement(plot_var_names, "xvel_err") ||
1250  containerHasElement(plot_var_names, "yvel_err") ||
1251  containerHasElement(plot_var_names, "zvel_err"))
1252  {
1253  //
1254  // Moving terrain ANALYTICAL
1255  //
1256  Real H = geom[lev].ProbHi()[2];
1257  Real Ampl = 0.16;
1258  Real wavelength = 100.;
1259  Real kp = 2. * PI / wavelength;
1260  Real g = CONST_GRAV;
1261  Real omega = std::sqrt(g * kp);
1262  Real omega_t = omega * t_new[lev];
1263 
1264  const auto dx = geom[lev].CellSizeArray();
1265 
1266 #ifdef _OPENMP
1267 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1268 #endif
1269  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1270  {
1271  const Box& bx = mfi.validbox();
1272  Box xbx(bx); xbx.surroundingNodes(0);
1273  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1274  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1275 
1276  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1277 
1278  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1279  {
1280  Real x = i * dx[0];
1281  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1282 
1283  Real z_base = Ampl * std::sin(kp * x - omega_t);
1284  z -= z_base;
1285 
1286  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1287 
1288  xvel_arr(i,j,k) -= -Ampl * omega * fac * std::sin(kp * x - omega_t);
1289  });
1290 
1291  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1292  {
1293  Real x = (i + 0.5) * dx[0];
1294  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1295 
1296  Real z_base = Ampl * std::sin(kp * x - omega_t);
1297  z -= z_base;
1298 
1299  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1300 
1301  zvel_arr(i,j,k) -= Ampl * omega * fac * std::cos(kp * x - omega_t);
1302  });
1303  }
1304 
1305  MultiFab temp_mf(mf[lev].boxArray(), mf[lev].DistributionMap(), AMREX_SPACEDIM, 0);
1306  average_face_to_cellcenter(temp_mf,0,
1307  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
1308 
1309  if (containerHasElement(plot_var_names, "xvel_err")) {
1310  MultiFab::Copy(mf[lev],temp_mf,0,mf_comp,1,0);
1311  mf_comp += 1;
1312  }
1313  if (containerHasElement(plot_var_names, "yvel_err")) {
1314  MultiFab::Copy(mf[lev],temp_mf,1,mf_comp,1,0);
1315  mf_comp += 1;
1316  }
1317  if (containerHasElement(plot_var_names, "zvel_err")) {
1318  MultiFab::Copy(mf[lev],temp_mf,2,mf_comp,1,0);
1319  mf_comp += 1;
1320  }
1321 
1322  // Now restore the velocities to what they were
1323 #ifdef _OPENMP
1324 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1325 #endif
1326  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1327  {
1328  const Box& bx = mfi.validbox();
1329  Box xbx(bx); xbx.surroundingNodes(0);
1330 
1331  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1332  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1333 
1334  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1335 
1336  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1337  {
1338  Real x = i * dx[0];
1339  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1340  Real z_base = Ampl * std::sin(kp * x - omega_t);
1341 
1342  z -= z_base;
1343 
1344  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1345  xvel_arr(i,j,k) += -Ampl * omega * fac * std::sin(kp * x - omega_t);
1346  });
1347  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1348  {
1349  Real x = (i + 0.5) * dx[0];
1350  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1351  Real z_base = Ampl * std::sin(kp * x - omega_t);
1352 
1353  z -= z_base;
1354  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1355 
1356  zvel_arr(i,j,k) += Ampl * omega * fac * std::cos(kp * x - omega_t);
1357  });
1358  }
1359  } // end xvel_err, yvel_err, zvel_err
1360 
1361  if (containerHasElement(plot_var_names, "pp_err"))
1362  {
1363  // Moving terrain ANALYTICAL
1364 #ifdef _OPENMP
1365 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1366 #endif
1367  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1368  {
1369  const Box& bx = mfi.tilebox();
1370  const Array4<Real>& derdat = mf[lev].array(mfi);
1371  const Array4<Real const>& p0_arr = p_hse.const_array(mfi);
1372  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1373 
1374  const auto dx = geom[lev].CellSizeArray();
1375  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1376  const Array4<Real const>& p_arr = pressure.const_array(mfi);
1377  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
1378 
1379  Real H = geom[lev].ProbHi()[2];
1380  Real Ampl = 0.16;
1381  Real wavelength = 100.;
1382  Real kp = 2. * PI / wavelength;
1383  Real g = CONST_GRAV;
1384  Real omega = std::sqrt(g * kp);
1385  Real omega_t = omega * t_new[lev];
1386 
1387  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1388  {
1389  derdat(i, j, k, mf_comp) = p_arr(i,j,k) - p0_arr(i,j,k);
1390 
1391  Real rho_hse = r0_arr(i,j,k);
1392 
1393  Real x = (i + 0.5) * dx[0];
1394  Real z = 0.125 * ( z_nd(i,j,k ) + z_nd(i+1,j,k ) + z_nd(i,j+1,k ) + z_nd(i+1,j+1,k )
1395  +z_nd(i,j,k+1) + z_nd(i+1,j,k+1) + z_nd(i,j+1,k+1) + z_nd(i+1,j+1,k+1) );
1396  Real z_base = Ampl * std::sin(kp * x - omega_t);
1397 
1398  z -= z_base;
1399  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1400  Real pprime_exact = -(Ampl * omega * omega / kp) * fac *
1401  std::sin(kp * x - omega_t) * r0_arr(i,j,k);
1402 
1403  derdat(i,j,k,mf_comp) -= pprime_exact;
1404  });
1405  }
1406  mf_comp += 1;
1407  }
1408 #endif
1409 
1410  if (solverChoice.rad_type != RadiationType::None) {
1411  if (containerHasElement(plot_var_names, "qsrc_sw")) {
1412  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 0, mf_comp, 1, 0);
1413  mf_comp += 1;
1414  }
1415  if (containerHasElement(plot_var_names, "qsrc_lw")) {
1416  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 1, mf_comp, 1, 0);
1417  mf_comp += 1;
1418  }
1419  }
1420 
1421  // *****************************************************************************************
1422  // End of derived variables corresponding to "derived_names" in ERF.H
1423  //
1424  // Particles and microphysics can provide additional outputs, which are handled below.
1425  // *****************************************************************************************
1426 
1427 #ifdef ERF_USE_PARTICLES
1428  const auto& particles_namelist( particleData.getNames() );
1429 
1430  if (containerHasElement(plot_var_names, "tracer_particles_count")) {
1431  if (particles_namelist.size() == 0) {
1432  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1433  temp_dat.setVal(0);
1434  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1435  mf_comp += 1;
1436  } else {
1437  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++) {
1438  if (containerHasElement(plot_var_names, std::string(particles_namelist[i]+"_count"))) {
1439  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1440  temp_dat.setVal(0);
1441  if (particleData.HasSpecies(particles_namelist[i])) {
1442  particleData[particles_namelist[i]]->Increment(temp_dat, lev);
1443  }
1444  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1445  mf_comp += 1;
1446  }
1447  }
1448  }
1449  }
1450 
1451  Vector<std::string> particle_mesh_plot_names(0);
1452  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
1453 
1454  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
1455  std::string plot_var_name(particle_mesh_plot_names[i]);
1456  if (containerHasElement(plot_var_names, plot_var_name) ) {
1457  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1458  temp_dat.setVal(0);
1459  particleData.GetMeshPlotVar(plot_var_name, temp_dat, lev);
1460  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1461  mf_comp += 1;
1462  }
1463  }
1464 #endif
1465 
1466  {
1467  Vector<std::string> microphysics_plot_names;
1468  micro->GetPlotVarNames(microphysics_plot_names);
1469  for (auto& plot_name : microphysics_plot_names) {
1470  if (containerHasElement(plot_var_names, plot_name)) {
1471  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1472  temp_dat.setVal(0);
1473  micro->GetPlotVar(plot_name, temp_dat, lev);
1474  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1475  mf_comp += 1;
1476  }
1477  }
1478  }
1479 
1480 
1481  }
1482 
1483  if (solverChoice.terrain_type == TerrainType::EB)
1484  {
1485  for (int lev = 0; lev <= finest_level; ++lev) {
1486  EB_set_covered(mf[lev], 0.0);
1487  }
1488  }
1489 
1490  // Fill terrain distortion MF (nu_nd)
1491  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1492  for (int lev(0); lev <= finest_level; ++lev) {
1493  MultiFab::Copy(mf_nd[lev],*z_phys_nd[lev],0,2,1,0);
1494  Real dz = Geom()[lev].CellSizeArray()[2];
1495  for (MFIter mfi(mf_nd[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1496  const Box& bx = mfi.tilebox();
1497  Array4<Real> mf_arr = mf_nd[lev].array(mfi);
1498  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1499  {
1500  mf_arr(i,j,k,2) -= k * dz;
1501  });
1502  }
1503  }
1504  }
1505 
1506  std::string plotfilename;
1507  std::string plotfilenameU;
1508  std::string plotfilenameV;
1509  std::string plotfilenameW;
1510 
1511  if (which == 1) {
1513  const std::string dt_format = "%Y-%m-%d_%H:%M:%S"; // ISO 8601 standard
1514  plotfilename = plot3d_file_1+"_"+getTimestamp(start_time+t_new[0], dt_format,false);
1515  } else {
1516  plotfilename = Concatenate(plot3d_file_1, istep[0], file_name_digits);
1517  }
1518  plotfilenameU = Concatenate(plot3d_file_1+"U", istep[0], file_name_digits);
1519  plotfilenameV = Concatenate(plot3d_file_1+"V", istep[0], file_name_digits);
1520  plotfilenameW = Concatenate(plot3d_file_1+"W", istep[0], file_name_digits);
1521  } else if (which == 2) {
1523  const std::string dt_format = "%Y-%m-%d_%H:%M:%S"; // ISO 8601 standard
1524  plotfilename = plot3d_file_2+"_"+getTimestamp(start_time+t_new[0], dt_format,false);
1525  } else {
1526  plotfilename = Concatenate(plot3d_file_2, istep[0], file_name_digits);
1527  }
1528  plotfilenameU = Concatenate(plot3d_file_2+"U", istep[0], file_name_digits);
1529  plotfilenameV = Concatenate(plot3d_file_2+"V", istep[0], file_name_digits);
1530  plotfilenameW = Concatenate(plot3d_file_2+"W", istep[0], file_name_digits);
1531  }
1532 
1533  // LSM writes it's own data
1534  if (which==1 && plot_lsm) {
1535  lsm.Plot_Lsm_Data(t_new[0], istep, refRatio());
1536  }
1537 
1538 #ifdef ERF_USE_RRTMGP
1539  /*
1540  // write additional RRTMGP data
1541  // TODO: currently single level only
1542  if (which==1 && plot_rad) {
1543  rad[0]->writePlotfile(plot_file_1, t_new[0], istep[0]);
1544  }
1545  */
1546 #endif
1547 
1548  // Single level
1549  if (finest_level == 0)
1550  {
1551  if (plotfile_type == PlotFileType::Amrex)
1552  {
1553  Print() << "Writing native 3D plotfile " << plotfilename << "\n";
1554  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1555  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1556  GetVecOfConstPtrs(mf),
1557  GetVecOfConstPtrs(mf_nd),
1558  varnames,
1559  Geom(), t_new[0], istep, refRatio());
1560  } else {
1561  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1562  GetVecOfConstPtrs(mf),
1563  varnames,
1564  Geom(), t_new[0], istep, refRatio());
1565  }
1566  writeJobInfo(plotfilename);
1567 
1568  if (m_plot_face_vels) {
1569  Print() << "Writing face velocities" << std::endl;
1570  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1571  GetVecOfConstPtrs(mf_u),
1572  {"x_velocity_stag"},
1573  Geom(), t_new[0], istep, refRatio());
1574  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1575  GetVecOfConstPtrs(mf_v),
1576  {"y_velocity_stag"},
1577  Geom(), t_new[0], istep, refRatio());
1578  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1579  GetVecOfConstPtrs(mf_w),
1580  {"z_velocity_stag"},
1581  Geom(), t_new[0], istep, refRatio());
1582  }
1583 
1584 #ifdef ERF_USE_PARTICLES
1585  particleData.writePlotFile(plotfilename);
1586 #endif
1587 #ifdef ERF_USE_NETCDF
1588  } else if (plotfile_type == PlotFileType::Netcdf) {
1589  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1590  int lev = 0;
1591  int l_which = 0;
1592  const Real* p_lo = geom[lev].ProbLo();
1593  const Real* p_hi = geom[lev].ProbHi();
1594  const auto dx = geom[lev].CellSize();
1595  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1596  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1597  geom[lev].Domain(), t_new[0], start_bdy_time);
1598 #endif
1599  } else {
1600  // Here we assume the plotfile_type is PlotFileType::None
1601  Print() << "Writing no 3D plotfile since plotfile_type is none" << std::endl;
1602  }
1603 
1604  } else { // Multilevel
1605 
1606  if (plotfile_type == PlotFileType::Amrex) {
1607 
1608  int lev0 = 0;
1609  int desired_ratio = std::max(std::max(ref_ratio[lev0][0],ref_ratio[lev0][1]),ref_ratio[lev0][2]);
1610  bool any_ratio_one = ( ( (ref_ratio[lev0][0] == 1) || (ref_ratio[lev0][1] == 1) ) ||
1611  (ref_ratio[lev0][2] == 1) );
1612  for (int lev = 1; lev < finest_level; lev++) {
1613  any_ratio_one = any_ratio_one ||
1614  ( ( (ref_ratio[lev][0] == 1) || (ref_ratio[lev][1] == 1) ) ||
1615  (ref_ratio[lev][2] == 1) );
1616  }
1617 
1618  if (any_ratio_one && m_expand_plotvars_to_unif_rr)
1619  {
1620  Vector<IntVect> r2(finest_level);
1621  Vector<Geometry> g2(finest_level+1);
1622  Vector<MultiFab> mf2(finest_level+1);
1623 
1624  mf2[0].define(grids[0], dmap[0], ncomp_mf, 0);
1625 
1626  // Copy level 0 as is
1627  MultiFab::Copy(mf2[0],mf[0],0,0,mf[0].nComp(),0);
1628 
1629  // Define a new multi-level array of Geometry's so that we pass the new "domain" at lev > 0
1630  Array<int,AMREX_SPACEDIM> periodicity =
1631  {Geom()[lev0].isPeriodic(0),Geom()[lev0].isPeriodic(1),Geom()[lev0].isPeriodic(2)};
1632  g2[lev0].define(Geom()[lev0].Domain(),&(Geom()[lev0].ProbDomain()),0,periodicity.data());
1633 
1634  r2[0] = IntVect(desired_ratio/ref_ratio[lev0][0],
1635  desired_ratio/ref_ratio[lev0][1],
1636  desired_ratio/ref_ratio[lev0][2]);
1637 
1638  for (int lev = 1; lev <= finest_level; ++lev) {
1639  if (lev > 1) {
1640  r2[lev-1][0] = r2[lev-2][0] * desired_ratio / ref_ratio[lev-1][0];
1641  r2[lev-1][1] = r2[lev-2][1] * desired_ratio / ref_ratio[lev-1][1];
1642  r2[lev-1][2] = r2[lev-2][2] * desired_ratio / ref_ratio[lev-1][2];
1643  }
1644 
1645  mf2[lev].define(refine(grids[lev],r2[lev-1]), dmap[lev], ncomp_mf, 0);
1646 
1647  // Set the new problem domain
1648  Box d2(Geom()[lev].Domain());
1649  d2.refine(r2[lev-1]);
1650 
1651  g2[lev].define(d2,&(Geom()[lev].ProbDomain()),0,periodicity.data());
1652  }
1653 
1654  //
1655  // We need to make a temporary that is the size of ncomp_mf
1656  // in order to not get an out of bounds error
1657  // even though the values will not be used
1658  //
1659  Vector<BCRec> temp_domain_bcs_type;
1660  temp_domain_bcs_type.resize(ncomp_mf);
1661 
1662  //
1663  // Do piecewise constant interpolation of mf into mf2
1664  //
1665  for (int lev = 1; lev <= finest_level; ++lev) {
1666  Interpolater* mapper_c = &pc_interp;
1667  InterpFromCoarseLevel(mf2[lev], t_new[lev], mf[lev],
1668  0, 0, ncomp_mf,
1669  geom[lev], g2[lev],
1671  r2[lev-1], mapper_c, temp_domain_bcs_type, 0);
1672  }
1673 
1674  // Define an effective ref_ratio which is isotropic to be passed into WriteMultiLevelPlotfile
1675  Vector<IntVect> rr(finest_level);
1676  for (int lev = 0; lev < finest_level; ++lev) {
1677  rr[lev] = IntVect(desired_ratio);
1678  }
1679 
1680  Print() << "Writing 3D plotfile " << plotfilename << "\n";
1681  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1682  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1683  GetVecOfConstPtrs(mf2),
1684  GetVecOfConstPtrs(mf_nd),
1685  varnames,
1686  g2, t_new[0], istep, rr);
1687  } else {
1688  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1689  GetVecOfConstPtrs(mf2), varnames,
1690  g2, t_new[0], istep, rr);
1691  }
1692 
1693  } else {
1694  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1695  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1696  GetVecOfConstPtrs(mf),
1697  GetVecOfConstPtrs(mf_nd),
1698  varnames,
1699  geom, t_new[0], istep, ref_ratio);
1700  } else {
1701  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1702  GetVecOfConstPtrs(mf), varnames,
1703  geom, t_new[0], istep, ref_ratio);
1704  }
1705  if (m_plot_face_vels) {
1706  Print() << "Writing face velocities" << std::endl;
1707  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1708  GetVecOfConstPtrs(mf_u),
1709  {"x_velocity_stag"},
1710  geom, t_new[0], istep, ref_ratio);
1711  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1712  GetVecOfConstPtrs(mf_v),
1713  {"y_velocity_stag"},
1714  geom, t_new[0], istep, ref_ratio);
1715  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1716  GetVecOfConstPtrs(mf_w),
1717  {"z_velocity_stag"},
1718  geom, t_new[0], istep, ref_ratio);
1719  }
1720  } // ref_ratio test
1721 
1722  writeJobInfo(plotfilename);
1723 
1724 #ifdef ERF_USE_PARTICLES
1725  particleData.writePlotFile(plotfilename);
1726 #endif
1727 
1728 #ifdef ERF_USE_NETCDF
1729  } else if (plotfile_type == PlotFileType::Netcdf) {
1730  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1731  for (int lev = 0; lev <= finest_level; ++lev) {
1732  for (int which_box = 0; which_box < num_boxes_at_level[lev]; which_box++) {
1733  Box bounding_region = (lev == 0) ? geom[lev].Domain() : boxes_at_level[lev][which_box];
1734  const Real* p_lo = geom[lev].ProbLo();
1735  const Real* p_hi = geom[lev].ProbHi();
1736  const auto dx = geom[lev].CellSizeArray();
1737  writeNCPlotFile(lev, which_box, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1738  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1739  bounding_region, t_new[0], start_bdy_time);
1740  }
1741  }
1742 #endif
1743  }
1744  } // end multi-level
1745 
1746  if (verbose > 0)
1747  {
1748  auto dPlotTime = amrex::second() - dPlotTime0;
1749  ParallelDescriptor::ReduceRealMax(dPlotTime,ParallelDescriptor::IOProcessorNumber());
1750  amrex::Print() << "3DPlotfile write time = " << dPlotTime << " seconds." << '\n';
1751  }
1752 }
constexpr amrex::Real PI
Definition: ERF_Constants.H:6
constexpr amrex::Real Cp_l
Definition: ERF_Constants.H:14
#define RhoQ4_comp
Definition: ERF_IndexDefines.H:45
void compute_gradp(const MultiFab &p, const Geometry &geom, const MultiFab &z_phys_nd, const MultiFab &z_phys_cc, Vector< std::unique_ptr< MultiFab >> &mapfac, const eb_ &ebfact, Vector< MultiFab > &gradp, const SolverChoice &solverChoice)
Definition: ERF_MakeGradP.cpp:81
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real erf_esatw(amrex::Real t)
Definition: ERF_MicrophysicsUtils.H:68
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void erf_qsatw(amrex::Real t, amrex::Real p, amrex::Real &qsatw)
Definition: ERF_MicrophysicsUtils.H:166
PhysBCFunctNoOp null_bc_for_fill
Definition: ERF_Plotfile.cpp:9
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real compute_max_reflectivity_dbz(amrex::Real rho_air, amrex::Real tmk, amrex::Real qra, amrex::Real qsn, amrex::Real qgr, int in0r, int in0s, int in0g, int iliqskin)
Definition: ERF_StormDiagnostics.H:13
void WriteMultiLevelPlotfileWithTerrain(const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
Definition: ERF_Plotfile.cpp:1755
void Plot_Lsm_Data(amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &ref_ratio)
Definition: ERF_LandSurface.H:119
@ Turb_lengthscale
Definition: ERF_IndexDefines.H:180
@ Mom_h
Definition: ERF_IndexDefines.H:170
@ Theta_h
Definition: ERF_IndexDefines.H:171
@ qpg
Definition: ERF_Morrison.H:41
@ qps
Definition: ERF_Morrison.H:40
@ qpr
Definition: ERF_Morrison.H:39
void erf_dervortx(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:200
void erf_dervorty(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:228
void erf_dernull(const Box &, FArrayBox &, int, int, const FArrayBox &, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:39
void erf_dertemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:91
void erf_derKE(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:186
void erf_dermoisttemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:113
void erf_dersoundspeed(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:58
real(c_double), parameter g
Definition: ERF_module_model_constants.F90:19
Here is the call graph for this function:

