ERF
Energy Research and Forecasting: An Atmospheric Modeling Code
ERF Class Reference

#include <ERF.H>

Inheritance diagram for ERF:
Collaboration diagram for ERF:

Public Member Functions

 ERF ()
 
 ~ERF () override
 
void ERF_shared ()
 
 ERF (ERF &&) noexcept=delete
 
ERFoperator= (ERF &&other) noexcept=delete
 
 ERF (const ERF &other)=delete
 
ERFoperator= (const ERF &other)=delete
 
void Evolve ()
 
void ErrorEst (int lev, amrex::TagBoxArray &tags, amrex::Real time, int ngrow) override
 
void HurricaneTracker (int lev, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, const bool is_track_io, amrex::TagBoxArray *tags=nullptr)
 
std::string MakeVTKFilename (int nstep)
 
std::string MakeVTKFilename_TrackerCircle (int nstep)
 
std::string MakeVTKFilename_EyeTracker_xy (int nstep)
 
std::string MakeFilename_EyeTracker_latlon (int nstep)
 
std::string MakeFilename_EyeTracker_maxvel (int nstep)
 
void WriteVTKPolyline (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void WriteLinePlot (const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
 
void InitData ()
 
void InitData_pre ()
 
void InitData_post ()
 
void WriteMyEBSurface ()
 
void compute_divergence (int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
 
void project_velocity (int lev, amrex::Real dt)
 
void project_momenta (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void project_velocity_tb (int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
 
void poisson_wall_dist (int lev)
 
void make_subdomains (const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
 
void solve_with_EB_mlmg (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void solve_with_gmres (int lev, const amrex::Box &subdomain, amrex::MultiFab &rhs, amrex::MultiFab &p, amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &fluxes, amrex::MultiFab &ax_sub, amrex::MultiFab &ay_sub, amrex::MultiFab &znd_sub)
 
void solve_with_mlmg (int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
 
void ImposeBCsOnPhi (int lev, amrex::MultiFab &phi, const amrex::Box &subdomain)
 
amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > get_projection_bc (amrex::Orientation::Side side) const noexcept
 
bool projection_has_dirichlet (amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > bcs) const
 
void init_only (int lev, amrex::Real time)
 
void restart ()
 
bool writeNow (const amrex::Real cur_time, const int nstep, const int plot_int, const amrex::Real plot_per, const amrex::Real dt_0, amrex::Real &last_file_time)
 
void post_timestep (int nstep, amrex::Real time, amrex::Real dt_lev)
 
void sum_integrated_quantities (amrex::Real time)
 
void sum_derived_quantities (amrex::Real time)
 
void sum_energy_quantities (amrex::Real time)
 
void write_1D_profiles (amrex::Real time)
 
void write_1D_profiles_stag (amrex::Real time)
 
amrex::Real cloud_fraction (amrex::Real time)
 
void FillBdyCCVels (amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
 
void sample_points (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void sample_lines (int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
 
void derive_diag_profiles (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_diag_profiles_stag (amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
 
void derive_stress_profiles (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
void derive_stress_profiles_stag (amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
 
amrex::Real volWgtSumMF (int lev, const amrex::MultiFab &mf, int comp, bool finemask)
 
void MakeNewLevelFromCoarse (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void RemakeLevel (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
void ClearLevel (int lev) override
 
void MakeNewLevelFromScratch (int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
 
amrex::Real estTimeStep (int lev, long &dt_fast_ratio) const
 
void advance_dycore (int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
 
void advance_microphysics (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
 
void advance_lsm (int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
 
void advance_radiation (int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
 
amrex::MultiFab & build_fine_mask (int lev)
 
void MakeHorizontalAverages ()
 
void MakeDiagnosticAverage (amrex::Vector< amrex::Real > &h_havg, amrex::MultiFab &S, int n)
 
void derive_upwp (amrex::Vector< amrex::Real > &h_havg)
 
void Write3DPlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void Write2DPlotFile (int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
 
void WriteSubvolume ()
 
void WriteMultiLevelPlotfileWithTerrain (const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
 
void WriteGenericPlotfileHeaderWithTerrain (std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
 
void erf_enforce_hse (int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
 
void init_from_input_sounding (int lev)
 
void input_sponge (int lev)
 
void init_from_hse (int lev)
 
void init_thin_body (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void CreateWeatherDataGeomBoxArrayDistMap (const std::string &filename, amrex::Geometry &geom_weather, amrex::BoxArray &nba, amrex::DistributionMapping &dm)
 
void FillWeatherDataMultiFab (const std::string &filename, const amrex::Geometry &geom_weather, const amrex::BoxArray &nba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &weather_forecast_data)
 
void InterpWeatherDataOntoMesh (const amrex::Geometry &geom_weather, amrex::MultiFab &weather_forecast_interp, amrex::Vector< amrex::Vector< amrex::MultiFab >> &forecast_state)
 
void CreateForecastStateMultiFabs (amrex::Vector< amrex::Vector< amrex::MultiFab >> &forecast_state)
 
void WeatherDataInterpolation (const amrex::Real time)
 
void fill_from_bndryregs (const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
 
void MakeEBGeometry ()
 
void make_eb_box ()
 
void make_eb_regular ()
 
void AverageDownTo (int crse_lev, int scomp, int ncomp)
 
void WriteCheckpointFile () const
 
void ReadCheckpointFile ()
 
void ReadCheckpointFileSurfaceLayer ()
 
void init_zphys (int lev, amrex::Real time)
 
void remake_zphys (int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
 
void update_terrain_arrays (int lev)
 
void writeJobInfo (const std::string &dir) const
 

Static Public Member Functions

static bool is_it_time_for_action (int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
 
static void writeBuildInfo (std::ostream &os)
 
static void print_banner (MPI_Comm, std::ostream &)
 
static void print_usage (MPI_Comm, std::ostream &)
 
static void print_error (MPI_Comm, const std::string &msg)
 
static void print_summary (std::ostream &)
 
static void print_tpls (std::ostream &)
 

Public Attributes

amrex::Vector< std::array< amrex::Real, 2 > > hurricane_track_xy
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_xy
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_latlon
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_maxvel_vs_time
 
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_tracker_circle
 
amrex::Vector< amrex::MultiFab > weather_forecast_data_1
 
amrex::Vector< amrex::MultiFab > weather_forecast_data_2
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_1
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_2
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_interp
 
std::string pp_prefix {"erf"}
 

Private Member Functions

void ReadParameters ()
 
void ParameterSanityChecks ()
 
void AverageDown ()
 
void update_diffusive_arrays (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
 
void Construct_ERFFillPatchers (int lev)
 
void Define_ERFFillPatchers (int lev)
 
void init1DArrays ()
 
void init_bcs ()
 
void init_custom (int lev)
 
void init_uniform (int lev)
 
void init_stuff (int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
 
void turbPert_update (const int lev, const amrex::Real dt)
 
void turbPert_amplitude (const int lev)
 
void initialize_integrator (int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
 
void make_physbcs (int lev)
 
void initializeMicrophysics (const int &)
 
void FillPatchCrseLevel (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
 
void FillPatchFineLevel (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
 
void FillIntermediatePatch (int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
 
void FillCoarsePatch (int lev, amrex::Real time)
 
void timeStep (int lev, amrex::Real time, int iteration)
 
void Advance (int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
 
void initHSE ()
 Initialize HSE. More...
 
void initHSE (int lev)
 
void initRayleigh ()
 Initialize Rayleigh damping profiles. More...
 
void initSponge ()
 Initialize sponge profiles. More...
 
void setRayleighRefFromSounding (bool restarting)
 Set Rayleigh mean profiles from input sounding. More...
 
void setSpongeRefFromSounding (bool restarting)
 Set sponge mean profiles from input sounding. More...
 
void ComputeDt (int step=-1)
 
std::string PlotFileName (int lev) const
 
void setPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void setPlotVariables2D (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void appendPlotVariables (const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
 
void init_Dirichlet_bc_data (const std::string input_file)
 
void InitializeFromFile ()
 
void InitializeLevelFromData (int lev, const amrex::MultiFab &initial_data)
 
void post_update (amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void fill_rhs (amrex::MultiFab &rhs_mf, const amrex::MultiFab &state_mf, amrex::Real time, const amrex::Geometry &geom)
 
void init_geo_wind_profile (const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
 
void refinement_criteria_setup ()
 
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg (int lev)
 
AMREX_FORCE_INLINE std::ostream & DataLog (int i)
 
AMREX_FORCE_INLINE std::ostream & DerDataLog (int i)
 
AMREX_FORCE_INLINE int NumDataLogs () noexcept
 
AMREX_FORCE_INLINE int NumDerDataLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SamplePointLog (int i)
 
AMREX_FORCE_INLINE int NumSamplePointLogs () noexcept
 
AMREX_FORCE_INLINE std::ostream & SampleLineLog (int i)
 
AMREX_FORCE_INLINE int NumSampleLineLogs () noexcept
 
amrex::IntVect & SamplePoint (int i)
 
AMREX_FORCE_INLINE int NumSamplePoints () noexcept
 
amrex::IntVect & SampleLine (int i)
 
AMREX_FORCE_INLINE int NumSampleLines () noexcept
 
void setRecordDataInfo (int i, const std::string &filename)
 
void setRecordDerDataInfo (int i, const std::string &filename)
 
void setRecordEnergyDataInfo (int i, const std::string &filename)
 
void setRecordSamplePointInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
void setRecordSampleLineInfo (int i, int lev, amrex::IntVect &cell, const std::string &filename)
 
std::string DataLogName (int i) const noexcept
 The filename of the ith datalog file. More...
 
std::string DerDataLogName (int i) const noexcept
 
std::string SamplePointLogName (int i) const noexcept
 The filename of the ith sampleptlog file. More...
 
std::string SampleLineLogName (int i) const noexcept
 The filename of the ith samplelinelog file. More...
 
eb_ const & get_eb (int lev) const noexcept
 
amrex::EBFArrayBoxFactory const & EBFactory (int lev) const noexcept
 

Static Private Member Functions

static amrex::Vector< std::string > PlotFileVarNames (amrex::Vector< std::string > plot_var_names)
 
static void GotoNextLine (std::istream &is)
 
static AMREX_FORCE_INLINE int ComputeGhostCells (const SolverChoice &sc)
 
static amrex::Real getCPUTime ()
 
static int nghost_eb_basic ()
 
static int nghost_eb_volume ()
 
static int nghost_eb_full ()
 

Private Attributes

amrex::Vector< std::unique_ptr< amrex::MultiFab > > lat_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lon_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
 
InputSoundingData input_sounding_data
 
InputSpongeData input_sponge_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
 
std::unique_ptr< ProblemBaseprob = nullptr
 
amrex::Vector< int > num_boxes_at_level
 
amrex::Vector< int > num_files_at_level
 
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
 
amrex::Vector< int > istep
 
amrex::Vector< int > nsubsteps
 
amrex::Vector< amrex::Realt_new
 
amrex::Vector< amrex::Realt_old
 
amrex::Vector< amrex::Realdt
 
amrex::Vector< long > dt_mri_ratio
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
 
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
 
amrex::Vector< amrex::Realt_avg_cnt
 
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
 
amrex::Vector< amrex::MultiFab > pp_inc
 
amrex::Vector< amrex::MultiFab > lagged_delta_rt
 
amrex::Vector< amrex::MultiFab > avg_xmom
 
amrex::Vector< amrex::MultiFab > avg_ymom
 
amrex::Vector< amrex::MultiFab > avg_zmom
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
 
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
 
amrex::Vector< amrex::MultiFab > rU_old
 
amrex::Vector< amrex::MultiFab > rU_new
 
amrex::Vector< amrex::MultiFab > rV_old
 
amrex::Vector< amrex::MultiFab > rV_new
 
amrex::Vector< amrex::MultiFab > rW_old
 
amrex::Vector< amrex::MultiFab > rW_new
 
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
 
std::unique_ptr< Microphysicsmicro
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
 
LandSurface lsm
 
amrex::Vector< std::string > lsm_data_name
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
 
amrex::Vector< std::string > lsm_flux_name
 
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
 
amrex::Vector< std::unique_ptr< IRadiation > > rad
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
 
bool plot_rad = false
 
int rad_datalog_int = -1
 
int cf_width {0}
 
int cf_set_width {0}
 
amrex::Vector< ERFFillPatcherFPr_c
 
amrex::Vector< ERFFillPatcherFPr_u
 
amrex::Vector< ERFFillPatcherFPr_v
 
amrex::Vector< ERFFillPatcherFPr_w
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
 
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
 
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
 
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
 
amrex::Vector< amrex::MultiFab > base_state
 
amrex::Vector< amrex::MultiFab > base_state_new
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
 
bool finished_wave = false
 
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
 
amrex::Vector< amrex::BCRec > domain_bcs_type
 
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
 
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_extdir_vals
 
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_maxm_bc_neumann_vals
 
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
 
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
 
const int datwidth = 14
 
const int datprecision = 6
 
const int timeprecision = 13
 
int max_step = -1
 
bool use_datetime = false
 
const std::string datetime_format = "%Y-%m-%d %H:%M:%S"
 
std::string restart_chkfile = ""
 
amrex::Vector< amrex::Realfixed_dt
 
amrex::Vector< amrex::Realfixed_fast_dt
 
int regrid_int = -1
 
bool regrid_level_0_on_restart = false
 
std::string plot3d_file_1 {"plt_1_"}
 
std::string plot3d_file_2 {"plt_2_"}
 
std::string plot2d_file_1 {"plt2d_1_"}
 
std::string plot2d_file_2 {"plt2d_2_"}
 
std::string subvol_file {"subvol"}
 
bool m_expand_plotvars_to_unif_rr = false
 
int m_plot3d_int_1 = -1
 
int m_plot3d_int_2 = -1
 
int m_plot2d_int_1 = -1
 
int m_plot2d_int_2 = -1
 
int m_subvol_int = -1
 
amrex::Real m_plot3d_per_1 = -1.0
 
amrex::Real m_plot3d_per_2 = -1.0
 
amrex::Real m_plot2d_per_1 = -1.0
 
amrex::Real m_plot2d_per_2 = -1.0
 
amrex::Real m_subvol_per = -1.0
 
bool m_plot_face_vels = false
 
bool plot_lsm = false
 
int profile_int = -1
 
bool destag_profiles = true
 
std::string check_file {"chk"}
 
int m_check_int = -1
 
amrex::Real m_check_per = -1.0
 
amrex::Vector< std::string > plot3d_var_names_1
 
amrex::Vector< std::string > plot3d_var_names_2
 
amrex::Vector< std::string > plot2d_var_names_1
 
amrex::Vector< std::string > plot2d_var_names_2
 
const amrex::Vector< std::string > cons_names
 
const amrex::Vector< std::string > derived_names
 
const amrex::Vector< std::string > derived_names_2d
 
TurbulentPerturbation turbPert
 
int real_width {0}
 
int real_set_width {0}
 
bool real_extrap_w {true}
 
bool metgrid_debug_quiescent {false}
 
bool metgrid_debug_isothermal {false}
 
bool metgrid_debug_dry {false}
 
bool metgrid_debug_psfc {false}
 
bool metgrid_debug_msf {false}
 
bool metgrid_interp_theta {false}
 
bool metgrid_basic_linear {false}
 
bool metgrid_use_below_sfc {true}
 
bool metgrid_use_sfc {true}
 
bool metgrid_retain_sfc {false}
 
amrex::Real metgrid_proximity {500.0}
 
int metgrid_order {2}
 
int metgrid_force_sfc_k {6}
 
amrex::Vector< amrex::BoxArray > ba1d
 
amrex::Vector< amrex::BoxArray > ba2d
 
std::unique_ptr< amrex::MultiFab > mf_C1H
 
std::unique_ptr< amrex::MultiFab > mf_C2H
 
std::unique_ptr< amrex::MultiFab > mf_MUB
 
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_PSFC
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
 
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
 
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
 
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
 
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
 
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
 
amrex::Vector< amrex::Realh_havg_density
 
amrex::Vector< amrex::Realh_havg_temperature
 
amrex::Vector< amrex::Realh_havg_pressure
 
amrex::Vector< amrex::Realh_havg_qv
 
amrex::Vector< amrex::Realh_havg_qc
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_density
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_temperature
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_pressure
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_qv
 
amrex::Gpu::DeviceVector< amrex::Reald_havg_qc
 
std::unique_ptr< WriteBndryPlanesm_w2d = nullptr
 
std::unique_ptr< ReadBndryPlanesm_r2d = nullptr
 
std::unique_ptr< SurfaceLayerm_SurfaceLayer = nullptr
 
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
 
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
 
amrex::MultiFab fine_mask
 
amrex::Vector< amrex::Realdz_min
 
int line_sampling_interval = -1
 
int plane_sampling_interval = -1
 
amrex::Real line_sampling_per = -1.0
 
amrex::Real plane_sampling_per = -1.0
 
std::unique_ptr< LineSamplerline_sampler = nullptr
 
std::unique_ptr< PlaneSamplerplane_sampler = nullptr
 
amrex::Vector< std::unique_ptr< std::fstream > > datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
 
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
 
amrex::Vector< std::string > datalogname
 
amrex::Vector< std::string > der_datalogname
 
amrex::Vector< std::string > tot_e_datalogname
 
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
 
amrex::Vector< std::string > sampleptlogname
 
amrex::Vector< amrex::IntVect > samplepoint
 
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
 
amrex::Vector< std::string > samplelinelogname
 
amrex::Vector< amrex::IntVect > sampleline
 
amrex::Vector< std::unique_ptr< eb_ > > eb
 

Static Private Attributes

static int last_plot3d_file_step_1 = -1
 
static int last_plot3d_file_step_2 = -1
 
static int last_plot2d_file_step_1 = -1
 
static int last_plot2d_file_step_2 = -1
 
static int last_check_file_step = -1
 
static int last_subvol_step = -1
 
static amrex::Real last_plot3d_file_time_1 = 0.0
 
static amrex::Real last_plot3d_file_time_2 = 0.0
 
static amrex::Real last_plot2d_file_time_1 = 0.0
 
static amrex::Real last_plot2d_file_time_2 = 0.0
 
static amrex::Real last_check_file_time = 0.0
 
static amrex::Real last_subvol_time = 0.0
 
static bool plot_file_on_restart = true
 
static amrex::Real start_time = 0.0
 
static amrex::Real stop_time = std::numeric_limits<amrex::Real>::max()
 
static amrex::Real cfl = 0.8
 
static amrex::Real sub_cfl = 1.0
 
static amrex::Real init_shrink = 1.0
 
static amrex::Real change_max = 1.1
 
static amrex::Real dt_max_initial = 2.0e100
 
static amrex::Real dt_max = 1.0e9
 
static int fixed_mri_dt_ratio = 0
 
static SolverChoice solverChoice
 
static int verbose = 0
 
static int mg_verbose = 0
 
static bool use_fft = false
 
static int sum_interval = -1
 
static int pert_interval = -1
 
static amrex::Real sum_per = -1.0
 
static PlotFileType plotfile3d_type_1 = PlotFileType::None
 
static PlotFileType plotfile3d_type_2 = PlotFileType::None
 
static PlotFileType plotfile2d_type_1 = PlotFileType::None
 
static PlotFileType plotfile2d_type_2 = PlotFileType::None
 
static StateInterpType interpolation_type
 
static std::string sponge_type
 
static amrex::Vector< amrex::Vector< std::string > > nc_init_file = {{""}}
 
static std::string nc_bdy_file
 
static std::string nc_low_file
 
static int output_1d_column = 0
 
static int column_interval = -1
 
static amrex::Real column_per = -1.0
 
static amrex::Real column_loc_x = 0.0
 
static amrex::Real column_loc_y = 0.0
 
static std::string column_file_name = "column_data.nc"
 
static int output_bndry_planes = 0
 
static int bndry_output_planes_interval = -1
 
static amrex::Real bndry_output_planes_per = -1.0
 
static amrex::Real bndry_output_planes_start_time = 0.0
 
static int input_bndry_planes = 0
 
static int ng_dens_hse
 
static int ng_pres_hse
 
static amrex::Vector< amrex::AMRErrorTag > ref_tags
 
static amrex::Real startCPUTime = 0.0
 
static amrex::Real previousCPUTimeUsed = 0.0
 

Detailed Description

Main class in ERF code, instantiated from main.cpp

Constructor & Destructor Documentation

◆ ERF() [1/3]

ERF::ERF ( )
124 {
125  int fix_random_seed = 0;
126  ParmParse pp("erf"); pp.query("fix_random_seed", fix_random_seed);
127  // Note that the value of 1024UL is not significant -- the point here is just to set the
128  // same seed for all MPI processes for the purpose of regression testing
129  if (fix_random_seed) {
130  Print() << "Fixing the random seed" << std::endl;
131  InitRandom(1024UL);
132  }
133 
134  ERF_shared();
135 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real pp(amrex::Real y)
Definition: ERF_MicrophysicsUtils.H:233
void ERF_shared()
Definition: ERF.cpp:138
Here is the call graph for this function:

◆ ~ERF()

ERF::~ERF ( )
overridedefault

◆ ERF() [2/3]

ERF::ERF ( ERF &&  )
deletenoexcept

◆ ERF() [3/3]

ERF::ERF ( const ERF other)
delete

Member Function Documentation

◆ Advance()

void ERF::Advance ( int  lev,
amrex::Real  time,
amrex::Real  dt_lev,
int  iteration,
int  ncycle 
)
private
24 {
25  BL_PROFILE("ERF::Advance()");
26 
27  // We must swap the pointers so the previous step's "new" is now this step's "old"
28  std::swap(vars_old[lev], vars_new[lev]);
29 
30  MultiFab& S_old = vars_old[lev][Vars::cons];
31  MultiFab& S_new = vars_new[lev][Vars::cons];
32 
33  MultiFab& U_old = vars_old[lev][Vars::xvel];
34  MultiFab& V_old = vars_old[lev][Vars::yvel];
35  MultiFab& W_old = vars_old[lev][Vars::zvel];
36 
37  MultiFab& U_new = vars_new[lev][Vars::xvel];
38  MultiFab& V_new = vars_new[lev][Vars::yvel];
39  MultiFab& W_new = vars_new[lev][Vars::zvel];
40 
41  // We need to set these because otherwise in the first call to erf_advance we may
42  // read uninitialized data on ghost values in setting the bc's on the velocities
43  U_new.setVal(1.e34,U_new.nGrowVect());
44  V_new.setVal(1.e34,V_new.nGrowVect());
45  W_new.setVal(1.e34,W_new.nGrowVect());
46 
47  // Do error checking for negative (rho theta) here
48  if (solverChoice.anelastic[lev] != 1) {
50  }
51 
52  //
53  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
54  // If lev == 0 we have already FillPatched this in ERF::TimeStep
55  //
56  if (lev > 0) {
57  FillPatchFineLevel(lev, time, {&S_old, &U_old, &V_old, &W_old},
58  {&S_old, &rU_old[lev], &rV_old[lev], &rW_old[lev]},
59  base_state[lev], base_state[lev]);
60  }
61 
62  //
63  // So we must convert the fillpatched to momenta, including the ghost values
64  //
65  VelocityToMomentum(U_old, rU_old[lev].nGrowVect(),
66  V_old, rV_old[lev].nGrowVect(),
67  W_old, rW_old[lev].nGrowVect(),
68  S_old, rU_old[lev], rV_old[lev], rW_old[lev],
69  Geom(lev).Domain(),
71 
72  // Update the inflow perturbation update time and amplitude
73  if (solverChoice.pert_type == PerturbationType::Source ||
74  solverChoice.pert_type == PerturbationType::Direct ||
75  solverChoice.pert_type == PerturbationType::CPM)
76  {
77  turbPert.calc_tpi_update(lev, dt_lev, U_old, V_old, S_old);
78  }
79 
80  // If PerturbationType::Direct or CPM is selected, directly add the computed perturbation
81  // on the conserved field
82  if (solverChoice.pert_type == PerturbationType::Direct ||
83  solverChoice.pert_type == PerturbationType::CPM)
84  {
85  auto m_ixtype = S_old.boxArray().ixType(); // Conserved term
86  for (MFIter mfi(S_old,TileNoZ()); mfi.isValid(); ++mfi) {
87  Box bx = mfi.tilebox();
88  const Array4<Real> &cell_data = S_old.array(mfi);
89  const Array4<const Real> &pert_cell = turbPert.pb_cell[lev].array(mfi);
90  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cell_data, pert_cell);
91  }
92  }
93 
94  // configure SurfaceLayer params if needed
95  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
96  if (m_SurfaceLayer) {
97  IntVect ng = Theta_prim[lev]->nGrowVect();
98  MultiFab::Copy( *Theta_prim[lev], S_old, RhoTheta_comp, 0, 1, ng);
99  MultiFab::Divide(*Theta_prim[lev], S_old, Rho_comp , 0, 1, ng);
100  if (solverChoice.moisture_type != MoistureType::None) {
101  ng = Qv_prim[lev]->nGrowVect();
102 
103  MultiFab::Copy( *Qv_prim[lev], S_old, RhoQ1_comp, 0, 1, ng);
104  MultiFab::Divide(*Qv_prim[lev], S_old, Rho_comp , 0, 1, ng);
105 
106  if (solverChoice.moisture_indices.qr > -1) {
107  MultiFab::Copy( *Qr_prim[lev], S_old, solverChoice.moisture_indices.qr, 0, 1, ng);
108  MultiFab::Divide(*Qr_prim[lev], S_old, Rho_comp , 0, 1, ng);
109  } else {
110  Qr_prim[lev]->setVal(0.0);
111  }
112  }
113  // NOTE: std::swap above causes the field ptrs to be out of date.
114  // Reassign the field ptrs for MAC avg computation.
115  m_SurfaceLayer->update_mac_ptrs(lev, vars_old, Theta_prim, Qv_prim, Qr_prim);
116  m_SurfaceLayer->update_pblh(lev, vars_old, z_phys_cc[lev].get(),
118  m_SurfaceLayer->update_fluxes(lev, time, S_old, z_phys_nd[lev]);
119  }
120  }
121 
122 #if defined(ERF_USE_WINDFARM)
123  // **************************************************************************************
124  // Update the windfarm sources
125  // **************************************************************************************
126  if (solverChoice.windfarm_type != WindFarmType::None) {
127  advance_windfarm(Geom(lev), dt_lev, S_old,
128  U_old, V_old, W_old, vars_windfarm[lev],
129  Nturb[lev], SMark[lev], time);
130  }
131 
132 #endif
133 
134  // **************************************************************************************
135  // Weather data interpolation
136  // **************************************************************************************
137  if(solverChoice.init_type == InitType::HindCast and
140  }
141 
142  // **************************************************************************************
143  // Update the radiation sources with the "old" state
144  // **************************************************************************************
145  advance_radiation(lev, S_old, dt_lev);
146 
147 #ifdef ERF_USE_SHOC
148  // **************************************************************************************
149  // Update the "old" state using SHOC
150  // **************************************************************************************
151  if (solverChoice.use_shoc) {
152  Real* w_sub = (solverChoice.custom_w_subsidence) ? d_w_subsid[lev].data() : nullptr;
153  compute_shoc_tendencies(lev, &S_old, &U_old, &V_old, &W_old, w_sub,
154  Tau[lev][TauType::tau13].get(), Tau[lev][TauType::tau23].get(),
155  SFS_hfx3_lev[lev].get() , SFS_q1fx3_lev[lev].get() ,
156  eddyDiffs_lev[lev].get() , z_phys_nd[lev].get() ,
157  dt_lev);
158  }
159 #endif
160 
161  const BoxArray& ba = S_old.boxArray();
162  const DistributionMapping& dm = S_old.DistributionMap();
163 
164  int nvars = S_old.nComp();
165 
166  // Source array for conserved cell-centered quantities -- this will be filled
167  // in the call to make_sources in ERF_TI_slow_rhs_pre.H
168  MultiFab cc_source(ba,dm,nvars,1); cc_source.setVal(0.0);
169 
170  // Source arrays for momenta -- these will be filled
171  // in the call to make_mom_sources in ERF_TI_slow_rhs_pre.H
172  BoxArray ba_x(ba); ba_x.surroundingNodes(0);
173  MultiFab xmom_source(ba_x,dm,1,1); xmom_source.setVal(0.0);
174 
175  BoxArray ba_y(ba); ba_y.surroundingNodes(1);
176  MultiFab ymom_source(ba_y,dm,1,1); ymom_source.setVal(0.0);
177 
178  BoxArray ba_z(ba); ba_z.surroundingNodes(2);
179  MultiFab zmom_source(ba_z,dm,1,1); zmom_source.setVal(0.0);
180  MultiFab buoyancy(ba_z,dm,1,1); buoyancy.setVal(0.0);
181 
182  amrex::Vector<MultiFab> state_old;
183  amrex::Vector<MultiFab> state_new;
184 
185  // **************************************************************************************
186  // Here we define state_old and state_new which are to be advanced
187  // **************************************************************************************
188  // Initial solution
189  // Note that "old" and "new" here are relative to each RK stage.
190  state_old.push_back(MultiFab(S_old , amrex::make_alias, 0, nvars)); // cons
191  state_old.push_back(MultiFab(rU_old[lev], amrex::make_alias, 0, 1)); // xmom
192  state_old.push_back(MultiFab(rV_old[lev], amrex::make_alias, 0, 1)); // ymom
193  state_old.push_back(MultiFab(rW_old[lev], amrex::make_alias, 0, 1)); // zmom
194 
195  // Final solution
196  // state_new at the end of the last RK stage holds the t^{n+1} data
197  state_new.push_back(MultiFab(S_new , amrex::make_alias, 0, nvars)); // cons
198  state_new.push_back(MultiFab(rU_new[lev], amrex::make_alias, 0, 1)); // xmom
199  state_new.push_back(MultiFab(rV_new[lev], amrex::make_alias, 0, 1)); // ymom
200  state_new.push_back(MultiFab(rW_new[lev], amrex::make_alias, 0, 1)); // zmom
201 
202  // **************************************************************************************
203  // Update the dycore
204  // **************************************************************************************
205  advance_dycore(lev, state_old, state_new,
206  U_old, V_old, W_old,
207  U_new, V_new, W_new,
208  cc_source, xmom_source, ymom_source, zmom_source, buoyancy,
209  Geom(lev), dt_lev, time);
210 
211  // **************************************************************************************
212  // Update the microphysics (moisture)
213  // **************************************************************************************
215  advance_microphysics(lev, S_new, dt_lev, iteration, time);
216  }
217 
218  // **************************************************************************************
219  // Update the land surface model
220  // **************************************************************************************
221  advance_lsm(lev, S_new, U_new, V_new, dt_lev);
222 
223 #ifdef ERF_USE_PARTICLES
224  // **************************************************************************************
225  // Update the particle positions
226  // **************************************************************************************
227  evolveTracers( lev, dt_lev, vars_new, z_phys_nd );
228 #endif
229 
230  // ***********************************************************************************************
231  // Impose domain boundary conditions here so that in FillPatching the fine data we won't
232  // need to re-fill these
233  // ***********************************************************************************************
234  if (lev < finest_level) {
235  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
237  0,vars_new[lev][Vars::cons].nComp(),
238  vars_new[lev][Vars::cons].nGrowVect(),time,BCVars::cons_bc,true);
239  (*physbcs_u[lev])(vars_new[lev][Vars::xvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
240  ngvect_vels,time,BCVars::xvel_bc,true);
241  (*physbcs_v[lev])(vars_new[lev][Vars::yvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
242  ngvect_vels,time,BCVars::yvel_bc,true);
243  (*physbcs_w[lev])(vars_new[lev][Vars::zvel], vars_new[lev][Vars::xvel], vars_new[lev][Vars::yvel],
244  ngvect_vels,time,BCVars::zvel_bc,true);
245  }
246 
247  // **************************************************************************************
248  // Register old and new coarse data if we are at a level less than the finest level
249  // **************************************************************************************
250  if (lev < finest_level) {
251  if (cf_width > 0) {
252  // We must fill the ghost cells of these so that the parallel copy works correctly
253  state_old[IntVars::cons].FillBoundary(geom[lev].periodicity());
254  state_new[IntVars::cons].FillBoundary(geom[lev].periodicity());
255  FPr_c[lev].RegisterCoarseData({&state_old[IntVars::cons], &state_new[IntVars::cons]},
256  {time, time+dt_lev});
257  }
258 
259  if (cf_width >= 0) {
260  // We must fill the ghost cells of these so that the parallel copy works correctly
261  state_old[IntVars::xmom].FillBoundary(geom[lev].periodicity());
262  state_new[IntVars::xmom].FillBoundary(geom[lev].periodicity());
263  FPr_u[lev].RegisterCoarseData({&state_old[IntVars::xmom], &state_new[IntVars::xmom]},
264  {time, time+dt_lev});
265 
266  state_old[IntVars::ymom].FillBoundary(geom[lev].periodicity());
267  state_new[IntVars::ymom].FillBoundary(geom[lev].periodicity());
268  FPr_v[lev].RegisterCoarseData({&state_old[IntVars::ymom], &state_new[IntVars::ymom]},
269  {time, time+dt_lev});
270 
271  state_old[IntVars::zmom].FillBoundary(geom[lev].periodicity());
272  state_new[IntVars::zmom].FillBoundary(geom[lev].periodicity());
273  FPr_w[lev].RegisterCoarseData({&state_old[IntVars::zmom], &state_new[IntVars::zmom]},
274  {time, time+dt_lev});
275  }
276 
277  //
278  // Now create a MultiFab that holds (S_new - S_old) / dt from the coarse level interpolated
279  // on to the coarse/fine boundary at the fine resolution
280  //
281  Interpolater* mapper_f = &face_cons_linear_interp;
282 
283  // PhysBCFunctNoOp null_bc;
284  // MultiFab tempx(vars_new[lev+1][Vars::xvel].boxArray(),vars_new[lev+1][Vars::xvel].DistributionMap(),1,0);
285  // tempx.setVal(0.0);
286  // xmom_crse_rhs[lev+1].setVal(0.0);
287  // FPr_u[lev].FillSet(tempx , time , null_bc, domain_bcs_type);
288  // FPr_u[lev].FillSet(xmom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
289  // MultiFab::Subtract(xmom_crse_rhs[lev+1],tempx,0,0,1,IntVect{0});
290  // xmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
291 
292  // MultiFab tempy(vars_new[lev+1][Vars::yvel].boxArray(),vars_new[lev+1][Vars::yvel].DistributionMap(),1,0);
293  // tempy.setVal(0.0);
294  // ymom_crse_rhs[lev+1].setVal(0.0);
295  // FPr_v[lev].FillSet(tempy , time , null_bc, domain_bcs_type);
296  // FPr_v[lev].FillSet(ymom_crse_rhs[lev+1], time+dt_lev, null_bc, domain_bcs_type);
297  // MultiFab::Subtract(ymom_crse_rhs[lev+1],tempy,0,0,1,IntVect{0});
298  // ymom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
299 
300  MultiFab temp_state(zmom_crse_rhs[lev+1].boxArray(),zmom_crse_rhs[lev+1].DistributionMap(),1,0);
301  InterpFromCoarseLevel(temp_state, IntVect{0}, IntVect{0}, state_old[IntVars::zmom], 0, 0, 1,
302  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
303  InterpFromCoarseLevel(zmom_crse_rhs[lev+1], IntVect{0}, IntVect{0}, state_new[IntVars::zmom], 0, 0, 1,
304  geom[lev], geom[lev+1], refRatio(lev), mapper_f, domain_bcs_type, BCVars::zvel_bc);
305  MultiFab::Subtract(zmom_crse_rhs[lev+1],temp_state,0,0,1,IntVect{0});
306  zmom_crse_rhs[lev+1].mult(1.0/dt_lev,0,1,0);
307  }
308 
309  // ***********************************************************************************************
310  // Update the time averaged velocities if they are requested
311  // ***********************************************************************************************
313  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(), U_new, V_new, W_new);
314  }
315 }
void check_for_negative_theta(amrex::MultiFab &S_old)
Definition: ERF_Advance.cpp:318
@ tau23
Definition: ERF_DataStruct.H:30
@ tau13
Definition: ERF_DataStruct.H:30
@ nvars
Definition: ERF_DataStruct.H:91
#define Rho_comp
Definition: ERF_IndexDefines.H:36
#define RhoTheta_comp
Definition: ERF_IndexDefines.H:37
#define RhoQ1_comp
Definition: ERF_IndexDefines.H:42
@ surface_layer
amrex::Real Real
Definition: ERF_ShocInterface.H:19
AMREX_FORCE_INLINE amrex::IntVect TileNoZ()
Definition: ERF_TileNoZ.H:11
void Time_Avg_Vel_atCC(const Real &dt, Real &t_avg_cnt, MultiFab *vel_t_avg, MultiFab &xvel, MultiFab &yvel, MultiFab &zvel)
Definition: ERF_TimeAvgVel.cpp:9
void VelocityToMomentum(const amrex::MultiFab &xvel_in, const amrex::IntVect &xvel_ngrow, const amrex::MultiFab &yvel_in, const amrex::IntVect &yvel_ngrow, const amrex::MultiFab &zvel_in, const amrex::IntVect &zvel_ngrow, const amrex::MultiFab &cons_in, amrex::MultiFab &xmom_out, amrex::MultiFab &ymom_out, amrex::MultiFab &zmom_out, const amrex::Box &domain, const amrex::Vector< amrex::BCRec > &domain_bcs_type_h, const amrex::MultiFab *c_vfrac=nullptr)
amrex::Vector< amrex::MultiFab > rU_new
Definition: ERF.H:835
amrex::Vector< ERFFillPatcher > FPr_u
Definition: ERF.H:889
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx3_lev
Definition: ERF.H:906
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_new
Definition: ERF.H:800
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx3_lev
Definition: ERF.H:904
amrex::Vector< ERFFillPatcher > FPr_v
Definition: ERF.H:890
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_cons > > physbcs_cons
Definition: ERF.H:822
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc
Definition: ERF.H:914
amrex::Vector< std::unique_ptr< amrex::MultiFab > > eddyDiffs_lev
Definition: ERF.H:895
static SolverChoice solverChoice
Definition: ERF.H:1135
amrex::Vector< ERFFillPatcher > FPr_c
Definition: ERF.H:888
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > Tau
Definition: ERF.H:894
amrex::Vector< std::unique_ptr< amrex::MultiFab > > vel_t_avg
Definition: ERF.H:807
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_w > > physbcs_w
Definition: ERF.H:825
amrex::Vector< amrex::MultiFab > base_state
Definition: ERF.H:945
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qv_prim
Definition: ERF.H:830
amrex::Vector< amrex::MultiFab > rV_new
Definition: ERF.H:837
amrex::Vector< amrex::BCRec > domain_bcs_type
Definition: ERF.H:961
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Qr_prim
Definition: ERF.H:831
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_u > > physbcs_u
Definition: ERF.H:823
amrex::Vector< amrex::Real > t_avg_cnt
Definition: ERF.H:808
void FillPatchFineLevel(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, const amrex::MultiFab &old_base_state, const amrex::MultiFab &new_base_state, bool fillset=true, bool cons_only=false)
Definition: ERF_FillPatch.cpp:20
amrex::Vector< amrex::MultiFab > rU_old
Definition: ERF.H:834
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Theta_prim
Definition: ERF.H:829
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_v > > physbcs_v
Definition: ERF.H:824
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd
Definition: ERF.H:913
void advance_dycore(int level, amrex::Vector< amrex::MultiFab > &state_old, amrex::Vector< amrex::MultiFab > &state_new, amrex::MultiFab &xvel_old, amrex::MultiFab &yvel_old, amrex::MultiFab &zvel_old, amrex::MultiFab &xvel_new, amrex::MultiFab &yvel_new, amrex::MultiFab &zvel_new, amrex::MultiFab &source, amrex::MultiFab &xmom_src, amrex::MultiFab &ymom_src, amrex::MultiFab &zmom_src, amrex::MultiFab &buoyancy, amrex::Geometry fine_geom, amrex::Real dt, amrex::Real time)
Definition: ERF_AdvanceDycore.cpp:38
amrex::Vector< amrex::MultiFab > rW_new
Definition: ERF.H:839
amrex::Vector< amrex::MultiFab > zmom_crse_rhs
Definition: ERF.H:843
void advance_lsm(int lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceLSM.cpp:5
TurbulentPerturbation turbPert
Definition: ERF.H:1138
amrex::Vector< amrex::MultiFab > rW_old
Definition: ERF.H:838
std::unique_ptr< SurfaceLayer > m_SurfaceLayer
Definition: ERF.H:1298
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_w_subsid
Definition: ERF.H:1253
amrex::Vector< ERFFillPatcher > FPr_w
Definition: ERF.H:891
amrex::Vector< amrex::Real > dt
Definition: ERF.H:794
void advance_radiation(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance)
Definition: ERF_AdvanceRadiation.cpp:5
void advance_microphysics(int lev, amrex::MultiFab &cons_in, const amrex::Real &dt_advance, const int &iteration, const amrex::Real &time)
Definition: ERF_AdvanceMicrophysics.cpp:5
int cf_width
Definition: ERF.H:886
void WeatherDataInterpolation(const amrex::Real time)
Definition: ERF_WeatherDataInterpolation.cpp:497
amrex::GpuArray< ERF_BC, AMREX_SPACEDIM *2 > phys_bc_type
Definition: ERF.H:974
amrex::Vector< amrex::MultiFab > rV_old
Definition: ERF.H:836
amrex::Vector< amrex::Vector< amrex::MultiFab > > vars_old
Definition: ERF.H:801
@ zvel_bc
Definition: ERF_IndexDefines.H:89
@ yvel_bc
Definition: ERF_IndexDefines.H:88
@ cons_bc
Definition: ERF_IndexDefines.H:76
@ xvel_bc
Definition: ERF_IndexDefines.H:87
@ ymom
Definition: ERF_IndexDefines.H:160
@ cons
Definition: ERF_IndexDefines.H:158
@ zmom
Definition: ERF_IndexDefines.H:161
@ xmom
Definition: ERF_IndexDefines.H:159
@ ng
Definition: ERF_Morrison.H:48
@ xvel
Definition: ERF_IndexDefines.H:141
@ cons
Definition: ERF_IndexDefines.H:140
@ zvel
Definition: ERF_IndexDefines.H:143
@ yvel
Definition: ERF_IndexDefines.H:142
int qr
Definition: ERF_DataStruct.H:103
bool use_shoc
Definition: ERF_DataStruct.H:942
bool hindcast_lateral_forcing
Definition: ERF_DataStruct.H:1001
bool moisture_tight_coupling
Definition: ERF_DataStruct.H:979
bool custom_w_subsidence
Definition: ERF_DataStruct.H:930
amrex::Vector< int > anelastic
Definition: ERF_DataStruct.H:868
MoistureType moisture_type
Definition: ERF_DataStruct.H:958
PerturbationType pert_type
Definition: ERF_DataStruct.H:948
WindFarmType windfarm_type
Definition: ERF_DataStruct.H:959
static InitType init_type
Definition: ERF_DataStruct.H:837
MoistureComponentIndices moisture_indices
Definition: ERF_DataStruct.H:977
bool time_avg_vel
Definition: ERF_DataStruct.H:945
amrex::Vector< amrex::MultiFab > pb_cell
Definition: ERF_TurbPertStruct.H:640
void calc_tpi_update(const int lev, const amrex::Real dt, amrex::MultiFab &mf_xvel, amrex::MultiFab &mf_yvel, amrex::MultiFab &mf_cons)
Definition: ERF_TurbPertStruct.H:223
void apply_tpi(const int &lev, const amrex::Box &vbx, const int &comp, const amrex::IndexType &m_ixtype, const amrex::Array4< amrex::Real > &src_arr, const amrex::Array4< amrex::Real const > &pert_cell)
Definition: ERF_TurbPertStruct.H:324
Here is the call graph for this function:

◆ advance_dycore()

void ERF::advance_dycore ( int  level,
amrex::Vector< amrex::MultiFab > &  state_old,
amrex::Vector< amrex::MultiFab > &  state_new,
amrex::MultiFab &  xvel_old,
amrex::MultiFab &  yvel_old,
amrex::MultiFab &  zvel_old,
amrex::MultiFab &  xvel_new,
amrex::MultiFab &  yvel_new,
amrex::MultiFab &  zvel_new,
amrex::MultiFab &  source,
amrex::MultiFab &  xmom_src,
amrex::MultiFab &  ymom_src,
amrex::MultiFab &  zmom_src,
amrex::MultiFab &  buoyancy,
amrex::Geometry  fine_geom,
amrex::Real  dt,
amrex::Real  time 
)

Function that advances the solution at one level for a single time step – this sets up the multirate time integrator and calls the integrator's advance function

Parameters
[in]levellevel of refinement (coarsest level is 0)
[in]state_oldold-time conserved variables
[in]state_newnew-time conserved variables
[in]xvel_oldold-time x-component of velocity
[in]yvel_oldold-time y-component of velocity
[in]zvel_oldold-time z-component of velocity
[in]xvel_newnew-time x-component of velocity
[in]yvel_newnew-time y-component of velocity
[in]zvel_newnew-time z-component of velocity
[in]cc_srcsource term for conserved variables
[in]xmom_srcsource term for x-momenta
[in]ymom_srcsource term for y-momenta
[in]zmom_srcsource term for z-momenta
[in]fine_geomcontainer for geometry information at current level
[in]dt_advancetime step for this time advance
[in]old_timeold time for this time advance
48 {
49  BL_PROFILE_VAR("erf_advance_dycore()",erf_advance_dycore);
50 
51  const Box& domain = fine_geom.Domain();
52 
56 
57  MultiFab r_hse (base_state[level], make_alias, BaseState::r0_comp , 1);
58  MultiFab p_hse (base_state[level], make_alias, BaseState::p0_comp , 1);
59  MultiFab pi_hse(base_state[level], make_alias, BaseState::pi0_comp, 1);
60 
61  // These pointers are used in the MRI utility functions
62  MultiFab* r0 = &r_hse;
63  MultiFab* p0 = &p_hse;
64  MultiFab* pi0 = &pi_hse;
65 
66  Real* dptr_rhotheta_src = solverChoice.custom_rhotheta_forcing ? d_rhotheta_src[level].data() : nullptr;
67  Real* dptr_rhoqt_src = solverChoice.custom_moisture_forcing ? d_rhoqt_src[level].data() : nullptr;
68  Real* dptr_wbar_sub = solverChoice.custom_w_subsidence ? d_w_subsid[level].data() : nullptr;
69 
70  // Turbulent Perturbation Pointer
71  //Real* dptr_rhotheta_src = solverChoice.pert_type ? d_rhotheta_src[level].data() : nullptr;
72 
73  Vector<Real*> d_rayleigh_ptrs_at_lev;
74  d_rayleigh_ptrs_at_lev.resize(Rayleigh::nvars);
75  d_rayleigh_ptrs_at_lev[Rayleigh::ubar] = solverChoice.rayleigh_damp_U ? d_rayleigh_ptrs[level][Rayleigh::ubar].data() : nullptr;
76  d_rayleigh_ptrs_at_lev[Rayleigh::vbar] = solverChoice.rayleigh_damp_V ? d_rayleigh_ptrs[level][Rayleigh::vbar].data() : nullptr;
77  d_rayleigh_ptrs_at_lev[Rayleigh::wbar] = solverChoice.rayleigh_damp_W ? d_rayleigh_ptrs[level][Rayleigh::wbar].data() : nullptr;
78  d_rayleigh_ptrs_at_lev[Rayleigh::thetabar] = solverChoice.rayleigh_damp_T ? d_rayleigh_ptrs[level][Rayleigh::thetabar].data() : nullptr;
79 
80  Vector<Real*> d_sponge_ptrs_at_lev;
81  if(sc.sponge_type=="input_sponge")
82  {
83  d_sponge_ptrs_at_lev.resize(Sponge::nvars_sponge);
84  d_sponge_ptrs_at_lev[Sponge::ubar_sponge] = d_sponge_ptrs[level][Sponge::ubar_sponge].data();
85  d_sponge_ptrs_at_lev[Sponge::vbar_sponge] = d_sponge_ptrs[level][Sponge::vbar_sponge].data();
86  }
87 
88  bool l_use_terrain_fitted_coords = (solverChoice.mesh_type != MeshType::ConstantDz);
89  bool l_use_kturb = tc.use_kturb;
90  bool l_use_diff = ( (dc.molec_diff_type != MolecDiffType::None) ||
91  l_use_kturb );
92  bool l_use_moisture = ( solverChoice.moisture_type != MoistureType::None );
93  bool l_implicit_substepping = ( solverChoice.substepping_type[level] == SubsteppingType::Implicit );
94 
95  const bool use_SurfLayer = (m_SurfaceLayer != nullptr);
96  const MultiFab* z_0 = (use_SurfLayer) ? m_SurfaceLayer->get_z0(level) : nullptr;
97 
98  const BoxArray& ba = state_old[IntVars::cons].boxArray();
99  const BoxArray& ba_z = zvel_old.boxArray();
100  const DistributionMapping& dm = state_old[IntVars::cons].DistributionMap();
101 
102  int num_prim = state_old[IntVars::cons].nComp() - 1;
103 
104  MultiFab S_prim (ba , dm, num_prim, state_old[IntVars::cons].nGrowVect());
105  MultiFab pi_stage (ba , dm, 1, 1);
106  MultiFab fast_coeffs(ba_z, dm, 5, 0);
107 
108  MultiFab* eddyDiffs = eddyDiffs_lev[level].get();
109  MultiFab* SmnSmn = SmnSmn_lev[level].get();
110 
111  // **************************************************************************************
112  // Compute strain for use in slow RHS and Smagorinsky model
113  // **************************************************************************************
114  {
115  BL_PROFILE("erf_advance_strain");
116  if (l_use_diff) {
117 
118  const BCRec* bc_ptr_h = domain_bcs_type.data();
119  const GpuArray<Real, AMREX_SPACEDIM> dxInv = fine_geom.InvCellSizeArray();
120 
121 #ifdef _OPENMP
122 #pragma omp parallel if (Gpu::notInLaunchRegion())
123 #endif
124  for ( MFIter mfi(state_new[IntVars::cons],TileNoZ()); mfi.isValid(); ++mfi)
125  {
126  Box bxcc = mfi.growntilebox(IntVect(1,1,0));
127  Box tbxxy = mfi.tilebox(IntVect(1,1,0),IntVect(1,1,0));
128  Box tbxxz = mfi.tilebox(IntVect(1,0,1),IntVect(1,1,0));
129  Box tbxyz = mfi.tilebox(IntVect(0,1,1),IntVect(1,1,0));
130 
131  if (bxcc.smallEnd(2) != domain.smallEnd(2)) {
132  bxcc.growLo(2,1);
133  tbxxy.growLo(2,1);
134  tbxxz.growLo(2,1);
135  tbxyz.growLo(2,1);
136  }
137 
138  if (bxcc.bigEnd(2) != domain.bigEnd(2)) {
139  bxcc.growHi(2,1);
140  tbxxy.growHi(2,1);
141  tbxxz.growHi(2,1);
142  tbxyz.growHi(2,1);
143  }
144 
145  const Array4<const Real> & u = xvel_old.array(mfi);
146  const Array4<const Real> & v = yvel_old.array(mfi);
147  const Array4<const Real> & w = zvel_old.array(mfi);
148 
149  Array4<Real> tau11 = Tau[level][TauType::tau11].get()->array(mfi);
150  Array4<Real> tau22 = Tau[level][TauType::tau22].get()->array(mfi);
151  Array4<Real> tau33 = Tau[level][TauType::tau33].get()->array(mfi);
152  Array4<Real> tau12 = Tau[level][TauType::tau12].get()->array(mfi);
153  Array4<Real> tau13 = Tau[level][TauType::tau13].get()->array(mfi);
154  Array4<Real> tau23 = Tau[level][TauType::tau23].get()->array(mfi);
155 
156  Array4<Real> tau21 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau21].get()->array(mfi) : Array4<Real>{};
157  Array4<Real> tau31 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau31].get()->array(mfi) : Array4<Real>{};
158  Array4<Real> tau32 = l_use_terrain_fitted_coords ? Tau[level][TauType::tau32].get()->array(mfi) : Array4<Real>{};
159  const Array4<const Real>& z_nd = z_phys_nd[level]->const_array(mfi);
160 
161  const Array4<const Real> mf_mx = mapfac[level][MapFacType::m_x]->const_array(mfi);
162  const Array4<const Real> mf_ux = mapfac[level][MapFacType::u_x]->const_array(mfi);
163  const Array4<const Real> mf_vx = mapfac[level][MapFacType::v_x]->const_array(mfi);
164  const Array4<const Real> mf_my = mapfac[level][MapFacType::m_y]->const_array(mfi);
165  const Array4<const Real> mf_uy = mapfac[level][MapFacType::u_y]->const_array(mfi);
166  const Array4<const Real> mf_vy = mapfac[level][MapFacType::v_y]->const_array(mfi);
167 
168  if (solverChoice.mesh_type == MeshType::StretchedDz) {
169  ComputeStrain_S(bxcc, tbxxy, tbxxz, tbxyz, domain,
170  u, v, w,
171  tau11, tau22, tau33,
172  tau12, tau21,
173  tau13, tau31,
174  tau23, tau32,
175  stretched_dz_d[level], dxInv,
176  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h);
177  } else if (l_use_terrain_fitted_coords) {
178  ComputeStrain_T(bxcc, tbxxy, tbxxz, tbxyz, domain,
179  u, v, w,
180  tau11, tau22, tau33,
181  tau12, tau21,
182  tau13, tau31,
183  tau23, tau32,
184  z_nd, detJ_cc[level]->const_array(mfi), dxInv,
185  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h);
186  } else {
187  ComputeStrain_N(bxcc, tbxxy, tbxxz, tbxyz, domain,
188  u, v, w,
189  tau11, tau22, tau33,
190  tau12, tau13, tau23,
191  dxInv,
192  mf_mx, mf_ux, mf_vx, mf_my, mf_uy, mf_vy, bc_ptr_h);
193  }
194  } // mfi
195  } // l_use_diff
196  } // profile
197 
198 #include "ERF_TI_utils.H"
199 
200  // Additional SFS quantities, calculated once per timestep
201  MultiFab* Hfx1 = SFS_hfx1_lev[level].get();
202  MultiFab* Hfx2 = SFS_hfx2_lev[level].get();
203  MultiFab* Hfx3 = SFS_hfx3_lev[level].get();
204  MultiFab* Q1fx1 = SFS_q1fx1_lev[level].get();
205  MultiFab* Q1fx2 = SFS_q1fx2_lev[level].get();
206  MultiFab* Q1fx3 = SFS_q1fx3_lev[level].get();
207  MultiFab* Q2fx3 = SFS_q2fx3_lev[level].get();
208  MultiFab* Diss = SFS_diss_lev[level].get();
209 
210  // *************************************************************************
211  // Calculate cell-centered eddy viscosity & diffusivities
212  //
213  // Notes -- we fill all the data in ghost cells before calling this so
214  // that we can fill the eddy viscosity in the ghost regions and
215  // not have to call a boundary filler on this data itself
216  //
217  // LES - updates both horizontal and vertical eddy viscosity components
218  // PBL - only updates vertical eddy viscosity components so horizontal
219  // components come from the LES model or are left as zero.
220  // *************************************************************************
221  if (l_use_kturb)
222  {
223  // NOTE: state_new transfers to state_old for PBL (due to ptr swap in advance)
224  const BCRec* bc_ptr_h = domain_bcs_type.data();
225  ComputeTurbulentViscosity(dt_advance, xvel_old, yvel_old,Tau[level],
226  state_old[IntVars::cons],
227  *walldist[level].get(),
228  *eddyDiffs, *Hfx1, *Hfx2, *Hfx3, *Diss, // to be updated
229  fine_geom, mapfac[level],
230  z_phys_nd[level], solverChoice,
231  m_SurfaceLayer, z_0, l_use_terrain_fitted_coords,
232  l_use_moisture, level, bc_ptr_h);
233  }
234 
235  // ***********************************************************************************************
236  // Update user-defined source terms -- these are defined once per time step (not per RK stage)
237  // ***********************************************************************************************
239  prob->update_rhotheta_sources(old_time,
240  h_rhotheta_src[level], d_rhotheta_src[level],
241  fine_geom, z_phys_cc[level]);
242  }
243 
245  prob->update_rhoqt_sources(old_time,
246  h_rhoqt_src[level], d_rhoqt_src[level],
247  fine_geom, z_phys_cc[level]);
248  }
249 
251  prob->update_geostrophic_profile(old_time,
252  h_u_geos[level], d_u_geos[level],
253  h_v_geos[level], d_v_geos[level],
254  fine_geom, z_phys_cc[level]);
255  }
256 
258  prob->update_w_subsidence(old_time,
259  h_w_subsid[level], d_w_subsid[level],
260  fine_geom, z_phys_nd[level]);
261  }
262 
263  // ***********************************************************************************************
264  // Convert old velocity available on faces to old momentum on faces to be used in time integration
265  // ***********************************************************************************************
266  MultiFab density(state_old[IntVars::cons], make_alias, Rho_comp, 1);
267 
268  //
269  // This is an optimization since we won't need more than one ghost
270  // cell of momentum in the integrator if not using numerical diffusion
271  //
272  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : xvel_old.nGrowVect();
273  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : yvel_old.nGrowVect();
274  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : zvel_old.nGrowVect();
275 
276  VelocityToMomentum(xvel_old, ngu, yvel_old, ngv, zvel_old, ngw, density,
277  state_old[IntVars::xmom],
278  state_old[IntVars::ymom],
279  state_old[IntVars::zmom],
280  domain, domain_bcs_type);
281 
282  MultiFab::Copy(xvel_new,xvel_old,0,0,1,xvel_old.nGrowVect());
283  MultiFab::Copy(yvel_new,yvel_old,0,0,1,yvel_old.nGrowVect());
284  MultiFab::Copy(zvel_new,zvel_old,0,0,1,zvel_old.nGrowVect());
285 
286  bool fast_only = false;
287  bool vel_and_mom_synced = true;
288 
289  apply_bcs(state_old, old_time,
290  state_old[IntVars::cons].nGrow(), state_old[IntVars::xmom].nGrow(),
291  fast_only, vel_and_mom_synced);
292  cons_to_prim(state_old[IntVars::cons], state_old[IntVars::cons].nGrow());
293 
294  // ***********************************************************************************************
295  // Define a new MultiFab that holds q_total and fill it by summing the moisture components --
296  // to be used in buoyancy calculation and as part of the inertial weighting in the
297  // ***********************************************************************************************
298  MultiFab qt(grids[level], dmap[level], 1, 1);
299  qt.setVal(0.0);
300 
301 #include "ERF_TI_no_substep_fun.H"
302 #include "ERF_TI_substep_fun.H"
303 #include "ERF_TI_slow_rhs_pre.H"
304 #include "ERF_TI_slow_rhs_post.H"
305 
306  // ***************************************************************************************
307  // Setup the integrator and integrate for a single timestep
308  // **************************************************************************************
309  MRISplitIntegrator<Vector<MultiFab> >& mri_integrator = *mri_integrator_mem[level];
310 
311  // Define rhs and 'post update' utility function that is called after calculating
312  // any state data (e.g. at RK stages or at the end of a timestep)
313  mri_integrator.set_slow_rhs_pre(slow_rhs_fun_pre);
314  mri_integrator.set_slow_rhs_post(slow_rhs_fun_post);
315 
316  mri_integrator.set_fast_rhs(fast_rhs_fun);
318  mri_integrator.set_no_substep(no_substep_fun);
319 
320  mri_integrator.advance(state_old, state_new, old_time, dt_advance);
321 
322  if (verbose) Print() << "Done with advance_dycore at level " << level << std::endl;
323 }
void ComputeStrain_N(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau13, Array4< Real > &tau23, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr)
Definition: ERF_ComputeStrain_N.cpp:28
void ComputeStrain_S(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Gpu::DeviceVector< Real > &stretched_dz_d, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr)
Definition: ERF_ComputeStrain_S.cpp:36
void ComputeStrain_T(Box bxcc, Box tbxxy, Box tbxxz, Box tbxyz, Box domain, const Array4< const Real > &u, const Array4< const Real > &v, const Array4< const Real > &w, Array4< Real > &tau11, Array4< Real > &tau22, Array4< Real > &tau33, Array4< Real > &tau12, Array4< Real > &tau21, Array4< Real > &tau13, Array4< Real > &tau31, Array4< Real > &tau23, Array4< Real > &tau32, const Array4< const Real > &z_nd, const Array4< const Real > &detJ, const GpuArray< Real, AMREX_SPACEDIM > &dxInv, const Array4< const Real > &mf_mx, const Array4< const Real > &mf_ux, const Array4< const Real > &mf_vx, const Array4< const Real > &mf_my, const Array4< const Real > &mf_uy, const Array4< const Real > &mf_vy, const BCRec *bc_ptr)
Definition: ERF_ComputeStrain_T.cpp:36
void ComputeTurbulentViscosity(Real dt, const MultiFab &xvel, const MultiFab &yvel, Vector< std::unique_ptr< MultiFab >> &Tau_lev, MultiFab &cons_in, const MultiFab &wdist, MultiFab &eddyViscosity, MultiFab &Hfx1, MultiFab &Hfx2, MultiFab &Hfx3, MultiFab &Diss, const Geometry &geom, Vector< std::unique_ptr< MultiFab >> &mapfac, const std::unique_ptr< MultiFab > &z_phys_nd, const SolverChoice &solverChoice, std::unique_ptr< SurfaceLayer > &SurfLayer, const MultiFab *z_0, const bool &use_terrain_fitted_coords, const bool &use_moisture, int level, const BCRec *bc_ptr, bool vert_only)
Definition: ERF_ComputeTurbulentViscosity.cpp:591
@ tau12
Definition: ERF_DataStruct.H:30
@ tau33
Definition: ERF_DataStruct.H:30
@ tau22
Definition: ERF_DataStruct.H:30
@ tau11
Definition: ERF_DataStruct.H:30
@ tau32
Definition: ERF_DataStruct.H:30
@ tau31
Definition: ERF_DataStruct.H:30
@ tau21
Definition: ERF_DataStruct.H:30
@ ubar
Definition: ERF_DataStruct.H:91
@ wbar
Definition: ERF_DataStruct.H:91
@ vbar
Definition: ERF_DataStruct.H:91
@ thetabar
Definition: ERF_DataStruct.H:91
@ nvars_sponge
Definition: ERF_DataStruct.H:96
@ vbar_sponge
Definition: ERF_DataStruct.H:96
@ ubar_sponge
Definition: ERF_DataStruct.H:96
@ v_x
Definition: ERF_DataStruct.H:22
@ u_y
Definition: ERF_DataStruct.H:23
@ v_y
Definition: ERF_DataStruct.H:23
@ m_y
Definition: ERF_DataStruct.H:23
@ u_x
Definition: ERF_DataStruct.H:22
@ m_x
Definition: ERF_DataStruct.H:22
auto no_substep_fun
Definition: ERF_TI_no_substep_fun.H:4
auto slow_rhs_fun_post
Definition: ERF_TI_slow_rhs_post.H:3
auto slow_rhs_fun_pre
Definition: ERF_TI_slow_rhs_pre.H:6
auto fast_rhs_fun
Definition: ERF_TI_substep_fun.H:6
auto apply_bcs
Definition: ERF_TI_utils.H:73
auto cons_to_prim
Definition: ERF_TI_utils.H:4
amrex::Vector< std::unique_ptr< amrex::MultiFab > > walldist
Definition: ERF.H:937
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > mapfac
Definition: ERF.H:940
amrex::Vector< std::unique_ptr< MRISplitIntegrator< amrex::Vector< amrex::MultiFab > > > > mri_integrator_mem
Definition: ERF.H:810
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhotheta_src
Definition: ERF.H:1247
amrex::Vector< amrex::Vector< amrex::Real > > h_w_subsid
Definition: ERF.H:1252
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx1_lev
Definition: ERF.H:904
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc
Definition: ERF.H:916
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_sponge_ptrs
Definition: ERF.H:1280
amrex::Vector< amrex::Vector< amrex::Real > > h_rhoqt_src
Definition: ERF.H:1249
amrex::Vector< long > dt_mri_ratio
Definition: ERF.H:795
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q2fx3_lev
Definition: ERF.H:907
static int verbose
Definition: ERF.H:1170
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx2_lev
Definition: ERF.H:906
std::unique_ptr< ProblemBase > prob
Definition: ERF.H:782
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > stretched_dz_d
Definition: ERF.H:943
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_diss_lev
Definition: ERF.H:905
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_v_geos
Definition: ERF.H:1259
amrex::Vector< amrex::Vector< amrex::Real > > h_v_geos
Definition: ERF.H:1258
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_rhoqt_src
Definition: ERF.H:1250
amrex::Vector< amrex::Vector< amrex::Real > > h_rhotheta_src
Definition: ERF.H:1246
amrex::Vector< amrex::Vector< amrex::Real > > h_u_geos
Definition: ERF.H:1255
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SmnSmn_lev
Definition: ERF.H:896
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > d_u_geos
Definition: ERF.H:1256
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_hfx2_lev
Definition: ERF.H:904
static int fixed_mri_dt_ratio
Definition: ERF.H:1036
amrex::Vector< amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > > d_rayleigh_ptrs
Definition: ERF.H:1277
amrex::Vector< std::unique_ptr< amrex::MultiFab > > SFS_q1fx1_lev
Definition: ERF.H:906
Definition: ERF_MRI.H:16
void set_no_substep(std::function< void(T &, T &, T &, amrex::Real, amrex::Real, int)> F)
Definition: ERF_MRI.H:156
void set_fast_rhs(std::function< void(int, int, int, T &, const T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const amrex::Real)> F)
Definition: ERF_MRI.H:139
void set_slow_rhs_post(std::function< void(T &, T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:134
void set_slow_rhs_pre(std::function< void(T &, T &, T &, const amrex::Real, const amrex::Real, const amrex::Real, const int)> F)
Definition: ERF_MRI.H:130
void set_slow_fast_timestep_ratio(const int timestep_ratio=1)
Definition: ERF_MRI.H:146
amrex::Real advance(T &S_old, T &S_new, amrex::Real time, const amrex::Real time_step)
Definition: ERF_MRI.H:166
@ pi0_comp
Definition: ERF_IndexDefines.H:65
@ p0_comp
Definition: ERF_IndexDefines.H:64
@ r0_comp
Definition: ERF_IndexDefines.H:63
@ qt
Definition: ERF_Kessler.H:27
real(c_double), parameter p0
Definition: ERF_module_model_constants.F90:40
Definition: ERF_DiffStruct.H:19
MolecDiffType molec_diff_type
Definition: ERF_DiffStruct.H:84
bool rayleigh_damp_T
Definition: ERF_DataStruct.H:893
static MeshType mesh_type
Definition: ERF_DataStruct.H:852
bool rayleigh_damp_V
Definition: ERF_DataStruct.H:891
DiffChoice diffChoice
Definition: ERF_DataStruct.H:861
bool custom_rhotheta_forcing
Definition: ERF_DataStruct.H:928
bool rayleigh_damp_U
Definition: ERF_DataStruct.H:890
bool custom_geostrophic_profile
Definition: ERF_DataStruct.H:931
amrex::Vector< SubsteppingType > substepping_type
Definition: ERF_DataStruct.H:867
bool use_num_diff
Definition: ERF_DataStruct.H:951
bool custom_moisture_forcing
Definition: ERF_DataStruct.H:929
amrex::Vector< TurbChoice > turbChoice
Definition: ERF_DataStruct.H:863
bool rayleigh_damp_W
Definition: ERF_DataStruct.H:892
SpongeChoice spongeChoice
Definition: ERF_DataStruct.H:862
Definition: ERF_SpongeStruct.H:15
std::string sponge_type
Definition: ERF_SpongeStruct.H:58
Definition: ERF_TurbStruct.H:41
bool use_kturb
Definition: ERF_TurbStruct.H:389
Here is the call graph for this function:

◆ advance_lsm()

void ERF::advance_lsm ( int  lev,
amrex::MultiFab &  cons_in,
amrex::MultiFab &  xvel_in,
amrex::MultiFab &  yvel_in,
const amrex::Real dt_advance 
)
10 {
11  if (solverChoice.lsm_type != LandSurfaceType::None) {
12  if (solverChoice.lsm_type == LandSurfaceType::NOAHMP) {
13  lsm.Advance(lev, cons_in, xvel_in, yvel_in, SFS_hfx3_lev[lev].get(), SFS_q1fx3_lev[lev].get(), dt_advance, istep[lev]);
14  } else {
15  lsm.Advance(lev, dt_advance);
16  }
17  }
18 }
LandSurface lsm
Definition: ERF.H:861
amrex::Vector< int > istep
Definition: ERF.H:788
void Advance(const int &lev, amrex::MultiFab &cons_in, amrex::MultiFab &xvel_in, amrex::MultiFab &yvel_in, amrex::MultiFab *hfx3_out, amrex::MultiFab *qfx3_out, const amrex::Real &dt_advance, const int &nstep)
Definition: ERF_LandSurface.H:52
LandSurfaceType lsm_type
Definition: ERF_DataStruct.H:961

◆ advance_microphysics()

void ERF::advance_microphysics ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real dt_advance,
const int &  iteration,
const amrex::Real time 
)
10 {
11  if (solverChoice.moisture_type != MoistureType::None) {
12  micro->Update_Micro_Vars_Lev(lev, cons);
13  micro->Advance(lev, dt_advance, iteration, time, solverChoice, vars_new, z_phys_nd, phys_bc_type);
14  micro->Update_State_Vars_Lev(lev, cons);
15  }
16 }
std::unique_ptr< Microphysics > micro
Definition: ERF.H:845

◆ advance_radiation()

void ERF::advance_radiation ( int  lev,
amrex::MultiFab &  cons_in,
const amrex::Real dt_advance 
)
8 {
9  if (solverChoice.rad_type != RadiationType::None) {
10 #ifdef ERF_USE_NETCDF
11  MultiFab *lat_ptr = lat_m[lev].get();
12  MultiFab *lon_ptr = lon_m[lev].get();
13 #else
14  MultiFab *lat_ptr = nullptr;
15  MultiFab *lon_ptr = nullptr;
16 #endif
17  // RRTMGP inputs names and pointers
18  Vector<std::string> lsm_input_names = rad[lev]->get_lsm_input_varnames();
19  Vector<MultiFab*> lsm_input_ptrs(lsm_input_names.size(),nullptr);
20  for (int i(0); i<lsm_input_ptrs.size(); ++i) {
21  int varIdx = lsm.Get_DataIdx(lev,lsm_input_names[i]);
22  lsm_input_ptrs[i] = lsm.Get_Data_Ptr(lev,varIdx);
23  }
24 
25  // RRTMGP output names and pointers
26  Vector<std::string> lsm_output_names = rad[lev]->get_lsm_output_varnames();
27  Vector<MultiFab*> lsm_output_ptrs(lsm_output_names.size(),nullptr);
28  for (int i(0); i<lsm_output_ptrs.size(); ++i) {
29  int varIdx = lsm.Get_DataIdx(lev,lsm_output_names[i]);
30  lsm_output_ptrs[i] = lsm.Get_Data_Ptr(lev,varIdx);
31  }
32 
33  // Enter radiation class driver
34  amrex::Real time_for_rad = t_new[lev] + start_time;
35  rad[lev]->Run(lev, istep[lev], time_for_rad, dt_advance,
36  cons.boxArray(), geom[lev], &(cons),
37  sw_lw_fluxes[lev].get(), solar_zenith[lev].get(),
38  lsm_input_ptrs, lsm_output_ptrs,
39  qheating_rates[lev].get(), z_phys_nd[lev].get() ,
40  lat_ptr, lon_ptr);
41  }
42 }
static amrex::Real start_time
Definition: ERF.H:1016
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sw_lw_fluxes
Definition: ERF.H:879
amrex::Vector< std::unique_ptr< IRadiation > > rad
Definition: ERF.H:867
amrex::Vector< amrex::Real > t_new
Definition: ERF.H:792
amrex::Vector< std::unique_ptr< amrex::MultiFab > > solar_zenith
Definition: ERF.H:880
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lon_m
Definition: ERF.H:745
amrex::Vector< std::unique_ptr< amrex::MultiFab > > lat_m
Definition: ERF.H:745
amrex::Vector< std::unique_ptr< amrex::MultiFab > > qheating_rates
Definition: ERF.H:868
int Get_DataIdx(const int &lev, std::string &varname)
Definition: ERF_LandSurface.H:101
amrex::MultiFab * Get_Data_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:83
RadiationType rad_type
Definition: ERF_DataStruct.H:962

◆ appendPlotVariables()

void ERF::appendPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
229 {
230  ParmParse pp(pp_prefix);
231 
232  Vector<std::string> plot_var_names(0);
233  if (pp.contains(pp_plot_var_names.c_str())) {
234  std::string nm;
235  int nPltVars = pp.countval(pp_plot_var_names.c_str());
236  for (int i = 0; i < nPltVars; i++) {
237  pp.get(pp_plot_var_names.c_str(), nm, i);
238  // Add the named variable to our list of plot variables
239  // if it is not already in the list
240  if (!containerHasElement(plot_var_names, nm)) {
241  plot_var_names.push_back(nm);
242  }
243  }
244  }
245 
246  Vector<std::string> tmp_plot_names(0);
247 #ifdef ERF_USE_PARTICLES
248  Vector<std::string> particle_mesh_plot_names;
249  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
250  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
251  std::string tmp(particle_mesh_plot_names[i]);
252  if (containerHasElement(plot_var_names, tmp) ) {
253  tmp_plot_names.push_back(tmp);
254  }
255  }
256 #endif
257 
258  {
259  Vector<std::string> microphysics_plot_names;
260  micro->GetPlotVarNames(microphysics_plot_names);
261  if (microphysics_plot_names.size() > 0) {
262  static bool first_call = true;
263  if (first_call) {
264  Print() << getEnumNameString(solverChoice.moisture_type)
265  << ": the following additional variables are available to plot:\n";
266  for (int i = 0; i < microphysics_plot_names.size(); i++) {
267  Print() << " " << microphysics_plot_names[i] << "\n";
268  }
269  first_call = false;
270  }
271  for (auto& plot_name : microphysics_plot_names) {
272  if (containerHasElement(plot_var_names, plot_name)) {
273  tmp_plot_names.push_back(plot_name);
274  }
275  }
276  }
277  }
278 
279  for (int i = 0; i < tmp_plot_names.size(); i++) {
280  a_plot_var_names.push_back( tmp_plot_names[i] );
281  }
282 
283  // Finally, check to see if we found all the requested variables
284  for (const auto& plot_name : plot_var_names) {
285  if (!containerHasElement(a_plot_var_names, plot_name)) {
286  if (amrex::ParallelDescriptor::IOProcessor()) {
287  Warning("\nWARNING: Requested to plot variable '" + plot_name + "' but it is not available");
288  }
289  }
290  }
291 }
bool containerHasElement(const V &iterable, const T &query)
Definition: ERF_Container.H:5
std::string pp_prefix
Definition: ERF.H:517
Here is the call graph for this function:

◆ AverageDown()

void ERF::AverageDown ( )
private
17 {
18  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
19 
20  int src_comp, num_comp;
21  for (int lev = finest_level-1; lev >= 0; --lev)
22  {
23  // If anelastic we don't average down rho because rho == rho0.
24  if (solverChoice.anelastic[lev]) {
25  src_comp = 1;
26  } else {
27  src_comp = 0;
28  }
29  num_comp = vars_new[0][Vars::cons].nComp() - src_comp;
30  AverageDownTo(lev,src_comp,num_comp);
31  }
32 }
void AverageDownTo(int crse_lev, int scomp, int ncomp)
Definition: ERF_AverageDown.cpp:36
CouplingType coupling_type
Definition: ERF_DataStruct.H:957

◆ AverageDownTo()

void ERF::AverageDownTo ( int  crse_lev,
int  scomp,
int  ncomp 
)
37 {
38  if (solverChoice.anelastic[crse_lev]) {
39  AMREX_ALWAYS_ASSERT(scomp == 1);
40  } else {
41  AMREX_ALWAYS_ASSERT(scomp == 0);
42  }
43 
44  AMREX_ALWAYS_ASSERT(ncomp == vars_new[crse_lev][Vars::cons].nComp() - scomp);
45  AMREX_ALWAYS_ASSERT(solverChoice.coupling_type == CouplingType::TwoWay);
46 
47  // ******************************************************************************************
48  // First do cell-centered quantities
49  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
50  // m is the map scale factor at cell centers
51  // Here we multiply (rho S) by detJ and divide (rho S) by m^2 before average down
52  // ******************************************************************************************
53  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
54  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
55  const Box& bx = mfi.tilebox();
56  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
57  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
58  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
59  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
60  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
61  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
62  {
63  cons_arr(i,j,k,scomp+n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
64  });
65  } else {
66  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
67  {
68  cons_arr(i,j,k,scomp+n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
69  });
70  }
71  } // mfi
72  } // lev
73 
74  int fine_lev = crse_lev+1;
75 
76  if (interpolation_type == StateInterpType::Perturbational) {
77  // Make the fine rho and (rho theta) be perturbational
78  MultiFab::Divide(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
79  Rho_comp,RhoTheta_comp,1,IntVect{0});
80  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
81  BaseState::r0_comp,Rho_comp,1,IntVect{0});
82  MultiFab::Subtract(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
83  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
84 
85  // Make the crse rho and (rho theta) be perturbational
86  MultiFab::Divide(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
87  Rho_comp,RhoTheta_comp,1,IntVect{0});
88  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
89  BaseState::r0_comp,Rho_comp,1,IntVect{0});
90  MultiFab::Subtract(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
91  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
92  }
93 
94  if (SolverChoice::terrain_type != TerrainType::EB) {
95  average_down(vars_new[crse_lev+1][Vars::cons],vars_new[crse_lev ][Vars::cons],
96  scomp, ncomp, refRatio(crse_lev));
97  } else {
98  const auto dx = geom[fine_lev].CellSize();
99  const Real cell_vol = dx[0]*dx[1]*dx[2];
100  const BoxArray& ba = vars_new[fine_lev][IntVars::cons].boxArray();
101  const DistributionMapping& dm = vars_new[fine_lev][IntVars::cons].DistributionMap();
102  MultiFab vol_fine(ba, dm, 1, 0);
103  vol_fine.setVal(cell_vol);
104  EB_average_down(vars_new[fine_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
105  *detJ_cc[fine_lev], vol_fine,
106  scomp, ncomp, refRatio(crse_lev));
107  }
108 
109  if (interpolation_type == StateInterpType::Perturbational) {
110  // Restore the fine data to what it was
111  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
112  BaseState::r0_comp,Rho_comp,1,IntVect{0});
113  MultiFab::Add(vars_new[fine_lev][Vars::cons],base_state[fine_lev],
114  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
115  MultiFab::Multiply(vars_new[fine_lev][Vars::cons],vars_new[fine_lev][Vars::cons],
116  Rho_comp,RhoTheta_comp,1,IntVect{0});
117 
118  // Make the crse data be full values not perturbational
119  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
120  BaseState::r0_comp,Rho_comp,1,IntVect{0});
121  MultiFab::Add(vars_new[crse_lev][Vars::cons],base_state[crse_lev],
122  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
123  MultiFab::Multiply(vars_new[crse_lev][Vars::cons],vars_new[crse_lev][Vars::cons],
124  Rho_comp,RhoTheta_comp,1,IntVect{0});
125  }
126 
127  vars_new[crse_lev][Vars::cons].FillBoundary(geom[crse_lev].periodicity());
128 
129  // ******************************************************************************************
130  // Here we multiply (rho S) by m^2 and divide by detJ after average down
131  // ******************************************************************************************
132  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
133  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
134  const Box& bx = mfi.tilebox();
135  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
136  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
137  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
138  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
139  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
140  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
141  {
142  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
143  });
144  } else { // MeshType::ConstantDz
145  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
146  {
147  cons_arr(i,j,k,scomp+n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
148  });
149  }
150  } // mfi
151  } // lev
152 
153  // Fill EB covered cells by old values
154  // (This won't be needed because EB_average_down copyies the covered value.)
155  if (SolverChoice::terrain_type == TerrainType::EB) {
156  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
157  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
158  const Box& bx = mfi.tilebox();
159  const Array4< Real> cons_new = vars_new[lev][Vars::cons].array(mfi);
160  const Array4<const Real> cons_old = vars_old[lev][Vars::cons].array(mfi);
161  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
162  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
163  {
164  if (detJ_arr(i,j,k) == 0.0) {
165  cons_new(i,j,k,scomp+n) = cons_old(i,j,k,scomp+n);
166  }
167  });
168  } // mfi
169  } // lev
170  }
171 
172  // ******************************************************************************************
173  // Now average down momenta.
174  // Note that vars_new holds velocities not momenta, but we want to do conservative
175  // averaging so we first convert to momentum, then average down, then convert
176  // back to velocities -- only on the valid region
177  // ******************************************************************************************
178  for (int lev = crse_lev; lev <= crse_lev+1; lev++)
179  {
180  // FillBoundary for density so we can go back and forth between velocity and momentum
181  vars_new[lev][Vars::cons].FillBoundary(geom[lev].periodicity());
182 
183  if (SolverChoice::terrain_type != TerrainType::EB) {
184  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect(0,0,0),
185  vars_new[lev][Vars::yvel], IntVect(0,0,0),
186  vars_new[lev][Vars::zvel], IntVect(0,0,0),
187  vars_new[lev][Vars::cons],
188  rU_new[lev],
189  rV_new[lev],
190  rW_new[lev],
191  Geom(lev).Domain(),
193  } else {
194  const MultiFab& c_vfrac = (get_eb(lev).get_const_factory())->getVolFrac();
195 
196  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect(0,0,0),
197  vars_new[lev][Vars::yvel], IntVect(0,0,0),
198  vars_new[lev][Vars::zvel], IntVect(0,0,0),
199  vars_new[lev][Vars::cons],
200  rU_new[lev],
201  rV_new[lev],
202  rW_new[lev],
203  Geom(lev).Domain(),
205  &c_vfrac);
206  }
207  }
208 
209  if (SolverChoice::terrain_type != TerrainType::EB) {
210  average_down_faces(rU_new[crse_lev+1], rU_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
211  average_down_faces(rV_new[crse_lev+1], rV_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
212  average_down_faces(rW_new[crse_lev+1], rW_new[crse_lev], refRatio(crse_lev), geom[crse_lev]);
213  } else {
214  EB_average_down_faces({&rU_new[crse_lev+1], &rV_new[crse_lev+1], &rW_new[crse_lev+1]},
215  {&rU_new[crse_lev], &rV_new[crse_lev], &rW_new[crse_lev]},
216  refRatio(crse_lev), 0);
217  }
218 
219  for (int lev = crse_lev; lev <= crse_lev+1; lev++) {
220  if (SolverChoice::terrain_type != TerrainType::EB) {
222  vars_new[lev][Vars::yvel],
223  vars_new[lev][Vars::zvel],
224  vars_new[lev][Vars::cons],
225  rU_new[lev],
226  rV_new[lev],
227  rW_new[lev],
228  Geom(lev).Domain(),
230  } else {
231  const MultiFab& c_vfrac = (get_eb(lev).get_const_factory())->getVolFrac();
232 
234  vars_new[lev][Vars::yvel],
235  vars_new[lev][Vars::zvel],
236  vars_new[lev][Vars::cons],
237  rU_new[lev],
238  rV_new[lev],
239  rW_new[lev],
240  Geom(lev).Domain(),
242  &c_vfrac);
243  }
244  }
245 }
void MomentumToVelocity(MultiFab &xvel, MultiFab &yvel, MultiFab &zvel, const MultiFab &density, const MultiFab &xmom_in, const MultiFab &ymom_in, const MultiFab &zmom_in, const Box &domain, const Vector< BCRec > &domain_bcs_type_h, const MultiFab *c_vfrac)
Definition: ERF_MomentumToVelocity.cpp:25
eb_ const & get_eb(int lev) const noexcept
Definition: ERF.H:1591
static StateInterpType interpolation_type
Definition: ERF.H:1185
const std::unique_ptr< amrex::EBFArrayBoxFactory > & get_const_factory() const noexcept
Definition: ERF_EB.H:46
@ th0_comp
Definition: ERF_IndexDefines.H:66
static TerrainType terrain_type
Definition: ERF_DataStruct.H:843
Here is the call graph for this function:

◆ build_fine_mask()

MultiFab & ERF::build_fine_mask ( int  level)

Helper function for constructing a fine mask, that is, a MultiFab masking coarser data at a lower level by zeroing out covered cells in the fine mask MultiFab we compute.