◆ write_1D_profiles()

void ERF::write_1D_profiles ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Parameters
timeCurrent time
18 {
19  BL_PROFILE("ERF::write_1D_profiles()");
20 
21  if (NumDataLogs() > 1)
22  {
23  // Define the 1d arrays we will need
24  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
25  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
26  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
27  Gpu::HostVector<Real> h_avg_wthv;
28  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
29  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
30  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
31  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
32  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
33  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
34 
35  if (NumDataLogs() > 1) {
37  h_avg_u, h_avg_v, h_avg_w,
38  h_avg_rho, h_avg_th, h_avg_ksgs,
39  h_avg_Kmv, h_avg_Khv,
40  h_avg_qv, h_avg_qc, h_avg_qr,
41  h_avg_wqv, h_avg_wqc, h_avg_wqr,
42  h_avg_qi, h_avg_qs, h_avg_qg,
43  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
44  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
45  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
46  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
47  h_avg_wthv);
48  }
49 
50  if (NumDataLogs() > 3 && time > 0.) {
51  derive_stress_profiles(h_avg_tau11, h_avg_tau12, h_avg_tau13,
52  h_avg_tau22, h_avg_tau23, h_avg_tau33,
53  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
54  h_avg_sgsdiss);
55  }
56 
57  int hu_size = h_avg_u.size();
58 
59  auto const& dx = geom[0].CellSizeArray();
60  if (ParallelDescriptor::IOProcessor()) {
61  if (NumDataLogs() > 1) {
62  std::ostream& data_log1 = DataLog(1);
63  if (data_log1.good()) {
64  // Write the quantities at this time
65  for (int k = 0; k < hu_size; k++) {
66  Real z;
67  if (zlevels_stag[0].size() > 1) {
68  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
69  } else {
70  z = (k + 0.5)* dx[2];
71  }
72  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
73  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
74  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
75  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
76  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
77  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
78  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
79  << std::endl;
80  } // loop over z
81  } // if good
82  } // NumDataLogs
83 
84  if (NumDataLogs() > 2) {
85  std::ostream& data_log2 = DataLog(2);
86  if (data_log2.good()) {
87  // Write the perturbational quantities at this time
88  for (int k = 0; k < hu_size; k++) {
89  Real z;
90  if (zlevels_stag[0].size() > 1) {
91  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
92  } else {
93  z = (k + 0.5)* dx[2];
94  }
95  Real thv = h_avg_th[k] * (1 + 0.61*h_avg_qv[k] - h_avg_qc[k] - h_avg_qr[k]);
96  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
97  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
98  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " "
99  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " "
100  << h_avg_uw[k] - h_avg_u[k]*h_avg_w[k] << " "
101  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " "
102  << h_avg_vw[k] - h_avg_v[k]*h_avg_w[k] << " "
103  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " "
104  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " "
105  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " "
106  << h_avg_wth[k] - h_avg_w[k]*h_avg_th[k] << " "
107  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " "
108  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
109  // - <u_i u_i> * <u_j>
110  // - 2*<u_i> * <u_i u_j>
111  // + 2*<u_i>*<u_i> * <u_j>
112  << h_avg_uiuiu[k]
113  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_u[k]
114  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + h_avg_w[k]*h_avg_uw[k])
115  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_u[k]
116  << " " // (u'_i u'_i)u'
117  << h_avg_uiuiv[k]
118  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_v[k]
119  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + h_avg_w[k]*h_avg_vw[k])
120  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_v[k]
121  << " " // (u'_i u'_i)v'
122  << h_avg_uiuiw[k]
123  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_w[k]
124  - 2*(h_avg_u[k]*h_avg_uw[k] + h_avg_v[k]*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
125  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
126  << " " // (u'_i u'_i)w'
127  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " "
128  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " "
129  << h_avg_pw[k] - h_avg_p[k]*h_avg_w[k] << " "
130  << h_avg_wqv[k] - h_avg_qv[k]*h_avg_w[k] << " "
131  << h_avg_wqc[k] - h_avg_qc[k]*h_avg_w[k] << " "
132  << h_avg_wqr[k] - h_avg_qr[k]*h_avg_w[k] << " "
133  << h_avg_wthv[k] - h_avg_w[k]*thv
134  << std::endl;
135  } // loop over z
136  } // if good
137  } // NumDataLogs
138 
139  if (NumDataLogs() > 3 && time > 0.) {
140  std::ostream& data_log3 = DataLog(3);
141  if (data_log3.good()) {
142  // Write the average stresses
143  for (int k = 0; k < hu_size; k++) {
144  Real z;
145  if (zlevels_stag[0].size() > 1) {
146  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
147  } else {
148  z = (k + 0.5)* dx[2];
149  }
150  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
151  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
152  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
153  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
154  << h_avg_sgshfx[k] << " "
155  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
156  << h_avg_sgsdiss[k]
157  << std::endl;
158  } // loop over z
159  } // if good
160  } // if (NumDataLogs() > 3)
161  } // if IOProcessor
162  } // if (NumDataLogs() > 1)
163 }
void derive_diag_profiles(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles.cpp:190
void derive_stress_profiles(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles.cpp:475

◆ write_1D_profiles_stag()

void ERF::write_1D_profiles_stag ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Quantities are output at their native grid locations. Therefore, w and associated flux quantities <(•)'w'>, tau13, and tau23 (where '•' includes u, v, p, theta, ...) will be output at staggered heights (i.e., coincident with z faces) rather than cell-center heights to avoid performing additional averaging. Unstaggered (i.e., cell-centered) quantities are output alongside staggered quantities at the lower cell faces in the log file; these quantities will have a zero value at the big end, corresponding to k=Nz+1.