Parameters
levelFine level index which masks underlying coarser data
711 {
712  // Mask for zeroing covered cells
713  AMREX_ASSERT(level > 0);
714 
715  const BoxArray& cba = grids[level-1];
716  const DistributionMapping& cdm = dmap[level-1];
717 
718  // TODO -- we should make a vector of these a member of ERF class
719  fine_mask.define(cba, cdm, 1, 0, MFInfo());
720  fine_mask.setVal(1.0);
721 
722  BoxArray fba = grids[level];
723  iMultiFab ifine_mask = makeFineMask(cba, cdm, fba, ref_ratio[level-1], 1, 0);
724 
725  const auto fma = fine_mask.arrays();
726  const auto ifma = ifine_mask.arrays();
727  ParallelFor(fine_mask, [=] AMREX_GPU_DEVICE(int bno, int i, int j, int k) noexcept
728  {
729  fma[bno](i,j,k) = ifma[bno](i,j,k);
730  });
731 
732  return fine_mask;
733 }
amrex::MultiFab fine_mask
Definition: ERF.H:1312

◆ ClearLevel()

void ERF::ClearLevel ( int  lev)
override
678 {
679  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
680  vars_new[lev][var_idx].clear();
681  vars_old[lev][var_idx].clear();
682  }
683 
684  base_state[lev].clear();
685 
686  rU_new[lev].clear();
687  rU_old[lev].clear();
688  rV_new[lev].clear();
689  rV_old[lev].clear();
690  rW_new[lev].clear();
691  rW_old[lev].clear();
692 
693  if (lev > 0) {
694  zmom_crse_rhs[lev].clear();
695  }
696 
698  pp_inc[lev].clear();
699  }
700  if (solverChoice.anelastic[lev] == 0) {
701  lagged_delta_rt[lev].clear();
702  }
703  avg_xmom[lev].clear();
704  avg_ymom[lev].clear();
705  avg_zmom[lev].clear();
706 
707  // Clears the integrator memory
708  mri_integrator_mem[lev].reset();
709 
710  // Clears the physical boundary condition routines
711  physbcs_cons[lev].reset();
712  physbcs_u[lev].reset();
713  physbcs_v[lev].reset();
714  physbcs_w[lev].reset();
715  physbcs_base[lev].reset();
716 
717  // Clears the flux register array
718  advflux_reg[lev]->reset();
719 }
amrex::Vector< amrex::MultiFab > avg_xmom
Definition: ERF.H:817
amrex::Vector< amrex::MultiFab > pp_inc
Definition: ERF.H:813
amrex::Vector< amrex::MultiFab > lagged_delta_rt
Definition: ERF.H:816
amrex::Vector< amrex::YAFluxRegister * > advflux_reg
Definition: ERF.H:956
amrex::Vector< amrex::MultiFab > avg_ymom
Definition: ERF.H:818
amrex::Vector< std::unique_ptr< ERFPhysBCFunct_base > > physbcs_base
Definition: ERF.H:826
amrex::Vector< amrex::MultiFab > avg_zmom
Definition: ERF.H:819
@ NumTypes
Definition: ERF_IndexDefines.H:144
bool project_initial_velocity
Definition: ERF_DataStruct.H:920

◆ cloud_fraction()

Real ERF::cloud_fraction ( amrex::Real  time)
452 {
453  BL_PROFILE("ERF::cloud_fraction()");
454 
455  int lev = 0;
456  // This holds all of qc
457  MultiFab qc(vars_new[lev][Vars::cons],make_alias,RhoQ2_comp,1);
458 
459  int direction = 2; // z-direction
460  Box const& domain = geom[lev].Domain();
461 
462  auto const& qc_arr = qc.const_arrays();
463 
464  // qc_2d is an BaseFab<int> holding the max value over the column
465  auto qc_2d = ReduceToPlane<ReduceOpMax,int>(direction, domain, qc,
466  [=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) -> int
467  {
468  if (qc_arr[box_no](i,j,k) > 0) {
469  return 1;
470  } else {
471  return 0;
472  }
473  });
474 
475  auto* p = qc_2d.dataPtr();
476 
477  Long numpts = qc_2d.numPts();
478 
479  AMREX_ASSERT(numpts < Long(std::numeric_limits<int>::max));
480 
481 #if 1
482  if (ParallelDescriptor::UseGpuAwareMpi()) {
483  ParallelDescriptor::ReduceIntMax(p,static_cast<int>(numpts));
484  } else {
485  Gpu::PinnedVector<int> hv(numpts);
486  Gpu::copyAsync(Gpu::deviceToHost, p, p+numpts, hv.data());
487  Gpu::streamSynchronize();
488  ParallelDescriptor::ReduceIntMax(hv.data(),static_cast<int>(numpts));
489  Gpu::copyAsync(Gpu::hostToDevice, hv.data(), hv.data()+numpts, p);
490  }
491 
492  // Sum over component 0
493  Long num_cloudy = qc_2d.template sum<RunOn::Device>(0);
494 
495 #else
496  //
497  // We need this if we allow domain decomposition in the vertical
498  // but for now we leave it commented out
499  //
500  Long num_cloudy = Reduce::Sum<Long>(numpts,
501  [=] AMREX_GPU_DEVICE (Long i) -> Long {
502  if (p[i] == 1) {
503  return 1;
504  } else {
505  return 0;
506  }
507  });
508  ParallelDescriptor::ReduceLongSum(num_cloudy);
509 #endif
510 
511  Real num_total = qc_2d.box().d_numPts();
512 
513  Real cloud_frac = num_cloudy / num_total;
514 
515  return cloud_frac;
516 }
#define RhoQ2_comp
Definition: ERF_IndexDefines.H:43
@ qc
Definition: ERF_SatAdj.H:36

◆ compute_divergence()

void ERF::compute_divergence ( int  lev,
amrex::MultiFab &  rhs,
amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM >  rho0_u_const,
amrex::Geometry const &  geom_at_lev 
)

Project the single-level velocity field to enforce incompressibility Note that the level may or may not be level 0.

11 {
12  BL_PROFILE("ERF::compute_divergence()");
13 
14  auto dxInv = geom_at_lev.InvCellSizeArray();
15 
16  // ****************************************************************************
17  // Compute divergence which will form RHS
18  // Note that we replace "rho0w" with the contravariant momentum, Omega
19  // ****************************************************************************
20  if (solverChoice.terrain_type == TerrainType::EB)
21  {
22  bool already_on_centroids = true;
23  EB_computeDivergence(rhs, rho0_u_const, geom_at_lev, already_on_centroids);
24  }
25  else if (SolverChoice::mesh_type == MeshType::ConstantDz)
26  {
27  computeDivergence(rhs, rho0_u_const, geom_at_lev);
28  }
29  else
30  {
31  for ( MFIter mfi(rhs,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Box bx = mfi.tilebox();
34  const Array4<Real const>& rho0u_arr = rho0_u_const[0]->const_array(mfi);
35  const Array4<Real const>& rho0v_arr = rho0_u_const[1]->const_array(mfi);
36  const Array4<Real const>& rho0w_arr = rho0_u_const[2]->const_array(mfi);
37  const Array4<Real >& rhs_arr = rhs.array(mfi);
38 
39  const Array4<Real const>& mf_mx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
40  const Array4<Real const>& mf_my = mapfac[lev][MapFacType::m_y]->const_array(mfi);
41 
42  if (SolverChoice::mesh_type == MeshType::StretchedDz) {
43  Real* stretched_dz_d_ptr = stretched_dz_d[lev].data();
44  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
45  Real dz = stretched_dz_d_ptr[k];
46  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
47  rhs_arr(i,j,k) = mfsq * ( (rho0u_arr(i+1,j ,k ) - rho0u_arr(i,j,k)) * dxInv[0]
48  +(rho0v_arr(i ,j+1,k ) - rho0v_arr(i,j,k)) * dxInv[1]
49  +(rho0w_arr(i ,j ,k+1) - rho0w_arr(i,j,k)) / dz );
50  });
51 
52  } else {
53 
54  //
55  // Note we compute the divergence using "rho0w" == Omega
56  //
57  const Array4<Real const>& ax_arr = ax[lev]->const_array(mfi);
58  const Array4<Real const>& ay_arr = ay[lev]->const_array(mfi);
59  const Array4<Real const>& dJ_arr = detJ_cc[lev]->const_array(mfi);
60  //
61  // az == 1 for terrain-fitted coordinates
62  //
63  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
64  {
65  Real mfsq = mf_mx(i,j,0) * mf_my(i,j,0);
66  rhs_arr(i,j,k) = mfsq * ( (ax_arr(i+1,j,k)*rho0u_arr(i+1,j,k) - ax_arr(i,j,k)*rho0u_arr(i,j,k)) * dxInv[0]
67  +(ay_arr(i,j+1,k)*rho0v_arr(i,j+1,k) - ay_arr(i,j,k)*rho0v_arr(i,j,k)) * dxInv[1]
68  +( rho0w_arr(i,j,k+1) - rho0w_arr(i,j,k)) * dxInv[2] ) / dJ_arr(i,j,k);
69  });
70  }
71  } // mfi
72  }
73 }
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax
Definition: ERF.H:917
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay
Definition: ERF.H:918

◆ ComputeDt()

void ERF::ComputeDt ( int  step = -1)
private

Function that calls estTimeStep for each level

12 {
13  Vector<Real> dt_tmp(finest_level+1);
14 
15  for (int lev = 0; lev <= finest_level; ++lev)
16  {
17  dt_tmp[lev] = estTimeStep(lev, dt_mri_ratio[lev]);
18  }
19 
20  ParallelDescriptor::ReduceRealMin(&dt_tmp[0], dt_tmp.size());
21 
22  Real dt_0 = dt_tmp[0];
23  int n_factor = 1;
24  for (int lev = 0; lev <= finest_level; ++lev) {
25  dt_tmp[lev] = amrex::min(dt_tmp[lev], change_max*dt[lev]);
26  n_factor *= nsubsteps[lev];
27  dt_0 = amrex::min(dt_0, n_factor*dt_tmp[lev]);
28  if (step == 0){
29  dt_0 *= init_shrink;
30  if (verbose && init_shrink != 1.0) {
31  Print() << "Timestep 0: shrink initial dt at level " << lev << " by " << init_shrink << std::endl;
32  }
33  }
34  }
35  // Limit dt's by the value of stop_time.
36  const Real eps = 1.e-3*dt_0;
37  if (t_new[0] + dt_0 > stop_time - eps) {
38  dt_0 = stop_time - t_new[0];
39  }
40 
41  dt[0] = dt_0;
42  for (int lev = 1; lev <= finest_level; ++lev) {
43  dt[lev] = dt[lev-1] / nsubsteps[lev];
44  }
45 }
amrex::Real estTimeStep(int lev, long &dt_fast_ratio) const
Definition: ERF_ComputeTimestep.cpp:54
static amrex::Real stop_time
Definition: ERF.H:1017
amrex::Vector< int > nsubsteps
Definition: ERF.H:789
static amrex::Real init_shrink
Definition: ERF.H:1028
static amrex::Real change_max
Definition: ERF.H:1029

◆ ComputeGhostCells()

static AMREX_FORCE_INLINE int ERF::ComputeGhostCells ( const SolverChoice sc)
inlinestaticprivate
1319  {
1320  int ngrow = 0;
1321 
1322  if (sc.use_num_diff)
1323  {
1324  ngrow = 3;
1325  } else {
1326  if (
1333  { ngrow = 3; }
1334  else if (
1341  { ngrow = 3; }
1342  else if (
1351  { ngrow = 3; }
1352  else if (
1361  { ngrow = 4; }
1362  else
1363  {
1364  if (sc.terrain_type == TerrainType::EB){
1365  ngrow = 3;
1366  } else {
1367  ngrow = 2;
1368  }
1369  }
1370  }
1371 
1372  return ngrow;
1373  }
@ Centered_6th
AdvType moistscal_horiz_adv_type
Definition: ERF_AdvStruct.H:423
AdvType dycore_vert_adv_type
Definition: ERF_AdvStruct.H:420
AdvType moistscal_vert_adv_type
Definition: ERF_AdvStruct.H:424
AdvType dryscal_horiz_adv_type
Definition: ERF_AdvStruct.H:421
AdvType dycore_horiz_adv_type
Definition: ERF_AdvStruct.H:419
AdvType dryscal_vert_adv_type
Definition: ERF_AdvStruct.H:422
AdvChoice advChoice
Definition: ERF_DataStruct.H:860

◆ Construct_ERFFillPatchers()

void ERF::Construct_ERFFillPatchers ( int  lev)
private
2581 {
2582  auto& fine_new = vars_new[lev];
2583  auto& crse_new = vars_new[lev-1];
2584  auto& ba_fine = fine_new[Vars::cons].boxArray();
2585  auto& ba_crse = crse_new[Vars::cons].boxArray();
2586  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2587  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2588 
2589  int ncomp = vars_new[lev][Vars::cons].nComp();
2590 
2591  FPr_c.emplace_back(ba_fine, dm_fine, geom[lev] ,
2592  ba_crse, dm_crse, geom[lev-1],
2593  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2594  FPr_u.emplace_back(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2595  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2596  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2597  FPr_v.emplace_back(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2598  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2599  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2600  FPr_w.emplace_back(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2601  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2602  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2603 }
int cf_set_width
Definition: ERF.H:887

◆ CreateForecastStateMultiFabs()

void ERF::CreateForecastStateMultiFabs ( amrex::Vector< amrex::Vector< amrex::MultiFab >> &  forecast_state)
250 {
251 
252  forecast_state.resize(max_level+1);
253  for (int lev = 0; lev < max_level+1; ++lev) {
254  forecast_state[lev].resize(vars_new[lev].size()+1);
255  for (int comp = 0; comp < vars_new[lev].size(); ++comp) {
256  const MultiFab& src = vars_new[lev][comp];
257  forecast_state[lev][comp].define(src.boxArray(), src.DistributionMap(),
258  src.nComp(), src.nGrow());
259  }
260  int comp = vars_new[lev].size();
261  const MultiFab& src = vars_new[lev][0];
262  forecast_state[lev][comp].define(src.boxArray(), src.DistributionMap(),
263  2, src.nGrow());
264  }
265 }

◆ CreateWeatherDataGeomBoxArrayDistMap()

void ERF::CreateWeatherDataGeomBoxArrayDistMap ( const std::string &  filename,
amrex::Geometry &  geom_weather,
amrex::BoxArray &  nba,
amrex::DistributionMapping &  dm 
)
159 {
160  Vector<Real> latvec_h, lonvec_h, xvec_h, yvec_h, zvec_h;
161  Vector<Real> rho_h, uvel_h, vvel_h, wvel_h, theta_h, qv_h, qc_h, qr_h;
162 
163  ReadCustomBinaryIC(filename, latvec_h, lonvec_h,
164  xvec_h, yvec_h, zvec_h, rho_h,
165  uvel_h, vvel_h, wvel_h,
166  theta_h, qv_h, qc_h, qr_h);
167 
168  const auto prob_lo_erf = geom[0].ProbLoArray();
169  const auto prob_hi_erf = geom[0].ProbHiArray();
170  const auto dx_erf = geom[0].CellSizeArray();
171 
172  if(prob_lo_erf[0] < xvec_h.front() + 4*dx_erf[0]){
173  amrex::Abort("The xlo value of the domain has to be greater than " + std::to_string(xvec_h.front() + 4*dx_erf[0]));
174  }
175  if(prob_hi_erf[0] > xvec_h.back() - 4*dx_erf[0]){
176  amrex::Abort("The xhi value of the domain has to be less than " + std::to_string(xvec_h.back() - 4*dx_erf[0]));
177  }
178  if(prob_lo_erf[1] < yvec_h.front() + 4*dx_erf[1]){
179  amrex::Abort("The ylo value of the domain has to be greater than " + std::to_string(yvec_h.front() + 4*dx_erf[1]));
180  }
181  if(prob_hi_erf[1] > yvec_h.back() - 4*dx_erf[1]){
182  amrex::Abort("The yhi value of the domain has to be less than " + std::to_string(yvec_h.back() - 4*dx_erf[1]));
183  }
184 
185  // Number of cells
186  int nx_cells = xvec_h.size()-1;
187  int ny_cells = yvec_h.size()-1;
188 
189  const amrex::Geometry& geom0 = geom[0]; // or whatever your Geometry vector is called
190  const amrex::Box& domainBox = geom0.Domain();
191  const amrex::IntVect& domainSize = domainBox.size(); // Number of cells in each direction
192  int nz_cells = domainSize[2];
193 
194  IntVect dom_lo(0, 0, 0);
195  IntVect dom_hi(nx_cells-1, ny_cells-1, nz_cells-1);
196  Box domain(dom_lo, dom_hi);
197 
198  const amrex::Real* prob_hi = geom0.ProbHi();
199 
200  // Define the extents of the physical domain box
201  RealBox real_box({xvec_h[0], yvec_h[0], zvec_h[0]}, {xvec_h[nx_cells], yvec_h[ny_cells], prob_hi[2]});
202 
203  int coord = 0; // Cartesian
204  Array<int, AMREX_SPACEDIM> is_periodic{0, 0, 0}; // non-periodic
205 
206  geom_weather.define(domain, real_box, coord, is_periodic);
207 
208  BoxArray ba(domain);
209  ba.maxSize(64);
210  nba = amrex::convert(ba, IntVect::TheNodeVector()); // nodal in all directions
211 
212  // Create DistributionMapping
213  dm = DistributionMapping(nba);
214  }
const auto & dom_hi
Definition: ERF_DiffSetup.H:10
const auto & dom_lo
Definition: ERF_DiffSetup.H:9
void ReadCustomBinaryIC(const std::string filename, amrex::Vector< amrex::Real > &latvec_h, amrex::Vector< amrex::Real > &lonvec_h, amrex::Vector< amrex::Real > &xvec_h, amrex::Vector< amrex::Real > &yvec_h, amrex::Vector< amrex::Real > &zvec_h, amrex::Vector< amrex::Real > &rho_h, amrex::Vector< amrex::Real > &uvel_h, amrex::Vector< amrex::Real > &vvel_h, amrex::Vector< amrex::Real > &wvel_h, amrex::Vector< amrex::Real > &theta_h, amrex::Vector< amrex::Real > &qv_h, amrex::Vector< amrex::Real > &qc_h, amrex::Vector< amrex::Real > &qr_h)
Definition: ERF_ReadCustomBinaryIC.H:12
Here is the call graph for this function:

◆ DataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DataLog ( int  i)
inlineprivate
1384  {
1385  return *datalog[i];
1386  }
amrex::Vector< std::unique_ptr< std::fstream > > datalog
Definition: ERF.H:1563

◆ DataLogName()

std::string ERF::DataLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith datalog file.

1579 { return datalogname[i]; }
amrex::Vector< std::string > datalogname
Definition: ERF.H:1566

◆ Define_ERFFillPatchers()

void ERF::Define_ERFFillPatchers ( int  lev)
private
2607 {
2608  auto& fine_new = vars_new[lev];
2609  auto& crse_new = vars_new[lev-1];
2610  auto& ba_fine = fine_new[Vars::cons].boxArray();
2611  auto& ba_crse = crse_new[Vars::cons].boxArray();
2612  auto& dm_fine = fine_new[Vars::cons].DistributionMap();
2613  auto& dm_crse = crse_new[Vars::cons].DistributionMap();
2614 
2615  int ncomp = fine_new[Vars::cons].nComp();
2616 
2617  FPr_c[lev-1].Define(ba_fine, dm_fine, geom[lev] ,
2618  ba_crse, dm_crse, geom[lev-1],
2619  -cf_width, -cf_set_width, ncomp, &cell_cons_interp);
2620  FPr_u[lev-1].Define(convert(ba_fine, IntVect(1,0,0)), dm_fine, geom[lev] ,
2621  convert(ba_crse, IntVect(1,0,0)), dm_crse, geom[lev-1],
2622  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2623  FPr_v[lev-1].Define(convert(ba_fine, IntVect(0,1,0)), dm_fine, geom[lev] ,
2624  convert(ba_crse, IntVect(0,1,0)), dm_crse, geom[lev-1],
2625  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2626  FPr_w[lev-1].Define(convert(ba_fine, IntVect(0,0,1)), dm_fine, geom[lev] ,
2627  convert(ba_crse, IntVect(0,0,1)), dm_crse, geom[lev-1],
2628  -cf_width, -cf_set_width, 1, &face_cons_linear_interp);
2629 }

◆ DerDataLog()

AMREX_FORCE_INLINE std::ostream& ERF::DerDataLog ( int  i)
inlineprivate
1391  {
1392  return *der_datalog[i];
1393  }
amrex::Vector< std::unique_ptr< std::fstream > > der_datalog
Definition: ERF.H:1564

◆ DerDataLogName()

std::string ERF::DerDataLogName ( int  i) const
inlineprivatenoexcept
1580 { return der_datalogname[i]; }
amrex::Vector< std::string > der_datalogname
Definition: ERF.H:1567

◆ derive_diag_profiles()

void ERF::derive_diag_profiles ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
205 {
206  // We assume that this is always called at level 0
207  int lev = 0;
208 
209  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
210  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
211  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, uw, vv, vw, ww, uth, vth, wth,
212  // 0 1 2 3 4 5 6 7 8 9 10 11 12 13
213  // thth, uiuiu, uiuiv, uiuiw, p, pu, pv, pw, qv, qc, qr, wqv, wqc, wqr,
214  // 14 15 16 17 18 19 20 21 22 23 24 25 26 27
215  // qi, qs, qg, wthv
216  // 28 29 30 31
217  MultiFab mf_out(grids[lev], dmap[lev], 32, 0);
218 
219  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
220 
221  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
222  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
223  MultiFab w_cc(mf_vels, make_alias, 2, 1); // w at cell centers
224 
225  average_face_to_cellcenter(mf_vels,0,
226  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
227 
228  int zdir = 2;
229  auto domain = geom[0].Domain();
230 
231  // Sum in the horizontal plane
232  h_avg_u = sumToLine(mf_vels ,0,1,domain,zdir);
233  h_avg_v = sumToLine(mf_vels ,1,1,domain,zdir);
234  h_avg_w = sumToLine(mf_vels ,2,1,domain,zdir);
235 
236  int hu_size = h_avg_u.size();
237 
238  // Divide by the total number of cells we are averaging over
239  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
240  for (int k = 0; k < hu_size; ++k) {
241  h_avg_u[k] /= area_z; h_avg_v[k] /= area_z; h_avg_w[k] /= area_z;
242  }
243 
244  Gpu::DeviceVector<Real> d_avg_u(hu_size, Real(0.0));
245  Gpu::DeviceVector<Real> d_avg_v(hu_size, Real(0.0));
246  Gpu::DeviceVector<Real> d_avg_w(hu_size, Real(0.0));
247 
248 #if 0
249  auto* avg_u_ptr = d_avg_u.data();
250  auto* avg_v_ptr = d_avg_v.data();
251  auto* avg_w_ptr = d_avg_w.data();
252 #endif
253 
254  Gpu::copy(Gpu::hostToDevice, h_avg_u.begin(), h_avg_u.end(), d_avg_u.begin());
255  Gpu::copy(Gpu::hostToDevice, h_avg_v.begin(), h_avg_v.end(), d_avg_v.begin());
256  Gpu::copy(Gpu::hostToDevice, h_avg_w.begin(), h_avg_w.end(), d_avg_w.begin());
257 
258  int nvars = vars_new[lev][Vars::cons].nComp();
259  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
260 
261  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
262 
263  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
264 
265  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
266  {
267  const Box& bx = mfi.tilebox();
268  const Array4<Real>& fab_arr = mf_out.array(mfi);
269  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
270  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
271  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
272  const Array4<Real>& cons_arr = mf_cons.array(mfi);
273  const Array4<Real>& p0_arr = p_hse.array(mfi);
274  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
275  Array4<const Real>{};
276 
277  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
278  {
279  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
280  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
281  fab_arr(i, j, k, 1) = theta;
282  Real ksgs = 0.0;
283  if (l_use_KE) {
284  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
285  }
286  fab_arr(i, j, k, 2) = ksgs;
287 #if 1
288  if (l_use_kturb) {
289  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
290  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
291  } else {
292  fab_arr(i, j, k, 3) = 0.0;
293  fab_arr(i, j, k, 4) = 0.0;
294  }
295 #else
296  // Here we hijack the "Kturb" variable name to print out the resolved kinetic energy
297  Real upert = u_cc_arr(i,j,k) - avg_u_ptr[k];
298  Real vpert = v_cc_arr(i,j,k) - avg_v_ptr[k];
299  Real wpert = w_cc_arr(i,j,k) - avg_w_ptr[k];
300  fab_arr(i, j, k, 3) = 0.5 * (upert*upert + vpert*vpert + wpert*wpert);
301 #endif
302  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
303  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
304  fab_arr(i, j, k, 7) = u_cc_arr(i,j,k) * w_cc_arr(i,j,k); // u*w
305  fab_arr(i, j, k, 8) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
306  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * w_cc_arr(i,j,k); // v*w
307  fab_arr(i, j, k,10) = w_cc_arr(i,j,k) * w_cc_arr(i,j,k); // w*w
308  fab_arr(i, j, k,11) = u_cc_arr(i,j,k) * theta; // u*th
309  fab_arr(i, j, k,12) = v_cc_arr(i,j,k) * theta; // v*th
310  fab_arr(i, j, k,13) = w_cc_arr(i,j,k) * theta; // w*th
311  fab_arr(i, j, k,14) = theta * theta; // th*th
312 
313  // if the number of fields is changed above, then be sure to update
314  // the following def!
315  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,8) + fab_arr(i,j,k,10);
316  fab_arr(i, j, k,15) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
317  fab_arr(i, j, k,16) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
318  fab_arr(i, j, k,17) = uiui * w_cc_arr(i,j,k); // (ui*ui)*w
319 
320  if (!use_moisture) {
321  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
322  p -= p0_arr(i,j,k);
323  fab_arr(i, j, k,18) = p; // p
324  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
325  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
326  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
327  fab_arr(i, j, k,22) = 0.; // qv
328  fab_arr(i, j, k,23) = 0.; // qc
329  fab_arr(i, j, k,24) = 0.; // qr
330  fab_arr(i, j, k,25) = 0.; // w*qv
331  fab_arr(i, j, k,26) = 0.; // w*qc
332  fab_arr(i, j, k,27) = 0.; // w*qr
333  fab_arr(i, j, k,28) = 0.; // qi
334  fab_arr(i, j, k,29) = 0.; // qs
335  fab_arr(i, j, k,30) = 0.; // qg
336  fab_arr(i, j, k,31) = 0.; // w*thv
337  }
338  });
339  } // mfi
340 
341  if (use_moisture)
342  {
343  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
344 
345  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
346  {
347  const Box& bx = mfi.tilebox();
348  const Array4<Real>& fab_arr = mf_out.array(mfi);
349  const Array4<Real>& cons_arr = mf_cons.array(mfi);
350  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
351  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
352  const Array4<Real>& w_cc_arr = w_cc.array(mfi);
353  const Array4<Real>& p0_arr = p_hse.array(mfi);
354 
355  int rhoqr_comp = solverChoice.moisture_indices.qr;
356 
357  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
358  {
359  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
360  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
361  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
362  Real(0.0);
363  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
364 
365  p -= p0_arr(i,j,k);
366  fab_arr(i, j, k,18) = p; // p
367  fab_arr(i, j, k,19) = p * u_cc_arr(i,j,k); // p*u
368  fab_arr(i, j, k,20) = p * v_cc_arr(i,j,k); // p*v
369  fab_arr(i, j, k,21) = p * w_cc_arr(i,j,k); // p*w
370  fab_arr(i, j, k,22) = qv; // qv
371  fab_arr(i, j, k,23) = qc; // qc
372  fab_arr(i, j, k,24) = qr; // qr
373  fab_arr(i, j, k,25) = w_cc_arr(i,j,k) * qv; // w*qv
374  fab_arr(i, j, k,26) = w_cc_arr(i,j,k) * qc; // w*qc
375  fab_arr(i, j, k,27) = w_cc_arr(i,j,k) * qr; // w*qr
376  if (n_qstate_moist > 3) {
377  fab_arr(i, j, k,28) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
378  fab_arr(i, j, k,29) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
379  fab_arr(i, j, k,30) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
380  } else {
381  fab_arr(i, j, k,28) = 0.0; // qi
382  fab_arr(i, j, k,29) = 0.0; // qs
383  fab_arr(i, j, k,30) = 0.0; // qg
384  }
385  Real ql = qc + qr;
386  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
387  Real thv = theta * (1 + 0.61*qv - ql);
388  fab_arr(i, j, k,31) = w_cc_arr(i,j,k) * thv; // w*thv
389  });
390  } // mfi
391  } // use_moisture
392 
393  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
394  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
395  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
396  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
397  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
398  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
399  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
400  h_avg_uw = sumToLine(mf_out, 7,1,domain,zdir);
401  h_avg_vv = sumToLine(mf_out, 8,1,domain,zdir);
402  h_avg_vw = sumToLine(mf_out, 9,1,domain,zdir);
403  h_avg_ww = sumToLine(mf_out,10,1,domain,zdir);
404  h_avg_uth = sumToLine(mf_out,11,1,domain,zdir);
405  h_avg_vth = sumToLine(mf_out,12,1,domain,zdir);
406  h_avg_wth = sumToLine(mf_out,13,1,domain,zdir);
407  h_avg_thth = sumToLine(mf_out,14,1,domain,zdir);
408  h_avg_uiuiu = sumToLine(mf_out,15,1,domain,zdir);
409  h_avg_uiuiv = sumToLine(mf_out,16,1,domain,zdir);
410  h_avg_uiuiw = sumToLine(mf_out,17,1,domain,zdir);
411  h_avg_p = sumToLine(mf_out,18,1,domain,zdir);
412  h_avg_pu = sumToLine(mf_out,19,1,domain,zdir);
413  h_avg_pv = sumToLine(mf_out,20,1,domain,zdir);
414  h_avg_pw = sumToLine(mf_out,21,1,domain,zdir);
415  h_avg_qv = sumToLine(mf_out,22,1,domain,zdir);
416  h_avg_qc = sumToLine(mf_out,23,1,domain,zdir);
417  h_avg_qr = sumToLine(mf_out,24,1,domain,zdir);
418  h_avg_wqv = sumToLine(mf_out,25,1,domain,zdir);
419  h_avg_wqc = sumToLine(mf_out,26,1,domain,zdir);
420  h_avg_wqr = sumToLine(mf_out,27,1,domain,zdir);
421  h_avg_qi = sumToLine(mf_out,28,1,domain,zdir);
422  h_avg_qs = sumToLine(mf_out,29,1,domain,zdir);
423  h_avg_qg = sumToLine(mf_out,30,1,domain,zdir);
424  h_avg_wthv = sumToLine(mf_out,31,1,domain,zdir);
425 
426  // Divide by the total number of cells we are averaging over
427  int h_avg_u_size = static_cast<int>(h_avg_u.size());
428  for (int k = 0; k < h_avg_u_size; ++k) {
429  h_avg_rho[k] /= area_z;
430  h_avg_ksgs[k] /= area_z;
431  h_avg_Kmv[k] /= area_z;
432  h_avg_Khv[k] /= area_z;
433  h_avg_th[k] /= area_z;
434  h_avg_thth[k] /= area_z;
435  h_avg_uu[k] /= area_z;
436  h_avg_uv[k] /= area_z;
437  h_avg_uw[k] /= area_z;
438  h_avg_vv[k] /= area_z;
439  h_avg_vw[k] /= area_z;
440  h_avg_ww[k] /= area_z;
441  h_avg_uth[k] /= area_z;
442  h_avg_vth[k] /= area_z;
443  h_avg_wth[k] /= area_z;
444  h_avg_uiuiu[k] /= area_z;
445  h_avg_uiuiv[k] /= area_z;
446  h_avg_uiuiw[k] /= area_z;
447  h_avg_p[k] /= area_z;
448  h_avg_pu[k] /= area_z;
449  h_avg_pv[k] /= area_z;
450  h_avg_pw[k] /= area_z;
451  h_avg_qv[k] /= area_z;
452  h_avg_qc[k] /= area_z;
453  h_avg_qr[k] /= area_z;
454  h_avg_wqv[k] /= area_z;
455  h_avg_wqc[k] /= area_z;
456  h_avg_wqr[k] /= area_z;
457  h_avg_qi[k] /= area_z;
458  h_avg_qs[k] /= area_z;
459  h_avg_qg[k] /= area_z;
460  h_avg_wthv[k] /= area_z;
461  }
462 
463 #if 0
464  // Here we print the integrated total kinetic energy as computed in the 1D profile above
465  Real sum = 0.;
466  Real dz = geom[0].ProbHi(2) / static_cast<Real>(h_avg_u_size);
467  for (int k = 0; k < h_avg_u_size; ++k) {
468  sum += h_avg_kturb[k] * h_avg_rho[k] * dz;
469  }
470  amrex::Print() << "ITKE " << time << " " << sum << " using " << h_avg_u_size << " " << dz << std::endl;
471 #endif
472 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getPgivenRTh(const amrex::Real rhotheta, const amrex::Real qv=0.)
Definition: ERF_EOS.H:81
#define RhoQ3_comp
Definition: ERF_IndexDefines.H:44
#define RhoQ6_comp
Definition: ERF_IndexDefines.H:47
#define RhoQ5_comp
Definition: ERF_IndexDefines.H:46
#define RhoKE_comp
Definition: ERF_IndexDefines.H:38
@ Theta_v
Definition: ERF_IndexDefines.H:176
@ Mom_v
Definition: ERF_IndexDefines.H:175
@ theta
Definition: ERF_MM5.H:20
@ qv
Definition: ERF_Kessler.H:28
Here is the call graph for this function:

◆ derive_diag_profiles_stag()

void ERF::derive_diag_profiles_stag ( amrex::Real  time,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_u,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_v,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_w,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_rho,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_th,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ksgs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Kmv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_Khv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqc,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wqr,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qi,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qs,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_qg,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ww,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_uth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_vth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_thth,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_ku,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_kw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_p,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pu,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pv,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_pw,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_wthv 
)

Computes the profiles for diagnostic quantities at staggered heights.

Parameters
h_avg_uProfile for x-velocity on Host
h_avg_vProfile for y-velocity on Host
h_avg_wProfile for z-velocity on Host
h_avg_rhoProfile for density on Host
h_avg_thProfile for potential temperature on Host
h_avg_ksgsProfile for Kinetic Energy on Host
h_avg_uuProfile for x-velocity squared on Host
h_avg_uvProfile for x-velocity * y-velocity on Host
h_avg_uwProfile for x-velocity * z-velocity on Host
h_avg_vvProfile for y-velocity squared on Host
h_avg_vwProfile for y-velocity * z-velocity on Host
h_avg_wwProfile for z-velocity squared on Host
h_avg_uthProfile for x-velocity * potential temperature on Host
h_avg_uiuiuProfile for u_i*u_i*u triple product on Host
h_avg_uiuivProfile for u_i*u_i*v triple product on Host
h_avg_uiuiwProfile for u_i*u_i*w triple product on Host
h_avg_pProfile for pressure perturbation on Host
h_avg_puProfile for pressure perturbation * x-velocity on Host
h_avg_pvProfile for pressure perturbation * y-velocity on Host
h_avg_pwProfile for pressure perturbation * z-velocity on Host
311 {
312  // We assume that this is always called at level 0
313  int lev = 0;
314 
315  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
316  bool l_use_KE = solverChoice.turbChoice[lev].use_tke;
317  // Note: "uiui" == u_i*u_i = u*u + v*v + w*w
318  // This will hold rho, theta, ksgs, Kmh, Kmv, uu, uv, vv, uth, vth,
319  // indices: 0 1 2 3 4 5 6 7 8 9
320  // thth, uiuiu, uiuiv, p, pu, pv, qv, qc, qr, qi, qs, qg
321  // 10 11 12 13 14 15 16 17 18 19 20 21
322  MultiFab mf_out(grids[lev], dmap[lev], 22, 0);
323 
324  // This will hold uw, vw, ww, wth, uiuiw, pw, wqv, wqc, wqr, wthv
325  // indices: 0 1 2 3 4 5 6 7 8 9
326  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 10, 0);
327 
328  // This is only used to average u and v; w is not averaged to cell centers
329  MultiFab mf_vels(grids[lev], dmap[lev], 2, 0);
330 
331  MultiFab u_cc(mf_vels, make_alias, 0, 1); // u at cell centers
332  MultiFab v_cc(mf_vels, make_alias, 1, 1); // v at cell centers
333  MultiFab w_fc(vars_new[lev][Vars::zvel], make_alias, 0, 1); // w at face centers (staggered)
334 
335  int zdir = 2;
336  auto domain = geom[0].Domain();
337  Box stag_domain = domain;
338  stag_domain.convert(IntVect(0,0,1));
339 
340  int nvars = vars_new[lev][Vars::cons].nComp();
341  MultiFab mf_cons(vars_new[lev][Vars::cons], make_alias, 0, nvars);
342 
343  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
344 
345  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
346 
347  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
348  {
349  const Box& bx = mfi.tilebox();
350  const Array4<Real>& fab_arr = mf_out.array(mfi);
351  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
352  const Array4<Real>& u_arr = vars_new[lev][Vars::xvel].array(mfi);
353  const Array4<Real>& v_arr = vars_new[lev][Vars::yvel].array(mfi);
354  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
355  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
356  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
357  const Array4<Real>& cons_arr = mf_cons.array(mfi);
358  const Array4<Real>& p0_arr = p_hse.array(mfi);
359  const Array4<const Real>& eta_arr = (l_use_kturb) ? eddyDiffs_lev[lev]->const_array(mfi) :
360  Array4<const Real>{};
361 
362  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
363  {
364  u_cc_arr(i,j,k) = 0.5 * (u_arr(i,j,k) + u_arr(i+1,j ,k));
365  v_cc_arr(i,j,k) = 0.5 * (v_arr(i,j,k) + v_arr(i ,j+1,k));
366 
367  Real theta = cons_arr(i,j,k,RhoTheta_comp) / cons_arr(i,j,k,Rho_comp);
368  fab_arr(i, j, k, 0) = cons_arr(i,j,k,Rho_comp);
369  fab_arr(i, j, k, 1) = theta;
370  Real ksgs = 0.0;
371  if (l_use_KE) {
372  ksgs = cons_arr(i,j,k,RhoKE_comp) / cons_arr(i,j,k,Rho_comp);
373  }
374  fab_arr(i, j, k, 2) = ksgs;
375  if (l_use_kturb) {
376  fab_arr(i, j, k, 3) = eta_arr(i,j,k,EddyDiff::Mom_v); // Kmv
377  fab_arr(i, j, k, 4) = eta_arr(i,j,k,EddyDiff::Theta_v); // Khv
378  } else {
379  fab_arr(i, j, k, 3) = 0.0;
380  fab_arr(i, j, k, 4) = 0.0;
381  }
382  fab_arr(i, j, k, 5) = u_cc_arr(i,j,k) * u_cc_arr(i,j,k); // u*u
383  fab_arr(i, j, k, 6) = u_cc_arr(i,j,k) * v_cc_arr(i,j,k); // u*v
384  fab_arr(i, j, k, 7) = v_cc_arr(i,j,k) * v_cc_arr(i,j,k); // v*v
385  fab_arr(i, j, k, 8) = u_cc_arr(i,j,k) * theta; // u*th
386  fab_arr(i, j, k, 9) = v_cc_arr(i,j,k) * theta; // v*th
387  fab_arr(i, j, k,10) = theta * theta; // th*th
388 
389  Real wcc = 0.5 * (w_fc_arr(i,j,k) + w_fc_arr(i,j,k+1));
390 
391  // if the number of fields is changed above, then be sure to update
392  // the following def!
393  Real uiui = fab_arr(i,j,k,5) + fab_arr(i,j,k,7) + wcc*wcc;
394  fab_arr(i, j, k,11) = uiui * u_cc_arr(i,j,k); // (ui*ui)*u
395  fab_arr(i, j, k,12) = uiui * v_cc_arr(i,j,k); // (ui*ui)*v
396 
397  if (!use_moisture) {
398  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp));
399  p -= p0_arr(i,j,k);
400  fab_arr(i, j, k,13) = p; // p
401  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
402  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
403  fab_arr(i, j, k,16) = 0.; // qv
404  fab_arr(i, j, k,17) = 0.; // qc
405  fab_arr(i, j, k,18) = 0.; // qr
406  fab_arr(i, j, k,19) = 0.; // qi
407  fab_arr(i, j, k,20) = 0.; // qs
408  fab_arr(i, j, k,21) = 0.; // qg
409  }
410  });
411 
412  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
413  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
414  {
415  // average to z faces (first to cell centers, then in z)
416  Real uface = 0.25 * ( u_arr(i ,j,k) + u_arr(i ,j,k-1)
417  + u_arr(i+1,j,k) + u_arr(i+1,j,k-1));
418  Real vface = 0.25 * ( v_arr(i,j ,k) + v_arr(i,j ,k-1)
419  + v_arr(i,j+1,k) + v_arr(i,j+1,k-1));
420  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
421  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
422  Real thface = 0.5*(theta0 + theta1);
423  fab_arr_stag(i,j,k,0) = uface * w_fc_arr(i,j,k); // u*w
424  fab_arr_stag(i,j,k,1) = vface * w_fc_arr(i,j,k); // v*w
425  fab_arr_stag(i,j,k,2) = w_fc_arr(i,j,k) * w_fc_arr(i,j,k); // w*w
426  fab_arr_stag(i,j,k,3) = thface * w_fc_arr(i,j,k); // th*w
427  Real uiui = uface*uface + vface*vface + fab_arr_stag(i,j,k,2);
428  fab_arr_stag(i,j,k,4) = uiui * w_fc_arr(i,j,k); // (ui*ui)*w
429  if (!use_moisture) {
430  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp)) - p0_arr(i,j,k );
431  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp)) - p0_arr(i,j,k-1);
432  Real pface = 0.5 * (p0 + p1);
433  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
434  fab_arr_stag(i,j,k,6) = 0.; // w*qv
435  fab_arr_stag(i,j,k,7) = 0.; // w*qc
436  fab_arr_stag(i,j,k,8) = 0.; // w*qr
437  fab_arr_stag(i,j,k,9) = 0.; // w*thv
438  }
439  });
440 
441  } // mfi
442 
443  if (use_moisture)
444  {
445  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
446 
447  for ( MFIter mfi(mf_cons,TilingIfNotGPU()); mfi.isValid(); ++mfi)
448  {
449  const Box& bx = mfi.tilebox();
450  const Array4<Real>& fab_arr = mf_out.array(mfi);
451  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
452  const Array4<Real>& cons_arr = mf_cons.array(mfi);
453  const Array4<Real>& u_cc_arr = u_cc.array(mfi);
454  const Array4<Real>& v_cc_arr = v_cc.array(mfi);
455  const Array4<Real>& w_fc_arr = w_fc.array(mfi);
456  const Array4<Real>& p0_arr = p_hse.array(mfi);
457 
458  int rhoqr_comp = solverChoice.moisture_indices.qr;
459 
460  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
461  {
462  Real qv = cons_arr(i,j,k,RhoQ1_comp) / cons_arr(i,j,k,Rho_comp);
463  Real qc = cons_arr(i,j,k,RhoQ2_comp) / cons_arr(i,j,k,Rho_comp);
464  Real qr = (rhoqr_comp > -1) ? cons_arr(i,j,k,rhoqr_comp) / cons_arr(i,j,k,Rho_comp) :
465  Real(0.0);
466  Real p = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
467 
468  p -= p0_arr(i,j,k);
469  fab_arr(i, j, k,13) = p; // p
470  fab_arr(i, j, k,14) = p * u_cc_arr(i,j,k); // p*u
471  fab_arr(i, j, k,15) = p * v_cc_arr(i,j,k); // p*v
472  fab_arr(i, j, k,16) = qv; // qv
473  fab_arr(i, j, k,17) = qc; // qc
474  fab_arr(i, j, k,18) = qr; // qr
475  if (n_qstate_moist > 3) { // SAM model
476  fab_arr(i, j, k,19) = cons_arr(i,j,k,RhoQ3_comp) / cons_arr(i,j,k,Rho_comp); // qi
477  fab_arr(i, j, k,20) = cons_arr(i,j,k,RhoQ5_comp) / cons_arr(i,j,k,Rho_comp); // qs
478  fab_arr(i, j, k,21) = cons_arr(i,j,k,RhoQ6_comp) / cons_arr(i,j,k,Rho_comp); // qg
479  } else {
480  fab_arr(i, j, k,19) = 0.0; // qi
481  fab_arr(i, j, k,20) = 0.0; // qs
482  fab_arr(i, j, k,21) = 0.0; // qg
483  }
484  });
485 
486  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
487  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
488  {
489  Real qv0 = cons_arr(i,j,k ,RhoQ1_comp) / cons_arr(i,j,k ,Rho_comp);
490  Real qv1 = cons_arr(i,j,k-1,RhoQ1_comp) / cons_arr(i,j,k-1,Rho_comp);
491  Real qc0 = cons_arr(i,j,k ,RhoQ2_comp) / cons_arr(i,j,k ,Rho_comp);
492  Real qc1 = cons_arr(i,j,k-1,RhoQ2_comp) / cons_arr(i,j,k-1,Rho_comp);
493  Real qr0 = (rhoqr_comp > -1) ? cons_arr(i,j,k ,RhoQ3_comp) / cons_arr(i,j,k ,Rho_comp) :
494  Real(0.0);
495  Real qr1 = (rhoqr_comp > -1) ? cons_arr(i,j,k-1,RhoQ3_comp) / cons_arr(i,j,k-1,Rho_comp) :
496  Real(0.0);
497  Real qvface = 0.5 * (qv0 + qv1);
498  Real qcface = 0.5 * (qc0 + qc1);
499  Real qrface = 0.5 * (qr0 + qr1);
500 
501  Real p0 = getPgivenRTh(cons_arr(i, j, k , RhoTheta_comp), qv0) - p0_arr(i,j,k );
502  Real p1 = getPgivenRTh(cons_arr(i, j, k-1, RhoTheta_comp), qv1) - p0_arr(i,j,k-1);
503  Real pface = 0.5 * (p0 + p1);
504 
505  Real theta0 = cons_arr(i,j,k ,RhoTheta_comp) / cons_arr(i,j,k ,Rho_comp);
506  Real theta1 = cons_arr(i,j,k-1,RhoTheta_comp) / cons_arr(i,j,k-1,Rho_comp);
507  Real thface = 0.5*(theta0 + theta1);
508  Real ql = qcface + qrface;
509  Real thv = thface * (1 + 0.61*qvface - ql);
510 
511  fab_arr_stag(i,j,k,5) = pface * w_fc_arr(i,j,k); // p*w
512  fab_arr_stag(i,j,k,6) = qvface * w_fc_arr(i,j,k); // w*qv
513  fab_arr_stag(i,j,k,7) = qcface * w_fc_arr(i,j,k); // w*qc
514  fab_arr_stag(i,j,k,8) = qrface * w_fc_arr(i,j,k); // w*qr
515  fab_arr_stag(i,j,k,9) = thv * w_fc_arr(i,j,k); // w*thv
516  });
517  } // mfi
518  } // use_moisture
519 
520  // Sum in the horizontal plane
521  h_avg_u = sumToLine(u_cc,0,1, domain,zdir);
522  h_avg_v = sumToLine(v_cc,0,1, domain,zdir);
523  h_avg_w = sumToLine(w_fc,0,1,stag_domain,zdir);
524 
525  h_avg_rho = sumToLine(mf_out, 0,1,domain,zdir);
526  h_avg_th = sumToLine(mf_out, 1,1,domain,zdir);
527  h_avg_ksgs = sumToLine(mf_out, 2,1,domain,zdir);
528  h_avg_Kmv = sumToLine(mf_out, 3,1,domain,zdir);
529  h_avg_Khv = sumToLine(mf_out, 4,1,domain,zdir);
530  h_avg_uu = sumToLine(mf_out, 5,1,domain,zdir);
531  h_avg_uv = sumToLine(mf_out, 6,1,domain,zdir);
532  h_avg_vv = sumToLine(mf_out, 7,1,domain,zdir);
533  h_avg_uth = sumToLine(mf_out, 8,1,domain,zdir);
534  h_avg_vth = sumToLine(mf_out, 9,1,domain,zdir);
535  h_avg_thth = sumToLine(mf_out,10,1,domain,zdir);
536  h_avg_uiuiu = sumToLine(mf_out,11,1,domain,zdir);
537  h_avg_uiuiv = sumToLine(mf_out,12,1,domain,zdir);
538  h_avg_p = sumToLine(mf_out,13,1,domain,zdir);
539  h_avg_pu = sumToLine(mf_out,14,1,domain,zdir);
540  h_avg_pv = sumToLine(mf_out,15,1,domain,zdir);
541  h_avg_qv = sumToLine(mf_out,16,1,domain,zdir);
542  h_avg_qc = sumToLine(mf_out,17,1,domain,zdir);
543  h_avg_qr = sumToLine(mf_out,18,1,domain,zdir);
544  h_avg_qi = sumToLine(mf_out,19,1,domain,zdir);
545  h_avg_qs = sumToLine(mf_out,20,1,domain,zdir);
546  h_avg_qg = sumToLine(mf_out,21,1,domain,zdir);
547 
548  h_avg_uw = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
549  h_avg_vw = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
550  h_avg_ww = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
551  h_avg_wth = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
552  h_avg_uiuiw = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
553  h_avg_pw = sumToLine(mf_out_stag,5,1,stag_domain,zdir);
554  h_avg_wqv = sumToLine(mf_out_stag,6,1,stag_domain,zdir);
555  h_avg_wqc = sumToLine(mf_out_stag,7,1,stag_domain,zdir);
556  h_avg_wqr = sumToLine(mf_out_stag,8,1,stag_domain,zdir);
557  h_avg_wthv = sumToLine(mf_out_stag,9,1,stag_domain,zdir);
558 
559  // Divide by the total number of cells we are averaging over
560  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
561  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
562  for (int k = 0; k < unstag_size; ++k) {
563  h_avg_u[k] /= area_z;
564  h_avg_v[k] /= area_z;
565  h_avg_rho[k] /= area_z;
566  h_avg_ksgs[k] /= area_z;
567  h_avg_Kmv[k] /= area_z;
568  h_avg_Khv[k] /= area_z;
569  h_avg_th[k] /= area_z;
570  h_avg_thth[k] /= area_z;
571  h_avg_uu[k] /= area_z;
572  h_avg_uv[k] /= area_z;
573  h_avg_vv[k] /= area_z;
574  h_avg_uth[k] /= area_z;
575  h_avg_vth[k] /= area_z;
576  h_avg_uiuiu[k] /= area_z;
577  h_avg_uiuiv[k] /= area_z;
578  h_avg_p[k] /= area_z;
579  h_avg_pu[k] /= area_z;
580  h_avg_pv[k] /= area_z;
581  h_avg_qv[k] /= area_z;
582  h_avg_qc[k] /= area_z;
583  h_avg_qr[k] /= area_z;
584  h_avg_qi[k] /= area_z;
585  h_avg_qs[k] /= area_z;
586  h_avg_qg[k] /= area_z;
587  }
588 
589  for (int k = 0; k < unstag_size+1; ++k) { // staggered heights
590  h_avg_w[k] /= area_z;
591  h_avg_uw[k] /= area_z;
592  h_avg_vw[k] /= area_z;
593  h_avg_ww[k] /= area_z;
594  h_avg_wth[k] /= area_z;
595  h_avg_uiuiw[k] /= area_z;
596  h_avg_pw[k] /= area_z;
597  h_avg_wqv[k] /= area_z;
598  h_avg_wqc[k] /= area_z;
599  h_avg_wqr[k] /= area_z;
600  h_avg_wthv[k] /= area_z;
601  }
602 }
const Box zbx
Definition: ERF_DiffSetup.H:23
Here is the call graph for this function:

◆ derive_stress_profiles()

void ERF::derive_stress_profiles ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
480 {
481  int lev = 0;
482 
483  // This will hold the stress tensor components
484  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
485 
486  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
487 
488  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
489 
490  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
491  {
492  const Box& bx = mfi.tilebox();
493  const Array4<Real>& fab_arr = mf_out.array(mfi);
494 
495  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
496 
497  // NOTE: These are from the last RK stage...
498  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
499  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
500  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
501  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
502  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
503  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
504 
505  // These should be re-calculated during ERF_slow_rhs_post
506  // -- just vertical SFS kinematic heat flux for now
507  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
508  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
509  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
510  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
511  Array4<const Real>{};
512  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
513  Array4<const Real>{};
514  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
515 
516  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
517  {
518  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
519  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
520  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
521  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
522  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
523  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
524  fab_arr(i, j, k, 2) = ( tau13_arr(i,j,k ) + tau13_arr(i+1,j,k )
525  + tau13_arr(i,j,k+1) + tau13_arr(i+1,j,k+1) )
526  / ( rho_arr(i,j,k ) + rho_arr(i+1,j,k )
527  + rho_arr(i,j,k+1) + rho_arr(i+1,j,k+1) );
528  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
529  fab_arr(i, j, k, 4) = ( tau23_arr(i,j,k ) + tau23_arr(i,j+1,k )
530  + tau23_arr(i,j,k+1) + tau23_arr(i,j+1,k+1) )
531  / ( rho_arr(i,j,k ) + rho_arr(i,j+1,k )
532  + rho_arr(i,j,k+1) + rho_arr(i,j+1,k+1) );
533  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
534  fab_arr(i, j, k, 6) = 0.5 * ( hfx3_arr(i,j,k) + hfx3_arr(i,j,k+1) ) / rho_arr(i,j,k);
535  fab_arr(i, j, k, 7) = (l_use_moist) ? 0.5 * ( q1fx3_arr(i,j,k) + q1fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
536  fab_arr(i, j, k, 8) = (l_use_moist) ? 0.5 * ( q2fx3_arr(i,j,k) + q2fx3_arr(i,j,k+1) ) / rho_arr(i,j,k) : 0.0;
537  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
538  });
539  }
540 
541  int zdir = 2;
542  auto domain = geom[0].Domain();
543 
544  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
545  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
546  h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
547  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
548  h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
549  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
550  h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
551  h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
552  h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
553  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
554 
555  int ht_size = h_avg_tau11.size();
556 
557  // Divide by the total number of cells we are averaging over
558  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
559  for (int k = 0; k < ht_size; ++k) {
560  h_avg_tau11[k] /= area_z;
561  h_avg_tau12[k] /= area_z;
562  h_avg_tau13[k] /= area_z;
563  h_avg_tau22[k] /= area_z;
564  h_avg_tau23[k] /= area_z;
565  h_avg_tau33[k] /= area_z;
566  h_avg_hfx3[k] /= area_z;
567  h_avg_q1fx3[k] /= area_z;
568  h_avg_q2fx3[k] /= area_z;
569  h_avg_diss[k] /= area_z;
570  }
571 }

◆ derive_stress_profiles_stag()

void ERF::derive_stress_profiles_stag ( amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau11,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau12,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau13,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau22,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau23,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_tau33,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_hfx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q1fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_q2fx3,
amrex::Gpu::HostVector< amrex::Real > &  h_avg_diss 
)
610 {
611  int lev = 0;
612 
613  // This will hold the stress tensor components
614  MultiFab mf_out(grids[lev], dmap[lev], 10, 0);
615 
616  // This will hold Tau13 and Tau23
617  MultiFab mf_out_stag(convert(grids[lev], IntVect(0,0,1)), dmap[lev], 5, 0);
618 
619  MultiFab mf_rho(vars_new[lev][Vars::cons], make_alias, 0, 1);
620 
621  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
622 
623  for ( MFIter mfi(mf_out,TilingIfNotGPU()); mfi.isValid(); ++mfi)
624  {
625  const Box& bx = mfi.tilebox();
626  const Array4<Real>& fab_arr = mf_out.array(mfi);
627  const Array4<Real>& fab_arr_stag = mf_out_stag.array(mfi);
628 
629  const Array4<const Real>& rho_arr = mf_rho.const_array(mfi);
630 
631  // NOTE: These are from the last RK stage...
632  const Array4<const Real>& tau11_arr = Tau[lev][TauType::tau11]->const_array(mfi);
633  const Array4<const Real>& tau12_arr = Tau[lev][TauType::tau12]->const_array(mfi);
634  const Array4<const Real>& tau13_arr = Tau[lev][TauType::tau13]->const_array(mfi);
635  const Array4<const Real>& tau22_arr = Tau[lev][TauType::tau22]->const_array(mfi);
636  const Array4<const Real>& tau23_arr = Tau[lev][TauType::tau23]->const_array(mfi);
637  const Array4<const Real>& tau33_arr = Tau[lev][TauType::tau33]->const_array(mfi);
638 
639  // These should be re-calculated during ERF_slow_rhs_post
640  // -- just vertical SFS kinematic heat flux for now
641  //const Array4<const Real>& hfx1_arr = SFS_hfx1_lev[lev]->const_array(mfi);
642  //const Array4<const Real>& hfx2_arr = SFS_hfx2_lev[lev]->const_array(mfi);
643  const Array4<const Real>& hfx3_arr = SFS_hfx3_lev[lev]->const_array(mfi);
644  const Array4<const Real>& q1fx3_arr = (l_use_moist) ? SFS_q1fx3_lev[lev]->const_array(mfi) :
645  Array4<const Real>{};
646  const Array4<const Real>& q2fx3_arr = (l_use_moist) ? SFS_q2fx3_lev[lev]->const_array(mfi) :
647  Array4<const Real>{};
648  const Array4<const Real>& diss_arr = SFS_diss_lev[lev]->const_array(mfi);
649 
650  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
651  {
652  // rho averaging should follow Diffusion/ERF_ComputeStress_*.cpp
653  fab_arr(i, j, k, 0) = tau11_arr(i,j,k) / rho_arr(i,j,k);
654  fab_arr(i, j, k, 1) = ( tau12_arr(i,j ,k) + tau12_arr(i+1,j ,k)
655  + tau12_arr(i,j+1,k) + tau12_arr(i+1,j+1,k) )
656  / ( rho_arr(i,j ,k) + rho_arr(i+1,j ,k)
657  + rho_arr(i,j+1,k) + rho_arr(i+1,j+1,k) );
658  fab_arr(i, j, k, 3) = tau22_arr(i,j,k) / rho_arr(i,j,k);
659  fab_arr(i, j, k, 5) = tau33_arr(i,j,k) / rho_arr(i,j,k);
660  fab_arr(i, j, k, 9) = diss_arr(i,j,k) / rho_arr(i,j,k);
661  });
662 
663  const Box& zbx = mfi.tilebox(IntVect(0,0,1));
664  ParallelFor(zbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
665  {
666  Real rho_face = 0.5 * (rho_arr(i,j,k-1) + rho_arr(i,j,k));
667  // average from edge to face center
668  fab_arr_stag(i,j,k,0) = 0.5*(tau13_arr(i,j,k) + tau13_arr(i+1,j ,k)) / rho_face;
669  fab_arr_stag(i,j,k,1) = 0.5*(tau23_arr(i,j,k) + tau23_arr(i ,j+1,k)) / rho_face;
670 
671  fab_arr_stag(i,j,k,2) = hfx3_arr(i,j,k) / rho_face;
672  fab_arr_stag(i,j,k,3) = (l_use_moist) ? q1fx3_arr(i,j,k) / rho_face : 0.0;
673  fab_arr_stag(i,j,k,4) = (l_use_moist) ? q2fx3_arr(i,j,k) / rho_face : 0.0;
674  });
675  }
676 
677  int zdir = 2;
678  auto domain = geom[0].Domain();
679  Box stag_domain = domain;
680  stag_domain.convert(IntVect(0,0,1));
681 
682  h_avg_tau11 = sumToLine(mf_out,0,1,domain,zdir);
683  h_avg_tau12 = sumToLine(mf_out,1,1,domain,zdir);
684 // h_avg_tau13 = sumToLine(mf_out,2,1,domain,zdir);
685  h_avg_tau22 = sumToLine(mf_out,3,1,domain,zdir);
686 // h_avg_tau23 = sumToLine(mf_out,4,1,domain,zdir);
687  h_avg_tau33 = sumToLine(mf_out,5,1,domain,zdir);
688 // h_avg_hfx3 = sumToLine(mf_out,6,1,domain,zdir);
689 // h_avg_q1fx3 = sumToLine(mf_out,7,1,domain,zdir);
690 // h_avg_q2fx3 = sumToLine(mf_out,8,1,domain,zdir);
691  h_avg_diss = sumToLine(mf_out,9,1,domain,zdir);
692 
693  h_avg_tau13 = sumToLine(mf_out_stag,0,1,stag_domain,zdir);
694  h_avg_tau23 = sumToLine(mf_out_stag,1,1,stag_domain,zdir);
695  h_avg_hfx3 = sumToLine(mf_out_stag,2,1,stag_domain,zdir);
696  h_avg_q1fx3 = sumToLine(mf_out_stag,3,1,stag_domain,zdir);
697  h_avg_q2fx3 = sumToLine(mf_out_stag,4,1,stag_domain,zdir);
698 
699  int ht_size = h_avg_tau11.size(); // _un_staggered
700 
701  // Divide by the total number of cells we are averaging over
702  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
703  for (int k = 0; k < ht_size; ++k) {
704  h_avg_tau11[k] /= area_z;
705  h_avg_tau12[k] /= area_z;
706  h_avg_tau13[k] /= area_z;
707  h_avg_tau22[k] /= area_z;
708  h_avg_tau23[k] /= area_z;
709  h_avg_tau33[k] /= area_z;
710  h_avg_hfx3[k] /= area_z;
711  h_avg_q1fx3[k] /= area_z;
712  h_avg_q2fx3[k] /= area_z;
713  h_avg_diss[k] /= area_z;
714  }
715  // staggered heights
716  h_avg_tau13[ht_size] /= area_z;
717  h_avg_tau23[ht_size] /= area_z;
718  h_avg_hfx3[ht_size] /= area_z;
719  h_avg_q1fx3[ht_size] /= area_z;
720  h_avg_q2fx3[ht_size] /= area_z;
721 }

◆ derive_upwp()

void ERF::derive_upwp ( amrex::Vector< amrex::Real > &  h_havg)

◆ EBFactory()

amrex::EBFArrayBoxFactory const& ERF::EBFactory ( int  lev) const
inlineprivatenoexcept
1597  {
1598  return *(eb[lev]->get_const_factory());
1599  }
amrex::Vector< std::unique_ptr< eb_ > > eb
Definition: ERF.H:1589

Referenced by WriteMyEBSurface().

Here is the caller graph for this function:

◆ erf_enforce_hse()

void ERF::erf_enforce_hse ( int  lev,
amrex::MultiFab &  dens,
amrex::MultiFab &  pres,
amrex::MultiFab &  pi,
amrex::MultiFab &  th,
amrex::MultiFab &  qv,
std::unique_ptr< amrex::MultiFab > &  z_cc 
)

Enforces hydrostatic equilibrium when using terrain.

Parameters
[in]levInteger specifying the current level
[out]densMultiFab storing base state density
[out]presMultiFab storing base state pressure
[out]piMultiFab storing base state Exner function
[in]z_ccPointer to MultiFab storing cell centered z-coordinates
163 {
164  Real l_gravity = solverChoice.gravity;
165  bool l_use_terrain = (solverChoice.mesh_type != MeshType::ConstantDz);
166 
167  const auto geomdata = geom[lev].data();
168  const Real dz = geomdata.CellSize(2);
169 
170  for ( MFIter mfi(dens, TileNoZ()); mfi.isValid(); ++mfi )
171  {
172  // Create a flat box with same horizontal extent but only one cell in vertical
173  const Box& tbz = mfi.nodaltilebox(2);
174  int klo = tbz.smallEnd(2);
175  int khi = tbz.bigEnd(2);
176 
177  // Note we only grow by 1 because that is how big z_cc is.
178  Box b2d = tbz; // Copy constructor
179  b2d.grow(0,1);
180  b2d.grow(1,1);
181  b2d.setRange(2,0);
182 
183  // Intersect this box with the domain
184  Box zdomain = convert(geom[lev].Domain(),tbz.ixType());
185  b2d &= zdomain;
186 
187  // We integrate to the first cell (and below) by using rho in this cell
188  // If gravity == 0 this is constant pressure
189  // If gravity != 0, hence this is a wall, this gives gp0 = dens[0] * gravity
190  // (dens_hse*gravity would also be dens[0]*gravity because we use foextrap for rho at k = -1)
191  // Note ng_pres_hse = 1
192 
193  // We start by assuming pressure on the ground is p_0 (in ERF_Constants.H)
194  // Note that gravity is positive
195 
196  Array4<Real> rho_arr = dens.array(mfi);
197  Array4<Real> pres_arr = pres.array(mfi);
198  Array4<Real> pi_arr = pi.array(mfi);
199  Array4<Real> th_arr = theta.array(mfi);
200  Array4<Real> zcc_arr;
201  if (l_use_terrain) {
202  zcc_arr = z_cc->array(mfi);
203  }
204 
205  const Real rdOcp = solverChoice.rdOcp;
206 
207  ParallelFor(b2d, [=] AMREX_GPU_DEVICE (int i, int j, int)
208  {
209  // Set value at surface from Newton iteration for rho
210  if (klo == 0)
211  {
212  // Physical height of the terrain at cell center
213  Real hz;
214  if (l_use_terrain) {
215  hz = zcc_arr(i,j,klo);
216  } else {
217  hz = 0.5*dz;
218  }
219 
220  pres_arr(i,j,klo) = p_0 - hz * rho_arr(i,j,klo) * l_gravity;
221  pi_arr(i,j,klo) = getExnergivenP(pres_arr(i,j,klo), rdOcp);
222  th_arr(i,j,klo) = getRhoThetagivenP(pres_arr(i,j,klo)) / rho_arr(i,j,klo);
223 
224  //
225  // Set ghost cell with dz and rho at boundary
226  // (We will set the rest of the ghost cells in the boundary condition routine)
227  //
228  pres_arr(i,j,klo-1) = p_0 + hz * rho_arr(i,j,klo) * l_gravity;
229  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
230  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
231 
232  } else {
233 
234  // If level > 0 and klo > 0, we need to use the value of pres_arr(i,j,klo-1) which was
235  // filled from FillPatch-ing it.
236  Real dz_loc;
237  if (l_use_terrain) {
238  dz_loc = (zcc_arr(i,j,klo) - zcc_arr(i,j,klo-1));
239  } else {
240  dz_loc = dz;
241  }
242 
243  Real dens_interp = 0.5*(rho_arr(i,j,klo) + rho_arr(i,j,klo-1));
244  pres_arr(i,j,klo) = pres_arr(i,j,klo-1) - dz_loc * dens_interp * l_gravity;
245 
246  pi_arr(i,j,klo ) = getExnergivenP(pres_arr(i,j,klo ), rdOcp);
247  th_arr(i,j,klo ) = getRhoThetagivenP(pres_arr(i,j,klo )) / rho_arr(i,j,klo );
248 
249  pi_arr(i,j,klo-1) = getExnergivenP(pres_arr(i,j,klo-1), rdOcp);
250  th_arr(i,j,klo-1) = getRhoThetagivenP(pres_arr(i,j,klo-1)) / rho_arr(i,j,klo-1);
251  }
252 
253  Real dens_interp;
254  if (l_use_terrain) {
255  for (int k = klo+1; k <= khi; k++) {
256  Real dz_loc = (zcc_arr(i,j,k) - zcc_arr(i,j,k-1));
257  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
258  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz_loc * dens_interp * l_gravity;
259  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
260  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
261  }
262  } else {
263  for (int k = klo+1; k <= khi; k++) {
264  dens_interp = 0.5*(rho_arr(i,j,k) + rho_arr(i,j,k-1));
265  pres_arr(i,j,k) = pres_arr(i,j,k-1) - dz * dens_interp * l_gravity;
266  pi_arr(i,j,k) = getExnergivenP(pres_arr(i,j,k), rdOcp);
267  th_arr(i,j,k) = getRhoThetagivenP(pres_arr(i,j,k)) / rho_arr(i,j,k);
268  }
269  }
270  });
271 
272  } // mfi
273 
274  dens.FillBoundary(geom[lev].periodicity());
275  pres.FillBoundary(geom[lev].periodicity());
276  pi.FillBoundary(geom[lev].periodicity());
277  theta.FillBoundary(geom[lev].periodicity());
278  qv.FillBoundary(geom[lev].periodicity());
279 }
constexpr amrex::Real p_0
Definition: ERF_Constants.H:18
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getRhoThetagivenP(const amrex::Real p, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:172
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getExnergivenP(const amrex::Real P, const amrex::Real rdOcp)
Definition: ERF_EOS.H:141
@ pres
Definition: ERF_Kessler.H:25
real(c_double), parameter, private pi
Definition: ERF_module_mp_morr_two_moment.F90:100
amrex::Real rdOcp
Definition: ERF_DataStruct.H:913
amrex::Real gravity
Definition: ERF_DataStruct.H:911
Here is the call graph for this function:

◆ ERF_shared()

void ERF::ERF_shared ( )
139 {
140  if (ParallelDescriptor::IOProcessor()) {
141  const char* erf_hash = buildInfoGetGitHash(1);
142  const char* amrex_hash = buildInfoGetGitHash(2);
143  const char* buildgithash = buildInfoGetBuildGitHash();
144  const char* buildgitname = buildInfoGetBuildGitName();
145 
146  if (strlen(erf_hash) > 0) {
147  Print() << "\n"
148  << "ERF git hash: " << erf_hash << "\n";
149  }
150  if (strlen(amrex_hash) > 0) {
151  Print() << "AMReX git hash: " << amrex_hash << "\n";
152  }
153  if (strlen(buildgithash) > 0) {
154  Print() << buildgitname << " git hash: " << buildgithash << "\n";
155  }
156 
157  Print() << "\n";
158  }
159 
160  int nlevs_max = max_level + 1;
161 
162 #ifdef ERF_USE_WINDFARM
163  Nturb.resize(nlevs_max);
164  vars_windfarm.resize(nlevs_max);
165  SMark.resize(nlevs_max);
166 #endif
167 
168  qheating_rates.resize(nlevs_max);
169  sw_lw_fluxes.resize(nlevs_max);
170  solar_zenith.resize(nlevs_max);
171 
172  // NOTE: size lsm before readparams (chooses the model at all levels)
173  lsm.ReSize(nlevs_max);
174  lsm_data.resize(nlevs_max);
175  lsm_flux.resize(nlevs_max);
176 
177  // NOTE: size canopy model before readparams (if file exists, we construct)
178  m_forest_drag.resize(nlevs_max);
179  for (int lev = 0; lev <= max_level; ++lev) { m_forest_drag[lev] = nullptr;}
180 
181  ReadParameters();
182  initializeMicrophysics(nlevs_max);
183 
184 #ifdef ERF_USE_WINDFARM
185  initializeWindFarm(nlevs_max);
186 #endif
187 
188 #ifdef ERF_USE_SHOC
189  shoc_interface.resize(nlevs_max);
190  if (solverChoice.use_shoc) {
191  for (int lev = 0; lev <= max_level; ++lev) {
192  shoc_interface[lev] = std::make_unique<SHOCInterface>(lev, solverChoice);
193  }
194  }
195 #endif
196 
197  rad.resize(nlevs_max);
198  for (int lev = 0; lev <= max_level; ++lev) {
199  if (solverChoice.rad_type == RadiationType::RRTMGP) {
200 #ifdef ERF_USE_RRTMGP
201  rad[lev] = std::make_unique<Radiation>(lev, solverChoice);
202  // pass radiation datalog frequency to model - RRTMGP needs to know when to save data for profiles
203  rad[lev]->setDataLogFrequency(rad_datalog_int);
204 #endif
205  } else if (solverChoice.rad_type != RadiationType::None) {
206  Abort("Don't know this radiation model!");
207  }
208  }
209 
210  const std::string& pv3d_1 = "plot_vars_1" ; setPlotVariables(pv3d_1,plot3d_var_names_1);
211  const std::string& pv3d_2 = "plot_vars_2" ; setPlotVariables(pv3d_2,plot3d_var_names_2);
212  const std::string& pv2d_1 = "plot2d_vars_1"; setPlotVariables2D(pv2d_1,plot2d_var_names_1);
213  const std::string& pv2d_2 = "plot2d_vars_2"; setPlotVariables2D(pv2d_2,plot2d_var_names_2);
214 
215  // This is only used when we have mesh_type == MeshType::StretchedDz
216  stretched_dz_h.resize(nlevs_max);
217  stretched_dz_d.resize(nlevs_max);
218 
219  // Initialize staggered vertical levels for grid stretching or terrain, and
220  // to simplify Rayleigh damping layer calculations.
221  zlevels_stag.resize(max_level+1);
225  geom,
226  refRatio(),
229  solverChoice.dz0);
230 
231  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
232  SolverChoice::mesh_type == MeshType::VariableDz) {
233  int nz = geom[0].Domain().length(2) + 1; // staggered
234  if (std::fabs(zlevels_stag[0][nz-1]-geom[0].ProbHi(2)) > 1.0e-4) {
235  Print() << "Note: prob_hi[2]=" << geom[0].ProbHi(2)
236  << " does not match highest requested z level " << zlevels_stag[0][nz-1]
237  << std::endl;
238  }
239  if (std::fabs(zlevels_stag[0][0]-geom[0].ProbLo(2)) > 1.0e-4) {
240  Print() << "Note: prob_lo[2]=" << geom[0].ProbLo(2)
241  << " does not match lowest requested level " << zlevels_stag[0][0]
242  << std::endl;
243  }
244 
245  // Redefine the problem domain here?
246  }
247 
248  // Get lo/hi indices for massflux calc
250  if (solverChoice.mesh_type == MeshType::ConstantDz) {
251  const Real massflux_zlo = solverChoice.const_massflux_layer_lo - geom[0].ProbLo(2);
252  const Real massflux_zhi = solverChoice.const_massflux_layer_hi - geom[0].ProbLo(2);
253  const Real dz = geom[0].CellSize(2);
254  if (massflux_zlo == -1e34) {
255  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
256  } else {
257  solverChoice.massflux_klo = static_cast<int>(std::ceil(massflux_zlo / dz - 0.5));
258  }
259  if (massflux_zhi == 1e34) {
260  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2);
261  } else {
262  solverChoice.massflux_khi = static_cast<int>(std::floor(massflux_zhi / dz - 0.5));
263  }
264  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
265  const Real massflux_zlo = solverChoice.const_massflux_layer_lo;
266  const Real massflux_zhi = solverChoice.const_massflux_layer_hi;
267  solverChoice.massflux_klo = geom[0].Domain().smallEnd(2);
268  solverChoice.massflux_khi = geom[0].Domain().bigEnd(2) + 1;
269  for (int k=0; k <= geom[0].Domain().bigEnd(2)+1; ++k) {
270  if (zlevels_stag[0][k] <= massflux_zlo) solverChoice.massflux_klo = k;
271  if (zlevels_stag[0][k] <= massflux_zhi) solverChoice.massflux_khi = k;
272  }
273  } else { // solverChoice.mesh_type == MeshType::VariableDz
274  Error("Const massflux with variable dz not supported -- planar averages are on k rather than constant-z planes");
275  }
276 
277  Print() << "Constant mass flux based on k in ["
278  << solverChoice.massflux_klo << ", " << solverChoice.massflux_khi << "]" << std::endl;
279  }
280 
281  prob = amrex_probinit(geom[0].ProbLo(),geom[0].ProbHi());
282 
283  // Geometry on all levels has been defined already.
284 
285  // No valid BoxArray and DistributionMapping have been defined.
286  // But the arrays for them have been resized.
287 
288  istep.resize(nlevs_max, 0);
289  nsubsteps.resize(nlevs_max, 1);
290  for (int lev = 1; lev <= max_level; ++lev) {
291  nsubsteps[lev] = MaxRefRatio(lev-1);
292  }
293 
294  t_new.resize(nlevs_max, 0.0);
295  t_old.resize(nlevs_max, -1.e100);
296  dt.resize(nlevs_max, std::min(1.e100,dt_max_initial));
297  dt_mri_ratio.resize(nlevs_max, 1);
298 
299  vars_new.resize(nlevs_max);
300  vars_old.resize(nlevs_max);
301  gradp.resize(nlevs_max);
302 
303  // We resize this regardless in order to pass it without error
304  pp_inc.resize(nlevs_max);
305 
306  // Used in the fast substepping only
307  lagged_delta_rt.resize(nlevs_max);
308  avg_xmom.resize(nlevs_max);
309  avg_ymom.resize(nlevs_max);
310  avg_zmom.resize(nlevs_max);
311 
312  rU_new.resize(nlevs_max);
313  rV_new.resize(nlevs_max);
314  rW_new.resize(nlevs_max);
315 
316  rU_old.resize(nlevs_max);
317  rV_old.resize(nlevs_max);
318  rW_old.resize(nlevs_max);
319 
320  // xmom_crse_rhs.resize(nlevs_max);
321  // ymom_crse_rhs.resize(nlevs_max);
322  zmom_crse_rhs.resize(nlevs_max);
323 
324  for (int lev = 0; lev < nlevs_max; ++lev) {
325  vars_new[lev].resize(Vars::NumTypes);
326  vars_old[lev].resize(Vars::NumTypes);
327  gradp[lev].resize(AMREX_SPACEDIM);
328  }
329 
330  // Time integrator
331  mri_integrator_mem.resize(nlevs_max);
332 
333  // Physical boundary conditions
334  physbcs_cons.resize(nlevs_max);
335  physbcs_u.resize(nlevs_max);
336  physbcs_v.resize(nlevs_max);
337  physbcs_w.resize(nlevs_max);
338  physbcs_base.resize(nlevs_max);
339 
340  // Planes to hold Dirichlet values at boundaries
341  xvel_bc_data.resize(nlevs_max);
342  yvel_bc_data.resize(nlevs_max);
343  zvel_bc_data.resize(nlevs_max);
344  th_bc_data.resize(nlevs_max);
345 
346  advflux_reg.resize(nlevs_max);
347 
348  // Stresses
349  Tau.resize(nlevs_max);
350  SFS_hfx1_lev.resize(nlevs_max); SFS_hfx2_lev.resize(nlevs_max); SFS_hfx3_lev.resize(nlevs_max);
351  SFS_diss_lev.resize(nlevs_max);
352  SFS_q1fx1_lev.resize(nlevs_max); SFS_q1fx2_lev.resize(nlevs_max); SFS_q1fx3_lev.resize(nlevs_max);
353  SFS_q2fx3_lev.resize(nlevs_max);
354  eddyDiffs_lev.resize(nlevs_max);
355  SmnSmn_lev.resize(nlevs_max);
356 
357  // Sea surface temps
358  sst_lev.resize(nlevs_max);
359  tsk_lev.resize(nlevs_max);
360  lmask_lev.resize(nlevs_max);
361 
362  // Metric terms
363  z_phys_nd.resize(nlevs_max);
364  z_phys_cc.resize(nlevs_max);
365  detJ_cc.resize(nlevs_max);
366  ax.resize(nlevs_max);
367  ay.resize(nlevs_max);
368  az.resize(nlevs_max);
369 
370  z_phys_nd_new.resize(nlevs_max);
371  detJ_cc_new.resize(nlevs_max);
372 
373  z_phys_nd_src.resize(nlevs_max);
374  z_phys_cc_src.resize(nlevs_max);
375  detJ_cc_src.resize(nlevs_max);
376  ax_src.resize(nlevs_max);
377  ay_src.resize(nlevs_max);
378  az_src.resize(nlevs_max);
379 
380  z_t_rk.resize(nlevs_max);
381 
382  terrain_blanking.resize(nlevs_max);
383 
384  // Wall distance
385  walldist.resize(nlevs_max);
386 
387  // BoxArrays to make MultiFabs needed to convert WRFBdy data
388  ba1d.resize(nlevs_max);
389  ba2d.resize(nlevs_max);
390 
391  // MultiFabs needed to convert WRFBdy data
392  mf_PSFC.resize(nlevs_max);
393 
394  // Map factors
395  mapfac.resize(nlevs_max);
396 
397  // Thin immersed body
398  xflux_imask.resize(nlevs_max);
399  yflux_imask.resize(nlevs_max);
400  zflux_imask.resize(nlevs_max);
401  //overset_imask.resize(nlevs_max);
402  thin_xforce.resize(nlevs_max);
403  thin_yforce.resize(nlevs_max);
404  thin_zforce.resize(nlevs_max);
405 
406  // Base state
407  base_state.resize(nlevs_max);
408  base_state_new.resize(nlevs_max);
409 
410  // Wave coupling data
411  Hwave.resize(nlevs_max);
412  Lwave.resize(nlevs_max);
413  for (int lev = 0; lev < max_level; ++lev)
414  {
415  Hwave[lev] = nullptr;
416  Lwave[lev] = nullptr;
417  }
418  Hwave_onegrid.resize(nlevs_max);
419  Lwave_onegrid.resize(nlevs_max);
420  for (int lev = 0; lev < max_level; ++lev)
421  {
422  Hwave_onegrid[lev] = nullptr;
423  Lwave_onegrid[lev] = nullptr;
424  }
425 
426  // Theta prim for MOST
427  Theta_prim.resize(nlevs_max);
428 
429  // Qv prim for MOST
430  Qv_prim.resize(nlevs_max);
431 
432  // Qr prim for MOST
433  Qr_prim.resize(nlevs_max);
434 
435  // Time averaged velocity field
436  vel_t_avg.resize(nlevs_max);
437  t_avg_cnt.resize(nlevs_max);
438 
439  // Size lat long arrays and default to null pointers
440  lat_m.resize(nlevs_max);
441  lon_m.resize(nlevs_max);
442  for (int lev = 0; lev < max_level; ++lev) {
443  lat_m[lev] = nullptr;
444  lon_m[lev] = nullptr;
445  }
446 
447  // Variable coriolis
448  sinPhi_m.resize(nlevs_max);
449  cosPhi_m.resize(nlevs_max);
450  for (int lev = 0; lev < max_level; ++lev) {
451  sinPhi_m[lev] = nullptr;
452  cosPhi_m[lev] = nullptr;
453  }
454 
455  // Initialize tagging criteria for mesh refinement
457 
458  for (int lev = 0; lev < max_level; ++lev)
459  {
460  Print() << "Refinement ratio at level " << lev+1 << " set to be " <<
461  ref_ratio[lev][0] << " " << ref_ratio[lev][1] << " " << ref_ratio[lev][2] << std::endl;
462  }
463 
464  // We will create each of these in MakeNewLevelFromScratch
465  eb.resize(max_level+1);
466  for (int lev = 0; lev < max_level + 1; lev++){
467  eb[lev] = std::make_unique<eb_>();
468  }
469 
470  //
471  // Construct the EB data structures and store in a separate class
472  //
473  // This is needed before initializing level MultiFabs
474  if ( solverChoice.terrain_type == TerrainType::EB ||
475  solverChoice.terrain_type == TerrainType::ImmersedForcing)
476  {
477  std::string geometry ="terrain";
478  ParmParse pp("eb2");
479  pp.queryAdd("geometry", geometry);
480 
481  int ngrow_for_eb = 4; // This is the default in amrex but we need to explicitly pass it here since
482  // we want to also pass the build_coarse_level_by_coarsening argument
483  if (geometry == "terrain") {
484  Box terrain_bx(surroundingNodes(geom[max_level].Domain())); terrain_bx.grow(3);
485  FArrayBox terrain_fab(makeSlab(terrain_bx,2,0),1);
486  Real dummy_time = 0.0;
487  prob->init_terrain_surface(geom[max_level], terrain_fab, dummy_time);
488  TerrainIF implicit_fun(terrain_fab, geom[max_level], stretched_dz_d[max_level]);
489  auto gshop = EB2::makeShop(implicit_fun);
490  amrex::EB2::Build(gshop, this->Geom(), ngrow_for_eb);
491  } else if (geometry == "box") {
492  RealArray box_lo{0.0, 0.0, 0.0};
493  RealArray box_hi{0.0, 0.0, 0.0};
494  pp.query("box_lo", box_lo);
495  pp.query("box_hi", box_hi);
496  EB2::BoxIF implicit_fun(box_lo, box_hi, false);
497  auto gshop = EB2::makeShop(implicit_fun);
498  amrex::EB2::Build(gshop, this->Geom(), ngrow_for_eb);
499  } else if (geometry == "sphere") {
500  auto ProbLoArr = geom[max_level].ProbLoArray();
501  auto ProbHiArr = geom[max_level].ProbHiArray();
502  const Real xcen = 0.5 * (ProbLoArr[0] + ProbHiArr[0]);
503  const Real ycen = 0.5 * (ProbLoArr[1] + ProbHiArr[1]);
504  RealArray sphere_center = {xcen, ycen, 0.0};
505  EB2::SphereIF implicit_fun(0.5, sphere_center, false);
506  auto gshop = EB2::makeShop(implicit_fun);
507  amrex::EB2::Build(gshop, this->Geom(), ngrow_for_eb);
508  }
509  }
510 }
void init_zlevels(Vector< Vector< Real >> &zlevels_stag, Vector< Vector< Real >> &stretched_dz_h, Vector< Gpu::DeviceVector< Real >> &stretched_dz_d, Vector< Geometry > const &geom, Vector< IntVect > const &ref_ratio, const Real grid_stretching_ratio, const Real zsurf, const Real dz0)
Definition: ERF_InitZLevels.cpp:11
std::unique_ptr< ProblemBase > amrex_probinit(const amrex_real *problo, const amrex_real *probhi) AMREX_ATTRIBUTE_WEAK
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave_onegrid
Definition: ERF.H:951
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_yforce
Definition: ERF.H:984
void setPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:24
amrex::Vector< amrex::BoxArray > ba2d
Definition: ERF.H:1218
amrex::Vector< amrex::Vector< amrex::MultiFab > > gradp
Definition: ERF.H:804
void ReadParameters()
Definition: ERF.cpp:2007
amrex::Vector< std::unique_ptr< amrex::MultiFab > > mf_PSFC
Definition: ERF.H:1223
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_src
Definition: ERF.H:921
amrex::Vector< amrex::MultiFab > base_state_new
Definition: ERF.H:946
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az
Definition: ERF.H:919
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::iMultiFab > > > lmask_lev
Definition: ERF.H:901
amrex::Vector< std::unique_ptr< amrex::MultiFab > > terrain_blanking
Definition: ERF.H:934
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_nd_new
Definition: ERF.H:928
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_zforce
Definition: ERF.H:985
amrex::Vector< std::string > plot3d_var_names_2
Definition: ERF.H:1077
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > sst_lev
Definition: ERF.H:899
amrex::Vector< std::string > plot2d_var_names_1
Definition: ERF.H:1078
amrex::Vector< std::unique_ptr< amrex::MultiFab > > thin_xforce
Definition: ERF.H:983
void setPlotVariables2D(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:186
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > th_bc_data
Definition: ERF.H:759
amrex::Vector< amrex::Real > t_old
Definition: ERF.H:793
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_t_rk
Definition: ERF.H:931
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave_onegrid
Definition: ERF.H:952
amrex::Vector< std::unique_ptr< ForestDrag > > m_forest_drag
Definition: ERF.H:1299
amrex::Vector< amrex::BoxArray > ba1d
Definition: ERF.H:1217
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > xvel_bc_data
Definition: ERF.H:756
int rad_datalog_int
Definition: ERF.H:883
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_src
Definition: ERF.H:923
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ay_src
Definition: ERF.H:925
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > yflux_imask
Definition: ERF.H:978
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_flux
Definition: ERF.H:865
amrex::Vector< std::string > plot3d_var_names_1
Definition: ERF.H:1076
void refinement_criteria_setup()
Definition: ERF_Tagging.cpp:223
amrex::Vector< std::string > plot2d_var_names_2
Definition: ERF.H:1079
amrex::Vector< std::unique_ptr< amrex::MultiFab > > sinPhi_m
Definition: ERF.H:747
amrex::Vector< std::unique_ptr< amrex::MultiFab > > ax_src
Definition: ERF.H:924
amrex::Vector< std::unique_ptr< amrex::MultiFab > > z_phys_cc_src
Definition: ERF.H:922
amrex::Vector< amrex::Vector< amrex::Real > > zlevels_stag
Definition: ERF.H:910
amrex::Vector< amrex::Vector< amrex::MultiFab * > > lsm_data
Definition: ERF.H:863
amrex::Vector< amrex::Vector< amrex::Real > > stretched_dz_h
Definition: ERF.H:942
amrex::Vector< std::unique_ptr< amrex::MultiFab > > az_src
Definition: ERF.H:926
static amrex::Real dt_max_initial
Definition: ERF.H:1030
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Lwave
Definition: ERF.H:950
amrex::Vector< std::unique_ptr< amrex::MultiFab > > cosPhi_m
Definition: ERF.H:747
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > zflux_imask
Definition: ERF.H:979
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > zvel_bc_data
Definition: ERF.H:758
amrex::Vector< std::unique_ptr< amrex::MultiFab > > detJ_cc_new
Definition: ERF.H:929
amrex::Vector< amrex::Gpu::DeviceVector< amrex::Real > > yvel_bc_data
Definition: ERF.H:757
amrex::Vector< std::unique_ptr< amrex::MultiFab > > Hwave
Definition: ERF.H:949
amrex::Vector< std::unique_ptr< amrex::iMultiFab > > xflux_imask
Definition: ERF.H:977
amrex::Vector< amrex::Vector< std::unique_ptr< amrex::MultiFab > > > tsk_lev
Definition: ERF.H:900
void initializeMicrophysics(const int &)
Definition: ERF.cpp:1779
void ReSize(const int &nlev)
Definition: ERF_LandSurface.H:24
Definition: ERF_EBIFTerrain.H:14
const char * buildInfoGetGitHash(int i)
amrex::Real dz0
Definition: ERF_DataStruct.H:918
amrex::Real const_massflux_layer_lo
Definition: ERF_DataStruct.H:995
amrex::Real const_massflux_v
Definition: ERF_DataStruct.H:993
int massflux_klo
Definition: ERF_DataStruct.H:997
amrex::Real grid_stretching_ratio
Definition: ERF_DataStruct.H:916
amrex::Real const_massflux_u
Definition: ERF_DataStruct.H:992
amrex::Real zsurf
Definition: ERF_DataStruct.H:917
amrex::Real const_massflux_layer_hi
Definition: ERF_DataStruct.H:996
int massflux_khi
Definition: ERF_DataStruct.H:998
Here is the call graph for this function:

◆ ErrorEst()

void ERF::ErrorEst ( int  lev,
amrex::TagBoxArray &  tags,
amrex::Real  time,
int  ngrow 
)
override

Function to tag cells for refinement – this overrides the pure virtual function in AmrCore

Parameters
[in]levclevel of refinement at which we tag cells (0 is coarsest level)
[out]tagsarray of tagged cells
[in]timecurrent time
21 {
22  const int clearval = TagBox::CLEAR;
23  const int tagval = TagBox::SET;
24 
25 
26 #ifdef ERF_USE_NETCDF
27  if (solverChoice.init_type == InitType::WRFInput) {
28  int ratio;
29  Box subdomain;
30  if (!nc_init_file[levc+1].empty()) {
31  amrex::Print() << "WRFIinput file to read: " << nc_init_file[levc+1][0] << std::endl;
32  subdomain = read_subdomain_from_wrfinput(levc, nc_init_file[levc+1][0], ratio);
33  amrex::Print() << " WRFInput subdomain at level " << levc+1 << " is " << subdomain << std::endl;
34  }
35 
36  if ( (ratio != ref_ratio[levc][0]) || (ratio != ref_ratio[levc][1]) ) {
37  amrex::Print() << "File " << nc_init_file[levc+1][0] << " has refinement ratio = " << ratio << std::endl;
38  amrex::Print() << "The inputs file has refinement ratio = " << ref_ratio[levc] << std::endl;
39  amrex::Abort("These must be the same -- please edit your inputs file and try again.");
40  }
41 
42  if ( (ref_ratio[levc][2]) != 1) {
43  amrex::Abort("The ref_ratio specified in the inputs file must have 1 in the z direction; please use ref_ratio_vect rather than ref_ratio");
44  }
45 
46  subdomain.coarsen(IntVect(ratio,ratio,1));
47 
48  // We assume there is only one subdomain at levc; otherwise we don't know
49  // which one is the parent of the fine region we are trying to create
50  AMREX_ALWAYS_ASSERT(subdomains[levc].size() == 1);
51 
52  Box coarser_level(subdomains[levc][0].minimalBox());
53  subdomain.shift(coarser_level.smallEnd());
54 
55  if (verbose > 0) {
56  amrex::Print() << " Crse subdomain to be tagged is" << subdomain << std::endl;
57  }
58 
59  Box new_fine(subdomain); new_fine.refine(IntVect(ratio,ratio,1));
60  num_boxes_at_level[levc+1] = 1;
61  boxes_at_level[levc+1].push_back(new_fine);
62 
63  for (MFIter mfi(tags); mfi.isValid(); ++mfi) {
64  auto tag_arr = tags.array(mfi); // Get device-accessible array
65 
66  Box bx = mfi.validbox(); bx &= subdomain;
67 
68  if (!bx.isEmpty()) {
69  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
70  tag_arr(i,j,k) = TagBox::SET;
71  });
72  }
73  }
74  return;
75  }
76 #endif
77 
78  //
79  // Make sure the ghost cells of the level we are tagging at are filled
80  // in case we take differences that require them
81  // NOTE: We are Fillpatching only the cell-centered variables here
82  //
83  MultiFab& S_new = vars_new[levc][Vars::cons];
84  MultiFab& U_new = vars_new[levc][Vars::xvel];
85  MultiFab& V_new = vars_new[levc][Vars::yvel];
86  MultiFab& W_new = vars_new[levc][Vars::zvel];
87  //
88  if (levc == 0) {
89  FillPatchCrseLevel(levc, time, {&S_new, &U_new, &V_new, &W_new});
90  } else {
91  FillPatchFineLevel(levc, time, {&S_new, &U_new, &V_new, &W_new},
92  {&S_new, &rU_new[levc], &rV_new[levc], &rW_new[levc]},
93  base_state[levc], base_state[levc],
94  false, true);
95  }
96 
97  for (int j=0; j < ref_tags.size(); ++j)
98  {
99  //
100  // This mf must have ghost cells because we may take differences between adjacent values
101  //
102  std::unique_ptr<MultiFab> mf = std::make_unique<MultiFab>(grids[levc], dmap[levc], 1, 1);
103 
104  // This allows dynamic refinement based on the value of the density
105  if (ref_tags[j].Field() == "density")
106  {
107  MultiFab::Copy(*mf,vars_new[levc][Vars::cons],Rho_comp,0,1,1);
108 
109  // This allows dynamic refinement based on the value of qv
110  } else if ( ref_tags[j].Field() == "qv" ) {
111  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ1_comp, 0, 1, 1);
112  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
113 
114 
115  // This allows dynamic refinement based on the value of qc
116  } else if (ref_tags[j].Field() == "qc" ) {
117  MultiFab::Copy( *mf, vars_new[levc][Vars::cons], RhoQ2_comp, 0, 1, 1);
118  MultiFab::Divide(*mf, vars_new[levc][Vars::cons], Rho_comp, 0, 1, 1);
119 
120  // This allows dynamic refinement based on the value of the z-component of vorticity
121  } else if (ref_tags[j].Field() == "vorticity" ) {
122  Vector<MultiFab> mf_cc_vel(1);
123  mf_cc_vel[0].define(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(1,1,1));
124  average_face_to_cellcenter(mf_cc_vel[0],0,Array<const MultiFab*,3>{&U_new, &V_new, &W_new});
125 
126  // Impose bc's at domain boundaries at all levels
127  FillBdyCCVels(mf_cc_vel,levc);
128 
129  mf->setVal(0.);
130 
131  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
132  {
133  const Box& bx = mfi.tilebox();
134  auto& dfab = (*mf)[mfi];
135  auto& sfab = mf_cc_vel[0][mfi];
136  derived::erf_dervortz(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
137  }
138 
139  // This allows dynamic refinement based on the value of the scalar/theta
140  } else if ( (ref_tags[j].Field() == "scalar" ) ||
141  (ref_tags[j].Field() == "theta" ) )
142  {
143  for (MFIter mfi(*mf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
144  {
145  const Box& bx = mfi.growntilebox();
146  auto& dfab = (*mf)[mfi];
147  auto& sfab = vars_new[levc][Vars::cons][mfi];
148  if (ref_tags[j].Field() == "scalar") {
149  derived::erf_derscalar(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
150  } else if (ref_tags[j].Field() == "theta") {
151  derived::erf_dertheta(bx, dfab, 0, 1, sfab, Geom(levc), time, nullptr, levc);
152  }
153  } // mfi
154  // This allows dynamic refinement based on the value of the density
155  } else if ( (SolverChoice::terrain_type == TerrainType::ImmersedForcing) &&
156  (ref_tags[j].Field() == "terrain_blanking") )
157  {
158  MultiFab::Copy(*mf,*terrain_blanking[levc],0,0,1,1);
159  } else if (ref_tags[j].Field() == "velmag") {
160  mf->setVal(0.0);
161  ParmParse pp(pp_prefix);
162  Vector<std::string> refinement_indicators;
163  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
164  Real velmag_threshold = 1e10;
165  for (int i=0; i<refinement_indicators.size(); ++i)
166  {
167  if(refinement_indicators[i]=="hurricane_tracker"){
168  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
169  ParmParse ppr(ref_prefix);
170  ppr.get("value_greater",velmag_threshold);
171  break;
172  }
173  }
174  HurricaneTracker(levc, U_new, V_new, W_new, velmag_threshold, false, &tags);
175 #ifdef ERF_USE_PARTICLES
176  } else {
177  //
178  // This allows dynamic refinement based on the number of particles per cell
179  //
180  // Note that we must count all the particles in levels both at and above the current,
181  // since otherwise, e.g., if the particles are all at level 1, counting particles at
182  // level 0 will not trigger refinement when regridding so level 1 will disappear,
183  // then come back at the next regridding
184  //
185  const auto& particles_namelist( particleData.getNames() );
186  mf->setVal(0.0);
187  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++)
188  {
189  std::string tmp_string(particles_namelist[i]+"_count");
190  IntVect rr = IntVect::TheUnitVector();
191  if (ref_tags[j].Field() == tmp_string) {
192  for (int lev = levc; lev <= finest_level; lev++)
193  {
194  MultiFab temp_dat(grids[lev], dmap[lev], 1, 0); temp_dat.setVal(0);
195  particleData[particles_namelist[i]]->IncrementWithTotal(temp_dat, lev);
196 
197  MultiFab temp_dat_crse(grids[levc], dmap[levc], 1, 0); temp_dat_crse.setVal(0);
198 
199  if (lev == levc) {
200  MultiFab::Copy(*mf, temp_dat, 0, 0, 1, 0);
201  } else {
202  for (int d = 0; d < AMREX_SPACEDIM; d++) {
203  rr[d] *= ref_ratio[levc][d];
204  }
205  average_down(temp_dat, temp_dat_crse, 0, 1, rr);
206  MultiFab::Add(*mf, temp_dat_crse, 0, 0, 1, 0);
207  }
208  }
209  }
210  }
211 #endif
212  }
213 
214  ref_tags[j](tags,mf.get(),clearval,tagval,time,levc,geom[levc]);
215  } // loop over j
216 }
amrex::Vector< amrex::Vector< amrex::Box > > boxes_at_level
Definition: ERF.H:786
void FillBdyCCVels(amrex::Vector< amrex::MultiFab > &mf_cc_vel, int levc=0)
Definition: ERF_FillBdyCCVels.cpp:11
void HurricaneTracker(int lev, const amrex::MultiFab &U_new, const amrex::MultiFab &V_new, const amrex::MultiFab &W_new, const amrex::Real velmag_threshold, const bool is_track_io, amrex::TagBoxArray *tags=nullptr)
Definition: ERF_Tagging.cpp:451
void FillPatchCrseLevel(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, bool cons_only=false)
Definition: ERF_FillPatch.cpp:282
static amrex::Vector< amrex::Vector< std::string > > nc_init_file
Definition: ERF.H:1191
amrex::Vector< amrex::Vector< amrex::BoxArray > > subdomains
Definition: ERF.H:1306
static amrex::Vector< amrex::AMRErrorTag > ref_tags
Definition: ERF.H:1304
amrex::Vector< int > num_boxes_at_level
Definition: ERF.H:784
void erf_derscalar(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:165
void erf_dervortz(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:256
void erf_dertheta(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:144
real(c_double), private rr
Definition: ERF_module_mp_morr_two_moment.F90:223
Here is the call graph for this function:

◆ estTimeStep()

Real ERF::estTimeStep ( int  level,
long &  dt_fast_ratio 
) const

Function that calls estTimeStep for each level

Parameters
[in]levellevel of refinement (coarsest level i 0)
[out]dt_fast_ratioratio of slow to fast time step
55 {
56  BL_PROFILE("ERF::estTimeStep()");
57 
58  Real estdt_comp = 1.e20;
59  Real estdt_lowM = 1.e20;
60 
61  // We intentionally use the level 0 domain to compute whether to use this direction in the dt calculation
62  const int nxc = geom[0].Domain().length(0);
63  const int nyc = geom[0].Domain().length(1);
64 
65  auto const dxinv = geom[level].InvCellSizeArray();
66  auto const dzinv = 1.0 / dz_min[level];
67 
68  MultiFab const& S_new = vars_new[level][Vars::cons];
69 
70  MultiFab ccvel(grids[level],dmap[level],3,0);
71 
72  average_face_to_cellcenter(ccvel,0,
73  Array<const MultiFab*,3>{&vars_new[level][Vars::xvel],
74  &vars_new[level][Vars::yvel],
75  &vars_new[level][Vars::zvel]});
76 
77  int l_implicit_substepping = (solverChoice.substepping_type[level] == SubsteppingType::Implicit);
78  int l_anelastic = solverChoice.anelastic[level];
79 
80  Real estdt_comp_inv;
81 
82  if (l_implicit_substepping && (nxc==1) && (nyc==1)) {
83  // SCM -- should not depend on dx or dy; force minimum number of substeps
84  estdt_comp_inv = std::numeric_limits<Real>::min();
85  }
86  else if (solverChoice.terrain_type == TerrainType::EB)
87  {
88  const eb_& eb_lev = get_eb(level);
89  const MultiFab& detJ = (eb_lev.get_const_factory())->getVolFrac();
90 
91  estdt_comp_inv = ReduceMax(S_new, ccvel, detJ, 0,
92  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
93  Array4<Real const> const& s,
94  Array4<Real const> const& u,
95  Array4<Real const> const& vf) -> Real
96  {
97  Real new_comp_dt = -1.e100;
98  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
99  {
100  if (vf(i,j,k) > 0.)
101  {
102  const Real rho = s(i, j, k, Rho_comp);
103  const Real rhotheta = s(i, j, k, RhoTheta_comp);
104 
105  // NOTE: even when moisture is present,
106  // we only use the partial pressure of the dry air
107  // to compute the soundspeed
108  Real pressure = getPgivenRTh(rhotheta);
109  Real c = std::sqrt(Gamma * pressure / rho);
110 
111  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
112  // to the computation of the time step
113  if (l_implicit_substepping) {
114  if ((nxc > 1) && (nyc==1)) {
115  // 2-D in x-z
116  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
117  } else if ((nyc > 1) && (nxc==1)) {
118  // 2-D in y-z
119  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
120  } else {
121  // 3-D
122  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
123  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
124  }
125 
126  // If we are not doing implicit acoustic substepping, then the z-direction contributes
127  // to the computation of the time step
128  } else {
129  if (nxc > 1 && nyc > 1) {
130  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
131  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
132  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
133  } else if (nxc > 1) {
134  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
135  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
136  } else if (nyc > 1) {
137  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
138  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
139  } else {
140  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
141  }
142 
143  }
144  }
145  });
146  return new_comp_dt;
147  });
148 
149  } else {
150  estdt_comp_inv = ReduceMax(S_new, ccvel, 0,
151  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
152  Array4<Real const> const& s,
153  Array4<Real const> const& u) -> Real
154  {
155  Real new_comp_dt = -1.e100;
156  amrex::Loop(b, [=,&new_comp_dt] (int i, int j, int k) noexcept
157  {
158  {
159  const Real rho = s(i, j, k, Rho_comp);
160  const Real rhotheta = s(i, j, k, RhoTheta_comp);
161 
162  // NOTE: even when moisture is present,
163  // we only use the partial pressure of the dry air
164  // to compute the soundspeed
165  Real pressure = getPgivenRTh(rhotheta);
166  Real c = std::sqrt(Gamma * pressure / rho);
167 
168  // If we are doing implicit acoustic substepping, then the z-direction does not contribute
169  // to the computation of the time step
170  if (l_implicit_substepping) {
171  if ((nxc > 1) && (nyc==1)) {
172  // 2-D in x-z
173  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]), new_comp_dt);
174  } else if ((nyc > 1) && (nxc==1)) {
175  // 2-D in y-z
176  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
177  } else {
178  // 3-D
179  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
180  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]), new_comp_dt);
181  }
182 
183  // If we are not doing implicit acoustic substepping, then the z-direction contributes
184  // to the computation of the time step
185  } else {
186  if (nxc > 1 && nyc > 1) {
187  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
188  ((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
189  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
190  } else if (nxc > 1) {
191  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0))+c)*dxinv[0]),
192  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
193  } else if (nyc > 1) {
194  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,1))+c)*dxinv[1]),
195  ((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
196  } else {
197  new_comp_dt = amrex::max(((amrex::Math::abs(u(i,j,k,2))+c)*dzinv ), new_comp_dt);
198  }
199 
200  }
201  }
202  });
203  return new_comp_dt;
204  });
205  } // not EB
206 
207  ParallelDescriptor::ReduceRealMax(estdt_comp_inv);
208  estdt_comp = cfl / estdt_comp_inv;
209 
210  Real estdt_lowM_inv = ReduceMax(ccvel, 0,
211  [=] AMREX_GPU_HOST_DEVICE (Box const& b,
212  Array4<Real const> const& u) -> Real
213  {
214  Real new_lm_dt = -1.e100;
215  Loop(b, [=,&new_lm_dt] (int i, int j, int k) noexcept
216  {
217  new_lm_dt = amrex::max(((amrex::Math::abs(u(i,j,k,0)))*dxinv[0]),
218  ((amrex::Math::abs(u(i,j,k,1)))*dxinv[1]),
219  ((amrex::Math::abs(u(i,j,k,2)))*dxinv[2]), new_lm_dt);
220  });
221  return new_lm_dt;
222  });
223 
224  ParallelDescriptor::ReduceRealMax(estdt_lowM_inv);
225  if (estdt_lowM_inv > 0.0_rt)
226  estdt_lowM = cfl / estdt_lowM_inv;
227 
228  if (verbose) {
229  if (fixed_dt[level] <= 0.0) {
230  Print() << "Using cfl = " << cfl << " and dx/dy/dz_min = " <<
231  1.0/dxinv[0] << " " << 1.0/dxinv[1] << " " << dz_min[level] << std::endl;
232  Print() << "Compressible dt at level " << level << ": " << estdt_comp << std::endl;
233  if (estdt_lowM_inv > 0.0_rt) {
234  Print() << "Anelastic dt at level " << level << ": " << estdt_lowM << std::endl;
235  } else {
236  Print() << "Anelastic dt at level " << level << ": undefined " << std::endl;
237  }
238  }
239 
240  if (fixed_dt[level] > 0.0) {
241  Print() << "Based on cfl of 1.0 " << std::endl;
242  Print() << "Compressible dt at level " << level << " would be: " << estdt_comp/cfl << std::endl;
243  if (estdt_lowM_inv > 0.0_rt) {
244  Print() << "Anelastic dt at level " << level << " would be: " << estdt_lowM/cfl << std::endl;
245  } else {
246  Print() << "Anelastic dt at level " << level << " would be undefined " << std::endl;
247  }
248  Print() << "Fixed dt at level " << level << " is: " << fixed_dt[level] << std::endl;
249  if (fixed_fast_dt[level] > 0.0) {
250  Print() << "Fixed fast dt at level " << level << " is: " << fixed_fast_dt[level] << std::endl;
251  }
252  }
253  }
254 
255  if (solverChoice.substepping_type[level] != SubsteppingType::None) {
256  if (fixed_dt[level] > 0. && fixed_fast_dt[level] > 0.) {
257  dt_fast_ratio = static_cast<long>( fixed_dt[level] / fixed_fast_dt[level] );
258  } else if (fixed_dt[level] > 0.) {
259  // Max CFL_c = 1.0 for substeps by default, but we enforce a min of 4 substeps
260  auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
261  dt_fast_ratio = static_cast<long>( std::max(fixed_dt[level]/dt_sub_max,4.) );
262  } else {
263  // auto dt_sub_max = (estdt_comp/cfl * sub_cfl);
264  // dt_fast_ratio = static_cast<long>( std::max(estdt_comp/dt_sub_max,4.) );
265  dt_fast_ratio = static_cast<long>( std::max(cfl / sub_cfl, 4.) );
266  }
267 
268  // Force time step ratio to be an even value
270  if ( dt_fast_ratio%2 != 0) dt_fast_ratio += 1;
271  } else {
272  if ( dt_fast_ratio%6 != 0) {
273  Print() << "mri_dt_ratio = " << dt_fast_ratio
274  << " not divisible by 6 for N/3 substeps in stage 1" << std::endl;
275  dt_fast_ratio = static_cast<int>(std::ceil(dt_fast_ratio/6.0) * 6);
276  }
277  }
278 
279  if (verbose) {
280  Print() << "smallest even ratio is: " << dt_fast_ratio << std::endl;
281  }
282  } // if substepping, either explicit or implicit
283 
284  if (fixed_dt[level] > 0.0) {
285  return fixed_dt[level];
286  } else {
287  // Anelastic (substepping is not allowed)
288  if (l_anelastic) {
289 
290  // Make sure that timestep is less than the dt_max
291  estdt_lowM = amrex::min(estdt_lowM, dt_max);
292 
293  // On the first timestep enforce dt_max_initial
294  if(istep[level] == 0){
295  return amrex::min(dt_max_initial, estdt_lowM);
296  }
297  else{
298  return estdt_lowM;
299  }
300 
301 
302  // Compressible with or without substepping
303  } else {
304  return estdt_comp;
305  }
306  }
307 }
constexpr amrex::Real Gamma
Definition: ERF_Constants.H:19
amrex::Vector< amrex::Real > dz_min
Definition: ERF.H:1314
amrex::Vector< amrex::Real > fixed_dt
Definition: ERF.H:1034
static amrex::Real dt_max
Definition: ERF.H:1031
amrex::Vector< amrex::Real > fixed_fast_dt
Definition: ERF.H:1035
static amrex::Real cfl
Definition: ERF.H:1026
static amrex::Real sub_cfl
Definition: ERF.H:1027
Definition: ERF_EB.H:13
@ rho
Definition: ERF_Kessler.H:22
int force_stage1_single_substep
Definition: ERF_DataStruct.H:865
Here is the call graph for this function:

◆ Evolve()

void ERF::Evolve ( )
517 {
518  BL_PROFILE_VAR("ERF::Evolve()", evolve);
519 
520  Real cur_time = t_new[0];
521 
522  // Take one coarse timestep by calling timeStep -- which recursively calls timeStep
523  // for finer levels (with or without subcycling)
524  for (int step = istep[0]; step < max_step && start_time+cur_time < stop_time; ++step)
525  {
526  if (use_datetime) {
527  Print() << "\n" << getTimestamp(start_time+cur_time, datetime_format)
528  << " (" << cur_time << " s elapsed)" << std::endl;
529  }
530  Print() << "\nCoarse STEP " << step+1 << " starts ..." << std::endl;
531 
532  ComputeDt(step);
533 
534  // Make sure we have read enough of the boundary plane data to make it through this timestep
535  if (input_bndry_planes)
536  {
537  m_r2d->read_input_files(cur_time,dt[0],m_bc_extdir_vals);
538  }
539 
540 #ifdef ERF_USE_PARTICLES
541  // We call this every time step with the knowledge that the particles may be
542  // initialized at a later time than the simulation start time.
543  // The ParticleContainer carries a "start time" so the initialization will happen
544  // only when a) time > start_time, and b) particles have not yet been initialized
545  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,cur_time);
546 #endif
547 
548  auto dEvolveTime0 = amrex::second();
549 
550  int lev = 0;
551  int iteration = 1;
552  timeStep(lev, cur_time, iteration);
553 
554  cur_time += dt[0];
555 
556  Print() << "Coarse STEP " << step+1 << " ends." << " TIME = " << cur_time
557  << " DT = " << dt[0] << std::endl;
558 
559  if (verbose > 0)
560  {
561  auto dEvolveTime = amrex::second() - dEvolveTime0;
562  ParallelDescriptor::ReduceRealMax(dEvolveTime,ParallelDescriptor::IOProcessorNumber());
563  amrex::Print() << "Timestep time = " << dEvolveTime << " seconds." << '\n';
564  }
565 
566  post_timestep(step, cur_time, dt[0]);
567 
568  if (writeNow(cur_time, step+1, m_plot3d_int_1, m_plot3d_per_1, dt[0], last_plot3d_file_time_1)) {
569  last_plot3d_file_step_1 = step+1;
572  }
573  if (writeNow(cur_time, step+1, m_plot3d_int_2, m_plot3d_per_2, dt[0], last_plot3d_file_time_2)) {
574  last_plot3d_file_step_2 = step+1;
577  }
578 
579  if (writeNow(cur_time, step+1, m_plot2d_int_1, m_plot2d_per_1, dt[0], last_plot2d_file_time_1)) {
580  last_plot2d_file_step_1 = step+1;
583  }
584 
585  if (writeNow(cur_time, step+1, m_plot2d_int_2, m_plot2d_per_2, dt[0], last_plot2d_file_time_2)) {
586  last_plot2d_file_step_2 = step+1;
589  }
590 
591  if (writeNow(cur_time, step+1, m_subvol_int, m_subvol_per, dt[0], last_subvol_time)) {
592  last_subvol_step = step+1;
593  WriteSubvolume();
595  }
596 
597  if (writeNow(cur_time, step+1, m_check_int, m_check_per, dt[0], last_check_file_time)) {
598  last_check_file_step = step+1;
601  }
602 
603 #ifdef AMREX_MEM_PROFILING
604  {
605  std::ostringstream ss;
606  ss << "[STEP " << step+1 << "]";
607  MemProfiler::report(ss.str());
608  }
609 #endif
610 
611  if (cur_time >= stop_time - 1.e-6*dt[0]) break;
612  }
613 
614  // Write plotfiles at final time
615  if ( (m_plot3d_int_1 > 0 || m_plot3d_per_1 > 0.) && istep[0] > last_plot3d_file_step_1 ) {
618  }
619  if ( (m_plot3d_int_2 > 0 || m_plot3d_per_2 > 0.) && istep[0] > last_plot3d_file_step_2) {
622  }
623  if ( (m_plot2d_int_1 > 0 || m_plot2d_per_1 > 0.) && istep[0] > last_plot2d_file_step_1 ) {
626  }
627  if ( (m_plot2d_int_2 > 0 || m_plot2d_per_2 > 0.) && istep[0] > last_plot2d_file_step_2) {
630  }
631  if ( (m_subvol_int > 0 || m_subvol_per > 0.) && istep[0] > last_subvol_step) {
632  WriteSubvolume();
634  }
635 
636  if ( (m_check_int > 0 || m_check_per > 0.) && istep[0] > last_check_file_step) {
639  }
640 
641  BL_PROFILE_VAR_STOP(evolve);
642 }
AMREX_FORCE_INLINE std::string getTimestamp(const amrex::Real epoch_real, const std::string &datetime_format)
Definition: ERF_EpochTime.H:72
static int last_check_file_step
Definition: ERF.H:991
static int last_subvol_step
Definition: ERF.H:992
int max_step
Definition: ERF.H:1013
static amrex::Real last_plot2d_file_time_2
Definition: ERF.H:997
amrex::Real m_plot2d_per_1
Definition: ERF.H:1060
static amrex::Real last_plot2d_file_time_1
Definition: ERF.H:996
static int last_plot2d_file_step_2
Definition: ERF.H:990
int m_subvol_int
Definition: ERF.H:1057
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_extdir_vals
Definition: ERF.H:968
void WriteSubvolume()
Definition: ERF_WriteSubvolume.cpp:9
static amrex::Real last_plot3d_file_time_2
Definition: ERF.H:995
int m_plot2d_int_2
Definition: ERF.H:1056
int m_plot3d_int_1
Definition: ERF.H:1053
static int last_plot3d_file_step_2
Definition: ERF.H:988
void post_timestep(int nstep, amrex::Real time, amrex::Real dt_lev)
Definition: ERF.cpp:646
amrex::Real m_subvol_per
Definition: ERF.H:1062
amrex::Real m_plot2d_per_2
Definition: ERF.H:1061
amrex::Real m_check_per
Definition: ERF.H:1074
int m_check_int
Definition: ERF.H:1073
static int input_bndry_planes
Definition: ERF.H:1240
static amrex::Real last_subvol_time
Definition: ERF.H:999
void Write2DPlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:1912
const std::string datetime_format
Definition: ERF.H:1020
bool use_datetime
Definition: ERF.H:1019
void ComputeDt(int step=-1)
Definition: ERF_ComputeTimestep.cpp:11
amrex::Real m_plot3d_per_2
Definition: ERF.H:1059
static PlotFileType plotfile3d_type_2
Definition: ERF.H:1181
static PlotFileType plotfile2d_type_2
Definition: ERF.H:1183
bool writeNow(const amrex::Real cur_time, const int nstep, const int plot_int, const amrex::Real plot_per, const amrex::Real dt_0, amrex::Real &last_file_time)
Definition: ERF.cpp:2657
int m_plot2d_int_1
Definition: ERF.H:1055
void WriteCheckpointFile() const
Definition: ERF_Checkpoint.cpp:26
void Write3DPlotFile(int which, PlotFileType plotfile_type, amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:307
static int last_plot2d_file_step_1
Definition: ERF.H:989
amrex::Real m_plot3d_per_1
Definition: ERF.H:1058
std::unique_ptr< ReadBndryPlanes > m_r2d
Definition: ERF.H:1297
static amrex::Real last_check_file_time
Definition: ERF.H:998
static int last_plot3d_file_step_1
Definition: ERF.H:987
static amrex::Real last_plot3d_file_time_1
Definition: ERF.H:994
static PlotFileType plotfile2d_type_1
Definition: ERF.H:1182
static PlotFileType plotfile3d_type_1
Definition: ERF.H:1180
int m_plot3d_int_2
Definition: ERF.H:1054
void timeStep(int lev, amrex::Real time, int iteration)
Definition: ERF_TimeStep.cpp:17

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ fill_from_bndryregs()

void ERF::fill_from_bndryregs ( const amrex::Vector< amrex::MultiFab * > &  mfs,
amrex::Real  time 
)
14 {
15  //
16  // We now assume that if we read in on one face, we read in on all faces
17  //
18  AMREX_ALWAYS_ASSERT(m_r2d);
19 
20  int lev = 0;
21  const Box& domain = geom[lev].Domain();
22 
23  const auto& dom_lo = lbound(domain);
24  const auto& dom_hi = ubound(domain);
25 
26  Vector<std::unique_ptr<PlaneVector>>& bndry_data = m_r2d->interp_in_time(time);
27 
28  const BCRec* bc_ptr = domain_bcs_type_d.data();
29 
30  // xlo: ori = 0
31  // ylo: ori = 1
32  // zlo: ori = 2
33  // xhi: ori = 3
34  // yhi: ori = 4
35  // zhi: ori = 5
36  const auto& bdatxlo = (*bndry_data[0])[lev].const_array();
37  const auto& bdatylo = (*bndry_data[1])[lev].const_array();
38  const auto& bdatxhi = (*bndry_data[3])[lev].const_array();
39  const auto& bdatyhi = (*bndry_data[4])[lev].const_array();
40 
41  int bccomp;
42 
43  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx)
44  {
45  MultiFab& mf = *mfs[var_idx];
46  const int icomp = 0;
47  const int ncomp = mf.nComp();
48 
49  if (var_idx == Vars::xvel) {
50  bccomp = BCVars::xvel_bc;
51  } else if (var_idx == Vars::yvel) {
52  bccomp = BCVars::yvel_bc;
53  } else if (var_idx == Vars::zvel) {
54  bccomp = BCVars::zvel_bc;
55  } else if (var_idx == Vars::cons) {
56  bccomp = BCVars::cons_bc;
57  }
58 
59 #ifdef AMREX_USE_OMP
60 #pragma omp parallel if (Gpu::notInLaunchRegion())
61 #endif
62  for (MFIter mfi(mf); mfi.isValid(); ++mfi)
63  {
64  const Array4<Real>& dest_arr = mf.array(mfi);
65  Box bx = mfi.growntilebox();
66 
67  // x-faces
68  {
69  Box bx_xlo(bx); bx_xlo.setBig(0,dom_lo.x-1);
70  if (var_idx == Vars::xvel) bx_xlo.setBig(0,dom_lo.x);
71 
72  Box bx_xhi(bx); bx_xhi.setSmall(0,dom_hi.x+1);
73  if (var_idx == Vars::xvel) bx_xhi.setSmall(0,dom_hi.x);
74 
75  ParallelFor(
76  bx_xlo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
77  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
78  BCVars::RhoScalar_bc_comp : icomp+n;
79  if (bc_ptr[bc_comp].lo(0) == ERFBCType::ext_dir_ingested) {
80  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
81  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
82  dest_arr(i,j,k,icomp+n) = bdatxlo(dom_lo.x-1,jb,kb,bccomp+n);
83  }
84  },
85  bx_xhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
86  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
87  BCVars::RhoScalar_bc_comp : icomp+n;
88  if (bc_ptr[bc_comp].hi(0) == ERFBCType::ext_dir_ingested) {
89  int jb = std::min(std::max(j,dom_lo.y),dom_hi.y);
90  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
91  dest_arr(i,j,k,icomp+n) = bdatxhi(dom_hi.x+1,jb,kb,bccomp+n);
92  }
93  }
94  );
95  } // x-faces
96 
97  // y-faces
98  {
99  Box bx_ylo(bx); bx_ylo.setBig (1,dom_lo.y-1);
100  if (var_idx == Vars::yvel) bx_ylo.setBig(1,dom_lo.y);
101 
102  Box bx_yhi(bx); bx_yhi.setSmall(1,dom_hi.y+1);
103  if (var_idx == Vars::yvel) bx_yhi.setSmall(1,dom_hi.y);
104 
105  ParallelFor(
106  bx_ylo, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
107  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
108  BCVars::RhoScalar_bc_comp : icomp+n;
109  if (bc_ptr[bc_comp].lo(1) == ERFBCType::ext_dir_ingested) {
110  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
111  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
112  dest_arr(i,j,k,icomp+n) = bdatylo(ib,dom_lo.y-1,kb,bccomp+n);
113  }
114  },
115  bx_yhi, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) {
116  int bc_comp = (icomp+n >= RhoScalar_comp && icomp+n < RhoScalar_comp+NSCALARS) ?
117  BCVars::RhoScalar_bc_comp : icomp+n;
118  if (bc_ptr[bc_comp].hi(1) == ERFBCType::ext_dir_ingested) {
119  int ib = std::min(std::max(i,dom_lo.x),dom_hi.x);
120  int kb = std::min(std::max(k,dom_lo.z),dom_hi.z);
121  dest_arr(i,j,k,icomp+n) = bdatyhi(ib,dom_hi.y+1,kb,bccomp+n);
122  }
123  }
124  );
125  } // y-faces
126  } // mf
127  } // var_idx
128 }
#define RhoScalar_comp
Definition: ERF_IndexDefines.H:40
#define NSCALARS
Definition: ERF_IndexDefines.H:16
amrex::Gpu::DeviceVector< amrex::BCRec > domain_bcs_type_d
Definition: ERF.H:962
@ RhoScalar_bc_comp
Definition: ERF_IndexDefines.H:80
@ ext_dir_ingested
Definition: ERF_IndexDefines.H:212

◆ fill_rhs()

void ERF::fill_rhs ( amrex::MultiFab &  rhs_mf,
const amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ FillBdyCCVels()

void ERF::FillBdyCCVels ( amrex::Vector< amrex::MultiFab > &  mf_cc_vel,
int  levc = 0 
)
12 {
13  // Impose bc's at domain boundaries
14  for (int ilev(0); ilev < mf_cc_vel.size(); ++ilev)
15  {
16  int lev = ilev + levc;
17  Box domain(Geom(lev).Domain());
18 
19  int ihi = domain.bigEnd(0);
20  int jhi = domain.bigEnd(1);
21  int khi = domain.bigEnd(2);
22 
23  // Impose periodicity first
24  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
25 
26  int jper = (Geom(lev).isPeriodic(1));
27  int kper = (Geom(lev).isPeriodic(2));
28 
29  for (MFIter mfi(mf_cc_vel[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
30  {
31  const Box& bx = mfi.tilebox();
32  const Array4<Real>& vel_arr = mf_cc_vel[lev].array(mfi);
33 
34  if (!Geom(lev).isPeriodic(0)) {
35  // Low-x side
36  if (bx.smallEnd(0) <= domain.smallEnd(0)) {
37  Real multn = ( (phys_bc_type[0] == ERF_BC::slip_wall ) ||
39  (phys_bc_type[0] == ERF_BC::symmetry ) ) ? -1. : 1.;
40  Real multt = (phys_bc_type[0] == ERF_BC::no_slip_wall) ? -1. : 1.;
41  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
42  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
43  {
44  vel_arr(-1,j,k,0) = multn*vel_arr(0,j,k,0); // u
45  vel_arr(-1,j,k,1) = multt*vel_arr(0,j,k,1); // v
46  vel_arr(-1,j,k,2) = multt*vel_arr(0,j,k,2); // w
47  });
48  }
49 
50  // High-x side
51  if (bx.bigEnd(0) >= domain.bigEnd(0)) {
52  Real multn = ( (phys_bc_type[3] == ERF_BC::slip_wall ) ||
54  (phys_bc_type[3] == ERF_BC::symmetry ) ) ? -1. : 1.;
55  Real multt = (phys_bc_type[3] == ERF_BC::no_slip_wall) ? -1. : 1.;
56  Box gbx(bx); gbx.grow(1,jper); gbx.grow(2,kper);
57  ParallelFor(makeSlab(gbx,0,0), [=] AMREX_GPU_DEVICE(int , int j, int k) noexcept
58  {
59  vel_arr(ihi+1,j,k,0) = multn*vel_arr(ihi,j,k,0); // u
60  vel_arr(ihi+1,j,k,1) = multt*vel_arr(ihi,j,k,1); // v
61  vel_arr(ihi+1,j,k,2) = multt*vel_arr(ihi,j,k,2); // w
62  });
63  }
64  } // !periodic
65 
66  if (!Geom(lev).isPeriodic(1)) {
67  // Low-y side
68  if (bx.smallEnd(1) <= domain.smallEnd(1)) {
69  Real multn = ( (phys_bc_type[1] == ERF_BC::slip_wall ) ||
71  (phys_bc_type[1] == ERF_BC::symmetry ) ) ? -1. : 1.;
72  Real multt = (phys_bc_type[1] == ERF_BC::no_slip_wall) ? -1. : 1.;
73  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
74  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
75  {
76  vel_arr(i,-1,k,0) = multt*vel_arr(i,0,k,0); // u
77  vel_arr(i,-1,k,1) = multn*vel_arr(i,0,k,1); // u
78  vel_arr(i,-1,k,2) = multt*vel_arr(i,0,k,2); // w
79  });
80  }
81 
82  // High-y side
83  if (bx.bigEnd(1) >= domain.bigEnd(1)) {
84  Real multn = ( (phys_bc_type[4] == ERF_BC::slip_wall ) ||
86  (phys_bc_type[4] == ERF_BC::symmetry ) ) ? -1. : 1.;
87  Real multt = (phys_bc_type[4] == ERF_BC::no_slip_wall) ? -1. : 1.;
88  Box gbx(bx); gbx.grow(0,1); gbx.grow(2,kper);
89  ParallelFor(makeSlab(gbx,1,0), [=] AMREX_GPU_DEVICE(int i, int , int k) noexcept
90  {
91  vel_arr(i,jhi+1,k,0) = multt*vel_arr(i,jhi,k,0); // u
92  vel_arr(i,jhi+1,k,1) = multn*vel_arr(i,jhi,k,1); // v
93  vel_arr(i,jhi+1,k,2) = multt*vel_arr(i,jhi,k,2); // w
94  });
95  }
96  } // !periodic
97 
98  if (!Geom(lev).isPeriodic(2)) {
99  // Low-z side
100  if (bx.smallEnd(2) <= domain.smallEnd(2)) {
101  Real multn = ( (phys_bc_type[2] == ERF_BC::slip_wall ) ||
103  (phys_bc_type[2] == ERF_BC::symmetry ) ) ? -1. : 1.;
104  Real multt = (phys_bc_type[2] == ERF_BC::no_slip_wall) ? -1. : 1.;
105  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
106  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
107  {
108  vel_arr(i,j,-1,0) = multt*vel_arr(i,j,0,0); // u
109  vel_arr(i,j,-1,1) = multt*vel_arr(i,j,0,1); // v
110  vel_arr(i,j,-1,2) = multn*vel_arr(i,j,0,2); // w
111  });
112  }
113 
114  // High-z side
115  if (bx.bigEnd(2) >= domain.bigEnd(2)) {
116  Real multn = ( (phys_bc_type[5] == ERF_BC::slip_wall ) ||
118  (phys_bc_type[5] == ERF_BC::symmetry ) ) ? -1. : 1.;
119  Real multt = (phys_bc_type[5] == ERF_BC::no_slip_wall) ? -1. : 1.;
120  Box gbx(bx); gbx.grow(0,1); gbx.grow(1,1);
121  ParallelFor(makeSlab(gbx,2,0), [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept
122  {
123  vel_arr(i,j,khi+1,0) = multt*vel_arr(i,j,khi,0); // u
124  vel_arr(i,j,khi+1,1) = multt*vel_arr(i,j,khi,1); // v
125  vel_arr(i,j,khi+1,2) = multn*vel_arr(i,j,khi,2); // w
126  });
127  }
128  } // !periodic
129  } // MFIter
130 
131  // Impose periodicity again
132  mf_cc_vel[lev].FillBoundary(geom[lev].periodicity());
133  } // lev
134 }
@ no_slip_wall

◆ FillCoarsePatch()

void ERF::FillCoarsePatch ( int  lev,
amrex::Real  time 
)
private
22 {
23  BL_PROFILE_VAR("FillCoarsePatch()",FillCoarsePatch);
24  AMREX_ASSERT(lev > 0);
25 
26  //
27  //****************************************************************************************************************
28  // First fill velocities and density at the COARSE level so we can convert velocity to momenta at the COARSE level
29  //****************************************************************************************************************
30  //
31  bool cons_only = false;
32  if (lev == 1) {
33  FillPatchCrseLevel(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
34  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
35  cons_only);
36  } else {
37  FillPatchFineLevel(lev-1, time, {&vars_new[lev-1][Vars::cons], &vars_new[lev-1][Vars::xvel],
38  &vars_new[lev-1][Vars::yvel], &vars_new[lev-1][Vars::zvel]},
39  {&vars_new[lev-1][Vars::cons],
40  &rU_new[lev-1], &rV_new[lev-1], &rW_new[lev-1]},
41  base_state[lev-1], base_state[lev-1],
42  false, cons_only);
43  }
44 
45  //
46  // ************************************************
47  // Convert velocity to momentum at the COARSE level
48  // ************************************************
49  //
50  VelocityToMomentum(vars_new[lev-1][Vars::xvel], IntVect{0},
51  vars_new[lev-1][Vars::yvel], IntVect{0},
52  vars_new[lev-1][Vars::zvel], IntVect{0},
53  vars_new[lev-1][Vars::cons],
54  rU_new[lev-1],
55  rV_new[lev-1],
56  rW_new[lev-1],
57  Geom(lev).Domain(),
59  //
60  // *****************************************************************
61  // Interpolate all cell-centered variables from coarse to fine level
62  // *****************************************************************
63  //
64  Interpolater* mapper_c = &cell_cons_interp;
65  Interpolater* mapper_f = &face_cons_linear_interp;
66 
67  //
68  //************************************************************************************************
69  // Interpolate cell-centered data from coarse to fine level
70  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
71  // ************************************************************************************************
72  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
73  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
74 
75  InterpFromCoarseLevel(vars_new[lev ][Vars::cons], ngvect_cons, IntVect(0,0,0),
76  vars_new[lev-1][Vars::cons], 0, 0, ncomp_cons,
77  geom[lev-1], geom[lev],
78  refRatio(lev-1), mapper_c, domain_bcs_type, BCVars::cons_bc);
79 
80  // ***************************************************************************
81  // Physical bc's for cell centered variables at domain boundary
82  // ***************************************************************************
84  0,ncomp_cons,ngvect_cons,time,BCVars::cons_bc,true);
85 
86  //
87  //************************************************************************************************
88  // Interpolate x-momentum from coarse to fine level
89  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
90  // ************************************************************************************************
91  //
92  InterpFromCoarseLevel(rU_new[lev], IntVect{0}, IntVect{0}, rU_new[lev-1], 0, 0, 1,
93  geom[lev-1], geom[lev],
94  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::xvel_bc);
95 
96  //
97  //************************************************************************************************
98  // Interpolate y-momentum from coarse to fine level
99  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
100  // ************************************************************************************************
101  //
102  InterpFromCoarseLevel(rV_new[lev], IntVect{0}, IntVect{0}, rV_new[lev-1], 0, 0, 1,
103  geom[lev-1], geom[lev],
104  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::yvel_bc);
105 
106  //************************************************************************************************
107  // Interpolate z-momentum from coarse to fine level
108  // with InterpFromCoarseLevel which ASSUMES that all ghost cells at lev-1 have already been filled
109  // ************************************************************************************************
110  InterpFromCoarseLevel(rW_new[lev], IntVect{0}, IntVect{0}, rW_new[lev-1], 0, 0, 1,
111  geom[lev-1], geom[lev],
112  refRatio(lev-1), mapper_f, domain_bcs_type, BCVars::zvel_bc);
113  //
114  // *********************************************************
115  // After interpolation of momentum, convert back to velocity
116  // *********************************************************
117  //
118  for (int which_lev = lev-1; which_lev <= lev; which_lev++)
119  {
121  vars_new[which_lev][Vars::yvel],
122  vars_new[which_lev][Vars::zvel],
123  vars_new[which_lev][Vars::cons],
124  rU_new[which_lev],
125  rV_new[which_lev],
126  rW_new[which_lev],
127  Geom(lev).Domain(),
129  }
130 
131  // ***************************************************************************
132  // Physical bc's at domain boundary
133  // ***************************************************************************
134  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
135 
137  ngvect_vels,time,BCVars::xvel_bc,true);
139  ngvect_vels,time,BCVars::yvel_bc,true);
141  ngvect_vels,time,BCVars::zvel_bc,true);
142 
143  // ***************************************************************************
144  // Since lev > 0 here we don't worry about m_r2d or wrfbdy data
145  // ***************************************************************************
146 }
void FillCoarsePatch(int lev, amrex::Real time)
Definition: ERF_FillCoarsePatch.cpp:21
Here is the call graph for this function:

◆ FillIntermediatePatch()

void ERF::FillIntermediatePatch ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
int  ng_cons,
int  ng_vel,
bool  cons_only,
int  icomp_cons,
int  ncomp_cons 
)
private
33 {
34  BL_PROFILE_VAR("FillIntermediatePatch()",FillIntermediatePatch);
35  Interpolater* mapper;
36 
37  PhysBCFunctNoOp null_bc;
38 
39  //
40  // ***************************************************************************
41  // The first thing we do is interpolate the momenta on the "valid" faces of
42  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
43  // will not be over-written by interpolation below because the FillPatch
44  // operators see these as valid faces. But we must have these interpolated
45  // values in the fine data before we call FillPatchTwoLevels.
46  //
47  // Also -- note that we might be filling values by interpolation at physical boundaries
48  // here but that's ok because we will overwrite those values when we impose
49  // the physical bc's below
50  // ***************************************************************************
51  if (lev>0) {
52  if (cf_set_width > 0) {
53  // We note that mfs_vel[Vars::cons] and mfs_mom[Vars::cons] are in fact the same pointer
54  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
55  }
56  if ( !cons_only && (cf_set_width >= 0) ) {
57  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
58  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
59  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
60  }
61  }
62 
63  // amrex::Print() << "LEVEL " << lev << " CONS ONLY " << cons_only <<
64  // " ICOMP NCOMP " << icomp_cons << " " << ncomp_cons << " NGHOST " << ng_cons << std::endl;
65 
66  if (!cons_only) {
67  AMREX_ALWAYS_ASSERT(mfs_mom.size() == IntVars::NumTypes);
68  AMREX_ALWAYS_ASSERT(mfs_vel.size() == Vars::NumTypes);
69  }
70 
71  // Enforce no penetration for thin immersed body
72  if (!cons_only) {
73  // Enforce no penetration for thin immersed body
74  if (xflux_imask[lev]) {
75  ApplyMask(*mfs_mom[IntVars::xmom], *xflux_imask[lev]);
76  }
77  if (yflux_imask[lev]) {
78  ApplyMask(*mfs_mom[IntVars::ymom], *yflux_imask[lev]);
79  }
80  if (zflux_imask[lev]) {
81  ApplyMask(*mfs_mom[IntVars::zmom], *zflux_imask[lev]);
82  }
83  }
84 
85  //
86  // We now start working on conserved quantities + VELOCITY
87  //
88  if (lev == 0)
89  {
90  // We don't do anything here because we will call the physbcs routines below,
91  // which calls FillBoundary and fills other domain boundary conditions
92  // Physical boundaries will be filled below
93 
94  if (!cons_only)
95  {
96  // ***************************************************************************
97  // We always come in to this call with updated momenta but we need to create updated velocity
98  // in order to impose the rest of the bc's
99  // ***************************************************************************
100  // This only fills VALID region of velocity
101  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
102  *mfs_vel[Vars::cons],
103  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
104  Geom(lev).Domain(), domain_bcs_type);
105  }
106  }
107  else
108  {
109  //
110  // We must fill a temporary then copy it back so we don't double add/subtract
111  //
112  MultiFab mf(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
113  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
114  //
115  // Set all components to 1.789e19, then copy just the density from *mfs_vel[Vars::cons]
116  //
117  mf.setVal(1.789e19);
118  MultiFab::Copy(mf,*mfs_vel[Vars::cons],Rho_comp,Rho_comp,1,mf.nGrowVect());
119 
120  Vector<MultiFab*> fmf = {mfs_vel[Vars::cons],mfs_vel[Vars::cons]};
121  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
122  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
123  Vector<Real> ftime = {time,time};
124 
125  if (interpolation_type == StateInterpType::Perturbational)
126  {
127  if (icomp_cons+ncomp_cons > 1)
128  {
129  // Divide (rho theta) by rho to get theta
130  MultiFab::Divide(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
131 
132  // Subtract theta_0 from theta
133  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
134 
135  if (!amrex::almostEqual(time,ctime[1])) {
136  MultiFab::Divide(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
137  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
138  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
139  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
140  }
141  if (!amrex::almostEqual(time,ctime[0])) {
142  MultiFab::Divide(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
143  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
144  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
145  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
146  }
147  }
148 
149  // Subtract rho_0 from rho before we interpolate -- note we only subtract
150  // on valid region of mf since the ghost cells will be filled below
151  if (icomp_cons == 0)
152  {
153  MultiFab::Subtract(*mfs_vel[Vars::cons],base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{0});
154 
155  if (!amrex::almostEqual(time,ctime[1])) {
156  MultiFab::Subtract(vars_old[lev-1][Vars::cons], base_state[lev-1],
157  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
158  }
159  if (!amrex::almostEqual(time,ctime[0])) {
160  MultiFab::Subtract(vars_new[lev-1][Vars::cons], base_state[lev-1],
161  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
162  }
163  }
164  } // interpolation_type == StateInterpType::Perturbational
165 
166  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
167  mapper = &cell_cons_interp;
168  FillPatchTwoLevels(mf, IntVect{ng_cons}, IntVect(0,0,0),
169  time, cmf, ctime, fmf, ftime,
170  icomp_cons, icomp_cons, ncomp_cons, geom[lev-1], geom[lev],
171  refRatio(lev-1), mapper, domain_bcs_type,
172  icomp_cons);
173 
174  if (interpolation_type == StateInterpType::Perturbational)
175  {
176  if (icomp_cons == 0)
177  {
178  // Restore the coarse values to what they were
179  if (!amrex::almostEqual(time,ctime[1])) {
180  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
181  BaseState::r0_comp,Rho_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
182  }
183  if (!amrex::almostEqual(time,ctime[0])) {
184  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
185  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
186  }
187 
188  // Set values in the cells outside the domain boundary so that we can do the Add
189  // without worrying about uninitialized values outside the domain -- these
190  // will be filled in the physbcs call
191  mf.setDomainBndry(1.234e20,Rho_comp,1,geom[lev]);
192 
193  // Add rho_0 back to rho after we interpolate -- on all the valid + ghost region
194  MultiFab::Add(mf, base_state[lev],BaseState::r0_comp,Rho_comp,1,IntVect{ng_cons});
195  }
196 
197  if (icomp_cons+ncomp_cons > 1)
198  {
199  // Add theta_0 to theta
200  if (!amrex::almostEqual(time,ctime[1])) {
201  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
202  BaseState::th0_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
203  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
204  Rho_comp,RhoTheta_comp,1,vars_old[lev-1][Vars::cons].nGrowVect());
205  }
206  if (!amrex::almostEqual(time,ctime[0])) {
207  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
208  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
209  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
210  Rho_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
211  }
212 
213  // Multiply theta by rho to get (rho theta)
214  MultiFab::Multiply(*mfs_vel[Vars::cons],*mfs_vel[Vars::cons],Rho_comp,RhoTheta_comp,1,IntVect{0});
215 
216  // Add theta_0 to theta
217  MultiFab::Add(*mfs_vel[Vars::cons],base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
218 
219  // Add theta_0 back to theta
220  MultiFab::Add(mf,base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,IntVect{ng_cons});
221 
222  // Multiply (theta) by rho to get (rho theta)
223  MultiFab::Multiply(mf,mf,Rho_comp,RhoTheta_comp,1,IntVect{ng_cons});
224  }
225  } // interpolation_type == StateInterpType::Perturbational
226 
227  // Impose physical bc's on fine data (note time and 0 are not used)
228  // Note that we do this after the FillPatch because imposing physical bc's on fine ghost
229  // cells that need to be filled from coarse requires that we have done the interpolation first
230  bool do_fb = true; bool do_terrain_adjustment = false;
231  (*physbcs_cons[lev])(mf,*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
232  icomp_cons,ncomp_cons,IntVect{ng_cons},time,BCVars::cons_bc,
233  do_fb, do_terrain_adjustment);
234 
235  // Make sure to only copy back the components we worked on
236  MultiFab::Copy(*mfs_vel[Vars::cons],mf,icomp_cons,icomp_cons,ncomp_cons,IntVect{ng_cons});
237 
238  // *****************************************************************************************
239 
240  if (!cons_only)
241  {
242  // ***************************************************************************
243  // We always come in to this call with updated momenta but we need to create updated velocity
244  // in order to impose the rest of the bc's
245  // ***************************************************************************
246  // This only fills VALID region of velocity
247  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
248  *mfs_vel[Vars::cons],
249  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
250  Geom(lev).Domain(), domain_bcs_type);
251 
252  mapper = &face_cons_linear_interp;
253 
254  //
255  // NOTE: All interpolation here happens on velocities not momenta;
256  // note we only do the interpolation and FillBoundary here,
257  // physical bc's are imposed later
258  //
259  // NOTE: This will only fill velocity from coarse grid *outside* the fine grids
260  // unlike the FillSet calls above which filled momenta on the coarse/fine bdy
261  //
262 
263  MultiFab& mfu = *mfs_vel[Vars::xvel];
264 
265  fmf = {&mfu,&mfu};
266  cmf = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
267 
268  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
269  FillPatchTwoLevels(mfu, IntVect{ng_vel}, IntVect(0,0,0),
270  time, cmf, ctime, fmf, ftime,
271  0, 0, 1, geom[lev-1], geom[lev],
272  refRatio(lev-1), mapper, domain_bcs_type,
274 
275  // *****************************************************************************************
276 
277  MultiFab& mfv = *mfs_vel[Vars::yvel];
278 
279  fmf = {&mfv,&mfv};
280  cmf = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
281 
282  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
283  FillPatchTwoLevels(mfv, IntVect{ng_vel}, IntVect(0,0,0),
284  time, cmf, ctime, fmf, ftime,
285  0, 0, 1, geom[lev-1], geom[lev],
286  refRatio(lev-1), mapper, domain_bcs_type,
288 
289  // *****************************************************************************************
290 
291  MultiFab& mfw = *mfs_vel[Vars::zvel];
292 
293  fmf = {&mfw,&mfw};
294  cmf = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
295 
296  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
297  FillPatchTwoLevels(mfw, IntVect{ng_vel}, IntVect(0,0,0),
298  time, cmf, ctime, fmf, ftime,
299  0, 0, 1, geom[lev-1], geom[lev],
300  refRatio(lev-1), mapper, domain_bcs_type,
302  } // !cons_only
303  } // lev > 0
304 
305  // ***************************************************************************
306  // Physical bc's at domain boundary
307  // ***************************************************************************
308  IntVect ngvect_cons = IntVect(ng_cons,ng_cons,ng_cons);
309  IntVect ngvect_vels = IntVect(ng_vel ,ng_vel ,ng_vel);
310 
311  bool do_fb = true;
312 
313 #ifdef ERF_USE_NETCDF
314  // We call this here because it is an ERF routine
315  if (solverChoice.use_real_bcs && (lev==0)) {
317  fill_from_realbdy_upwind(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
318  } else {
319  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
320  }
321  do_fb = false;
322  }
323 #endif
324 
325  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
326 
327  // We call this even if use_real_bcs is true because these will fill the vertical bcs
328  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
329  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
330  if (!cons_only) {
331  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
332  ngvect_vels,time,BCVars::xvel_bc, do_fb);
333  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
334  ngvect_vels,time,BCVars::yvel_bc, do_fb);
335  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
336  ngvect_vels,time,BCVars::zvel_bc, do_fb);
337  }
338  // ***************************************************************************
339 
340  // We always come in to this call with momenta so we need to leave with momenta!
341  // We need to make sure we convert back on all ghost cells/faces because this is
342  // how velocity from fine-fine copies (as well as physical and interpolated bcs) will be filled
343  if (!cons_only)
344  {
345  IntVect ngu = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::xvel]->nGrowVect();
346  IntVect ngv = (!solverChoice.use_num_diff) ? IntVect(1,1,1) : mfs_vel[Vars::yvel]->nGrowVect();
347  IntVect ngw = (!solverChoice.use_num_diff) ? IntVect(1,1,0) : mfs_vel[Vars::zvel]->nGrowVect();
348 
349  VelocityToMomentum(*mfs_vel[Vars::xvel], ngu,
350  *mfs_vel[Vars::yvel], ngv,
351  *mfs_vel[Vars::zvel], ngw,
352  *mfs_vel[Vars::cons],
353  *mfs_mom[IntVars::xmom], *mfs_mom[IntVars::ymom], *mfs_mom[IntVars::zmom],
354  Geom(lev).Domain(),
356  }
357 
358  // NOTE: There are not FillBoundary calls here for the following reasons:
359  // Removal of the FillBoundary (FB) calls has bee completed for the following reasons:
360  //
361  // 1. physbc_cons is called before VelocityToMomentum and a FB is completed in that functor.
362  // Therefore, the conserved CC vars have their inter-rank ghost cells filled and then their
363  // domain ghost cells filled from the BC operations. We should not call FB on this MF again.
364  //
365  // 2. physbc_u/v/w is also called before VelocityToMomentum and a FB is completed those functors.
366  // Furthermore, VelocityToMomentum operates on a growntilebox so we exit that routine with momentum
367  // filled everywhere---i.e., physbc_u/v/w fills velocity ghost cells (inter-rank and domain)
368  // and then V2M does the conversion to momenta everywhere; so there is again no need to do a FB on momenta.
369 }
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:399
void fill_from_bndryregs(const amrex::Vector< amrex::MultiFab * > &mfs, amrex::Real time)
Definition: ERF_BoundaryConditionsBndryReg.cpp:13
void FillIntermediatePatch(int lev, amrex::Real time, const amrex::Vector< amrex::MultiFab * > &mfs_vel, const amrex::Vector< amrex::MultiFab * > &mfs_mom, int ng_cons, int ng_vel, bool cons_only, int icomp_cons, int ncomp_cons)
Definition: ERF_FillIntermediatePatch.cpp:28
@ NumTypes
Definition: ERF_IndexDefines.H:162
static bool upwind_real_bcs
Definition: ERF_DataStruct.H:849
static bool use_real_bcs
Definition: ERF_DataStruct.H:846
Here is the call graph for this function:

◆ FillPatchCrseLevel()

void ERF::FillPatchCrseLevel ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
bool  cons_only = false 
)
private
285 {
286  BL_PROFILE_VAR("ERF::FillPatchCrseLevel()",ERF_FillPatchCrseLevel);
287 
288  AMREX_ALWAYS_ASSERT(lev == 0);
289 
290  IntVect ngvect_cons = mfs_vel[Vars::cons]->nGrowVect();
291  IntVect ngvect_vels = mfs_vel[Vars::xvel]->nGrowVect();
292 
293  Vector<Real> ftime = {t_old[lev], t_new[lev]};
294 
295  //
296  // Below we call FillPatchSingleLevel which does NOT fill ghost cells outside the domain
297  //
298 
299  Vector<MultiFab*> fmf;
300  Vector<MultiFab*> fmf_u;
301  Vector<MultiFab*> fmf_v;
302  Vector<MultiFab*> fmf_w;
303 
304  if (amrex::almostEqual(time,ftime[0])) {
305  fmf = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::cons]};
306  } else if (amrex::almostEqual(time,ftime[1])) {
307  fmf = {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::cons]};
308  } else {
309  fmf = {&vars_old[lev][Vars::cons], &vars_new[lev][Vars::cons]};
310  }
311 
312  const int ncomp = mfs_vel[Vars::cons]->nComp();
313 
314  FillPatchSingleLevel(*mfs_vel[Vars::cons], ngvect_cons, time, fmf, IntVect(0,0,0), ftime,
315  0, 0, ncomp, geom[lev]);
316 
317  if (!cons_only) {
318  if (amrex::almostEqual(time,ftime[0])) {
319  fmf_u = {&vars_old[lev][Vars::xvel], &vars_old[lev][Vars::xvel]};
320  fmf_v = {&vars_old[lev][Vars::yvel], &vars_old[lev][Vars::yvel]};
321  fmf_w = {&vars_old[lev][Vars::zvel], &vars_old[lev][Vars::zvel]};
322  } else if (amrex::almostEqual(time,ftime[1])) {
323  fmf_u = {&vars_new[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
324  fmf_v = {&vars_new[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
325  fmf_w = {&vars_new[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
326  } else {
327  fmf_u = {&vars_old[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
328  fmf_v = {&vars_old[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
329  fmf_w = {&vars_old[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
330  }
331  FillPatchSingleLevel(*mfs_vel[Vars::xvel], ngvect_vels, time, fmf_u,
332  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
333 
334  FillPatchSingleLevel(*mfs_vel[Vars::yvel], ngvect_vels, time, fmf_v,
335  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
336 
337  FillPatchSingleLevel(*mfs_vel[Vars::zvel], ngvect_vels, time, fmf_w,
338  IntVect(0,0,0), ftime, 0, 0, 1, geom[lev]);
339  } // !cons_only
340 
341  // ***************************************************************************
342  // Physical bc's at domain boundary
343  // ***************************************************************************
344  int icomp_cons = 0;
345  int ncomp_cons = mfs_vel[Vars::cons]->nComp();
346 
347  bool do_fb = true;
348 
349 #ifdef ERF_USE_NETCDF
350  // We call this here because it is an ERF routine
351  if(solverChoice.use_real_bcs && (lev==0)) {
353  fill_from_realbdy_upwind(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
354  } else {
355  fill_from_realbdy(mfs_vel,time,cons_only,icomp_cons,ncomp_cons,ngvect_cons,ngvect_vels);
356  }
357  do_fb = false;
358  }
359 #endif
360 
361  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
362 
363  // We call this even if use_real_bcs is true because these will fill the vertical bcs
364  // Note that we call FillBoundary inside the physbcs call
365  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
366  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
367  if (!cons_only) {
368  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
369  ngvect_vels,time,BCVars::xvel_bc, do_fb);
370  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
371  ngvect_vels,time,BCVars::yvel_bc, do_fb);
372  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
373  ngvect_vels,time,BCVars::zvel_bc, do_fb);
374  }
375 }

◆ FillPatchFineLevel()

void ERF::FillPatchFineLevel ( int  lev,
amrex::Real  time,
const amrex::Vector< amrex::MultiFab * > &  mfs_vel,
const amrex::Vector< amrex::MultiFab * > &  mfs_mom,
const amrex::MultiFab &  old_base_state,
const amrex::MultiFab &  new_base_state,
bool  fillset = true,
bool  cons_only = false 
)
private
26 {
27  BL_PROFILE_VAR("ERF::FillPatchFineLevel()",ERF_FillPatchFineLevel);
28 
29  AMREX_ALWAYS_ASSERT(lev > 0);
30 
31  Interpolater* mapper = nullptr;
32 
33  PhysBCFunctNoOp null_bc;
34 
35  //
36  // ***************************************************************************
37  // The first thing we do is interpolate the momenta on the "valid" faces of
38  // the fine grids (where the interface is coarse/fine not fine/fine) -- this
39  // will not be over-written below because the FillPatch operators see these as
40  // valid faces.
41  //
42  // Note that we interpolate momentum not velocity, but all the other boundary
43  // conditions are imposed on velocity, so we convert to momentum here then
44  // convert back.
45  // ***************************************************************************
46  if (fillset) {
47  if (cf_set_width > 0) {
48  FPr_c[lev-1].FillSet(*mfs_vel[Vars::cons], time, null_bc, domain_bcs_type);
49  }
50  if (cf_set_width >= 0 && !cons_only) {
51  VelocityToMomentum(*mfs_vel[Vars::xvel], IntVect{0},
52  *mfs_vel[Vars::yvel], IntVect{0},
53  *mfs_vel[Vars::zvel], IntVect{0},
54  *mfs_vel[Vars::cons],
55  *mfs_mom[IntVars::xmom],
56  *mfs_mom[IntVars::ymom],
57  *mfs_mom[IntVars::zmom],
58  Geom(lev).Domain(),
60 
61  FPr_u[lev-1].FillSet(*mfs_mom[IntVars::xmom], time, null_bc, domain_bcs_type);
62  FPr_v[lev-1].FillSet(*mfs_mom[IntVars::ymom], time, null_bc, domain_bcs_type);
63  FPr_w[lev-1].FillSet(*mfs_mom[IntVars::zmom], time, null_bc, domain_bcs_type);
64 
65  MomentumToVelocity(*mfs_vel[Vars::xvel], *mfs_vel[Vars::yvel], *mfs_vel[Vars::zvel],
66  *mfs_vel[Vars::cons],
67  *mfs_mom[IntVars::xmom],
68  *mfs_mom[IntVars::ymom],
69  *mfs_mom[IntVars::zmom],
70  Geom(lev).Domain(),
72  }
73  }
74 
75  IntVect ngvect_cons = mfs_vel[Vars::cons]->nGrowVect();
76  IntVect ngvect_vels = mfs_vel[Vars::xvel]->nGrowVect();
77 
78  Vector<Real> ftime = {t_old[lev ], t_new[lev ]};
79  Vector<Real> ctime = {t_old[lev-1], t_new[lev-1]};
80 
81  amrex::Real small_dt = 1.e-8 * (ftime[1] - ftime[0]);
82 
83  Vector<MultiFab*> fmf;
84  if ( amrex::almostEqual(time,ftime[0]) || (time-ftime[0]) < small_dt ) {
85  fmf = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::cons]};
86  } else if (amrex::almostEqual(time,ftime[1])) {
87  fmf = {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::cons]};
88  } else {
89  fmf = {&vars_old[lev][Vars::cons], &vars_new[lev][Vars::cons]};
90  }
91  Vector<MultiFab*> cmf = {&vars_old[lev-1][Vars::cons], &vars_new[lev-1][Vars::cons]};
92 
93  // We must fill a temporary then copy it back so we don't double add/subtract
94  MultiFab mf_c(mfs_vel[Vars::cons]->boxArray(),mfs_vel[Vars::cons]->DistributionMap(),
95  mfs_vel[Vars::cons]->nComp() ,mfs_vel[Vars::cons]->nGrowVect());
96 
97  mapper = &cell_cons_interp;
98 
99  if (interpolation_type == StateInterpType::Perturbational)
100  {
101  // Divide (rho theta) by rho to get theta (before we subtract rho0 from rho!)
102  if (!amrex::almostEqual(time,ctime[1])) {
103  MultiFab::Divide(vars_old[lev-1][Vars::cons],vars_old[lev-1][Vars::cons],
104  Rho_comp,RhoTheta_comp,1,ngvect_cons);
105  MultiFab::Subtract(vars_old[lev-1][Vars::cons],base_state[lev-1],
106  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
107  MultiFab::Subtract(vars_old[lev-1][Vars::cons],base_state[lev-1],
108  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
109  }
110  if (!amrex::almostEqual(time,ctime[0])) {
111  MultiFab::Divide(vars_new[lev-1][Vars::cons],vars_new[lev-1][Vars::cons],
112  Rho_comp,RhoTheta_comp,1,ngvect_cons);
113  MultiFab::Subtract(vars_new[lev-1][Vars::cons],base_state[lev-1],
114  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
115  MultiFab::Subtract(vars_new[lev-1][Vars::cons],base_state[lev-1],
116  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
117  }
118 
119  if (!amrex::almostEqual(time,ftime[1])) {
120  MultiFab::Divide(vars_old[lev ][Vars::cons],vars_old[lev ][Vars::cons],
121  Rho_comp,RhoTheta_comp,1,IntVect{0});
122  MultiFab::Subtract(vars_old[lev ][Vars::cons],old_base_state,
123  BaseState::r0_comp,Rho_comp,1,IntVect{0});
124  MultiFab::Subtract(vars_old[lev ][Vars::cons],old_base_state,
125  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
126  }
127  if (!amrex::almostEqual(time,ftime[0])) {
128  MultiFab::Divide(vars_new[lev ][Vars::cons],vars_new[lev ][Vars::cons],
129  Rho_comp,RhoTheta_comp,1,IntVect{0});
130  MultiFab::Subtract(vars_new[lev ][Vars::cons],old_base_state,
131  BaseState::r0_comp,Rho_comp,1,IntVect{0});
132  MultiFab::Subtract(vars_new[lev ][Vars::cons],old_base_state,
133  BaseState::th0_comp,RhoTheta_comp,1,IntVect{0});
134  }
135  }
136 
137  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
138  FillPatchTwoLevels(mf_c, ngvect_cons, IntVect(0,0,0),
139  time, cmf, ctime, fmf, ftime,
140  0, 0, mf_c.nComp(), geom[lev-1], geom[lev],
141  refRatio(lev-1), mapper, domain_bcs_type,
143 
144  if (interpolation_type == StateInterpType::Perturbational)
145  {
146  // Restore the coarse values to what they were
147  if (!amrex::almostEqual(time,ctime[1])) {
148  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
149  BaseState::r0_comp,Rho_comp,1,ngvect_cons);
150  MultiFab::Add(vars_old[lev-1][Vars::cons], base_state[lev-1],
151  BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
152  MultiFab::Multiply(vars_old[lev-1][Vars::cons], vars_old[lev-1][Vars::cons],
153  Rho_comp,RhoTheta_comp,1,ngvect_cons);
154  }
155  if (!amrex::almostEqual(time,ctime[0])) {
156  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
157  BaseState::r0_comp,Rho_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
158  MultiFab::Add(vars_new[lev-1][Vars::cons], base_state[lev-1],
159  BaseState::th0_comp,RhoTheta_comp,1,vars_new[lev-1][Vars::cons].nGrowVect());
160  MultiFab::Multiply(vars_new[lev-1][Vars::cons], vars_new[lev-1][Vars::cons],
161  Rho_comp,RhoTheta_comp,1,ngvect_cons);
162  }
163 
164  if (!amrex::almostEqual(time,ftime[1])) {
165  MultiFab::Add(vars_old[lev][Vars::cons],base_state[lev ],BaseState::r0_comp,Rho_comp,1,ngvect_cons);
166  MultiFab::Add(vars_old[lev][Vars::cons],base_state[lev ],BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
167  MultiFab::Multiply(vars_old[lev][Vars::cons], vars_old[lev][Vars::cons],
168  Rho_comp,RhoTheta_comp,1,ngvect_cons);
169  }
170  if (!amrex::almostEqual(time,ftime[0])) {
171  MultiFab::Add(vars_new[lev][Vars::cons], base_state[lev],BaseState::r0_comp,Rho_comp,1,ngvect_cons);
172  MultiFab::Add(vars_new[lev][Vars::cons], base_state[lev],BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
173  MultiFab::Multiply(vars_new[lev][Vars::cons], vars_new[lev][Vars::cons],
174  Rho_comp,RhoTheta_comp,1,ngvect_cons);
175  }
176 
177  // Set values in the cells outside the domain boundary so that we can do the Add
178  // without worrying about uninitialized values outside the domain -- these
179  // will be filled in the physbcs call
180  mf_c.setDomainBndry(1.234e20,0,2,geom[lev]); // Do both rho and (rho theta) together
181 
182  // Add rho_0 back to rho and theta_0 back to theta
183  MultiFab::Add(mf_c, new_base_state,BaseState::r0_comp,Rho_comp,1,ngvect_cons);
184  MultiFab::Add(mf_c, new_base_state,BaseState::th0_comp,RhoTheta_comp,1,ngvect_cons);
185 
186  // Multiply (theta) by rho to get (rho theta)
187  MultiFab::Multiply(mf_c,mf_c,Rho_comp,RhoTheta_comp,1,ngvect_cons);
188  }
189 
190  MultiFab::Copy(*mfs_vel[Vars::cons],mf_c,0,0,mf_c.nComp(),mf_c.nGrowVect());
191 
192  // ***************************************************************************************
193 
194  if (!cons_only)
195  {
196  mapper = &face_cons_linear_interp;
197 
198  MultiFab& mf_u = *mfs_vel[Vars::xvel];
199  MultiFab& mf_v = *mfs_vel[Vars::yvel];
200  MultiFab& mf_w = *mfs_vel[Vars::zvel];
201 
202  Vector<MultiFab*> fmf_u; Vector<MultiFab*> fmf_v; Vector<MultiFab*> fmf_w;
203  Vector<MultiFab*> cmf_u; Vector<MultiFab*> cmf_v; Vector<MultiFab*> cmf_w;
204 
205  // **********************************************************************
206 
207  if ( amrex::almostEqual(time,ftime[0]) || (time-ftime[0]) < small_dt ) {
208  fmf_u = {&vars_old[lev][Vars::xvel], &vars_old[lev][Vars::xvel]};
209  fmf_v = {&vars_old[lev][Vars::yvel], &vars_old[lev][Vars::yvel]};
210  fmf_w = {&vars_old[lev][Vars::zvel], &vars_old[lev][Vars::zvel]};
211  } else if ( amrex::almostEqual(time,ftime[1]) ) {
212  fmf_u = {&vars_new[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
213  fmf_v = {&vars_new[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
214  fmf_w = {&vars_new[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
215  } else {
216  fmf_u = {&vars_old[lev][Vars::xvel], &vars_new[lev][Vars::xvel]};
217  fmf_v = {&vars_old[lev][Vars::yvel], &vars_new[lev][Vars::yvel]};
218  fmf_w = {&vars_old[lev][Vars::zvel], &vars_new[lev][Vars::zvel]};
219  }
220  cmf_u = {&vars_old[lev-1][Vars::xvel], &vars_new[lev-1][Vars::xvel]};
221  cmf_v = {&vars_old[lev-1][Vars::yvel], &vars_new[lev-1][Vars::yvel]};
222  cmf_w = {&vars_old[lev-1][Vars::zvel], &vars_new[lev-1][Vars::zvel]};
223 
224  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
225  FillPatchTwoLevels(mf_u, ngvect_vels, IntVect(0,0,0),
226  time, cmf_u, ctime, fmf_u, ftime,
227  0, 0, 1, geom[lev-1], geom[lev],
228  refRatio(lev-1), mapper, domain_bcs_type,
230 
231  FillPatchTwoLevels(mf_v, ngvect_vels, IntVect(0,0,0),
232  time, cmf_v, ctime, fmf_v, ftime,
233  0, 0, 1, geom[lev-1], geom[lev],
234  refRatio(lev-1), mapper, domain_bcs_type,
236 
237  // We put these here because these may be used in constructing omega outside the
238  // domain when fillpatching w
239  bool do_fb = true;
240  (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
241  ngvect_vels,time,BCVars::xvel_bc, do_fb);
242  (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
243  ngvect_vels,time,BCVars::yvel_bc, do_fb);
244 
245  // **********************************************************************
246 
247  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
248  FillPatchTwoLevels(mf_w, ngvect_vels, IntVect(0,0,0),
249  time, cmf_w, ctime, fmf_w, ftime,
250  0, 0, 1, geom[lev-1], geom[lev],
251  refRatio(lev-1), mapper, domain_bcs_type,
253  } // !cons_only
254 
255  // ***************************************************************************
256  // Physical bc's at domain boundary
257  // ***************************************************************************
258  int icomp_cons = 0;
259  int ncomp_cons = mfs_vel[Vars::cons]->nComp();
260 
261  bool do_fb = true;
262 
263  if (m_r2d) fill_from_bndryregs(mfs_vel,time);
264 
265  // We call this even if use_real_bcs is true because these will fill the vertical bcs
266  // Note that we call FillBoundary inside the physbcs call
267  (*physbcs_cons[lev])(*mfs_vel[Vars::cons],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
268  icomp_cons,ncomp_cons,ngvect_cons,time,BCVars::cons_bc, do_fb);
269  if (!cons_only) {
270  // Note that we need to fill u and v in the case of terrain because we will use
271  // these in the call of WFromOmega in lateral ghost cells of the fine grid
272  // (*physbcs_u[lev])(*mfs_vel[Vars::xvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
273  // ngvect_vels,time,BCVars::xvel_bc, do_fb);
274  // (*physbcs_v[lev])(*mfs_vel[Vars::yvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
275  // ngvect_vels,time,BCVars::yvel_bc, do_fb);
276  (*physbcs_w[lev])(*mfs_vel[Vars::zvel],*mfs_vel[Vars::xvel],*mfs_vel[Vars::yvel],
277  ngvect_vels,time,BCVars::zvel_bc, do_fb);
278  }
279 }
Here is the call graph for this function:

◆ FillWeatherDataMultiFab()

void ERF::FillWeatherDataMultiFab ( const std::string &  filename,
const amrex::Geometry &  geom_weather,
const amrex::BoxArray &  nba,
const amrex::DistributionMapping &  dm,
amrex::Vector< amrex::MultiFab > &  weather_forecast_data 
)
443 {
444 
445  Vector<Real> latvec_h, lonvec_h, xvec_h, yvec_h, zvec_h;
446  Vector<Real> rho_h, uvel_h, vvel_h, wvel_h, theta_h, qv_h, qc_h, qr_h;
447 
448  ReadCustomBinaryIC(filename, latvec_h, lonvec_h,
449  xvec_h, yvec_h, zvec_h, rho_h,
450  uvel_h, vvel_h, wvel_h,
451  theta_h, qv_h, qc_h, qr_h);
452 
453  const auto prob_lo_erf = geom[0].ProbLoArray();
454  const auto prob_hi_erf = geom[0].ProbHiArray();
455  const auto dx_erf = geom[0].CellSizeArray();
456 
457  if(prob_lo_erf[0] < xvec_h.front() + 4*dx_erf[0]){
458  amrex::Abort("The xlo value of the domain has to be greater than " + std::to_string(xvec_h.front() + 4*dx_erf[0]));
459  }
460  if(prob_hi_erf[0] > xvec_h.back() - 4*dx_erf[0]){
461  amrex::Abort("The xhi value of the domain has to be less than " + std::to_string(xvec_h.back() - 4*dx_erf[0]));
462  }
463  if(prob_lo_erf[1] < yvec_h.front() + 4*dx_erf[1]){
464  amrex::Abort("The ylo value of the domain has to be greater than " + std::to_string(yvec_h.front() + 4*dx_erf[1]));
465  }
466  if(prob_hi_erf[1] > yvec_h.back() - 4*dx_erf[1]){
467  amrex::Abort("The yhi value of the domain has to be less than " + std::to_string(yvec_h.back() - 4*dx_erf[1]));
468  }
469 
470  // Number of cells
471  int nx_cells = xvec_h.size()-1;
472  int ny_cells = yvec_h.size()-1;
473 
474  const amrex::Geometry& geom0 = geom[0]; // or whatever your Geometry vector is called
475  const amrex::Box& domainBox = geom0.Domain();
476  const amrex::IntVect& domainSize = domainBox.size(); // Number of cells in each direction
477  int nz_cells = domainSize[2];
478 
479 
480  int ncomp = 10;
481  int ngrow = 0;
482 
483  int n_time = 1; // or however many time slices you want
484  weather_forecast_data.resize(n_time);
485  MultiFab& weather_mf = weather_forecast_data[0];
486  weather_mf.define(nba, dm, ncomp, ngrow);
487 
488  fill_weather_data_multifab(weather_mf, geom_weather, nx_cells+1, ny_cells+1, nz_cells+1,
489  latvec_h, lonvec_h, zvec_h,
490  rho_h,uvel_h, vvel_h, wvel_h,
491  theta_h, qv_h, qc_h, qr_h);
492 
493  //PlotMultiFab(weather_mf, geom_weather, "plt_coarse_weather", MultiFabType::NC);
494 }
void fill_weather_data_multifab(MultiFab &mf, const Geometry &geom_weather, const int nx, const int ny, const int nz, const Vector< Real > &latvec_h, const Vector< Real > &lonvec_h, const Vector< Real > &zvec_h, const Vector< Real > &rho_h, const Vector< Real > &uvel_h, const Vector< Real > &vvel_h, const Vector< Real > &wvel_h, const Vector< Real > &theta_h, const Vector< Real > &qv_h, const Vector< Real > &qc_h, const Vector< Real > &qr_h)
Definition: ERF_WeatherDataInterpolation.cpp:18
Here is the call graph for this function:

◆ get_eb()

eb_ const& ERF::get_eb ( int  lev) const
inlineprivatenoexcept
1591  {
1592  AMREX_ASSERT(lev >= 0 && lev < eb.size() && eb[lev] != nullptr);
1593  return *eb[lev];
1594  }

◆ get_projection_bc()

Array< LinOpBCType, AMREX_SPACEDIM > ERF::get_projection_bc ( amrex::Orientation::Side  side) const
noexcept
18 {
19  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> r;
20  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
21  if (geom[0].isPeriodic(dir)) {
22  r[dir] = LinOpBCType::Periodic;
23  } else {
24  auto bc_type = domain_bc_type[Orientation(dir,side)];
25  if (bc_type == "Outflow") {
26  r[dir] = LinOpBCType::Dirichlet;
27  } else
28  {
29  r[dir] = LinOpBCType::Neumann;
30  }
31  }
32  }
33  return r;
34 }
amrex::Array< std::string, 2 *AMREX_SPACEDIM > domain_bc_type
Definition: ERF.H:965

◆ getAdvFluxReg()

AMREX_FORCE_INLINE amrex::YAFluxRegister* ERF::getAdvFluxReg ( int  lev)
inlineprivate
1377  {
1378  return advflux_reg[lev];
1379  }

◆ getCPUTime()

static amrex::Real ERF::getCPUTime ( )
inlinestaticprivate
1469  {
1470  int numCores = amrex::ParallelDescriptor::NProcs();
1471 #ifdef _OPENMP
1472  numCores = numCores * omp_get_max_threads();
1473 #endif
1474 
1475  amrex::Real T =
1476  numCores * (amrex::ParallelDescriptor::second() - startCPUTime) +
1478 
1479  return T;
1480  }
static amrex::Real previousCPUTimeUsed
Definition: ERF.H:1465
static amrex::Real startCPUTime
Definition: ERF.H:1464
@ T
Definition: ERF_IndexDefines.H:110

◆ GotoNextLine()

void ERF::GotoNextLine ( std::istream &  is)
staticprivate

Utility to skip to next line in Header file input stream.