The structure of file should follow ERF_Write1DProfiles.cpp

Parameters
timeCurrent time
26 {
27  BL_PROFILE("ERF::write_1D_profiles()");
28 
29  if (NumDataLogs() > 1)
30  {
31  // Define the 1d arrays we will need
32  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
33  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
34  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
35  Gpu::HostVector<Real> h_avg_wthv;
36  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
37  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
38  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
39  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
40  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
41  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
42 
43  if (NumDataLogs() > 1) {
45  h_avg_u, h_avg_v, h_avg_w,
46  h_avg_rho, h_avg_th, h_avg_ksgs,
47  h_avg_Kmv, h_avg_Khv,
48  h_avg_qv, h_avg_qc, h_avg_qr,
49  h_avg_wqv, h_avg_wqc, h_avg_wqr,
50  h_avg_qi, h_avg_qs, h_avg_qg,
51  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
52  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
53  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
54  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
55  h_avg_wthv);
56  }
57 
58  if (NumDataLogs() > 3 && time > 0.) {
59  derive_stress_profiles_stag(h_avg_tau11, h_avg_tau12, h_avg_tau13,
60  h_avg_tau22, h_avg_tau23, h_avg_tau33,
61  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
62  h_avg_sgsdiss);
63  }
64 
65  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
66 
67  auto const& dx = geom[0].CellSizeArray();
68  if (ParallelDescriptor::IOProcessor()) {
69  if (NumDataLogs() > 1) {
70  std::ostream& data_log1 = DataLog(1);
71  if (data_log1.good()) {
72  // Write the quantities at this time
73  for (int k = 0; k < unstag_size; k++) {
74  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
75  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
76  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
77  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
78  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
79  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
80  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
81  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
82  << std::endl;
83  } // loop over z
84  // Write top face values
85  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
86  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
87  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
88  << 0 << " " << 0 << " " << h_avg_w[unstag_size] << " "
89  << 0 << " " << 0 << " " << 0 << " " // rho, theta, ksgs
90  << 0 << " " << 0 << " " // Kmv, Khv
91  << 0 << " " << 0 << " " << 0 << " " // qv, qc, qr
92  << 0 << " " << 0 << " " << 0 // qi, qs, qg
93  << std::endl;
94  } // if good
95  } // NumDataLogs
96 
97  if (NumDataLogs() > 2) {
98  std::ostream& data_log2 = DataLog(2);
99  if (data_log2.good()) {
100  // Write the perturbational quantities at this time
101  // For surface values (k=0), assume w = uw = vw = ww = 0
102  Real w_cc = h_avg_w[1] / 2; // w at first cell center
103  Real uw_cc = h_avg_uw[1] / 2; // u*w at first cell center
104  Real vw_cc = h_avg_vw[1] / 2; // v*w at first cell center
105  Real ww_cc = h_avg_ww[1] / 2; // w*w at first cell center
106  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
107  << std::setw(datwidth) << std::setprecision(datprecision) << 0 << " "
108  << h_avg_uu[0] - h_avg_u[0]*h_avg_u[0] << " " // u'u'
109  << h_avg_uv[0] - h_avg_u[0]*h_avg_v[0] << " " // u'v'
110  << 0 << " " // u'w'
111  << h_avg_vv[0] - h_avg_v[0]*h_avg_v[0] << " " // v'v'
112  << 0 << " " // v'w'
113  << 0 << " " // w'w'
114  << h_avg_uth[0] - h_avg_u[0]*h_avg_th[0] << " " // u'th'
115  << h_avg_vth[0] - h_avg_v[0]*h_avg_th[0] << " " // v'th'
116  << 0 << " " // w'th'
117  << h_avg_thth[0] - h_avg_th[0]*h_avg_th[0] << " " // th'th'
118  << h_avg_uiuiu[0]
119  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_u[0]
120  - 2*(h_avg_u[0]*h_avg_uu[0] + h_avg_v[0]*h_avg_uv[0] + w_cc*uw_cc)
121  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_u[0]
122  << " " // (u'_i u'_i)u'
123  << h_avg_uiuiv[0]
124  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_v[0]
125  - 2*(h_avg_u[0]*h_avg_uv[0] + h_avg_v[0]*h_avg_vv[0] + w_cc*vw_cc)
126  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_v[0]
127  << " " // (u'_i u'_i)v'
128  << 0 << " " // (u'_i u'_i)w'
129  << h_avg_pu[0] - h_avg_p[0]*h_avg_u[0] << " " // p'u'
130  << h_avg_pv[0] - h_avg_p[0]*h_avg_v[0] << " " // p'v'
131  << 0 << " " // p'w'
132  << 0 << " " // qv'w'
133  << 0 << " " // qc'w'
134  << 0 << " " // qr'w'
135  << 0 // thv'w'
136  << std::endl;
137 
138  // For internal values, interpolate scalar quantities to faces
139  for (int k = 1; k < unstag_size; k++) {
140  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
141  Real uface = 0.5*(h_avg_u[k] + h_avg_u[k-1]);
142  Real vface = 0.5*(h_avg_v[k] + h_avg_v[k-1]);
143  Real thface = 0.5*(h_avg_th[k] + h_avg_th[k-1]);
144  Real pface = 0.5*(h_avg_p[k] + h_avg_p[k-1]);
145  Real qvface = 0.5*(h_avg_qv[k] + h_avg_qv[k-1]);
146  Real qcface = 0.5*(h_avg_qc[k] + h_avg_qc[k-1]);
147  Real qrface = 0.5*(h_avg_qr[k] + h_avg_qr[k-1]);
148  Real uuface = 0.5*(h_avg_uu[k] + h_avg_uu[k-1]);
149  Real vvface = 0.5*(h_avg_vv[k] + h_avg_vv[k-1]);
150  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
151  w_cc = 0.5*(h_avg_w[k-1] + h_avg_w[k]);
152  uw_cc = 0.5*(h_avg_uw[k-1] + h_avg_uw[k]);
153  vw_cc = 0.5*(h_avg_vw[k-1] + h_avg_vw[k]);
154  ww_cc = 0.5*(h_avg_ww[k-1] + h_avg_ww[k]);
155  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
156  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
157  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " " // u'u'
158  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " " // u'v'
159  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
160  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " " // v'v'
161  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
162  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
163  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " " // u'th'
164  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " " // v'th'
165  << h_avg_wth[k] - h_avg_w[k]*thface << " " // w'th'
166  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " " // th'th'
167  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
168  // - <u_i u_i> * <u_j>
169  // - 2*<u_i> * <u_i u_j>
170  // + 2*<u_i>*<u_i> * <u_j>
171  << h_avg_uiuiu[k]
172  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_u[k]
173  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + w_cc*uw_cc)
174  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_u[k]
175  << " " // cell-centered (u'_i u'_i)u'
176  << h_avg_uiuiv[k]
177  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_v[k]
178  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + w_cc*vw_cc)
179  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_v[k]
180  << " " // cell-centered (u'_i u'_i)v'
181  << h_avg_uiuiw[k]
182  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
183  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
184  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
185  << " " // face-centered (u'_i u'_i)w'
186  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " " // cell-centered p'u'
187  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " " // cell-centered p'v'
188  << h_avg_pw[k] - pface*h_avg_w[k] << " " // face-centered p'w'
189  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
190  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
191  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
192  << h_avg_wthv[k] - thvface*h_avg_w[k]
193  << std::endl;
194  } // loop over z
195 
196  // Write top face values, extrapolating scalar quantities
197  const int k = unstag_size;
198  Real uface = 1.5*h_avg_u[k-1] - 0.5*h_avg_u[k-2];
199  Real vface = 1.5*h_avg_v[k-1] - 0.5*h_avg_v[k-2];
200  Real thface = 1.5*h_avg_th[k-1] - 0.5*h_avg_th[k-2];
201  Real pface = 1.5*h_avg_p[k-1] - 0.5*h_avg_p[k-2];
202  Real qvface = 1.5*h_avg_qv[k-1] - 0.5*h_avg_qv[k-2];
203  Real qcface = 1.5*h_avg_qc[k-1] - 0.5*h_avg_qc[k-2];
204  Real qrface = 1.5*h_avg_qr[k-1] - 0.5*h_avg_qr[k-2];
205  Real uuface = 1.5*h_avg_uu[k-1] - 0.5*h_avg_uu[k-2];
206  Real vvface = 1.5*h_avg_vv[k-1] - 0.5*h_avg_vv[k-2];
207  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
208  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
209  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
210  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
211  << 0 << " " // u'u'
212  << 0 << " " // u'v'
213  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
214  << 0 << " " // v'v'
215  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
216  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
217  << 0 << " " // u'th'
218  << 0 << " " // v'th'
219  << h_avg_wth[k] - thface*h_avg_w[k] << " " // w'th'
220  << 0 << " " // th'th'
221  << 0 << " " // (u'_i u'_i)u'
222  << 0 << " " // (u'_i u'_i)v'
223  << h_avg_uiuiw[k]
224  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
225  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
226  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
227  << " " // (u'_i u'_i)w'
228  << 0 << " " // pu'
229  << 0 << " " // pv'
230  << h_avg_pw[k] - pface*h_avg_w[k] << " " // pw'
231  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
232  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
233  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
234  << h_avg_wthv[k] - thvface*h_avg_w[k]
235  << std::endl;
236  } // if good
237  } // NumDataLogs
238 
239  if (NumDataLogs() > 3 && time > 0.) {
240  std::ostream& data_log3 = DataLog(3);
241  if (data_log3.good()) {
242  // Write the average stresses
243  for (int k = 0; k < unstag_size; k++) {
244  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
245  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
246  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
247  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
248  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
249  << h_avg_sgshfx[k] << " "
250  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
251  << h_avg_sgsdiss[k]
252  << std::endl;
253  } // loop over z
254  // Write top face values
255  Real NANval = 0.0;
256  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
257  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
258  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
259  << NANval << " " << NANval << " " << h_avg_tau13[unstag_size] << " "
260  << NANval << " " << h_avg_tau23[unstag_size] << " " << NANval << " "
261  << h_avg_sgshfx[unstag_size] << " "
262  << h_avg_sgsq1fx[unstag_size] << " " << h_avg_sgsq2fx[unstag_size] << " "
263  << NANval
264  << std::endl;
265  } // if good
266  } // if (NumDataLogs() > 3)
267  } // if IOProcessor
268  } // if (NumDataLogs() > 1)
269 }
void derive_diag_profiles_stag(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles_stag.cpp:296
void derive_stress_profiles_stag(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles_stag.cpp:605

◆ writeBuildInfo()

void ERF::writeBuildInfo ( std::ostream &  os)
static
145 {
146  std::string PrettyLine = std::string(78, '=') + "\n";
147  std::string OtherLine = std::string(78, '-') + "\n";
148  std::string SkipSpace = std::string(8, ' ');
149 
150  // build information
151  os << PrettyLine;
152  os << " ERF Build Information\n";
153  os << PrettyLine;
154 
155  os << "build date: " << buildInfoGetBuildDate() << "\n";
156  os << "build machine: " << buildInfoGetBuildMachine() << "\n";
157  os << "build dir: " << buildInfoGetBuildDir() << "\n";
158  os << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
159 
160  os << "\n";
161 
162  os << "COMP: " << buildInfoGetComp() << "\n";
163  os << "COMP version: " << buildInfoGetCompVersion() << "\n";
164 
165  os << "C++ compiler: " << buildInfoGetCXXName() << "\n";
166  os << "C++ flags: " << buildInfoGetCXXFlags() << "\n";
167 
168  os << "\n";
169 
170  os << "Link flags: " << buildInfoGetLinkFlags() << "\n";
171  os << "Libraries: " << buildInfoGetLibraries() << "\n";
172 
173  os << "\n";
174 
175  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
176  os << buildInfoGetModuleName(n) << ": "
177  << buildInfoGetModuleVal(n) << "\n";
178  }
179 
180  os << "\n";
181  const char* githash1 = buildInfoGetGitHash(1);
182  const char* githash2 = buildInfoGetGitHash(2);
183  if (strlen(githash1) > 0) {
184  os << "ERF git hash: " << githash1 << "\n";
185  }
186  if (strlen(githash2) > 0) {
187  os << "AMReX git hash: " << githash2 << "\n";
188  }
189 
190  const char* buildgithash = buildInfoGetBuildGitHash();
191  const char* buildgitname = buildInfoGetBuildGitName();
192  if (strlen(buildgithash) > 0) {
193  os << buildgitname << " git hash: " << buildgithash << "\n";
194  }
195 
196  os << "\n";
197  os << " ERF Compile time variables: \n";
198 
199  os << "\n";
200  os << " ERF Defines: \n";
201 #ifdef _OPENMP
202  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "ON"
203  << std::endl;
204 #else
205  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "OFF"
206  << std::endl;
207 #endif
208 
209 #ifdef MPI_VERSION
210  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
211  << MPI_VERSION << std::endl;
212 #else
213  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
214  << "UNDEFINED" << std::endl;
215 #endif
216 
217 #ifdef MPI_SUBVERSION
218  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
219  << MPI_SUBVERSION << std::endl;
220 #else
221  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
222  << "UNDEFINED" << std::endl;
223 #endif
224 
225  os << "\n\n";
226 }

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ WriteCheckpointFile()

void ERF::WriteCheckpointFile ( ) const

ERF function for writing a checkpoint file.

27 {
28  auto dCheckTime0 = amrex::second();
29 
30  // chk00010 write a checkpoint file with this root directory
31  // chk00010/Header this contains information you need to save (e.g., finest_level, t_new, etc.) and also
32  // the BoxArrays at each level
33  // chk00010/Level_0/
34  // chk00010/Level_1/
35  // etc. these subdirectories will hold the MultiFab data at each level of refinement
36 
37  // checkpoint file name, e.g., chk00010
38  const std::string& checkpointname = Concatenate(check_file,istep[0],file_name_digits);
39 
40  Print() << "Writing native checkpoint " << checkpointname << "\n";
41 
42  const int nlevels = finest_level+1;
43 
44  // ---- prebuild a hierarchy of directories
45  // ---- dirName is built first. if dirName exists, it is renamed. then build
46  // ---- dirName/subDirPrefix_0 .. dirName/subDirPrefix_nlevels-1
47  // ---- if callBarrier is true, call ParallelDescriptor::Barrier()
48  // ---- after all directories are built
49  // ---- ParallelDescriptor::IOProcessor() creates the directories
50  PreBuildDirectorHierarchy(checkpointname, "Level_", nlevels, true);
51 
52  int ncomp_cons = vars_new[0][Vars::cons].nComp();
53 
54  // write Header file
55  if (ParallelDescriptor::IOProcessor()) {
56 
57  std::string HeaderFileName(checkpointname + "/Header");
58  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
59  std::ofstream HeaderFile;
60  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
61  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
62  std::ofstream::trunc |
63  std::ofstream::binary);
64  if(! HeaderFile.good()) {
65  FileOpenFailed(HeaderFileName);
66  }
67 
68  HeaderFile.precision(17);
69 
70  // write out title line
71  HeaderFile << "Checkpoint file for ERF\n";
72 
73  // write out finest_level
74  HeaderFile << finest_level << "\n";
75 
76  // write the number of components
77  // for each variable we store
78 
79  // conservative, cell-centered vars
80  HeaderFile << ncomp_cons << "\n";
81 
82  // x-velocity on faces
83  HeaderFile << 1 << "\n";
84 
85  // y-velocity on faces
86  HeaderFile << 1 << "\n";
87 
88  // z-velocity on faces
89  HeaderFile << 1 << "\n";
90 
91  // write out array of istep
92  for (int i = 0; i < istep.size(); ++i) {
93  HeaderFile << istep[i] << " ";
94  }
95  HeaderFile << "\n";
96 
97  // write out array of dt
98  for (int i = 0; i < dt.size(); ++i) {
99  HeaderFile << dt[i] << " ";
100  }
101  HeaderFile << "\n";
102 
103  // write out array of t_new
104  for (int i = 0; i < t_new.size(); ++i) {
105  HeaderFile << t_new[i] << " ";
106  }
107  HeaderFile << "\n";
108 
109  // write the BoxArray at each level
110  for (int lev = 0; lev <= finest_level; ++lev) {
111  boxArray(lev).writeOn(HeaderFile);
112  HeaderFile << '\n';
113  }
114 
115  // Write separate file that tells how many components we have of the base state
116  std::string BaseStateFileName(checkpointname + "/num_base_state_comps");
117  std::ofstream BaseStateFile;
118  BaseStateFile.open(BaseStateFileName.c_str(), std::ofstream::out |
119  std::ofstream::trunc |
120  std::ofstream::binary);
121  if(! BaseStateFile.good()) {
122  FileOpenFailed(BaseStateFileName);
123  } else {
124  // write out number of components in base state
125  BaseStateFile << BaseState::num_comps << "\n";
126  BaseStateFile << base_state[0].nGrowVect() << "\n";
127  }
128  }
129 
130  // write the MultiFab data to, e.g., chk00010/Level_0/
131  // Here we make copies of the MultiFab with no ghost cells
132  for (int lev = 0; lev <= finest_level; ++lev)
133  {
134  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
135  MultiFab::Copy(cons,vars_new[lev][Vars::cons],0,0,ncomp_cons,0);
136  VisMF::Write(cons, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Cell"));
137 
138  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
139  MultiFab::Copy(xvel,vars_new[lev][Vars::xvel],0,0,1,0);
140  VisMF::Write(xvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "XFace"));
141 
142  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
143  MultiFab::Copy(yvel,vars_new[lev][Vars::yvel],0,0,1,0);
144  VisMF::Write(yvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "YFace"));
145 
146  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
147  MultiFab::Copy(zvel,vars_new[lev][Vars::zvel],0,0,1,0);
148  VisMF::Write(zvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "ZFace"));
149 
150  if (solverChoice.anelastic[lev] == 1) {
151  MultiFab ppinc(grids[lev],dmap[lev],1,0);
152  MultiFab::Copy(ppinc,pp_inc[lev],0,0,1,0);
153  VisMF::Write(ppinc, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PP_Inc"));
154 
155  MultiFab gpx(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
156  MultiFab::Copy(gpx,gradp[lev][GpVars::gpx],0,0,1,0);
157  VisMF::Write(gpx, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpx"));
158 
159  MultiFab gpy(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
160  MultiFab::Copy(gpy,gradp[lev][GpVars::gpy],0,0,1,0);
161  VisMF::Write(gpy, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpy"));
162 
163  MultiFab gpz(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
164  MultiFab::Copy(gpz,gradp[lev][GpVars::gpz],0,0,1,0);
165  VisMF::Write(gpz, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpz"));
166  }
167 
168  // Note that we write the ghost cells of the base state (unlike above)
169  IntVect ng_base = base_state[lev].nGrowVect();
170  int ncomp_base = base_state[lev].nComp();
171  MultiFab base(grids[lev],dmap[lev],ncomp_base,ng_base);
172  MultiFab::Copy(base,base_state[lev],0,0,ncomp_base,ng_base);
173  VisMF::Write(base, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "BaseState"));
174 
175  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
176  // Note that we also write the ghost cells of z_phys_nd
177  IntVect ng = z_phys_nd[lev]->nGrowVect();
178  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
179  MultiFab::Copy(z_height,*z_phys_nd[lev],0,0,1,ng);
180  VisMF::Write(z_height, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z_Phys_nd"));
181  }
182 
183  // We must read and write qmoist with ghost cells because we don't directly impose BCs on these vars
184  // Write the moisture model restart variables
185  std::vector<int> qmoist_indices;
186  std::vector<std::string> qmoist_names;
187  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
188  int qmoist_nvar = qmoist_indices.size();
189  for (int var = 0; var < qmoist_nvar; var++) {
190  const int ncomp = 1;
191  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
192  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
193  MultiFab::Copy(moist_vars,*(qmoist[lev][qmoist_indices[var]]),0,0,ncomp,ng_moist);
194  VisMF::Write(moist_vars, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", qmoist_names[var]));
195  }
196 
197 #if defined(ERF_USE_WINDFARM)
198  if(solverChoice.windfarm_type == WindFarmType::Fitch or
199  solverChoice.windfarm_type == WindFarmType::EWP or
200  solverChoice.windfarm_type == WindFarmType::SimpleAD){
201  IntVect ng_turb = Nturb[lev].nGrowVect();
202  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng_turb);
203  MultiFab::Copy(mf_Nturb,Nturb[lev],0,0,1,ng_turb);
204  VisMF::Write(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", "NumTurb"));
205  }
206 #endif
207 
208  if (solverChoice.lsm_type != LandSurfaceType::None) {
209  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
210  BoxArray ba = lsm_data[lev][mvar]->boxArray();
211  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
212  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
213  int nvar = lsm_data[lev][mvar]->nComp();
214  MultiFab lsm_vars(ba,dm,nvar,ng);
215  MultiFab::Copy(lsm_vars,*(lsm_data[lev][mvar]),0,0,nvar,ng);
216  VisMF::Write(lsm_vars, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LsmVars"));
217  }
218  }
219 
220  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
221  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
222  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_x],0,0,1,ng);
223  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_mx"));
224 
225 #if 0
227  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_y],0,0,1,ng);
228  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_my"));
229  }
230 #endif
231 
232  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
233  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
234  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_x],0,0,1,ng);
235  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_ux"));
236 
237 #if 0
239  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_y],0,0,1,ng);
240  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_uy"));
241  }
242 #endif
243 
244  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
245  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
246  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_x],0,0,1,ng);
247  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vx"));
248 
249 #if 0
251  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_y],0,0,1,ng);
252  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vy"));
253  }
254 #endif
255 
256  if (m_SurfaceLayer) {
257  amrex::Print() << "Writing SurfaceLayer variables at level " << lev << std::endl;
258  ng = IntVect(1,1,0);
259  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
260  MultiFab* src = nullptr;
261 
262  // U*
263  src = m_SurfaceLayer->get_u_star(lev);
264  MultiFab::Copy(m_var,*src,0,0,1,ng);
265  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Ustar"));
266 
267  // W*
268  src = m_SurfaceLayer->get_w_star(lev);
269  MultiFab::Copy(m_var,*src,0,0,1,ng);
270  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Wstar"));
271 
272  // T*
273  src = m_SurfaceLayer->get_t_star(lev);
274  MultiFab::Copy(m_var,*src,0,0,1,ng);
275  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Tstar"));
276 
277  // Q*
278  src = m_SurfaceLayer->get_q_star(lev);
279  MultiFab::Copy(m_var,*src,0,0,1,ng);
280  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qstar"));
281 
282  // Olen
283  src = m_SurfaceLayer->get_olen(lev);
284  MultiFab::Copy(m_var,*src,0,0,1,ng);
285  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Olen"));
286 
287  // Qsurf
288  src = m_SurfaceLayer->get_q_surf(lev);
289  MultiFab::Copy(m_var,*src,0,0,1,ng);
290  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qsurf"));
291 
292  // PBLH
293  src = m_SurfaceLayer->get_pblh(lev);
294  MultiFab::Copy(m_var,*src,0,0,1,ng);
295  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PBLH"));
296 
297  // Z0
298  src = m_SurfaceLayer->get_z0(lev);
299  MultiFab::Copy(m_var,*src,0,0,1,ng);
300  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z0"));
301  }
302 
303  if (sst_lev[lev][0]) {
304  int ntimes = 1;
305  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
306  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
307  for (int nt(0); nt<ntimes; ++nt) {
308  MultiFab::Copy(sst_at_t,*sst_lev[lev][nt],0,0,1,ng);
309  VisMF::Write(sst_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
310  "SST_" + std::to_string(nt)));
311  }
312  }
313 
314  if (tsk_lev[lev][0]) {
315  int ntimes = 1;
316  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
317  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
318  for (int nt(0); nt<ntimes; ++nt) {
319  MultiFab::Copy(tsk_at_t,*tsk_lev[lev][nt],0,0,1,ng);
320  VisMF::Write(tsk_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
321  "TSK_" + std::to_string(nt)));
322  }
323  }
324 
325  {
326  int ntimes = 1;
327  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
328  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
329  for (int nt(0); nt<ntimes; ++nt) {
330  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
331  const Box& bx = mfi.growntilebox();
332  Array4<int> const& src_arr = lmask_lev[lev][nt]->array(mfi);
333  Array4<Real> const& dst_arr = lmask_at_t.array(mfi);
334  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
335  {
336  dst_arr(i,j,k) = Real(src_arr(i,j,k));
337  });
338  }
339  VisMF::Write(lmask_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
340  "LMASK_" + std::to_string(nt)));
341  }
342  }
343 
344  IntVect ngv = ng; ngv[2] = 0;
345 
346  // Write lat/lon if it exists
347  if (lat_m[lev] && lon_m[lev] && solverChoice.has_lat_lon) {
348  amrex::Print() << "Writing Lat/Lon variables at level " << lev << std::endl;
349  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
350  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
351  MultiFab::Copy(lat,*lat_m[lev],0,0,1,ngv);
352  MultiFab::Copy(lon,*lon_m[lev],0,0,1,ngv);
353  VisMF::Write(lat, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LAT"));
354  VisMF::Write(lon, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LON"));
355  }
356 
357 
358 #ifdef ERF_USE_NETCDF
359  // Write sinPhi and cosPhi if it exists
360  if (cosPhi_m[lev] && sinPhi_m[lev] && solverChoice.variable_coriolis) {
361  amrex::Print() << "Writing Coriolis factors at level " << lev << std::endl;
362  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
363  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
364  MultiFab::Copy(sphi,*sinPhi_m[lev],0,0,1,ngv);
365  MultiFab::Copy(cphi,*cosPhi_m[lev],0,0,1,ngv);
366  VisMF::Write(sphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "SinPhi"));
367  VisMF::Write(cphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "CosPhi"));
368  }
369 
370  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
371  amrex::Print() << "Writing C1H/C2H/MUB variables at level " << lev << std::endl;
372  MultiFab tmp1d(ba1d[0],dmap[0],1,0);
373 
374  MultiFab::Copy(tmp1d,*mf_C1H,0,0,1,0);
375  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C1H"));
376 
377  MultiFab::Copy(tmp1d,*mf_C2H,0,0,1,0);
378  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C2H"));
379 
380  MultiFab tmp2d(ba2d[0],dmap[0],1,mf_MUB->nGrowVect());
381 
382  MultiFab::Copy(tmp2d,*mf_MUB,0,0,1,mf_MUB->nGrowVect());
383  VisMF::Write(tmp2d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MUB"));
384  }
385 #endif
386 
387  } // for lev
388 
389 #ifdef ERF_USE_PARTICLES
390  particleData.Checkpoint(checkpointname);
391 #endif
392 
393 #if 0
394 #ifdef ERF_USE_NETCDF
395  // Write bdy_data files
396  if ( ParallelDescriptor::IOProcessor() &&
397  ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
399  {
400  // Vector dimensions
401  int num_time = bdy_data_xlo.size();
402  int num_var = bdy_data_xlo[0].size();
403 
404  // Open header file and write to it
405  std::ofstream bdy_h_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_H"));
406  bdy_h_file << std::setprecision(1) << std::fixed;
407  bdy_h_file << num_time << "\n";
408  bdy_h_file << num_var << "\n";
409  bdy_h_file << start_bdy_time << "\n";
410  bdy_h_file << bdy_time_interval << "\n";
411  bdy_h_file << real_width << "\n";
412  for (int ivar(0); ivar<num_var; ++ivar) {
413  bdy_h_file << bdy_data_xlo[0][ivar].box() << "\n";
414  bdy_h_file << bdy_data_xhi[0][ivar].box() << "\n";
415  bdy_h_file << bdy_data_ylo[0][ivar].box() << "\n";
416  bdy_h_file << bdy_data_yhi[0][ivar].box() << "\n";
417  }
418 
419  // Open data file and write to it
420  std::ofstream bdy_d_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_D"));
421  for (int itime(0); itime<num_time; ++itime) {
422  if (bdy_data_xlo[itime].size() > 0) {
423  for (int ivar(0); ivar<num_var; ++ivar) {
424  bdy_data_xlo[itime][ivar].writeOn(bdy_d_file,0,1);
425  bdy_data_xhi[itime][ivar].writeOn(bdy_d_file,0,1);
426  bdy_data_ylo[itime][ivar].writeOn(bdy_d_file,0,1);
427  bdy_data_yhi[itime][ivar].writeOn(bdy_d_file,0,1);
428  }
429  }
430  }
431  }
432 #endif
433 #endif
434 
435  if (verbose > 0)
436  {
437  auto dCheckTime = amrex::second() - dCheckTime0;
438  ParallelDescriptor::ReduceRealMax(dCheckTime,ParallelDescriptor::IOProcessorNumber());
439  amrex::Print() << "Checkpoint write time = " << dCheckTime << " seconds." << '\n';
440  }
441 }