17 {
18  constexpr std::streamsize bl_ignore_max { 100000 };
19  is.ignore(bl_ignore_max, '\n');
20 }

◆ HurricaneTracker()

void ERF::HurricaneTracker ( int  lev,
const amrex::MultiFab &  U_new,
const amrex::MultiFab &  V_new,
const amrex::MultiFab &  W_new,
const amrex::Real  velmag_threshold,
const bool  is_track_io,
amrex::TagBoxArray *  tags = nullptr 
)
458 {
459  const auto dx = geom[levc].CellSizeArray();
460  const auto prob_lo = geom[levc].ProbLoArray();
461 
462  const int ncomp = AMREX_SPACEDIM; // Number of components (3 for 3D)
463 
464  Gpu::DeviceVector<Real> d_coords(3, 0.0); // Initialize to -1
465  Real* d_coords_ptr = d_coords.data(); // Get pointer to device vector
466  Gpu::DeviceVector<int> d_found(1,0);
467  int* d_found_ptr = d_found.data();
468 
469  MultiFab mf_cc_vel(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
470  average_face_to_cellcenter(mf_cc_vel,0,{AMREX_D_DECL(&U_new,&V_new,&W_new)},0);
471 
472  // Loop through MultiFab using MFIter
473  for (MFIter mfi(mf_cc_vel); mfi.isValid(); ++mfi) {
474  const Box& box = mfi.validbox(); // Get the valid box for the current MFIter
475  const Array4<const Real>& vel_arr = mf_cc_vel.const_array(mfi); // Get the array for this MFIter
476 
477  // ParallelFor loop to check velocity magnitudes on the GPU
478  amrex::ParallelFor(box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
479  // Access velocity components using ncomp
480  Real magnitude = 0.0; // Initialize magnitude
481 
482  for (int comp = 0; comp < ncomp; ++comp) {
483  Real vel = vel_arr(i, j, k, comp); // Access the component for each (i, j, k)
484  magnitude += vel * vel; // Sum the square of the components
485  }
486 
487  magnitude = std::sqrt(magnitude)*3.6; // Calculate magnitude
488  Real x = prob_lo[0] + (i + 0.5) * dx[0];
489  Real y = prob_lo[1] + (j + 0.5) * dx[1];
490  Real z = prob_lo[2] + (k + 0.5) * dx[2];
491 
492  // Check if magnitude exceeds threshold
493  if (z < 2.0e3 && magnitude > velmag_threshold) {
494  // Use atomic operations to set found flag and store coordinates
495  Gpu::Atomic::Add(&d_found_ptr[0], 1); // Mark as found
496 
497  // Store coordinates
498  Gpu::Atomic::Add(&d_coords_ptr[0],x); // Store x index
499  Gpu::Atomic::Add(&d_coords_ptr[1],y); // Store x index
500  Gpu::Atomic::Add(&d_coords_ptr[2],z); // Store x index
501  }
502  });
503  }
504 
505  // Synchronize to ensure all threads complete their execution
506  amrex::Gpu::streamSynchronize(); // Wait for all GPU threads to finish
507 
508  Vector<int> h_found(1,0);
509  Gpu::copy(Gpu::deviceToHost, d_found.begin(), d_found.end(), h_found.begin());
510  ParallelAllReduce::Sum(h_found.data(),
511  h_found.size(),
512  ParallelContext::CommunicatorAll());
513 
514  Real eye_x, eye_y;
515  // Broadcast coordinates if found
516  if (h_found[0] > 0) {
517  Vector<Real> h_coords(3,-1e10);
518  Gpu::copy(Gpu::deviceToHost, d_coords.begin(), d_coords.end(), h_coords.begin());
519 
520  ParallelAllReduce::Sum(h_coords.data(),
521  h_coords.size(),
522  ParallelContext::CommunicatorAll());
523 
524  eye_x = h_coords[0]/h_found[0];
525  eye_y = h_coords[1]/h_found[0];
526 
527  // Data structure to hold the hurricane track for I/O
528  if (amrex::ParallelDescriptor::IOProcessor() and is_track_io) {
529  hurricane_track_xy.push_back({eye_x, eye_y});
530  }
531 
532  if(is_track_io) {
533  return;
534  }
535 
536  Real rad_tag = 3e5*std::pow(2, max_level-1-levc);
537 
538  for (MFIter mfi(*tags); mfi.isValid(); ++mfi) {
539  TagBox& tag = (*tags)[mfi];
540  auto tag_arr = tag.array(); // Get device-accessible array
541 
542  const Box& tile_box = mfi.tilebox(); // The box for this tile
543 
544  ParallelFor(tile_box, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
545  // Compute cell center coordinates
546  Real x = prob_lo[0] + (i + 0.5) * dx[0];
547  Real y = prob_lo[1] + (j + 0.5) * dx[1];
548 
549  Real dist = std::sqrt((x - eye_x)*(x - eye_x) + (y - eye_y)*(y - eye_y));
550 
551  if (dist < rad_tag) {
552  tag_arr(i,j,k) = TagBox::SET;
553  }
554  });
555  }
556  }
557 }
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_track_xy
Definition: ERF.H:153

◆ ImposeBCsOnPhi()

void ERF::ImposeBCsOnPhi ( int  lev,
amrex::MultiFab &  phi,
const amrex::Box &  subdomain 
)

Impose bc's on the pressure that comes out of the solve

13 {
14  BL_PROFILE("ERF::ImposeBCsOnPhi()");
15 
16  auto const sub_lo = lbound(subdomain);
17  auto const sub_hi = ubound(subdomain);
18 
19  auto const dom_lo = lbound(geom[lev].Domain());
20  auto const dom_hi = ubound(geom[lev].Domain());
21 
22  phi.setBndry(1.e25);
23  phi.FillBoundary(geom[lev].periodicity());
24 
25  // ****************************************************************************
26  // Impose bc's on pprime
27  // ****************************************************************************
28 #ifdef _OPENMP
29 #pragma omp parallel if (Gpu::notInLaunchRegion())
30 #endif
31  for (MFIter mfi(phi,TilingIfNotGPU()); mfi.isValid(); ++mfi)
32  {
33  Array4<Real> const& pp_arr = phi.array(mfi);
34  Box const& bx = mfi.tilebox();
35  auto const bx_lo = lbound(bx);
36  auto const bx_hi = ubound(bx);
37 
38  auto bc_type_xlo = domain_bc_type[Orientation(0,Orientation::low)];
39  auto bc_type_xhi = domain_bc_type[Orientation(0,Orientation::high)];
40  auto bc_type_ylo = domain_bc_type[Orientation(1,Orientation::low)];
41  auto bc_type_yhi = domain_bc_type[Orientation(1,Orientation::high)];
42  auto bc_type_zhi = domain_bc_type[Orientation(2,Orientation::high)];
43 
44  if ( (bx_lo.x == dom_lo.x) && (bc_type_xlo == "Outflow" || bc_type_xlo == "Open") ) {
45  ParallelFor(makeSlab(bx,0,dom_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
46  {
47  pp_arr(i-1,j,k) = -pp_arr(i,j,k);
48  });
49  } else if (bx_lo.x == sub_lo.x) {
50  ParallelFor(makeSlab(bx,0,sub_lo.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
51  {
52  pp_arr(i-1,j,k) = pp_arr(i,j,k);
53  });
54  }
55 
56  if ( (bx_hi.x == dom_hi.x) && (bc_type_xhi == "Outflow" || bc_type_xhi == "Open") ) {
57  ParallelFor(makeSlab(bx,0,dom_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
58  {
59  pp_arr(i+1,j,k) = -pp_arr(i,j,k);
60  });
61  } else if (bx_hi.x == sub_hi.x) {
62  ParallelFor(makeSlab(bx,0,sub_hi.x), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
63  {
64  pp_arr(i+1,j,k) = pp_arr(i,j,k);
65  });
66  }
67 
68  if ( (bx_lo.y == dom_lo.y) && (bc_type_ylo == "Outflow" || bc_type_ylo == "Open") ) {
69  ParallelFor(makeSlab(bx,1,dom_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
70  {
71  pp_arr(i,j-1,k) = -pp_arr(i,j,k);
72  });
73  } else if (bx_lo.y == sub_lo.y) {
74  ParallelFor(makeSlab(bx,1,sub_lo.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
75  {
76  pp_arr(i,j-1,k) = pp_arr(i,j,k);
77  });
78  }
79 
80  if ( (bx_hi.y == dom_hi.y) && (bc_type_yhi == "Outflow" || bc_type_yhi == "Open") ) {
81  ParallelFor(makeSlab(bx,1,dom_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
82  {
83  pp_arr(i,j+1,k) = -pp_arr(i,j,k);
84  });
85  } else if (bx_hi.y == sub_hi.y) {
86  ParallelFor(makeSlab(bx,1,sub_hi.y), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
87  {
88  pp_arr(i,j+1,k) = pp_arr(i,j,k);
89  });
90  }
91 
92  // At low z we are always Neumann whether the box touches the bottom boundary or not
93  Box zbx(bx); zbx.grow(0,1); zbx.grow(1,1); // Grow in x-dir and y-dir because we have filled that above
94  if (bx_lo.z == sub_lo.z) {
95  ParallelFor(makeSlab(zbx,2,dom_lo.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
96  {
97  pp_arr(i,j,k-1) = pp_arr(i,j,k);
98  });
99  }
100 
101  if ( (bx_hi.z == dom_hi.z) && (bc_type_zhi == "Outflow" || bc_type_zhi == "Open") ) {
102  ParallelFor(makeSlab(bx,2,dom_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
103  {
104  pp_arr(i,j,k+1) = -pp_arr(i,j,k);
105  });
106  } else if (bx_hi.z == sub_hi.z) {
107  ParallelFor(makeSlab(bx,2,sub_hi.z), [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
108  {
109  pp_arr(i,j,k+1) = pp_arr(i,j,k);
110  });
111  }
112  } // mfi
113 
114  // Now overwrite with periodic fill outside domain and fine-fine fill inside
115  phi.FillBoundary(geom[lev].periodicity());
116 }

◆ init1DArrays()

void ERF::init1DArrays ( )
private

◆ init_bcs()

void ERF::init_bcs ( )
private

Initializes data structures in the ERF class that specify which boundary conditions we are implementing on each face of the domain.

This function also maps the selected boundary condition types (e.g. Outflow, Inflow, InflowOutflow, Periodic, Dirichlet, ...) to the specific implementation needed for each variable.

Stores this information in both host and device vectors so it is available for GPU kernels.

21 {
22  bool rho_read = false;
23  bool read_prim_theta = true;
24  Vector<Real> cons_dir_init(NBCVAR_max,0.0);
25  cons_dir_init[BCVars::Rho_bc_comp] = 1.0;
26  cons_dir_init[BCVars::RhoTheta_bc_comp] = -1.0;
27  auto f = [this,&rho_read,&read_prim_theta] (std::string const& bcid, Orientation ori)
28  {
29  // These are simply defaults for Dirichlet faces -- they should be over-written below
31  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = -1.0; // It is important to set this negative
32  // because the sign is tested on below
33  for (int n = BCVars::RhoKE_bc_comp; n < BCVars::xvel_bc; n++) {
34  m_bc_extdir_vals[n][ori] = 0.0;
35  }
36 
37  m_bc_extdir_vals[BCVars::xvel_bc][ori] = 0.0; // default
40 
41  // These are simply defaults for Neumann gradients -- they should be over-written below
44 
53 
57 
58  std::string pp_text = pp_prefix + "." + bcid;
59  ParmParse pp(pp_text);
60 
61  std::string bc_type_in;
62  if (pp.query("type", bc_type_in) <= 0)
63  {
64  pp_text = bcid;
65  pp = ParmParse(pp_text);
66  pp.query("type", bc_type_in);
67  }
68 
69  std::string bc_type = amrex::toLower(bc_type_in);
70 
71  if (bc_type == "symmetry")
72  {
73  // Print() << bcid << " set to symmetry.\n";
75  domain_bc_type[ori] = "Symmetry";
76  }
77  else if (bc_type == "outflow")
78  {
79  // Print() << bcid << " set to outflow.\n";
81  domain_bc_type[ori] = "Outflow";
82  }
83  else if (bc_type == "open")
84  {
85  // Print() << bcid << " set to open.\n";
86  AMREX_ASSERT_WITH_MESSAGE((ori.coordDir() != 2), "Open boundary not valid on zlo or zhi!");
88  domain_bc_type[ori] = "Open";
89  }
90  else if (bc_type == "ho_outflow")
91  {
93  domain_bc_type[ori] = "HO_Outflow";
94  }
95 
96  else if (bc_type == "inflow" || bc_type == "inflow_outflow")
97  {
98  if (bc_type == "inflow") {
99  // Print() << bcid << " set to inflow.\n";
101  domain_bc_type[ori] = "Inflow";
102  } else {
103  // Print() << bcid << " set to inflow_outflow.\n";
105  domain_bc_type[ori] = "InflowOutflow";
106  }
107 
108  std::vector<Real> v;
109  if (input_bndry_planes && m_r2d->ingested_velocity()) {
113  } else {
114  // Test for input data file if at xlo face
115  std::string dirichlet_file;
116  auto file_exists = pp.query("dirichlet_file", dirichlet_file);
117  if (file_exists) {
118  pp.query("read_prim_theta", read_prim_theta);
119  init_Dirichlet_bc_data(dirichlet_file);
120  } else {
121  pp.getarr("velocity", v, 0, AMREX_SPACEDIM);
122  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
123  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
124  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
125  }
126  }
127 
128  Real rho_in = 0.;
129  if (input_bndry_planes && m_r2d->ingested_density()) {
131  } else {
132  if (!pp.query("density", rho_in)) {
133  amrex::Print() << "Using interior values to set conserved vars" << std::endl;
134  }
135  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
136  }
137 
138  bool th_read = (th_bc_data[0].data()!=nullptr);
139  Real theta_in = 0.;
140  if (input_bndry_planes && m_r2d->ingested_theta()) {
142  } else if (!th_read) {
143  if (rho_in > 0) {
144  pp.get("theta", theta_in);
145  }
146  m_bc_extdir_vals[BCVars::RhoTheta_bc_comp][ori] = rho_in*theta_in;
147  }
148 
149  Real scalar_in = 0.;
150  if (input_bndry_planes && m_r2d->ingested_scalar()) {
152  } else {
153  if (pp.query("scalar", scalar_in))
154  m_bc_extdir_vals[BCVars::RhoScalar_bc_comp][ori] = rho_in*scalar_in;
155  }
156 
157  if (solverChoice.moisture_type != MoistureType::None) {
158  Real qv_in = 0.;
159  if (input_bndry_planes && m_r2d->ingested_q1()) {
161  } else {
162  if (pp.query("qv", qv_in))
163  m_bc_extdir_vals[BCVars::RhoQ1_bc_comp][ori] = rho_in*qv_in;
164  }
165  Real qc_in = 0.;
166  if (input_bndry_planes && m_r2d->ingested_q2()) {
168  } else {
169  if (pp.query("qc", qc_in))
170  m_bc_extdir_vals[BCVars::RhoQ2_bc_comp][ori] = rho_in*qc_in;
171  }
172  }
173 
174  Real KE_in = 0.;
175  if (input_bndry_planes && m_r2d->ingested_KE()) {
177  } else {
178  if (pp.query("KE", KE_in))
179  m_bc_extdir_vals[BCVars::RhoKE_bc_comp][ori] = rho_in*KE_in;
180  }
181  }
182  else if (bc_type == "noslipwall")
183  {
184  // Print() << bcid <<" set to no-slip wall.\n";
186  domain_bc_type[ori] = "NoSlipWall";
187 
188  std::vector<Real> v;
189 
190  // The values of m_bc_extdir_vals default to 0.
191  // But if we find "velocity" in the inputs file, use those values instead.
192  if (pp.queryarr("velocity", v, 0, AMREX_SPACEDIM))
193  {
194  v[ori.coordDir()] = 0.0;
195  m_bc_extdir_vals[BCVars::xvel_bc][ori] = v[0];
196  m_bc_extdir_vals[BCVars::yvel_bc][ori] = v[1];
197  m_bc_extdir_vals[BCVars::zvel_bc][ori] = v[2];
198  }
199 
200  Real rho_in;
201  rho_read = pp.query("density", rho_in);
202  if (rho_read)
203  {
204  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
205  }
206 
207  Real theta_in;
208  if (pp.query("theta", theta_in))
209  {
211  }
212 
213  Real theta_grad_in;
214  if (pp.query("theta_grad", theta_grad_in))
215  {
216  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
217  }
218 
219  Real qv_in;
220  if (pp.query("qv", qv_in))
221  {
223  }
224  }
225  else if (bc_type == "slipwall")
226  {
227  // Print() << bcid <<" set to slip wall.\n";
228 
230  domain_bc_type[ori] = "SlipWall";
231 
232  Real rho_in;
233  rho_read = pp.query("density", rho_in);
234  if (rho_read)
235  {
236  m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] = rho_in;
237  }
238 
239  Real theta_in;
240  if (pp.query("theta", theta_in))
241  {
243  }
244 
245  Real rho_grad_in;
246  if (pp.query("density_grad", rho_grad_in))
247  {
248  m_bc_neumann_vals[BCVars::Rho_bc_comp][ori] = rho_grad_in;
249  }
250 
251  Real theta_grad_in;
252  if (pp.query("theta_grad", theta_grad_in))
253  {
254  m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori] = theta_grad_in;
255  }
256  }
257  else if (bc_type == "surface_layer")
258  {
260  domain_bc_type[ori] = "surface_layer";
261  }
262  else
263  {
265  }
266 
267  if (geom[0].isPeriodic(ori.coordDir())) {
268  domain_bc_type[ori] = "Periodic";
269  if (phys_bc_type[ori] == ERF_BC::undefined)
270  {
272  } else {
273  Abort("Wrong BC type for periodic boundary");
274  }
275  }
276 
277  if (phys_bc_type[ori] == ERF_BC::undefined)
278  {
279  Print() << "BC Type specified for face " << bcid << " is " << bc_type_in << std::endl;
280  Abort("This BC type is unknown");
281  }
282  };
283 
284  f("xlo", Orientation(Direction::x,Orientation::low));
285  f("xhi", Orientation(Direction::x,Orientation::high));
286  f("ylo", Orientation(Direction::y,Orientation::low));
287  f("yhi", Orientation(Direction::y,Orientation::high));
288  f("zlo", Orientation(Direction::z,Orientation::low));
289  f("zhi", Orientation(Direction::z,Orientation::high));
290 
291  // *****************************************************************************
292  //
293  // Here we translate the physical boundary conditions -- one type per face --
294  // into logical boundary conditions for each velocity component
295  //
296  // *****************************************************************************
297  {
298  domain_bcs_type.resize(AMREX_SPACEDIM+NBCVAR_max);
299  domain_bcs_type_d.resize(AMREX_SPACEDIM+NBCVAR_max);
300 
301  for (OrientationIter oit; oit; ++oit) {
302  Orientation ori = oit();
303  int dir = ori.coordDir();
304  Orientation::Side side = ori.faceDir();
305  auto const bct = phys_bc_type[ori];
306  if ( bct == ERF_BC::symmetry )
307  {
308  if (side == Orientation::low) {
309  for (int i = 0; i < AMREX_SPACEDIM; i++) {
311  }
313  } else {
314  for (int i = 0; i < AMREX_SPACEDIM; i++) {
316  }
318  }
319  }
320  else if (bct == ERF_BC::outflow or bct == ERF_BC::ho_outflow )
321  {
322  if (side == Orientation::low) {
323  for (int i = 0; i < AMREX_SPACEDIM; i++) {
325  }
326  if (!solverChoice.anelastic[0]) {
328  }
329  } else {
330  for (int i = 0; i < AMREX_SPACEDIM; i++) {
332  }
333  if (!solverChoice.anelastic[0]) {
335  }
336  }
337  }
338  else if (bct == ERF_BC::open)
339  {
340  if (side == Orientation::low) {
341  for (int i = 0; i < AMREX_SPACEDIM; i++)
343  } else {
344  for (int i = 0; i < AMREX_SPACEDIM; i++)
346  }
347  }
348  else if (bct == ERF_BC::inflow)
349  {
350  if (side == Orientation::low) {
351  for (int i = 0; i < AMREX_SPACEDIM; i++) {
353  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
355  }
356  }
357  } else {
358  for (int i = 0; i < AMREX_SPACEDIM; i++) {
360  if (input_bndry_planes && dir < 2 && m_r2d->ingested_velocity()) {
362  }
363  }
364  }
365  }
366  else if (bct == ERF_BC::inflow_outflow)
367  {
368  if (side == Orientation::low) {
369  for (int i = 0; i < AMREX_SPACEDIM; i++) {
371  }
372  } else {
373  for (int i = 0; i < AMREX_SPACEDIM; i++) {
375  }
376  }
377  }
378  else if (bct == ERF_BC::no_slip_wall)
379  {
380  if (side == Orientation::low) {
381  for (int i = 0; i < AMREX_SPACEDIM; i++) {
383  }
384  } else {
385  for (int i = 0; i < AMREX_SPACEDIM; i++) {
387  }
388  }
389  }
390  else if (bct == ERF_BC::slip_wall)
391  {
392  if (side == Orientation::low) {
393  for (int i = 0; i < AMREX_SPACEDIM; i++) {
395  }
396  // Only normal direction has ext_dir
398 
399  } else {
400  for (int i = 0; i < AMREX_SPACEDIM; i++) {
402  }
403  // Only normal direction has ext_dir
405  }
406  }
407  else if (bct == ERF_BC::periodic)
408  {
409  if (side == Orientation::low) {
410  for (int i = 0; i < AMREX_SPACEDIM; i++) {
412  }
413  } else {
414  for (int i = 0; i < AMREX_SPACEDIM; i++) {
416  }
417  }
418  }
419  else if ( bct == ERF_BC::surface_layer )
420  {
421  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
425  }
426  }
427  }
428 
429  // *****************************************************************************
430  //
431  // Here we translate the physical boundary conditions -- one type per face --
432  // into logical boundary conditions for each cell-centered variable
433  // (including the base state variables)
434  // NOTE: all "scalars" share the same type of boundary condition
435  //
436  // *****************************************************************************
437  {
438  for (OrientationIter oit; oit; ++oit) {
439  Orientation ori = oit();
440  int dir = ori.coordDir();
441  Orientation::Side side = ori.faceDir();
442  auto const bct = phys_bc_type[ori];
443  if ( bct == ERF_BC::symmetry )
444  {
445  if (side == Orientation::low) {
446  for (int i = 0; i < NBCVAR_max; i++) {
448  }
449  } else {
450  for (int i = 0; i < NBCVAR_max; i++) {
452  }
453  }
454  }
455  else if ( bct == ERF_BC::outflow )
456  {
457  if (side == Orientation::low) {
458  for (int i = 0; i < NBCVAR_max; i++) {
460  }
461  } else {
462  for (int i = 0; i < NBCVAR_max; i++) {
464  }
465  }
466  }
467  else if ( bct == ERF_BC::ho_outflow )
468  {
469  if (side == Orientation::low) {
470  for (int i = 0; i < NBCVAR_max; i++) {
472  }
473  } else {
474  for (int i = 0; i < NBCVAR_max; i++) {
476  }
477  }
478  }
479  else if ( bct == ERF_BC::open )
480  {
481  if (side == Orientation::low) {
482  for (int i = 0; i < NBCVAR_max; i++)
484  } else {
485  for (int i = 0; i < NBCVAR_max; i++)
487  }
488  }
489  else if ( bct == ERF_BC::no_slip_wall )
490  {
491  if (side == Orientation::low) {
492  for (int i = 0; i < NBCVAR_max; i++) {
494  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
495  if (rho_read) {
497  } else {
499  }
500  }
501  }
502  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
504  }
505  } else {
506  for (int i = 0; i < NBCVAR_max; i++) {
508  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
509  if (rho_read) {
511  } else {
513  }
514  }
515  }
516  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
518  }
519  }
520  }
521  else if (bct == ERF_BC::slip_wall)
522  {
523  if (side == Orientation::low) {
524  for (int i = 0; i < NBCVAR_max; i++) {
526  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
527  if (rho_read) {
529  } else {
531  }
532  }
533  }
534  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
536  }
537  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
539  }
540  } else {
541  for (int i = 0; i < NBCVAR_max; i++) {
543  if (m_bc_extdir_vals[BCVars::cons_bc+i][ori] != cons_dir_init[BCVars::cons_bc+i]) {
544  if (rho_read) {
546  } else {
548  }
549  }
550  }
551  if (std::abs(m_bc_neumann_vals[BCVars::RhoTheta_bc_comp][ori]) > 0.) {
553  }
554  if (std::abs(m_bc_neumann_vals[BCVars::Rho_bc_comp][ori]) > 0.) {
556  }
557  }
558  }
559  else if (bct == ERF_BC::inflow)
560  {
561  if (side == Orientation::low) {
562  for (int i = 0; i < NBCVAR_max; i++) {
564  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
565  (th_bc_data[0].data() != nullptr))
566  {
567  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setLo(dir, ERFBCType::ext_dir_prim);
568  }
569  else if (input_bndry_planes && dir < 2 && (
570  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
571  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
572  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
573  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
574  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
575  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )) )
576  {
578  }
579  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
581  }
582  }
583  } else {
584  for (int i = 0; i < NBCVAR_max; i++) {
586  if ((BCVars::cons_bc+i == RhoTheta_comp) &&
587  (th_bc_data[0].data() != nullptr))
588  {
589  if (read_prim_theta) domain_bcs_type[BCVars::cons_bc+i].setHi(dir, ERFBCType::ext_dir_prim);
590  }
591  else if (input_bndry_planes && dir < 2 && (
592  ( (BCVars::cons_bc+i == BCVars::Rho_bc_comp) && m_r2d->ingested_density()) ||
593  ( (BCVars::cons_bc+i == BCVars::RhoTheta_bc_comp) && m_r2d->ingested_theta() ) ||
594  ( (BCVars::cons_bc+i == BCVars::RhoKE_bc_comp) && m_r2d->ingested_KE() ) ||
595  ( (BCVars::cons_bc+i == BCVars::RhoScalar_bc_comp) && m_r2d->ingested_scalar() ) ||
596  ( (BCVars::cons_bc+i == BCVars::RhoQ1_bc_comp) && m_r2d->ingested_q1() ) ||
597  ( (BCVars::cons_bc+i == BCVars::RhoQ2_bc_comp) && m_r2d->ingested_q2() )
598  ) )
599  {
601  }
602  else if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
604  }
605  }
606  }
607  }
608  else if (bct == ERF_BC::inflow_outflow )
609  {
610  if (side == Orientation::low) {
611  for (int i = 0; i < NBCVAR_max; i++) {
613  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
615  }
616  }
617  } else {
618  for (int i = 0; i < NBCVAR_max; i++) {
620  if (m_bc_extdir_vals[BCVars::Rho_bc_comp][ori] == 0) {
622  }
623  }
624  }
625  }
626  else if (bct == ERF_BC::periodic)
627  {
628  if (side == Orientation::low) {
629  for (int i = 0; i < NBCVAR_max; i++) {
631  }
632  } else {
633  for (int i = 0; i < NBCVAR_max; i++) {
635  }
636  }
637  }
638  else if ( bct == ERF_BC::surface_layer )
639  {
640  AMREX_ALWAYS_ASSERT(dir == 2 && side == Orientation::low);
641  for (int i = 0; i < NBCVAR_max; i++) {
643  }
644  }
645  }
646  }
647 
648  // NOTE: Gpu:copy is a wrapper to htod_memcpy (GPU) or memcpy (CPU) and is a blocking comm
649  Gpu::copy(Gpu::hostToDevice, domain_bcs_type.begin(), domain_bcs_type.end(), domain_bcs_type_d.begin());
650 }
#define NBCVAR_max
Definition: ERF_IndexDefines.H:29
@ ho_outflow
@ inflow_outflow
void init_Dirichlet_bc_data(const std::string input_file)
Definition: ERF_InitBCs.cpp:652
amrex::Array< amrex::Array< amrex::Real, AMREX_SPACEDIM *2 >, AMREX_SPACEDIM+NBCVAR_max > m_bc_neumann_vals
Definition: ERF.H:971
@ RhoQ6_bc_comp
Definition: ERF_IndexDefines.H:86
@ RhoQ1_bc_comp
Definition: ERF_IndexDefines.H:81
@ RhoQ4_bc_comp
Definition: ERF_IndexDefines.H:84
@ RhoKE_bc_comp
Definition: ERF_IndexDefines.H:79
@ RhoQ3_bc_comp
Definition: ERF_IndexDefines.H:83
@ RhoTheta_bc_comp
Definition: ERF_IndexDefines.H:78
@ RhoQ2_bc_comp
Definition: ERF_IndexDefines.H:82
@ Rho_bc_comp
Definition: ERF_IndexDefines.H:77
@ RhoQ5_bc_comp
Definition: ERF_IndexDefines.H:85
@ neumann
Definition: ERF_IndexDefines.H:213
@ open
Definition: ERF_IndexDefines.H:215
@ reflect_odd
Definition: ERF_IndexDefines.H:205
@ hoextrap
Definition: ERF_IndexDefines.H:216
@ foextrap
Definition: ERF_IndexDefines.H:208
@ ext_dir
Definition: ERF_IndexDefines.H:209
@ ext_dir_prim
Definition: ERF_IndexDefines.H:211
@ ext_dir_upwind
Definition: ERF_IndexDefines.H:217
@ int_dir
Definition: ERF_IndexDefines.H:206
@ neumann_int
Definition: ERF_IndexDefines.H:214
@ reflect_even
Definition: ERF_IndexDefines.H:207
Here is the call graph for this function:

◆ init_custom()

void ERF::init_custom ( int  lev)
private

Wrapper for custom problem-specific initialization routines that can be defined by the user as they set up a new problem in ERF. This wrapper handles all the overhead of defining the perturbation as well as initializing the random seed if needed.

This wrapper calls a user function to customize initialization on a per-Fab level inside an MFIter loop, so all the MultiFab operations are hidden from the user.

Parameters
levInteger specifying the current level
27 {
28  auto& lev_new = vars_new[lev];
29 
30  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
31  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
32 
33  MultiFab cons_pert(lev_new[Vars::cons].boxArray(), lev_new[Vars::cons].DistributionMap(),
34  lev_new[Vars::cons].nComp() , lev_new[Vars::cons].nGrow());
35  MultiFab xvel_pert(lev_new[Vars::xvel].boxArray(), lev_new[Vars::xvel].DistributionMap(), 1, lev_new[Vars::xvel].nGrowVect());
36  MultiFab yvel_pert(lev_new[Vars::yvel].boxArray(), lev_new[Vars::yvel].DistributionMap(), 1, lev_new[Vars::yvel].nGrowVect());
37  MultiFab zvel_pert(lev_new[Vars::zvel].boxArray(), lev_new[Vars::zvel].DistributionMap(), 1, lev_new[Vars::zvel].nGrowVect());
38 
39  // Default all perturbations to zero
40  cons_pert.setVal(0.);
41  xvel_pert.setVal(0.);
42  yvel_pert.setVal(0.);
43  zvel_pert.setVal(0.);
44 
45 #ifdef _OPENMP
46 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
47 #endif
48  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
49  {
50  const Box &bx = mfi.tilebox();
51  const Box &xbx = mfi.tilebox(IntVect(1,0,0));
52  const Box &ybx = mfi.tilebox(IntVect(0,1,0));
53  const Box &zbx = mfi.tilebox(IntVect(0,0,1));
54 
55  const auto &cons_pert_arr = cons_pert.array(mfi);
56  const auto &xvel_pert_arr = xvel_pert.array(mfi);
57  const auto &yvel_pert_arr = yvel_pert.array(mfi);
58  const auto &zvel_pert_arr = zvel_pert.array(mfi);
59 
60  Array4<Real const> cons_arr = lev_new[Vars::cons].const_array(mfi);
61  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
62  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
63 
64  // Here we arbitrarily choose the x-oriented map factor -- this should be generalized
65  Array4<Real const> mf_m = mapfac[lev][MapFacType::m_x]->const_array(mfi);
66  Array4<Real const> mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
67  Array4<Real const> mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
68 
69  Array4<Real> r_hse_arr = r_hse.array(mfi);
70  Array4<Real> p_hse_arr = p_hse.array(mfi);
71 
72  prob->init_custom_pert(bx, xbx, ybx, zbx, cons_arr, cons_pert_arr,
73  xvel_pert_arr, yvel_pert_arr, zvel_pert_arr,
74  r_hse_arr, p_hse_arr, z_nd_arr, z_cc_arr,
75  geom[lev].data(), mf_m, mf_u, mf_v,
76  solverChoice);
77  } //mfi
78 
79  // Add problem-specific perturbation to background flow if not doing anelastic with fixed-in-time density
81  MultiFab::Add(lev_new[Vars::cons], cons_pert, Rho_comp, Rho_comp, 1, cons_pert.nGrow());
82  }
83  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoTheta_comp, RhoTheta_comp, 1, cons_pert.nGrow());
84  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoScalar_comp,RhoScalar_comp,NSCALARS, cons_pert.nGrow());
85 
86  // RhoKE is relevant if using Deardorff with LES, k-equation for RANS, or MYNN with PBL
87  if (solverChoice.turbChoice[lev].use_tke) {
88  MultiFab::Add(lev_new[Vars::cons], cons_pert, RhoKE_comp, RhoKE_comp, 1, cons_pert.nGrow());
89  }
90 
91  if (solverChoice.moisture_type != MoistureType::None) {
92  int qstate_size = micro->Get_Qstate_Size();
93  for (int q_offset(0); q_offset<qstate_size; ++q_offset) {
94  int q_idx = RhoQ1_comp+q_offset;
95  MultiFab::Add(lev_new[Vars::cons], cons_pert, q_idx, q_idx, 1, cons_pert.nGrow());
96  }
97  }
98 
99  MultiFab::Add(lev_new[Vars::xvel], xvel_pert, 0, 0, 1, xvel_pert.nGrowVect());
100  MultiFab::Add(lev_new[Vars::yvel], yvel_pert, 0, 0, 1, yvel_pert.nGrowVect());
101  MultiFab::Add(lev_new[Vars::zvel], zvel_pert, 0, 0, 1, zvel_pert.nGrowVect());
102 }
const Box xbx
Definition: ERF_DiffSetup.H:21
const Box ybx
Definition: ERF_DiffSetup.H:22
bool fixed_density
Definition: ERF_DataStruct.H:874
Here is the call graph for this function:

◆ init_Dirichlet_bc_data()

void ERF::init_Dirichlet_bc_data ( const std::string  input_file)
private
653 {
654  const bool use_terrain = (solverChoice.terrain_type != TerrainType::None);
655 
656  // Read the dirichlet_input file
657  Print() << "dirichlet_input file location : " << input_file << std::endl;
658  std::ifstream input_reader(input_file);
659  if (!input_reader.is_open()) {
660  amrex::Abort("Error opening the dirichlet_input file.\n");
661  }
662 
663  Print() << "Successfully opened the dirichlet_input file. Now reading... " << std::endl;
664  std::string line;
665 
666  // Size of Ninp (number of z points in input file)
667  Vector<Real> z_inp_tmp, u_inp_tmp, v_inp_tmp, w_inp_tmp, th_inp_tmp;
668 
669  // Top and bot for domain
670  const int klo = geom[0].Domain().smallEnd()[2];
671  const int khi = geom[0].Domain().bigEnd()[2];
672  const Real zbot = (use_terrain) ? zlevels_stag[0][klo] : geom[0].ProbLo(2);
673  const Real ztop = (use_terrain) ? zlevels_stag[0][khi+1] : geom[0].ProbHi(2);
674 
675  // Flag if theta input
676  Real th_init = -300.0;
677  bool th_read{false};
678 
679  // Add surface
680  z_inp_tmp.push_back(zbot); // height above sea level [m]
681  u_inp_tmp.push_back(0.);
682  v_inp_tmp.push_back(0.);
683  w_inp_tmp.push_back(0.);
684  th_inp_tmp.push_back(th_init);
685 
686  // Read the vertical profile at each given height
687  Real z, u, v, w, th;
688  while(std::getline(input_reader, line)) {
689  std::istringstream iss_z(line);
690 
691  Vector<Real> rval_v;
692  Real rval;
693  while (iss_z >> rval) {
694  rval_v.push_back(rval);
695  }
696  z = rval_v[0];
697  u = rval_v[1];
698  v = rval_v[2];
699  w = rval_v[3];
700 
701  // Format without theta
702  if (rval_v.size() == 4) {
703  if (z == zbot) {
704  u_inp_tmp[0] = u;
705  v_inp_tmp[0] = v;
706  w_inp_tmp[0] = w;
707  } else {
708  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
709  z_inp_tmp.push_back(z);
710  u_inp_tmp.push_back(u);
711  v_inp_tmp.push_back(v);
712  w_inp_tmp.push_back(w);
713  if (z >= ztop) break;
714  }
715  } else if (rval_v.size() == 5) {
716  th_read = true;
717  th = rval_v[4];
718  if (z == zbot) {
719  u_inp_tmp[0] = u;
720  v_inp_tmp[0] = v;
721  w_inp_tmp[0] = w;
722  th_inp_tmp[0] = th;
723  } else {
724  AMREX_ALWAYS_ASSERT(z > z_inp_tmp[z_inp_tmp.size()-1]); // sounding is increasing in height
725  z_inp_tmp.push_back(z);
726  u_inp_tmp.push_back(u);
727  v_inp_tmp.push_back(v);
728  w_inp_tmp.push_back(w);
729  th_inp_tmp.push_back(th);
730  if (z >= ztop) break;
731  }
732  } else {
733  Abort("Unknown inflow file format!");
734  }
735  }
736 
737  // Ensure we set a reasonable theta surface
738  if (th_read) {
739  if (th_inp_tmp[0] == th_init) {
740  Real slope = (th_inp_tmp[2] - th_inp_tmp[1]) / (z_inp_tmp[2] - z_inp_tmp[1]);
741  Real dz = z_inp_tmp[0] - z_inp_tmp[1];
742  th_inp_tmp[0] = slope * dz + th_inp_tmp[1];
743  }
744  }
745 
746  amrex::Print() << "Successfully read and interpolated the dirichlet_input file..." << std::endl;
747  input_reader.close();
748 
749  for (int lev = 0; lev <= max_level; lev++) {
750 
751  const int Nz = geom[lev].Domain().size()[2];
752  const Real dz = geom[lev].CellSize()[2];
753 
754  // Size of Nz (domain grid)
755  Vector<Real> zcc_inp(Nz );
756  Vector<Real> znd_inp(Nz+1);
757  Vector<Real> u_inp(Nz ); xvel_bc_data[lev].resize(Nz ,0.0);
758  Vector<Real> v_inp(Nz ); yvel_bc_data[lev].resize(Nz ,0.0);
759  Vector<Real> w_inp(Nz+1); zvel_bc_data[lev].resize(Nz+1,0.0);
760  Vector<Real> th_inp;
761  if (th_read) {
762  th_inp.resize(Nz);
763  th_bc_data[lev].resize(Nz, 0.0);
764  }
765 
766  // At this point, we have an input from zbot up to
767  // z_inp_tmp[N-1] >= ztop. Now, interpolate to grid level 0 heights
768  const int Ninp = z_inp_tmp.size();
769  for (int k(0); k<Nz; ++k) {
770  zcc_inp[k] = (use_terrain) ? 0.5 * (zlevels_stag[lev][k] + zlevels_stag[lev][k+1])
771  : zbot + (k + 0.5) * dz;
772  znd_inp[k] = (use_terrain) ? zlevels_stag[lev][k+1] : zbot + (k) * dz;
773  u_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), u_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
774  v_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), v_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
775  w_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), znd_inp[k], Ninp);
776  if (th_read) {
777  th_inp[k] = interpolate_1d(z_inp_tmp.dataPtr(), th_inp_tmp.dataPtr(), zcc_inp[k], Ninp);
778  }
779  }
780  znd_inp[Nz] = ztop;
781  w_inp[Nz] = interpolate_1d(z_inp_tmp.dataPtr(), w_inp_tmp.dataPtr(), ztop, Ninp);
782 
783  // Copy host data to the device
784  Gpu::copy(Gpu::hostToDevice, u_inp.begin(), u_inp.end(), xvel_bc_data[lev].begin());
785  Gpu::copy(Gpu::hostToDevice, v_inp.begin(), v_inp.end(), yvel_bc_data[lev].begin());
786  Gpu::copy(Gpu::hostToDevice, w_inp.begin(), w_inp.end(), zvel_bc_data[lev].begin());
787  if (th_read) {
788  Gpu::copy(Gpu::hostToDevice, th_inp.begin(), th_inp.end(), th_bc_data[lev].begin());
789  }
790 
791  // NOTE: These device vectors are passed to the PhysBC constructors when that
792  // class is instantiated in ERF_MakeNewArrays.cpp.
793  } // lev
794 }
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real interpolate_1d(const amrex::Real *alpha, const amrex::Real *beta, const amrex::Real alpha_interp, const int alpha_size)
Definition: ERF_Interpolation_1D.H:12
Here is the call graph for this function:

◆ init_from_hse()

void ERF::init_from_hse ( int  lev)

Initialize the background flow to have the calculated HSE density and rho*theta calculated from the HSE pressure. In general, the hydrostatically balanced density and pressure (r_hse and p_hse from base_state) used here may be calculated through a solver path such as:

ERF::initHSE(lev)

  • call prob->erf_init_dens_hse(...)
    • call Problem::init_isentropic_hse(...), to simultaneously calculate r_hse and p_hse with Newton iteration – assuming constant theta
    • save r_hse
  • call ERF::enforce_hse(...), calculates p_hse from saved r_hse (redundant, but needed because p_hse is not necessarily calculated by the Problem implementation) and pi_hse and th_hse – note: this pressure does not exactly match the p_hse from before because what is calculated by init_isentropic_hse comes from the EOS whereas what is calculated here comes from the hydro- static equation
Parameters
levInteger specifying the current level
33 {
34  auto& lev_new = vars_new[lev];
35 
36  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
37  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp, 1);
38 
39 #ifdef _OPENMP
40 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
41 #endif
42  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi)
43  {
44  const Box &gbx = mfi.growntilebox(1);
45  const Array4<Real >& cons_arr = lev_new[Vars::cons].array(mfi);
46  const Array4<Real const>& r_hse_arr = r_hse.const_array(mfi);
47  const Array4<Real const>& p_hse_arr = p_hse.const_array(mfi);
48 
49  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
50  {
51  cons_arr(i,j,k,Rho_comp) = r_hse_arr(i,j,k);
52  cons_arr(i,j,k,RhoTheta_comp) = getRhoThetagivenP(p_hse_arr(i,j,k));
53  });
54  } //mfi
55 }
Here is the call graph for this function:

◆ init_from_input_sounding()

void ERF::init_from_input_sounding ( int  lev)

High level wrapper for initializing scalar and velocity level data from input sounding data.