◆ WriteGenericPlotfileHeaderWithTerrain()

void ERF::WriteGenericPlotfileHeaderWithTerrain ( std::ostream &  HeaderFile,
int  nlevels,
const amrex::Vector< amrex::BoxArray > &  bArray,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName,
const std::string &  levelPrefix,
const std::string &  mfPrefix 
) const
1853 {
1854  AMREX_ALWAYS_ASSERT(nlevels <= bArray.size());
1855  AMREX_ALWAYS_ASSERT(nlevels <= my_ref_ratio.size()+1);
1856  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1857 
1858  HeaderFile.precision(17);
1859 
1860  // ---- this is the generic plot file type name
1861  HeaderFile << versionName << '\n';
1862 
1863  HeaderFile << varnames.size() << '\n';
1864 
1865  for (int ivar = 0; ivar < varnames.size(); ++ivar) {
1866  HeaderFile << varnames[ivar] << "\n";
1867  }
1868  HeaderFile << AMREX_SPACEDIM << '\n';
1869  HeaderFile << my_time << '\n';
1870  HeaderFile << finest_level << '\n';
1871  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1872  HeaderFile << my_geom[0].ProbLo(i) << ' ';
1873  }
1874  HeaderFile << '\n';
1875  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1876  HeaderFile << my_geom[0].ProbHi(i) << ' ';
1877  }
1878  HeaderFile << '\n';
1879  for (int i = 0; i < finest_level; ++i) {
1880  HeaderFile << my_ref_ratio[i][0] << ' ';
1881  }
1882  HeaderFile << '\n';
1883  for (int i = 0; i <= finest_level; ++i) {
1884  HeaderFile << my_geom[i].Domain() << ' ';
1885  }
1886  HeaderFile << '\n';
1887  for (int i = 0; i <= finest_level; ++i) {
1888  HeaderFile << level_steps[i] << ' ';
1889  }
1890  HeaderFile << '\n';
1891  for (int i = 0; i <= finest_level; ++i) {
1892  for (int k = 0; k < AMREX_SPACEDIM; ++k) {
1893  HeaderFile << my_geom[i].CellSize()[k] << ' ';
1894  }
1895  HeaderFile << '\n';
1896  }
1897  HeaderFile << (int) my_geom[0].Coord() << '\n';
1898  HeaderFile << "0\n";
1899 
1900  for (int level = 0; level <= finest_level; ++level) {
1901  HeaderFile << level << ' ' << bArray[level].size() << ' ' << my_time << '\n';
1902  HeaderFile << level_steps[level] << '\n';
1903 
1904  const IntVect& domain_lo = my_geom[level].Domain().smallEnd();
1905  for (int i = 0; i < bArray[level].size(); ++i)
1906  {
1907  // Need to shift because the RealBox ctor we call takes the
1908  // physical location of index (0,0,0). This does not affect
1909  // the usual cases where the domain index starts with 0.
1910  const Box& b = shift(bArray[level][i], -domain_lo);
1911  RealBox loc = RealBox(b, my_geom[level].CellSize(), my_geom[level].ProbLo());
1912  for (int n = 0; n < AMREX_SPACEDIM; ++n) {
1913  HeaderFile << loc.lo(n) << ' ' << loc.hi(n) << '\n';
1914  }
1915  }
1916 
1917  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mfPrefix) << '\n';
1918  }
1919  HeaderFile << "1" << "\n";
1920  HeaderFile << "3" << "\n";
1921  HeaderFile << "amrexvec_nu_x" << "\n";
1922  HeaderFile << "amrexvec_nu_y" << "\n";
1923  HeaderFile << "amrexvec_nu_z" << "\n";
1924  std::string mf_nodal_prefix = "Nu_nd";
1925  for (int level = 0; level <= finest_level; ++level) {
1926  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mf_nodal_prefix) << '\n';
1927  }
1928 }
Coord
Definition: ERF_DataStruct.H:91

◆ writeJobInfo()

void ERF::writeJobInfo ( const std::string &  dir) const
11 {
12  // job_info file with details about the run
13  std::ofstream jobInfoFile;
14  std::string FullPathJobInfoFile = dir;
15  FullPathJobInfoFile += "/job_info";
16  jobInfoFile.open(FullPathJobInfoFile.c_str(), std::ios::out);
17 
18  std::string PrettyLine = "==================================================="
19  "============================\n";
20  std::string OtherLine = "----------------------------------------------------"
21  "----------------------------\n";
22  std::string SkipSpace = " ";
23 
24  // job information
25  jobInfoFile << PrettyLine;
26  jobInfoFile << " ERF Job Information\n";
27  jobInfoFile << PrettyLine;
28 
29  jobInfoFile << "inputs file: " << inputs_name << "\n\n";
30 
31  jobInfoFile << "number of MPI processes: "
32  << ParallelDescriptor::NProcs() << "\n";
33 #ifdef _OPENMP
34  jobInfoFile << "number of threads: " << omp_get_max_threads() << "\n";
35 #endif
36 
37  jobInfoFile << "\n";
38  jobInfoFile << "CPU time used since start of simulation (CPU-hours): "
39  << getCPUTime() / 3600.0;
40 
41  jobInfoFile << "\n\n";
42 
43  if (use_datetime) {
44  const std::string dt_format = "%Y-%m-%d %H:%M:%S"; // ISO 8601 standard
45  jobInfoFile << "Simulation time: " << getTimestamp(start_time+t_new[0], dt_format) << "\n";
46  jobInfoFile << "\n\n";
47  }
48 
49  // plotfile information
50  jobInfoFile << PrettyLine;
51  jobInfoFile << " Plotfile Information\n";
52  jobInfoFile << PrettyLine;
53 
54  time_t now = time(nullptr);
55 
56  // Convert now to tm struct for local timezone
57  tm* localtm = localtime(&now);
58  jobInfoFile << "output data / time: " << asctime(localtm);
59 
60  std::string currentDir = FileSystem::CurrentPath();
61  jobInfoFile << "output dir: " << currentDir << "\n";
62 
63  jobInfoFile << "\n\n";
64 
65  // build information
66  jobInfoFile << PrettyLine;
67  jobInfoFile << " Build Information\n";
68  jobInfoFile << PrettyLine;
69 
70  jobInfoFile << "build date: " << buildInfoGetBuildDate() << "\n";
71  jobInfoFile << "build machine: " << buildInfoGetBuildMachine() << "\n";
72  jobInfoFile << "build dir: " << buildInfoGetBuildDir() << "\n";
73  jobInfoFile << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
74 
75  jobInfoFile << "\n";
76 
77  jobInfoFile << "COMP: " << buildInfoGetComp() << "\n";
78  jobInfoFile << "COMP version: " << buildInfoGetCompVersion() << "\n";
79 
80  jobInfoFile << "\n";
81 
82  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
83  jobInfoFile << buildInfoGetModuleName(n) << ": "
84  << buildInfoGetModuleVal(n) << "\n";
85  }
86 
87  jobInfoFile << "\n";
88 
89  const char* githash1 = buildInfoGetGitHash(1);
90  const char* githash2 = buildInfoGetGitHash(2);
91  if (strlen(githash1) > 0) {
92  jobInfoFile << "ERF git hash: " << githash1 << "\n";
93  }
94  if (strlen(githash2) > 0) {
95  jobInfoFile << "AMReX git hash: " << githash2 << "\n";
96  }
97 
98  const char* buildgithash = buildInfoGetBuildGitHash();
99  const char* buildgitname = buildInfoGetBuildGitName();
100  if (strlen(buildgithash) > 0) {
101  jobInfoFile << buildgitname << " git hash: " << buildgithash << "\n";
102  }
103 
104  jobInfoFile << "\n\n";
105 
106  // grid information
107  jobInfoFile << PrettyLine;
108  jobInfoFile << " Grid Information\n";
109  jobInfoFile << PrettyLine;
110 
111  int f_lev = finest_level;
112 
113  for (int i = 0; i <= f_lev; i++) {
114  jobInfoFile << " level: " << i << "\n";
115  jobInfoFile << " number of boxes = " << grids[i].size() << "\n";
116  jobInfoFile << " maximum zones = ";
117  for (int n = 0; n < AMREX_SPACEDIM; n++) {
118  jobInfoFile << geom[i].Domain().length(n) << " ";
119  }
120  jobInfoFile << "\n\n";
121  }
122 
123  jobInfoFile << " Boundary conditions\n";
124 
125  jobInfoFile << " -x: " << domain_bc_type[0] << "\n";
126  jobInfoFile << " +x: " << domain_bc_type[3] << "\n";
127  jobInfoFile << " -y: " << domain_bc_type[1] << "\n";
128  jobInfoFile << " +y: " << domain_bc_type[4] << "\n";
129  jobInfoFile << " -z: " << domain_bc_type[2] << "\n";
130  jobInfoFile << " +z: " << domain_bc_type[5] << "\n";
131 
132  jobInfoFile << "\n\n";
133 
134  // runtime parameters
135  jobInfoFile << PrettyLine;
136  jobInfoFile << " Inputs File Parameters\n";
137  jobInfoFile << PrettyLine;
138 
139  ParmParse::dumpTable(jobInfoFile, true);
140  jobInfoFile.close();
141 }
std::string inputs_name
Definition: main.cpp:14
static amrex::Real getCPUTime()
Definition: ERF.H:1496
Here is the call graph for this function:

◆ WriteLinePlot()

void ERF::WriteLinePlot ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
576 {
577  std::ofstream ofs(filename);
578  if (!ofs.is_open()) {
579  amrex::Print() << "Error: Could not open file " << filename << " for writing.\n";
580  return;
581  }
582 
583  ofs << std::setprecision(10) << std::scientific;
584  ofs << "# x y\n";
585 
586  for (const auto& p : points_xy) {
587  ofs << p[0] << " " << p[1] << "\n";
588  }
589 
590  ofs.close();
591 
592  amrex::Print() << "Line plot data written to " << filename << "\n";
593 }

◆ WriteMultiLevelPlotfileWithTerrain()

void ERF::WriteMultiLevelPlotfileWithTerrain ( const std::string &  plotfilename,
int  nlevels,
const amrex::Vector< const amrex::MultiFab * > &  mf,
const amrex::Vector< const amrex::MultiFab * > &  mf_nd,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName = "HyperCLaw-V1.1",
const std::string &  levelPrefix = "Level_",
const std::string &  mfPrefix = "Cell",
const amrex::Vector< std::string > &  extra_dirs = amrex::Vector<std::string>() 
) const
1767 {
1768  BL_PROFILE("WriteMultiLevelPlotfileWithTerrain()");
1769 
1770  AMREX_ALWAYS_ASSERT(nlevels <= mf.size());
1771  AMREX_ALWAYS_ASSERT(nlevels <= rr.size()+1);
1772  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1773  AMREX_ALWAYS_ASSERT(mf[0]->nComp() == varnames.size());
1774 
1775  bool callBarrier(false);
1776  PreBuildDirectorHierarchy(plotfilename, levelPrefix, nlevels, callBarrier);
1777  if (!extra_dirs.empty()) {
1778  for (const auto& d : extra_dirs) {
1779  const std::string ed = plotfilename+"/"+d;
1780  PreBuildDirectorHierarchy(ed, levelPrefix, nlevels, callBarrier);
1781  }
1782  }
1783  ParallelDescriptor::Barrier();
1784 
1785  if (ParallelDescriptor::MyProc() == ParallelDescriptor::NProcs()-1) {
1786  Vector<BoxArray> boxArrays(nlevels);
1787  for(int level(0); level < boxArrays.size(); ++level) {
1788  boxArrays[level] = mf[level]->boxArray();
1789  }
1790 
1791  auto f = [=]() {
1792  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
1793  std::string HeaderFileName(plotfilename + "/Header");
1794  std::ofstream HeaderFile;
1795  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
1796  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
1797  std::ofstream::trunc |
1798  std::ofstream::binary);
1799  if( ! HeaderFile.good()) FileOpenFailed(HeaderFileName);
1800  WriteGenericPlotfileHeaderWithTerrain(HeaderFile, nlevels, boxArrays, varnames,
1801  my_geom, time, level_steps, rr, versionName,
1802  levelPrefix, mfPrefix);
1803  };
1804 
1805  if (AsyncOut::UseAsyncOut()) {
1806  AsyncOut::Submit(std::move(f));
1807  } else {
1808  f();
1809  }
1810  }
1811 
1812  std::string mf_nodal_prefix = "Nu_nd";
1813  for (int level = 0; level <= finest_level; ++level)
1814  {
1815  if (AsyncOut::UseAsyncOut()) {
1816  VisMF::AsyncWrite(*mf[level],
1817  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix),
1818  true);
1819  VisMF::AsyncWrite(*mf_nd[level],
1820  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix),
1821  true);
1822  } else {
1823  const MultiFab* data;
1824  std::unique_ptr<MultiFab> mf_tmp;
1825  if (mf[level]->nGrowVect() != 0) {
1826  mf_tmp = std::make_unique<MultiFab>(mf[level]->boxArray(),
1827  mf[level]->DistributionMap(),
1828  mf[level]->nComp(), 0, MFInfo(),
1829  mf[level]->Factory());
1830  MultiFab::Copy(*mf_tmp, *mf[level], 0, 0, mf[level]->nComp(), 0);
1831  data = mf_tmp.get();
1832  } else {
1833  data = mf[level];
1834  }
1835  VisMF::Write(*data , MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix));
1836  VisMF::Write(*mf_nd[level], MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix));
1837  }
1838  }
1839 }
void WriteGenericPlotfileHeaderWithTerrain(std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
Definition: ERF_Plotfile.cpp:1842

◆ WriteMyEBSurface()

void ERF::WriteMyEBSurface ( )

◆ writeNow()

bool ERF::writeNow ( const amrex::Real  cur_time,
const int  nstep,
const int  plot_int,
const amrex::Real  plot_per,
const amrex::Real  dt_0,
amrex::Real last_file_time 
)
2929 {
2930  bool write_now = false;
2931 
2932  if ( plot_int > 0) {
2933 
2934  write_now = (nstep % plot_int == 0);
2935 
2936  } else if (plot_per > 0.0) {
2937 
2938  amrex::Print() << "CUR NEXT PER " << cur_time << " " << next_file_time << " " << plot_per << std::endl;
2939 
2940  // Only write now if nstep newly matches the number of elapsed periods
2941  write_now = (cur_time > (next_file_time - Real(0.1)*dt_0));
2942  }
2943 
2944  return write_now;
2945 }

◆ WriteSubvolume()

void ERF::WriteSubvolume ( int  isub,
amrex::Vector< std::string >  subvol_var_names 
)
146 {
147  ParmParse pp("erf.subvol");
148 
149  Vector<Real> origin;
150  Vector< int> ncell;
151  Vector<Real> delta;
152 
153  // **************************************************************
154  // Read in the origin, number of cells in each dir, and resolution
155  // **************************************************************
156 
157  int lev_for_sub = 0;
158  int offset = isub * AMREX_SPACEDIM;
159 
160  pp.getarr("origin",origin,offset,AMREX_SPACEDIM);
161  pp.getarr("nxnynz", ncell,offset,AMREX_SPACEDIM);
162  pp.getarr("dxdydz", delta,offset,AMREX_SPACEDIM);
163 
164  bool found = false;
165  for (int i = 0; i <= finest_level; i++) {
166  if (!found) {
167  if (almostEqual(delta[offset+0],geom[i].CellSize(0)) &&
168  almostEqual(delta[offset+1],geom[i].CellSize(1)) &&
169  almostEqual(delta[offset+2],geom[i].CellSize(2)) ) {
170 
171  amrex::Print() << "WriteSubvolume:Resolution specified matches that of level " << i << std::endl;
172  found = true;
173  lev_for_sub = i;
174  }
175  }
176  }
177 
178  if (!found) {
179  amrex::Abort("Resolution specified for subvol does not match the resolution of any of the levels.");
180  }
181 
182 
183  // **************************************************************
184  // Now that we know which level we're at, we can figure out which (i,j,k) the origin corresponds to
185  // Note we use 1.0001 as a fudge factor since the division of two reals --> integer will do a floor
186  // **************************************************************
187  int i0 = static_cast<int>((origin[offset+0] - geom[lev_for_sub].ProbLo(0)) * 1.0001 / delta[offset+0]);
188  int j0 = static_cast<int>((origin[offset+1] - geom[lev_for_sub].ProbLo(1)) * 1.0001 / delta[offset+1]);
189  int k0 = static_cast<int>((origin[offset+2] - geom[lev_for_sub].ProbLo(2)) * 1.0001 / delta[offset+2]);
190 
191  found = false;
192  if (almostEqual(geom[lev_for_sub].ProbLo(0)+i0*delta[offset+0],origin[offset+0]) &&
193  almostEqual(geom[lev_for_sub].ProbLo(1)+j0*delta[offset+1],origin[offset+1]) &&
194  almostEqual(geom[lev_for_sub].ProbLo(2)+k0*delta[offset+2],origin[offset+2]) )
195  {
196  amrex::Print() << "WriteSubvolume:Specified origin is the lower left corner of cell " << IntVect(i0,j0,k0) << std::endl;
197  found = true;
198  }
199 
200  if (!found) {
201  amrex::Abort("Origin specified does not correspond to a node at this level.");
202  }
203 
204  Box domain(geom[lev_for_sub].Domain());
205 
206  Box bx(IntVect(i0,j0,k0),IntVect(i0+ncell[offset+0]-1,j0+ncell[offset+1]-1,k0+ncell[offset+2]-1));
207  amrex::Print() << "WriteSubvolume:Box requested is " << bx << std::endl;
208 
209  if (!domain.contains(bx))
210  {
211  amrex::Abort("WriteSubvolume:Box requested is larger than the existing domain");
212  }
213 
214  Vector<int> cs(AMREX_SPACEDIM);
215  int count = pp.countval("chunk_size");
216  if (count > 0) {
217  pp.queryarr("chunk_size",cs,0,AMREX_SPACEDIM);
218  } else {
219  cs[0] = max_grid_size[0][0];
220  cs[1] = max_grid_size[0][1];
221  cs[2] = max_grid_size[0][2];
222  }
223  IntVect chunk_size(cs[0],cs[1],cs[2]);
224 
225  BoxArray ba(bx);
226  ba.maxSize(chunk_size);
227 
228  amrex::Print() << "WriteSubvolume:BoxArray is " << ba << std::endl;
229 
230  Vector<std::string> varnames;
231  varnames.insert(varnames.end(), subvol_var_names.begin(), subvol_var_names.end());
232 
233  int ncomp_mf = subvol_var_names.size();
234 
235  DistributionMapping dm(ba);
236 
237  MultiFab mf(ba, dm, ncomp_mf, 0);
238 
239  int mf_comp = 0;
240 
241  // *****************************************************************************************
242 
243  // First, copy any of the conserved state variables into the output plotfile
244  for (int i = 0; i < cons_names.size(); ++i) {
245  if (containerHasElement(subvol_var_names, cons_names[i])) {
246  mf.ParallelCopy(vars_new[lev_for_sub][Vars::cons],i,mf_comp,1,1,0);
247  mf_comp++;
248  }
249  }
250 
251  // *****************************************************************************************
252 
253  if (containerHasElement(subvol_var_names, "x_velocity") ||
254  containerHasElement(subvol_var_names, "y_velocity") ||
255  containerHasElement(subvol_var_names, "z_velocity"))
256  {
257  MultiFab mf_cc_vel(grids[lev_for_sub], dmap[lev_for_sub], AMREX_SPACEDIM, 0);
258  average_face_to_cellcenter(mf_cc_vel,0,
259  Array<const MultiFab*,3>{&vars_new[lev_for_sub][Vars::xvel],
260  &vars_new[lev_for_sub][Vars::yvel],
261  &vars_new[lev_for_sub][Vars::zvel]});
262  if (containerHasElement(subvol_var_names, "x_velocity")) {
263  mf.ParallelCopy(mf_cc_vel,0,mf_comp,1,0,0);
264  mf_comp++;
265  }
266  if (containerHasElement(subvol_var_names, "y_velocity")) {
267  mf.ParallelCopy(mf_cc_vel,1,mf_comp,1,0,0);
268  mf_comp++;
269  }
270  if (containerHasElement(subvol_var_names, "z_velocity")) {
271  mf.ParallelCopy(mf_cc_vel,2,mf_comp,1,0,0);
272  mf_comp++;
273  }
274  }
275 
276  // *****************************************************************************************
277 
278  // Finally, check for any derived quantities and compute them, inserting
279  // them into our output multifab
280  auto calculate_derived = [&](const std::string& der_name,
281  MultiFab& src_mf,
282  decltype(derived::erf_dernull)& der_function)
283  {
284  if (containerHasElement(subvol_var_names, der_name)) {
285  MultiFab dmf(src_mf.boxArray(), src_mf.DistributionMap(), 1, 0);
286 #ifdef _OPENMP
287 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
288 #endif
289  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
290  {
291  const Box& tbx = mfi.tilebox();
292  auto& dfab = dmf[mfi];
293  auto& sfab = src_mf[mfi];
294  der_function(tbx, dfab, 0, 1, sfab, Geom(lev_for_sub), t_new[0], nullptr, lev_for_sub);
295  }
296  mf.ParallelCopy(dmf,0,mf_comp,1,0,0);
297  mf_comp++;
298  }
299  };
300 
301  // *****************************************************************************************
302  // NOTE: All derived variables computed below **MUST MATCH THE ORDER** of "derived_names"
303  // defined in ERF.H
304  // *****************************************************************************************
305 
306  calculate_derived("soundspeed", vars_new[lev_for_sub][Vars::cons], derived::erf_dersoundspeed);
307  if (solverChoice.moisture_type != MoistureType::None) {
308  calculate_derived("temp", vars_new[lev_for_sub][Vars::cons], derived::erf_dermoisttemp);
309  } else {
310  calculate_derived("temp", vars_new[lev_for_sub][Vars::cons], derived::erf_dertemp);
311  }
312  calculate_derived("theta", vars_new[lev_for_sub][Vars::cons], derived::erf_dertheta);
313  calculate_derived("KE", vars_new[lev_for_sub][Vars::cons], derived::erf_derKE);
314  calculate_derived("scalar", vars_new[lev_for_sub][Vars::cons], derived::erf_derscalar);
315 
316  // *****************************************************************************************
317 
318  Real time = t_new[lev_for_sub];
319 
320  std::string sf = subvol_file + "_" + std::to_string(isub);
321  std::string subvol_filename;
322 
324  const std::string dt_format = "%Y-%m-%d_%H:%M:%S"; // ISO 8601 standard
325  subvol_filename = sf + getTimestamp(start_time+time, dt_format);
326  } else {
327  subvol_filename = Concatenate(sf + "_", istep[0], file_name_digits);
328  }
329 
330  amrex::Print() <<"Writing subvolume into " << subvol_filename << std::endl;
331  WriteSingleLevelPlotfile(subvol_filename,mf,varnames,geom[lev_for_sub],time,istep[0]);
332 
333 }
real(c_double), private cs
Definition: ERF_module_mp_morr_two_moment.F90:203
Here is the call graph for this function:

◆ WriteVTKPolyline()

void ERF::WriteVTKPolyline ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
82 {
83  std::ofstream vtkfile(filename);
84  if (!vtkfile.is_open()) {
85  std::cerr << "Error: Cannot open file " << filename << std::endl;
86  return;
87  }
88 
89  int num_points = points_xy.size();
90  if (num_points == 0) {
91  vtkfile << "# vtk DataFile Version 3.0\n";
92  vtkfile << "Storm Track\n";
93  vtkfile << "ASCII\n";
94  vtkfile << "DATASET POLYDATA\n";
95  vtkfile << "POINTS " << num_points << " float\n";
96  vtkfile.close();
97  return;
98  }
99  if (num_points < 2) {
100  points_xy.push_back(points_xy[0]);
101  }
102  num_points = points_xy.size();
103 
104  vtkfile << "# vtk DataFile Version 3.0\n";
105  vtkfile << "Storm Track\n";
106  vtkfile << "ASCII\n";
107  vtkfile << "DATASET POLYDATA\n";
108 
109  // Write points (Z=0 assumed)
110  vtkfile << "POINTS " << num_points << " float\n";
111  for (const auto& pt : points_xy) {
112  vtkfile << pt[0] << " " << pt[1] << " 10000.0\n";
113  }
114 
115  // Write polyline connectivity
116  vtkfile << "LINES 1 " << num_points + 1 << "\n";
117  vtkfile << num_points << " ";
118  for (int i = 0; i < num_points; ++i) {
119  vtkfile << i << " ";
120  }
121  vtkfile << "\n";
122 
123  vtkfile.close();
124 }

Member Data Documentation

◆ advflux_reg

amrex::Vector<amrex::YAFluxRegister*> ERF::advflux_reg
private

Referenced by getAdvFluxReg().