Parameters
levInteger specifying the current level
53 {
54  // We only want to read the file once -- here we fill one FArrayBox (per variable) that spans the domain
55  if (lev == 0) {
57  Error("input_sounding file name must be provided via input");
58  }
59 
61 
62  // this will interpolate the input profiles to the nominal height levels
63  // (ranging from 0 to the domain top)
64  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
66  }
67 
68  // this will calculate the hydrostatically balanced density and pressure
69  // profiles following WRF ideal.exe
70  if (solverChoice.sounding_type == SoundingType::Ideal) {
72  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
73  solverChoice.sounding_type == SoundingType::DryIsentropic) {
74  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
76  }
77 
78  } else {
79  //
80  // We need to do this interp from coarse level in order to set the values of
81  // the base state inside the domain but outside of the fine region
82  //
83  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
84  //
85  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
86  // have been pre-filled - this includes ghost cells both inside and outside
87  // the domain
88  //
89  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
90  IntVect(0,0,0), // do not fill ghost cells outside the domain
91  base_state[lev-1], 0, 0, base_state[lev].nComp(),
92  geom[lev-1], geom[lev],
93  refRatio(lev-1), &cell_cons_interp,
95 
96  // We need to do this here because the interpolation above may leave corners unfilled
97  // when the corners need to be filled by, for example, reflection of the fine ghost
98  // cell outside the fine region but inide the domain.
99  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
100  }
101 
102  auto& lev_new = vars_new[lev];
103 
104  // updated if sounding is ideal (following WRF) or isentropic
105  const bool l_isentropic = (solverChoice.sounding_type == SoundingType::Isentropic ||
106  solverChoice.sounding_type == SoundingType::DryIsentropic);
107  const bool sounding_ideal_or_isentropic = (solverChoice.sounding_type == SoundingType::Ideal ||
108  l_isentropic);
109  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
110  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
111  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
112  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
113  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
114 
115  const Real l_gravity = solverChoice.gravity;
116  const Real l_rdOcp = solverChoice.rdOcp;
117  const bool l_moist = (solverChoice.moisture_type != MoistureType::None);
118 
119 #ifdef _OPENMP
120 #pragma omp parallel if (Gpu::notInLaunchRegion())
121 #endif
122  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
123  const Box &bx = mfi.tilebox();
124  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
125  const auto &xvel_arr = lev_new[Vars::xvel].array(mfi);
126  const auto &yvel_arr = lev_new[Vars::yvel].array(mfi);
127  const auto &zvel_arr = lev_new[Vars::zvel].array(mfi);
128  Array4<Real> r_hse_arr = r_hse.array(mfi);
129  Array4<Real> p_hse_arr = p_hse.array(mfi);
130  Array4<Real> pi_hse_arr = pi_hse.array(mfi);
131  Array4<Real> th_hse_arr = th_hse.array(mfi);
132  Array4<Real> qv_hse_arr = qv_hse.array(mfi);
133 
134  Array4<Real const> z_cc_arr = (z_phys_cc[lev]) ? z_phys_cc[lev]->const_array(mfi) : Array4<Real const>{};
135  Array4<Real const> z_nd_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) : Array4<Real const>{};
136 
137  if (sounding_ideal_or_isentropic)
138  {
139  // HSE will be initialized here, interpolated from values previously
140  // calculated by calc_rho_p or calc_rho_p_isentropic
142  bx, cons_arr,
143  r_hse_arr, p_hse_arr, pi_hse_arr, th_hse_arr, qv_hse_arr,
144  geom[lev].data(), z_cc_arr,
145  l_gravity, l_rdOcp, l_moist, input_sounding_data,
146  l_isentropic);
147  }
148  else
149  {
150  // This assumes rho_0 = 1.0
151  // HSE will be calculated later with call to initHSE
153  bx, cons_arr,
154  geom[lev].data(), z_cc_arr,
155  l_moist, input_sounding_data);
156  }
157 
159  bx, xvel_arr, yvel_arr, zvel_arr,
160  geom[lev].data(), z_nd_arr,
162 
163  } //mfi
164 }
void init_bx_scalars_from_input_sounding(const Box &bx, Array4< Real > const &state, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const bool &l_moist, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:176
void init_bx_scalars_from_input_sounding_hse(const Box &bx, Array4< Real > const &state, Array4< Real > const &r_hse_arr, Array4< Real > const &p_hse_arr, Array4< Real > const &pi_hse_arr, Array4< Real > const &th_hse_arr, Array4< Real > const &qv_hse_arr, GeometryData const &geomdata, Array4< const Real > const &z_cc_arr, const Real &l_gravity, const Real &l_rdOcp, const bool &l_moist, InputSoundingData const &inputSoundingData, const bool &l_isentropic)
Definition: ERF_InitFromInputSounding.cpp:238
void init_bx_velocities_from_input_sounding(const Box &bx, Array4< Real > const &x_vel, Array4< Real > const &y_vel, Array4< Real > const &z_vel, GeometryData const &geomdata, Array4< const Real > const &z_nd_arr, InputSoundingData const &inputSoundingData)
Definition: ERF_InitFromInputSounding.cpp:374
InputSoundingData input_sounding_data
Definition: ERF.H:750
@ rho0_bc_comp
Definition: ERF_IndexDefines.H:98
@ qv0_comp
Definition: ERF_IndexDefines.H:67
void resize_arrays()
Definition: ERF_InputSoundingData.H:60
int n_sounding_files
Definition: ERF_InputSoundingData.H:398
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag, int itime)
Definition: ERF_InputSoundingData.H:77
amrex::Vector< std::string > input_sounding_file
Definition: ERF_InputSoundingData.H:396
void calc_rho_p(int itime)
Definition: ERF_InputSoundingData.H:176
void calc_rho_p_isentropic(int itime)
Definition: ERF_InputSoundingData.H:262
bool assume_dry
Definition: ERF_InputSoundingData.H:401
static SoundingType sounding_type
Definition: ERF_DataStruct.H:840
Here is the call graph for this function:

◆ init_geo_wind_profile()

void ERF::init_geo_wind_profile ( const std::string  input_file,
amrex::Vector< amrex::Real > &  u_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  u_geos_d,
amrex::Vector< amrex::Real > &  v_geos,
amrex::Gpu::DeviceVector< amrex::Real > &  v_geos_d,
const amrex::Geometry &  lgeom,
const amrex::Vector< amrex::Real > &  zlev_stag 
)
private
17 {
18  const int klo = 0;
19  const int khi = lgeom.Domain().bigEnd()[AMREX_SPACEDIM-1];
20  const amrex::Real dz = lgeom.CellSize()[AMREX_SPACEDIM-1];
21 
22  const bool grid_stretch = (zlev_stag.size() > 0);
23  const Real zbot = (grid_stretch) ? zlev_stag[klo] : lgeom.ProbLo(AMREX_SPACEDIM-1);
24  const Real ztop = (grid_stretch) ? zlev_stag[khi+1] : lgeom.ProbHi(AMREX_SPACEDIM-1);
25 
26  amrex::Print() << "Reading geostrophic wind profile from " << input_file << std::endl;
27  std::ifstream profile_reader(input_file);
28  if(!profile_reader.is_open()) {
29  amrex::Error("Error opening the abl_geo_wind_table\n");
30  }
31 
32  // First, read the input data into temp vectors
33  std::string line;
34  Vector<Real> z_inp, Ug_inp, Vg_inp;
35  Real z, Ug, Vg;
36  amrex::Print() << "z Ug Vg" << std::endl;
37  while(std::getline(profile_reader, line)) {
38  std::istringstream iss(line);
39  iss >> z >> Ug >> Vg;
40  amrex::Print() << z << " " << Ug << " " << Vg << std::endl;
41  z_inp.push_back(z);
42  Ug_inp.push_back(Ug);
43  Vg_inp.push_back(Vg);
44  if (z >= ztop) break;
45  }
46 
47  const int Ninp = z_inp.size();
48  AMREX_ALWAYS_ASSERT(z_inp[0] <= zbot);
49  AMREX_ALWAYS_ASSERT(z_inp[Ninp-1] >= ztop);
50 
51  // Now, interpolate vectors to the cell centers
52  for (int k = 0; k <= khi; k++) {
53  z = (grid_stretch) ? 0.5 * (zlev_stag[k] + zlev_stag[k+1])
54  : zbot + (k + 0.5) * dz;
55  u_geos[k] = interpolate_1d(z_inp.dataPtr(), Ug_inp.dataPtr(), z, Ninp);
56  v_geos[k] = interpolate_1d(z_inp.dataPtr(), Vg_inp.dataPtr(), z, Ninp);
57  }
58 
59  // Copy from host version to device version
60  Gpu::copy(Gpu::hostToDevice, u_geos.begin(), u_geos.end(), u_geos_d.begin());
61  Gpu::copy(Gpu::hostToDevice, v_geos.begin(), v_geos.end(), v_geos_d.begin());
62 
63  profile_reader.close();
64 }
Here is the call graph for this function:

◆ init_only()

void ERF::init_only ( int  lev,
amrex::Real  time 
)
1877 {
1878  t_new[lev] = time;
1879  t_old[lev] = time - 1.e200;
1880 
1881  auto& lev_new = vars_new[lev];
1882  auto& lev_old = vars_old[lev];
1883 
1884  // Loop over grids at this level to initialize our grid data
1885  lev_new[Vars::cons].setVal(0.0); lev_old[Vars::cons].setVal(0.0);
1886  lev_new[Vars::xvel].setVal(0.0); lev_old[Vars::xvel].setVal(0.0);
1887  lev_new[Vars::yvel].setVal(0.0); lev_old[Vars::yvel].setVal(0.0);
1888  lev_new[Vars::zvel].setVal(0.0); lev_old[Vars::zvel].setVal(0.0);
1889 
1890  // Initialize background flow (optional)
1891  if (solverChoice.init_type == InitType::Input_Sounding) {
1892  // The physbc's need the terrain but are needed for initHSE
1893  // We have already made the terrain in the call to init_zphys
1894  // in MakeNewLevelFromScratch
1895  make_physbcs(lev);
1896 
1897  // Now init the base state and the data itself
1899 
1900  // The base state has been initialized by integrating vertically
1901  // through the sounding for ideal (like WRF) or isentropic approaches
1902  if (solverChoice.sounding_type == SoundingType::Ideal ||
1903  solverChoice.sounding_type == SoundingType::Isentropic ||
1904  solverChoice.sounding_type == SoundingType::DryIsentropic) {
1905  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(solverChoice.use_gravity,
1906  "Gravity should be on to be consistent with sounding initialization.");
1907  } else { // SoundingType::ConstantDensity
1908  AMREX_ASSERT_WITH_MESSAGE(!solverChoice.use_gravity,
1909  "Constant density probably doesn't make sense with gravity");
1910  initHSE();
1911  }
1912 
1913 #ifdef ERF_USE_NETCDF
1914  }
1915  else if (solverChoice.init_type == InitType::WRFInput)
1916  {
1917  // The base state is initialized from WRF wrfinput data, output by
1918  // ideal.exe or real.exe
1919 
1920  init_from_wrfinput(lev, *mf_C1H, *mf_C2H, *mf_MUB, *mf_PSFC[lev]);
1921 
1922  if (lev==0) {
1923  if ((start_time > 0) && (start_time != start_bdy_time)) {
1924  Print() << "Ignoring specified start_time="
1925  << std::setprecision(timeprecision) << start_time
1926  << std::endl;
1927  }
1928  }
1929 
1930  start_time = start_bdy_time;
1931 
1932  use_datetime = true;
1933 
1934  // The physbc's need the terrain but are needed for initHSE
1935  if (!solverChoice.use_real_bcs) {
1936  make_physbcs(lev);
1937  }
1938  }
1939  else if (solverChoice.init_type == InitType::NCFile)
1940  {
1941  // The state is initialized by reading from a Netcdf file
1942  init_from_ncfile(lev);
1943 
1944  // The physbc's need the terrain but are needed for initHSE
1945  make_physbcs(lev);
1946  }
1947  else if (solverChoice.init_type == InitType::Metgrid)
1948  {
1949  // The base state is initialized from data output by WPS metgrid;
1950  // we will rebalance after interpolation
1951  init_from_metgrid(lev);
1952 #endif
1953  } else if (solverChoice.init_type == InitType::Uniform) {
1954  // Initialize a uniform background field and base state based on the
1955  // problem-specified reference density and temperature
1956 
1957  // The physbc's need the terrain but are needed for initHSE
1958  make_physbcs(lev);
1959 
1960  init_uniform(lev);
1961  initHSE(lev);
1962  } else {
1963  // No background flow initialization specified, initialize the
1964  // background field to be equal to the base state, calculated from the
1965  // problem-specific erf_init_dens_hse
1966 
1967  // The bc's need the terrain but are needed for initHSE
1968  make_physbcs(lev);
1969 
1970  // We will initialize the state from the background state so must set that first
1971  initHSE(lev);
1972  init_from_hse(lev);
1973  }
1974 
1975  // Add problem-specific flow features
1976  //
1977  // Notes:
1978  // - This calls init_custom_pert that is defined for each problem
1979  // - This may modify the base state
1980  // - The fields set by init_custom_pert are **perturbations** to the
1981  // background flow set based on init_type
1982  if (solverChoice.init_type != InitType::NCFile) {
1983  init_custom(lev);
1984  }
1985 
1986  // Ensure that the face-based data are the same on both sides of a periodic domain.
1987  // The data associated with the lower grid ID is considered the correct value.
1988  lev_new[Vars::xvel].OverrideSync(geom[lev].periodicity());
1989  lev_new[Vars::yvel].OverrideSync(geom[lev].periodicity());
1990  lev_new[Vars::zvel].OverrideSync(geom[lev].periodicity());
1991 
1992  if(solverChoice.spongeChoice.sponge_type == "input_sponge"){
1993  input_sponge(lev);
1994  }
1995 
1996  // Initialize turbulent perturbation
1997  if (solverChoice.pert_type == PerturbationType::Source ||
1998  solverChoice.pert_type == PerturbationType::Direct ||
1999  solverChoice.pert_type == PerturbationType::CPM) {
2000  turbPert_update(lev, 0.);
2001  turbPert_amplitude(lev);
2002  }
2003 }
const int timeprecision
Definition: ERF.H:1006
void init_from_input_sounding(int lev)
Definition: ERF_InitFromInputSounding.cpp:52
std::unique_ptr< amrex::MultiFab > mf_MUB
Definition: ERF.H:1221
std::unique_ptr< amrex::MultiFab > mf_C2H
Definition: ERF.H:1220
void init_custom(int lev)
Definition: ERF_InitCustom.cpp:26
void init_from_hse(int lev)
Definition: ERF_InitFromHSE.cpp:32
void initHSE()
Initialize HSE.
Definition: ERF_Init1D.cpp:142
void turbPert_update(const int lev, const amrex::Real dt)
Definition: ERF_InitTurbPert.cpp:12
void input_sponge(int lev)
Definition: ERF_InitSponge.cpp:17
void make_physbcs(int lev)
Definition: ERF_MakeNewArrays.cpp:702
void init_uniform(int lev)
Definition: ERF_InitUniform.cpp:17
std::unique_ptr< amrex::MultiFab > mf_C1H
Definition: ERF.H:1219
void turbPert_amplitude(const int lev)
Definition: ERF_InitTurbPert.cpp:32
bool use_gravity
Definition: ERF_DataStruct.H:886

◆ init_stuff()

void ERF::init_stuff ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm,
amrex::Vector< amrex::MultiFab > &  lev_new,
amrex::Vector< amrex::MultiFab > &  lev_old,
amrex::MultiFab &  tmp_base_state,
std::unique_ptr< amrex::MultiFab > &  tmp_zphys_nd 
)
private
28 {
29  // ********************************************************************************************
30  // Base state holds r_0, pres_0, pi_0, th_0 (in that order)
31  //
32  // Here is where we set 3 ghost cells for the base state!
33  //
34  // ********************************************************************************************
35  tmp_base_state.define(ba,dm,BaseState::num_comps,3);
36  tmp_base_state.setVal(0.);
37 
38  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
39  base_state_new[lev].define(ba,dm,BaseState::num_comps,base_state[lev].nGrowVect());
40  base_state_new[lev].setVal(0.);
41  }
42 
43  // ********************************************************************************************
44  // Allocate terrain arrays
45  // ********************************************************************************************
46 
47  BoxArray ba_nd(ba);
48  ba_nd.surroundingNodes();
49 
50  // NOTE: this is where we actually allocate z_phys_nd -- but here it's called "tmp_zphys_nd"
51  // We need this to be one greater than the ghost cells to handle levels > 0
52 
53  int ngrow = ComputeGhostCells(solverChoice) + 2;
54  tmp_zphys_nd = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
55 
56  z_phys_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
57  init_default_zphys(lev, geom[lev], *tmp_zphys_nd, *z_phys_cc[lev]);
58 
59  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh)
60  {
61  detJ_cc_new[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
62  detJ_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
63 
64  ax_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
65  ay_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
66  az_src[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
67 
68  z_t_rk[lev] = std::make_unique<MultiFab>( convert(ba, IntVect(0,0,1)), dm, 1, 1 );
69 
70  z_phys_nd_new[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
71  z_phys_nd_src[lev] = std::make_unique<MultiFab>(ba_nd,dm,1,IntVect(ngrow,ngrow,ngrow));
72  z_phys_cc_src[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
73  }
74  else
75  {
76  z_phys_nd_new[lev] = nullptr;
77  detJ_cc_new[lev] = nullptr;
78 
79  z_phys_nd_src[lev] = nullptr;
80  z_phys_cc_src[lev] = nullptr;
81  detJ_cc_src[lev] = nullptr;
82 
83  z_t_rk[lev] = nullptr;
84  }
85 
86  if (SolverChoice::terrain_type == TerrainType::ImmersedForcing)
87  {
88  terrain_blanking[lev] = std::make_unique<MultiFab>(ba,dm,1,ngrow);
89  terrain_blanking[lev]->setVal(1.0);
90  }
91 
92  // We use these area arrays regardless of terrain, EB or none of the above
93  detJ_cc[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
94  ax[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(1,0,0)),dm,1,1);
95  ay[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,1,0)),dm,1,1);
96  az[lev] = std::make_unique<MultiFab>(convert(ba,IntVect(0,0,1)),dm,1,1);
97 
98  detJ_cc[lev]->setVal(1.0);
99  ax[lev]->setVal(1.0);
100  ay[lev]->setVal(1.0);
101  az[lev]->setVal(1.0);
102 
103  // ********************************************************************************************
104  // Create wall distance array for RANS modeling
105  // ********************************************************************************************
106  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
107  walldist[lev] = std::make_unique<MultiFab>(ba,dm,1,1);
108  walldist[lev]->setVal(1e23);
109  } else {
110  walldist[lev] = nullptr;
111  }
112 
113  // ********************************************************************************************
114  // These are the persistent containers for the old and new data
115  // ********************************************************************************************
116  int ncomp;
117  if (lev > 0) {
118  ncomp = vars_new[lev-1][Vars::cons].nComp();
119  } else {
120  int n_qstate = micro->Get_Qstate_Size();
121  ncomp = NDRY + NSCALARS + n_qstate;
122  }
123 
124  // ********************************************************************************************
125  // The number of ghost cells for density must be 1 greater than that for velocity
126  // so that we can go back in forth between velocity and momentum on all faces
127  // ********************************************************************************************
128  int ngrow_state = ComputeGhostCells(solverChoice) + 1;
129  int ngrow_vels = ComputeGhostCells(solverChoice);
130 
131  // ********************************************************************************************
132  // New solution data containers
133  // ********************************************************************************************
134  if (solverChoice.terrain_type != TerrainType::EB) {
135  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state);
136  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state);
137  } else {
138  // EB: Define the MultiFabs with the EBFactory
139  lev_new[Vars::cons].define(ba, dm, ncomp, ngrow_state, MFInfo(), EBFactory(lev));
140  lev_old[Vars::cons].define(ba, dm, ncomp, ngrow_state, MFInfo(), EBFactory(lev));
141  }
142  lev_new[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
143  lev_old[Vars::xvel].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
144 
145  lev_new[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
146  lev_old[Vars::yvel].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
147 
148  gradp[lev][GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp[lev][GpVars::gpx].setVal(0.);
149  gradp[lev][GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp[lev][GpVars::gpy].setVal(0.);
150  gradp[lev][GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp[lev][GpVars::gpz].setVal(0.);
151 
152  // Note that we need the ghost cells in the z-direction if we are doing any
153  // kind of domain decomposition in the vertical (at level 0 or above)
154  lev_new[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
155  lev_old[Vars::zvel].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
156 
158  pp_inc[lev].define(ba, dm, 1, 1);
159  pp_inc[lev].setVal(0.0);
160  }
161 
162  // We use this in the fast substepping only
163  if (solverChoice.anelastic[lev] == 0) {
164  lagged_delta_rt[lev].define(ba, dm, 1, 1);
165  lagged_delta_rt[lev].setVal(0.0);
166  }
167 
168  // We use these for advecting the slow variables, whether anelastic or compressible
169  avg_xmom[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, 1);
170  avg_ymom[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, 1);
171  avg_zmom[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, 1);
172  avg_xmom[lev].setVal(0.0); avg_ymom[lev].setVal(0.0); avg_zmom[lev].setVal(0.0);
173 
174  // ********************************************************************************************
175  // These are just used for scratch in the time integrator but we might as well define them here
176  // ********************************************************************************************
177  if (solverChoice.terrain_type != TerrainType::EB) {
178  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
179  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels);
180 
181  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
182  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels);
183 
184  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
185  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels);
186  } else {
187  // EB: Define the MultiFabs with the EBFactory
188  rU_old[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
189  rU_new[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
190 
191  rV_old[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
192  rV_new[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
193 
194  rW_old[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
195  rW_new[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, ngrow_vels, MFInfo(), EBFactory(lev));
196  }
197 
198  if (lev > 0) {
199  //xmom_crse_rhs[lev].define(convert(ba, IntVect(1,0,0)), dm, 1, IntVect{0});
200  //ymom_crse_rhs[lev].define(convert(ba, IntVect(0,1,0)), dm, 1, IntVect{0});
201  zmom_crse_rhs[lev].define(convert(ba, IntVect(0,0,1)), dm, 1, IntVect{0});
202  }
203 
204  // We do this here just so they won't be undefined in the initial FillPatch
205  rU_old[lev].setVal(1.2e21);
206  rV_old[lev].setVal(3.4e22);
207  rW_old[lev].setVal(5.6e23);
208  rU_new[lev].setVal(1.2e21);
209  rV_new[lev].setVal(3.4e22);
210  rW_new[lev].setVal(5.6e23);
211 
212  // ********************************************************************************************
213  // These are just time averaged fields for diagnostics
214  // ********************************************************************************************
215 
216  // NOTE: We are not completing a fillpach call on the time averaged data;
217  // which would copy on intersection and interpolate from coarse.
218  // Therefore, we are restarting the averaging when the ba changes,
219  // this may give poor statistics for dynamic mesh refinement.
220  vel_t_avg[lev] = nullptr;
222  vel_t_avg[lev] = std::make_unique<MultiFab>(ba, dm, 4, 0); // Each vel comp and the mag
223  vel_t_avg[lev]->setVal(0.0);
224  t_avg_cnt[lev] = 0.0;
225  }
226 
227  // ********************************************************************************************
228  // Initialize flux registers whenever we create/re-create a level
229  // ********************************************************************************************
230  if (solverChoice.coupling_type == CouplingType::TwoWay) {
231  if (lev == 0) {
232  advflux_reg[0] = nullptr;
233  } else {
234  int ncomp_reflux = vars_new[0][Vars::cons].nComp();
235  advflux_reg[lev] = new YAFluxRegister(ba , grids[lev-1],
236  dm , dmap[lev-1],
237  geom[lev], geom[lev-1],
238  ref_ratio[lev-1], lev, ncomp_reflux);
239  }
240  }
241 
242  // ********************************************************************************************
243  // Define Theta_prim storage if using surface_layer BC
244  // ********************************************************************************************
245  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
246  Theta_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
247  if (solverChoice.moisture_type != MoistureType::None) {
248  Qv_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
249  Qr_prim[lev] = std::make_unique<MultiFab>(ba,dm,1,IntVect(ngrow_state,ngrow_state,1));
250  } else {
251  Qv_prim[lev] = nullptr;
252  Qr_prim[lev] = nullptr;
253  }
254  } else {
255  Theta_prim[lev] = nullptr;
256  Qv_prim[lev] = nullptr;
257  Qr_prim[lev] = nullptr;
258  }
259 
260  // ********************************************************************************************
261  // Map factors
262  // ********************************************************************************************
263  BoxList bl2d_mf = ba.boxList();
264  for (auto& b : bl2d_mf) {
265  b.setRange(2,0);
266  }
267  BoxArray ba2d_mf(std::move(bl2d_mf));
268 
269  mapfac[lev].resize(MapFacType::num);
270  mapfac[lev][MapFacType::m_x] = std::make_unique<MultiFab>(ba2d_mf,dm,1,3);
271  mapfac[lev][MapFacType::u_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,3);
272  mapfac[lev][MapFacType::v_x] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,3);
273 
274 #if 0
275  // For now we comment this out to avoid CI failures but we will need to re-enable
276  // this if using non-conformal mappings
278  mapfac[lev][MapFacType::m_y] = std::make_unique<MultiFab>(ba2d_mf,dm,1,3);
279  }
281  mapfac[lev][MapFacType::u_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(1,0,0)),dm,1,3);
282  }
284  mapfac[lev][MapFacType::v_y] = std::make_unique<MultiFab>(convert(ba2d_mf,IntVect(0,1,0)),dm,1,3);
285  }
286 #endif
287 
289  for (int i = 0; i < 3; i++) {
290  mapfac[lev][i]->setVal(0.5);
291  }
292  for (int i = 3; i < mapfac[lev].size(); i++) {
293  mapfac[lev][i]->setVal(0.25);
294  }
295  } else {
296  for (int i = 0; i < mapfac[lev].size(); i++) {
297  mapfac[lev][i]->setVal(1.0);
298  }
299  }
300 
301  // ********************************************************************************************
302  // Build 1D BA and 2D BA
303  // ********************************************************************************************
304  BoxList bl1d = ba.boxList();
305  for (auto& b : bl1d) {
306  b.setRange(0,0);
307  b.setRange(1,0);
308  }
309  ba1d[lev] = BoxArray(std::move(bl1d));
310 
311  // Build 2D BA
312  BoxList bl2d = ba.boxList();
313  for (auto& b : bl2d) {
314  b.setRange(2,0);
315  }
316  ba2d[lev] = BoxArray(std::move(bl2d));
317 
318  IntVect ng = vars_new[lev][Vars::cons].nGrowVect();
319 
320  if (lev == 0) {
321  mf_C1H = std::make_unique<MultiFab>(ba1d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
322  mf_C2H = std::make_unique<MultiFab>(ba1d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
323  mf_MUB = std::make_unique<MultiFab>(ba2d[lev],dm,1,IntVect(ng[0],ng[1],ng[2]));
324  }
325 
326  mf_PSFC[lev] = std::make_unique<MultiFab>(ba2d[lev],dm,1,ng);
327 
328  //*********************************************************
329  // Variables for Fitch model for windfarm parametrization
330  //*********************************************************
331 #if defined(ERF_USE_WINDFARM)
332  if (solverChoice.windfarm_type == WindFarmType::Fitch){
333  vars_windfarm[lev].define(ba, dm, 5, ngrow_state); // V, dVabsdt, dudt, dvdt, dTKEdt
334  }
335  if (solverChoice.windfarm_type == WindFarmType::EWP){
336  vars_windfarm[lev].define(ba, dm, 3, ngrow_state); // dudt, dvdt, dTKEdt
337  }
338  if (solverChoice.windfarm_type == WindFarmType::SimpleAD) {
339  vars_windfarm[lev].define(ba, dm, 2, ngrow_state);// dudt, dvdt
340  }
341  if (solverChoice.windfarm_type == WindFarmType::GeneralAD) {
342  vars_windfarm[lev].define(ba, dm, 3, ngrow_state);// dudt, dvdt, dwdt
343  }
344  Nturb[lev].define(ba, dm, 1, ngrow_state); // Number of turbines in a cell
345  SMark[lev].define(ba, dm, 2, 1); // Free stream velocity/source term
346  // sampling marker in a cell - 2 components
347 #endif
348 
349 
350 #ifdef ERF_USE_WW3_COUPLING
351  // create a new BoxArray and DistributionMapping for a MultiFab with 1 box
352  BoxArray ba_onegrid(geom[lev].Domain());
353  BoxList bl2d_onegrid = ba_onegrid.boxList();
354  for (auto& b : bl2d_onegrid) {
355  b.setRange(2,0);
356  }
357  BoxArray ba2d_onegrid(std::move(bl2d_onegrid));
358  Vector<int> pmap;
359  pmap.resize(1);
360  pmap[0]=0;
361  DistributionMapping dm_onegrid(ba2d_onegrid);
362  dm_onegrid.define(pmap);
363 
364  Hwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
365  Lwave_onegrid[lev] = std::make_unique<MultiFab>(ba2d_onegrid,dm_onegrid,1,IntVect(1,1,0));
366 
367  BoxList bl2d_wave = ba.boxList();
368  for (auto& b : bl2d_wave) {
369  b.setRange(2,0);
370  }
371  BoxArray ba2d_wave(std::move(bl2d_wave));
372 
373  Hwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
374  Lwave[lev] = std::make_unique<MultiFab>(ba2d_wave,dm,1,IntVect(3,3,0));
375 
376  std::cout<<ba_onegrid<<std::endl;
377  std::cout<<ba2d_onegrid<<std::endl;
378  std::cout<<dm_onegrid<<std::endl;
379 #endif
380 
381 
382  //*********************************************************
383  // Radiation heating source terms
384  //*********************************************************
385  if (solverChoice.rad_type != RadiationType::None || solverChoice.lsm_type != LandSurfaceType::None)
386  {
387  qheating_rates[lev] = std::make_unique<MultiFab>(ba, dm, 2, ngrow_state);
388  qheating_rates[lev]->setVal(0.);
389  }
390 
391  //*********************************************************
392  // Radiation fluxes for coupling to LSM
393  //*********************************************************
394 
395  // NOTE: Finer levels do not need to coincide with the bottom domain boundary
396  // at k=0. We make slabs here with the kmin for a given box. Therefore,
397  // care must be taken before applying these fluxes to an LSM model. For
398 
399  // Radiative fluxes for LSM
400  if (solverChoice.lsm_type != LandSurfaceType::None &&
401  solverChoice.rad_type != RadiationType::None)
402  {
403  BoxList m_bl = ba.boxList();
404  for (auto& b : m_bl) {
405  int kmin = b.smallEnd(2);
406  b.setRange(2,kmin);
407  }
408  BoxArray m_ba(std::move(m_bl));
409 
410  sw_lw_fluxes[lev] = std::make_unique<MultiFab>(m_ba, dm, 6, ngrow_state); // DIR/DIF VIS/NIR (4), NET SW (1), LW (1)
411  solar_zenith[lev] = std::make_unique<MultiFab>(m_ba, dm, 1, ngrow_state);
412 
413  sw_lw_fluxes[lev]->setVal(0.);
414  solar_zenith[lev]->setVal(0.);
415  }
416 
417  //*********************************************************
418  // Turbulent perturbation region initialization
419  //*********************************************************
420  if (solverChoice.pert_type == PerturbationType::Source ||
421  solverChoice.pert_type == PerturbationType::Direct ||
422  solverChoice.pert_type == PerturbationType::CPM)
423  {
424  amrex::Box bnd_bx = ba.minimalBox();
426  turbPert.init_tpi(lev, bnd_bx.smallEnd(), bnd_bx.bigEnd(), geom[lev].CellSizeArray(),
427  ba, dm, ngrow_state, pp_prefix, refRatio(), max_level);
428  }
429 
430  //
431  // Define the land mask here and set it to all land by default
432  // NOTE: the logic below will BREAK if we have any grids not touching the bottom boundary
433  //
434  {
435  lmask_lev[lev].resize(1);
436  auto ngv = lev_new[Vars::cons].nGrowVect(); ngv[2] = 0;
437  BoxList bl2d_mask = ba.boxList();
438  for (auto& b : bl2d_mask) {
439  b.setRange(2,0);
440  }
441  BoxArray ba2d_mask(std::move(bl2d_mask));
442  lmask_lev[lev][0] = std::make_unique<iMultiFab>(ba2d_mask,dm,1,ngv);
443  lmask_lev[lev][0]->setVal(1);
444  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
445  }
446 
447  // Read in tables needed for windfarm simulations
448  // fill in Nturb multifab - number of turbines in each mesh cell
449  // write out the vtk files for wind turbine location and/or
450  // actuator disks
451  #ifdef ERF_USE_WINDFARM
452  //init_windfarm(lev);
453  #endif
454 }
@ num
Definition: ERF_DataStruct.H:22
#define NDRY
Definition: ERF_IndexDefines.H:13
void init_default_zphys(int, const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:15
static AMREX_FORCE_INLINE int ComputeGhostCells(const SolverChoice &sc)
Definition: ERF.H:1318
amrex::EBFArrayBoxFactory const & EBFactory(int lev) const noexcept
Definition: ERF.H:1597
@ num_comps
Definition: ERF_IndexDefines.H:68
@ gpz
Definition: ERF_IndexDefines.H:152
@ gpy
Definition: ERF_IndexDefines.H:151
@ gpx
Definition: ERF_IndexDefines.H:150
bool test_mapfactor
Definition: ERF_DataStruct.H:879
void init_tpi_type(const PerturbationType &pert_type)
Definition: ERF_TurbPertStruct.H:28
void init_tpi(const int lev, const amrex::IntVect &valid_box_lo, const amrex::IntVect &valid_box_hi, const amrex::GpuArray< amrex::Real, 3 > dx, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, const int ngrow_state, std::string pp_prefix, const amrex::Vector< amrex::IntVect > refRatio, const int max_level)
Definition: ERF_TurbPertStruct.H:45
Here is the call graph for this function:

◆ init_thin_body()

void ERF::init_thin_body ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
723 {
724  //********************************************************************************************
725  // Thin immersed body
726  // *******************************************************************************************
727 #if 0
728  if ((solverChoice.advChoice.zero_xflux.size() > 0) ||
729  (solverChoice.advChoice.zero_yflux.size() > 0) ||
730  (solverChoice.advChoice.zero_zflux.size() > 0))
731  {
732  overset_imask[lev] = std::make_unique<iMultiFab>(ba,dm,1,0);
733  overset_imask[lev]->setVal(1); // == value is unknown (to be solved)
734  }
735 #endif
736 
737  if (solverChoice.advChoice.zero_xflux.size() > 0) {
738  amrex::Print() << "Setting up thin immersed body for "
739  << solverChoice.advChoice.zero_xflux.size() << " xfaces" << std::endl;
740  BoxArray ba_xf(ba);
741  ba_xf.surroundingNodes(0);
742  thin_xforce[lev] = std::make_unique<MultiFab>(ba_xf,dm,1,0);
743  thin_xforce[lev]->setVal(0.0);
744  xflux_imask[lev] = std::make_unique<iMultiFab>(ba_xf,dm,1,0);
745  xflux_imask[lev]->setVal(1);
746  for ( MFIter mfi(*xflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
747  {
748  Array4<int> const& imask_arr = xflux_imask[lev]->array(mfi);
749  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
750  Box xbx = mfi.nodaltilebox(0);
751  for (int iv=0; iv < solverChoice.advChoice.zero_xflux.size(); ++iv) {
752  const auto& faceidx = solverChoice.advChoice.zero_xflux[iv];
753  if ((faceidx[0] >= xbx.smallEnd(0)) && (faceidx[0] <= xbx.bigEnd(0)) &&
754  (faceidx[1] >= xbx.smallEnd(1)) && (faceidx[1] <= xbx.bigEnd(1)) &&
755  (faceidx[2] >= xbx.smallEnd(2)) && (faceidx[2] <= xbx.bigEnd(2)))
756  {
757  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
758  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
759  //imask_cell_arr(faceidx[0]-1,faceidx[1],faceidx[2]) = 0;
760  amrex::AllPrint() << " mask xface at " << faceidx << std::endl;
761  }
762  }
763  }
764  } else {
765  thin_xforce[lev] = nullptr;
766  xflux_imask[lev] = nullptr;
767  }
768 
769  if (solverChoice.advChoice.zero_yflux.size() > 0) {
770  amrex::Print() << "Setting up thin immersed body for "
771  << solverChoice.advChoice.zero_yflux.size() << " yfaces" << std::endl;
772  BoxArray ba_yf(ba);
773  ba_yf.surroundingNodes(1);
774  thin_yforce[lev] = std::make_unique<MultiFab>(ba_yf,dm,1,0);
775  thin_yforce[lev]->setVal(0.0);
776  yflux_imask[lev] = std::make_unique<iMultiFab>(ba_yf,dm,1,0);
777  yflux_imask[lev]->setVal(1);
778  for ( MFIter mfi(*yflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
779  {
780  Array4<int> const& imask_arr = yflux_imask[lev]->array(mfi);
781  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
782  Box ybx = mfi.nodaltilebox(1);
783  for (int iv=0; iv < solverChoice.advChoice.zero_yflux.size(); ++iv) {
784  const auto& faceidx = solverChoice.advChoice.zero_yflux[iv];
785  if ((faceidx[0] >= ybx.smallEnd(0)) && (faceidx[0] <= ybx.bigEnd(0)) &&
786  (faceidx[1] >= ybx.smallEnd(1)) && (faceidx[1] <= ybx.bigEnd(1)) &&
787  (faceidx[2] >= ybx.smallEnd(2)) && (faceidx[2] <= ybx.bigEnd(2)))
788  {
789  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
790  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
791  //imask_cell_arr(faceidx[0],faceidx[1]-1,faceidx[2]) = 0;
792  amrex::AllPrint() << " mask yface at " << faceidx << std::endl;
793  }
794  }
795  }
796  } else {
797  thin_yforce[lev] = nullptr;
798  yflux_imask[lev] = nullptr;
799  }
800 
801  if (solverChoice.advChoice.zero_zflux.size() > 0) {
802  amrex::Print() << "Setting up thin immersed body for "
803  << solverChoice.advChoice.zero_zflux.size() << " zfaces" << std::endl;
804  BoxArray ba_zf(ba);
805  ba_zf.surroundingNodes(2);
806  thin_zforce[lev] = std::make_unique<MultiFab>(ba_zf,dm,1,0);
807  thin_zforce[lev]->setVal(0.0);
808  zflux_imask[lev] = std::make_unique<iMultiFab>(ba_zf,dm,1,0);
809  zflux_imask[lev]->setVal(1);
810  for ( MFIter mfi(*zflux_imask[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi )
811  {
812  Array4<int> const& imask_arr = zflux_imask[lev]->array(mfi);
813  //Array4<int> const& imask_cell_arr = overset_imask[lev]->array(mfi);
814  Box zbx = mfi.nodaltilebox(2);
815  for (int iv=0; iv < solverChoice.advChoice.zero_zflux.size(); ++iv) {
816  const auto& faceidx = solverChoice.advChoice.zero_zflux[iv];
817  if ((faceidx[0] >= zbx.smallEnd(0)) && (faceidx[0] <= zbx.bigEnd(0)) &&
818  (faceidx[1] >= zbx.smallEnd(1)) && (faceidx[1] <= zbx.bigEnd(1)) &&
819  (faceidx[2] >= zbx.smallEnd(2)) && (faceidx[2] <= zbx.bigEnd(2)))
820  {
821  imask_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
822  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]) = 0;
823  //imask_cell_arr(faceidx[0],faceidx[1],faceidx[2]-1) = 0;
824  amrex::AllPrint() << " mask zface at " << faceidx << std::endl;
825  }
826  }
827  }
828  } else {
829  thin_zforce[lev] = nullptr;
830  zflux_imask[lev] = nullptr;
831  }
832 }
amrex::Vector< amrex::IntVect > zero_yflux
Definition: ERF_AdvStruct.H:438
amrex::Vector< amrex::IntVect > zero_xflux
Definition: ERF_AdvStruct.H:437
amrex::Vector< amrex::IntVect > zero_zflux
Definition: ERF_AdvStruct.H:439

◆ init_uniform()

void ERF::init_uniform ( int  lev)
private

Use problem-specific reference density and temperature to set the background state to a uniform value.

Parameters
levInteger specifying the current level
18 {
19  auto& lev_new = vars_new[lev];
20  for (MFIter mfi(lev_new[Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
21  const Box &gbx = mfi.growntilebox(1);