◆ avg_xmom

amrex::Vector<amrex::MultiFab> ERF::avg_xmom
private

◆ avg_ymom

amrex::Vector<amrex::MultiFab> ERF::avg_ymom
private

◆ avg_zmom

amrex::Vector<amrex::MultiFab> ERF::avg_zmom
private

◆ ax

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax
private

◆ ax_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax_src
private

◆ ay

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay
private

◆ ay_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay_src
private

◆ az

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az
private

◆ az_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az_src
private

◆ ba1d

amrex::Vector<amrex::BoxArray> ERF::ba1d
private

◆ ba2d

amrex::Vector<amrex::BoxArray> ERF::ba2d
private

◆ base_state

amrex::Vector<amrex::MultiFab> ERF::base_state
private

◆ base_state_new

amrex::Vector<amrex::MultiFab> ERF::base_state_new
private

◆ bndry_output_planes_interval

int ERF::bndry_output_planes_interval = -1
staticprivate

◆ bndry_output_planes_per

Real ERF::bndry_output_planes_per = -1.0
staticprivate

◆ bndry_output_planes_start_time

Real ERF::bndry_output_planes_start_time = 0.0
staticprivate

◆ boxes_at_level

amrex::Vector<amrex::Vector<amrex::Box> > ERF::boxes_at_level
private

◆ cf_set_width

int ERF::cf_set_width {0}
private

◆ cf_width

int ERF::cf_width {0}
private

◆ cfl

Real ERF::cfl = 0.8
staticprivate

◆ change_max

Real ERF::change_max = 1.1
staticprivate

◆ check_file

std::string ERF::check_file {"chk"}
private

◆ check_for_nans

int ERF::check_for_nans = 0
staticprivate

◆ column_file_name

std::string ERF::column_file_name = "column_data.nc"
staticprivate

◆ column_interval

int ERF::column_interval = -1
staticprivate

◆ column_loc_x

Real ERF::column_loc_x = 0.0
staticprivate

◆ column_loc_y

Real ERF::column_loc_y = 0.0
staticprivate

◆ column_per

Real ERF::column_per = -1.0
staticprivate

◆ cons_names

const amrex::Vector<std::string> ERF::cons_names
private
Initial value:
{"density", "rhotheta", "rhoKE", "rhoadv_0",
"rhoQ1", "rhoQ2", "rhoQ3",
"rhoQ4", "rhoQ5", "rhoQ6"}

◆ cosPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::cosPhi_m
private

◆ d_havg_density

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_density
private

◆ d_havg_pressure

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_pressure
private

◆ d_havg_qc

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qc
private

◆ d_havg_qv

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qv
private

◆ d_havg_temperature

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_temperature
private

◆ d_rayleigh_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_rayleigh_ptrs
private

◆ d_rhoqt_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhoqt_src
private

◆ d_rhotheta_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhotheta_src
private

◆ d_sinesq_ptrs

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_sinesq_ptrs
private

◆ d_sinesq_stag_ptrs

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_sinesq_stag_ptrs
private

◆ d_sponge_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_sponge_ptrs
private

◆ d_u_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_u_geos
private

◆ d_v_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_v_geos
private

◆ d_w_subsid

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_w_subsid
private

◆ datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::datalog
private

◆ datalogname

amrex::Vector<std::string> ERF::datalogname
private

Referenced by DataLogName().

◆ datetime_format

const std::string ERF::datetime_format = "%Y-%m-%d %H:%M:%S"
private

◆ datprecision

const int ERF::datprecision = 6
private

◆ datwidth

const int ERF::datwidth = 14
private

◆ der_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::der_datalog
private

◆ der_datalogname

amrex::Vector<std::string> ERF::der_datalogname
private

Referenced by DerDataLogName().

◆ derived_names

const amrex::Vector<std::string> ERF::derived_names
private

◆ derived_names_2d

const amrex::Vector<std::string> ERF::derived_names_2d
private
Initial value:
{
"z_surf", "landmask", "mapfac", "lat_m", "lon_m",
"u_star", "w_star", "t_star", "q_star", "Olen", "pblh",
"t_surf", "q_surf", "z0", "OLR", "sens_flux", "laten_flux",
"surf_pres", "integrated_qv"
}

◆ derived_subvol_names

const amrex::Vector<std::string> ERF::derived_subvol_names {"soundspeed", "temp", "theta", "KE", "scalar"}
private

◆ destag_profiles

bool ERF::destag_profiles = true
private

◆ detJ_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc
private

◆ detJ_cc_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_new
private

◆ detJ_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_src
private

◆ domain_bc_type

amrex::Array<std::string,2*AMREX_SPACEDIM> ERF::domain_bc_type
private

◆ domain_bcs_type

amrex::Vector<amrex::BCRec> ERF::domain_bcs_type
private

◆ domain_bcs_type_d

amrex::Gpu::DeviceVector<amrex::BCRec> ERF::domain_bcs_type_d
private

◆ dt

amrex::Vector<amrex::Real> ERF::dt
private

◆ dt_max

Real ERF::dt_max = 1.0e9
staticprivate

◆ dt_max_initial

Real ERF::dt_max_initial = 2.0e100
staticprivate

◆ dt_mri_ratio

amrex::Vector<long> ERF::dt_mri_ratio
private

◆ dz_min

amrex::Vector<amrex::Real> ERF::dz_min
private

◆ eb

amrex::Vector<std::unique_ptr<eb_> > ERF::eb
private

Referenced by EBFactory(), and get_eb().

◆ eddyDiffs_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::eddyDiffs_lev
private

◆ file_name_digits

int ERF::file_name_digits = 5
private

◆ fine_mask

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::fine_mask
private

◆ finished_wave

bool ERF::finished_wave = false
private

◆ fixed_dt

amrex::Vector<amrex::Real> ERF::fixed_dt
private

◆ fixed_fast_dt

amrex::Vector<amrex::Real> ERF::fixed_fast_dt
private

◆ fixed_mri_dt_ratio

int ERF::fixed_mri_dt_ratio = 0
staticprivate

◆ forecast_state_1

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_1

◆ forecast_state_2

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_2

◆ forecast_state_interp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_interp

◆ FPr_c

amrex::Vector<ERFFillPatcher> ERF::FPr_c
private

◆ FPr_u

amrex::Vector<ERFFillPatcher> ERF::FPr_u
private

◆ FPr_v

amrex::Vector<ERFFillPatcher> ERF::FPr_v
private

◆ FPr_w

amrex::Vector<ERFFillPatcher> ERF::FPr_w
private

◆ gradp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::gradp
private

◆ h_havg_density

amrex::Vector<amrex::Real> ERF::h_havg_density
private

◆ h_havg_pressure

amrex::Vector<amrex::Real> ERF::h_havg_pressure
private

◆ h_havg_qc

amrex::Vector<amrex::Real> ERF::h_havg_qc
private

◆ h_havg_qv

amrex::Vector<amrex::Real> ERF::h_havg_qv
private

◆ h_havg_temperature

amrex::Vector<amrex::Real> ERF::h_havg_temperature
private

◆ h_rayleigh_ptrs

amrex::Vector<amrex::Vector<amrex::Vector<amrex::Real> > > ERF::h_rayleigh_ptrs
private

◆ h_rhoqt_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhoqt_src
private

◆ h_rhotheta_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhotheta_src
private

◆ h_sinesq_ptrs

amrex::Vector<amrex::Vector<amrex::Real> > ERF::h_sinesq_ptrs
private

◆ h_sinesq_stag_ptrs

amrex::Vector<amrex::Vector<amrex::Real> > ERF::h_sinesq_stag_ptrs
private

◆ h_sponge_ptrs

amrex::Vector<amrex::Vector<amrex::Vector<amrex::Real> > > ERF::h_sponge_ptrs
private

◆ h_u_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_u_geos
private

◆ h_v_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_v_geos
private

◆ h_w_subsid

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_w_subsid
private

◆ have_read_nc_init_file

Vector< Vector< int > > ERF::have_read_nc_init_file = {{0}}
staticprivate

◆ hurricane_eye_track_latlon

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_eye_track_latlon

◆ hurricane_eye_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_eye_track_xy

◆ hurricane_maxvel_vs_time

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_maxvel_vs_time

◆ hurricane_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_track_xy

◆ hurricane_tracker_circle

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_tracker_circle

◆ Hwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave
private

◆ Hwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave_onegrid
private

◆ init_shrink

Real ERF::init_shrink = 1.0
staticprivate

◆ input_bndry_planes

int ERF::input_bndry_planes = 0
staticprivate

◆ input_sounding_data

InputSoundingData ERF::input_sounding_data
private

◆ input_sponge_data

InputSpongeData ERF::input_sponge_data
private

◆ interpolation_type

StateInterpType ERF::interpolation_type
staticprivate

◆ istep

amrex::Vector<int> ERF::istep
private

◆ lagged_delta_rt

amrex::Vector<amrex::MultiFab> ERF::lagged_delta_rt
private

◆ land_type_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::land_type_lev
private

◆ last_check_file_step

int ERF::last_check_file_step = -1
staticprivate

◆ last_check_file_time

Real ERF::last_check_file_time = 0.0
staticprivate

◆ last_plot2d_file_step_1

int ERF::last_plot2d_file_step_1 = -1
staticprivate

◆ last_plot2d_file_step_2

int ERF::last_plot2d_file_step_2 = -1
staticprivate

◆ last_plot2d_file_time_1

Real ERF::last_plot2d_file_time_1 = 0.0
staticprivate

◆ last_plot2d_file_time_2

Real ERF::last_plot2d_file_time_2 = 0.0
staticprivate

◆ last_plot3d_file_step_1

int ERF::last_plot3d_file_step_1 = -1
staticprivate

◆ last_plot3d_file_step_2

int ERF::last_plot3d_file_step_2 = -1
staticprivate

◆ last_plot3d_file_time_1

Real ERF::last_plot3d_file_time_1 = 0.0
staticprivate

◆ last_plot3d_file_time_2

Real ERF::last_plot3d_file_time_2 = 0.0
staticprivate

◆ last_subvol_step

amrex::Vector<int> ERF::last_subvol_step
private

◆ last_subvol_time

amrex::Vector<amrex::Real> ERF::last_subvol_time
private

◆ lat_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::lat_m
private

◆ line_sampler

std::unique_ptr<LineSampler> ERF::line_sampler = nullptr
private

◆ line_sampling_interval

int ERF::line_sampling_interval = -1
private

◆ line_sampling_per

amrex::Real ERF::line_sampling_per = -1.0
private

◆ lmask_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::lmask_lev
private

◆ lon_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::lon_m
private

◆ lsm

LandSurface ERF::lsm
private

◆ lsm_data

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_data
private

◆ lsm_data_name

amrex::Vector<std::string> ERF::lsm_data_name
private

◆ lsm_flux

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_flux
private

◆ lsm_flux_name

amrex::Vector<std::string> ERF::lsm_flux_name
private

◆ Lwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave
private

◆ Lwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave_onegrid
private

◆ m_bc_extdir_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_extdir_vals
private

◆ m_bc_neumann_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_neumann_vals
private

◆ m_check_int

int ERF::m_check_int = -1
private

◆ m_check_per

amrex::Real ERF::m_check_per = -1.0
private

◆ m_expand_plotvars_to_unif_rr

bool ERF::m_expand_plotvars_to_unif_rr = false
private

◆ m_forest_drag

amrex::Vector<std::unique_ptr<ForestDrag> > ERF::m_forest_drag
private

◆ m_plot2d_int_1

int ERF::m_plot2d_int_1 = -1
private

◆ m_plot2d_int_2

int ERF::m_plot2d_int_2 = -1
private

◆ m_plot2d_per_1

amrex::Real ERF::m_plot2d_per_1 = -1.0
private

◆ m_plot2d_per_2

amrex::Real ERF::m_plot2d_per_2 = -1.0
private

◆ m_plot3d_int_1

int ERF::m_plot3d_int_1 = -1
private

◆ m_plot3d_int_2

int ERF::m_plot3d_int_2 = -1
private

◆ m_plot3d_per_1

amrex::Real ERF::m_plot3d_per_1 = -1.0
private

◆ m_plot3d_per_2

amrex::Real ERF::m_plot3d_per_2 = -1.0
private

◆ m_plot_face_vels

bool ERF::m_plot_face_vels = false
private

◆ m_r2d

std::unique_ptr<ReadBndryPlanes> ERF::m_r2d = nullptr
private

◆ m_subvol_int

amrex::Vector<int> ERF::m_subvol_int
private

◆ m_subvol_per

amrex::Vector<amrex::Real> ERF::m_subvol_per
private

◆ m_SurfaceLayer

std::unique_ptr<SurfaceLayer> ERF::m_SurfaceLayer = nullptr
private

◆ m_w2d

std::unique_ptr<WriteBndryPlanes> ERF::m_w2d = nullptr
private

◆ mapfac

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::mapfac
private

◆ max_step

int ERF::max_step = -1
private

◆ metgrid_basic_linear

bool ERF::metgrid_basic_linear {false}
private

◆ metgrid_debug_dry

bool ERF::metgrid_debug_dry {false}
private

◆ metgrid_debug_isothermal

bool ERF::metgrid_debug_isothermal {false}
private

◆ metgrid_debug_msf

bool ERF::metgrid_debug_msf {false}
private

◆ metgrid_debug_psfc

bool ERF::metgrid_debug_psfc {false}
private

◆ metgrid_debug_quiescent

bool ERF::metgrid_debug_quiescent {false}
private

◆ metgrid_force_sfc_k

int ERF::metgrid_force_sfc_k {6}
private

◆ metgrid_interp_theta

bool ERF::metgrid_interp_theta {false}
private

◆ metgrid_order

int ERF::metgrid_order {2}
private

◆ metgrid_proximity

amrex::Real ERF::metgrid_proximity {500.0}
private

◆ metgrid_retain_sfc

bool ERF::metgrid_retain_sfc {false}
private

◆ metgrid_use_below_sfc

bool ERF::metgrid_use_below_sfc {true}
private

◆ metgrid_use_sfc

bool ERF::metgrid_use_sfc {true}
private

◆ mf_C1H

std::unique_ptr<amrex::MultiFab> ERF::mf_C1H
private

◆ mf_C2H

std::unique_ptr<amrex::MultiFab> ERF::mf_C2H
private

◆ mf_MUB

std::unique_ptr<amrex::MultiFab> ERF::mf_MUB
private

◆ mf_PSFC

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::mf_PSFC
private

◆ mg_verbose

int ERF::mg_verbose = 0
staticprivate

◆ micro

std::unique_ptr<Microphysics> ERF::micro
private

◆ mri_integrator_mem

amrex::Vector<std::unique_ptr<MRISplitIntegrator<amrex::Vector<amrex::MultiFab> > > > ERF::mri_integrator_mem
private

◆ nc_bdy_file

std::string ERF::nc_bdy_file
staticprivate

◆ nc_init_file

Vector< Vector< std::string > > ERF::nc_init_file = {{""}}
staticprivate

◆ nc_low_file

std::string ERF::nc_low_file
staticprivate

◆ ng_dens_hse

int ERF::ng_dens_hse
staticprivate

◆ ng_pres_hse

int ERF::ng_pres_hse
staticprivate

◆ nsubsteps

amrex::Vector<int> ERF::nsubsteps
private

◆ num_boxes_at_level

amrex::Vector<int> ERF::num_boxes_at_level
private

◆ num_files_at_level

amrex::Vector<int> ERF::num_files_at_level
private

◆ output_1d_column

int ERF::output_1d_column = 0
staticprivate

◆ output_bndry_planes

int ERF::output_bndry_planes = 0
staticprivate

◆ pert_interval

int ERF::pert_interval = -1
staticprivate

◆ phys_bc_type

amrex::GpuArray<ERF_BC, AMREX_SPACEDIM*2> ERF::phys_bc_type
private

◆ physbcs_base

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_base> > ERF::physbcs_base
private

◆ physbcs_cons

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_cons> > ERF::physbcs_cons
private

◆ physbcs_u

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_u> > ERF::physbcs_u
private

◆ physbcs_v

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_v> > ERF::physbcs_v
private

◆ physbcs_w

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_w> > ERF::physbcs_w
private

◆ plane_sampler

std::unique_ptr<PlaneSampler> ERF::plane_sampler = nullptr
private

◆ plane_sampling_interval

int ERF::plane_sampling_interval = -1
private

◆ plane_sampling_per

amrex::Real ERF::plane_sampling_per = -1.0
private

◆ plot2d_file_1

std::string ERF::plot2d_file_1 {"plt2d_1_"}
private

◆ plot2d_file_2

std::string ERF::plot2d_file_2 {"plt2d_2_"}
private

◆ plot2d_var_names_1

amrex::Vector<std::string> ERF::plot2d_var_names_1
private

◆ plot2d_var_names_2

amrex::Vector<std::string> ERF::plot2d_var_names_2
private

◆ plot3d_file_1

std::string ERF::plot3d_file_1 {"plt_1_"}
private

◆ plot3d_file_2

std::string ERF::plot3d_file_2 {"plt_2_"}
private

◆ plot3d_var_names_1

amrex::Vector<std::string> ERF::plot3d_var_names_1
private

◆ plot3d_var_names_2

amrex::Vector<std::string> ERF::plot3d_var_names_2
private

◆ plot_file_on_restart

bool ERF::plot_file_on_restart = true
staticprivate

◆ plot_lsm

bool ERF::plot_lsm = false
private

◆ plot_rad

bool ERF::plot_rad = false
private

◆ plotfile2d_type_1

PlotFileType ERF::plotfile2d_type_1 = PlotFileType::None
staticprivate

◆ plotfile2d_type_2

PlotFileType ERF::plotfile2d_type_2 = PlotFileType::None
staticprivate

◆ plotfile3d_type_1

PlotFileType ERF::plotfile3d_type_1 = PlotFileType::None
staticprivate

◆ plotfile3d_type_2

PlotFileType ERF::plotfile3d_type_2 = PlotFileType::None
staticprivate

◆ pp_inc

amrex::Vector<amrex::MultiFab> ERF::pp_inc
private

◆ pp_prefix

std::string ERF::pp_prefix {"erf"}

◆ previousCPUTimeUsed

Real ERF::previousCPUTimeUsed = 0.0
staticprivate

Referenced by getCPUTime().

◆ prob

std::unique_ptr<ProblemBase> ERF::prob = nullptr
private

◆ profile_int

int ERF::profile_int = -1
private

◆ qheating_rates

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::qheating_rates
private

◆ qmoist

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::qmoist
private

◆ Qr_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qr_prim
private

◆ Qv_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qv_prim
private

◆ rad

amrex::Vector<std::unique_ptr<IRadiation> > ERF::rad
private

◆ rad_datalog_int

int ERF::rad_datalog_int = -1
private

◆ rad_fluxes

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::rad_fluxes
private

◆ real_extrap_w

bool ERF::real_extrap_w {true}
private

◆ real_set_width

int ERF::real_set_width {0}
private

◆ real_width

int ERF::real_width {0}
private

◆ ref_tags

Vector< AMRErrorTag > ERF::ref_tags
staticprivate

◆ regrid_int

int ERF::regrid_int = -1
private

◆ regrid_level_0_on_restart

bool ERF::regrid_level_0_on_restart = false
private

◆ restart_chkfile

std::string ERF::restart_chkfile = ""
private

◆ rU_new

amrex::Vector<amrex::MultiFab> ERF::rU_new
private

◆ rU_old

amrex::Vector<amrex::MultiFab> ERF::rU_old
private

◆ rV_new

amrex::Vector<amrex::MultiFab> ERF::rV_new
private

◆ rV_old

amrex::Vector<amrex::MultiFab> ERF::rV_old
private

◆ rW_new

amrex::Vector<amrex::MultiFab> ERF::rW_new
private

◆ rW_old

amrex::Vector<amrex::MultiFab> ERF::rW_old
private

◆ sampleline

amrex::Vector<amrex::IntVect> ERF::sampleline
private

Referenced by NumSampleLines(), and SampleLine().

◆ samplelinelog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::samplelinelog
private

◆ samplelinelogname

amrex::Vector<std::string> ERF::samplelinelogname
private

Referenced by SampleLineLogName().

◆ samplepoint

amrex::Vector<amrex::IntVect> ERF::samplepoint
private

Referenced by NumSamplePoints(), and SamplePoint().

◆ sampleptlog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::sampleptlog
private

◆ sampleptlogname

amrex::Vector<std::string> ERF::sampleptlogname
private

Referenced by SamplePointLogName().

◆ SFS_diss_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_diss_lev
private

◆ SFS_hfx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx1_lev
private

◆ SFS_hfx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx2_lev
private

◆ SFS_hfx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx3_lev
private

◆ SFS_q1fx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx1_lev
private

◆ SFS_q1fx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx2_lev
private

◆ SFS_q1fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx3_lev
private

◆ SFS_q2fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q2fx3_lev
private

◆ sinPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sinPhi_m
private

◆ SmnSmn_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SmnSmn_lev
private

◆ soil_type_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::soil_type_lev
private

◆ solar_zenith

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::solar_zenith
private

◆ solverChoice

SolverChoice ERF::solverChoice
staticprivate

◆ sponge_type

std::string ERF::sponge_type
staticprivate

◆ sst_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::sst_lev
private

◆ start_time

Real ERF::start_time = 0.0
staticprivate

◆ startCPUTime

Real ERF::startCPUTime = 0.0
staticprivate

Referenced by getCPUTime().

◆ stop_time

Real ERF::stop_time = std::numeric_limits<amrex::Real>::max()
staticprivate

◆ stretched_dz_d

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::stretched_dz_d
private

◆ stretched_dz_h

amrex::Vector<amrex::Vector<amrex::Real> > ERF::stretched_dz_h
private

◆ sub_cfl

Real ERF::sub_cfl = 1.0
staticprivate

◆ subdomains

amrex::Vector<amrex::Vector<amrex::BoxArray> > ERF::subdomains
private

◆ subvol3d_var_names

amrex::Vector<std::string> ERF::subvol3d_var_names
private

◆ subvol_file

std::string ERF::subvol_file {"subvol"}
private

◆ sum_interval

int ERF::sum_interval = -1
staticprivate

◆ sum_per

Real ERF::sum_per = -1.0
staticprivate

◆ sw_lw_fluxes

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sw_lw_fluxes
private

◆ t_avg_cnt

amrex::Vector<amrex::Real> ERF::t_avg_cnt
private

◆ t_new

amrex::Vector<amrex::Real> ERF::t_new
private

◆ t_old

amrex::Vector<amrex::Real> ERF::t_old
private

◆ Tau

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::Tau
private

◆ Tau_corr

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::Tau_corr
private

◆ terrain_blanking

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::terrain_blanking
private

◆ th_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::th_bc_data
private

◆ Theta_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Theta_prim
private

◆ thin_xforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_xforce
private

◆ thin_yforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_yforce
private

◆ thin_zforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_zforce
private

◆ timeprecision

const int ERF::timeprecision = 13
private

◆ tot_e_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::tot_e_datalog
private

Referenced by setRecordEnergyDataInfo().

◆ tot_e_datalogname

amrex::Vector<std::string> ERF::tot_e_datalogname
private

◆ tsk_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::tsk_lev
private

◆ turbPert

TurbulentPerturbation ERF::turbPert
private

◆ urb_frac_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::urb_frac_lev
private

◆ use_datetime

bool ERF::use_datetime = false
private

◆ use_fft

bool ERF::use_fft = false
staticprivate

◆ use_real_time_in_pltname

bool ERF::use_real_time_in_pltname = false
private

◆ vars_new

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_new
private

◆ vars_old

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_old
private

◆ vel_t_avg

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::vel_t_avg
private

◆ verbose

int ERF::verbose = 0
staticprivate

◆ walldist

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::walldist
private

◆ weather_forecast_data_1

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data_1

◆ weather_forecast_data_2

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data_2

◆ xflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::xflux_imask
private

◆ xvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::xvel_bc_data
private

◆ yflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::yflux_imask
private

◆ yvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::yvel_bc_data
private

◆ z_phys_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc
private

◆ z_phys_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc_src
private

◆ z_phys_nd

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd
private

◆ z_phys_nd_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_new
private

◆ z_phys_nd_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_src
private

◆ z_t_rk

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_t_rk
private

◆ zflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::zflux_imask
private

◆ zlevels_stag

amrex::Vector<amrex::Vector<amrex::Real> > ERF::zlevels_stag
private

◆ zmom_crse_rhs

amrex::Vector<amrex::MultiFab> ERF::zmom_crse_rhs
private

◆ zvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::zvel_bc_data
private

The documentation for this class was generated from the following files: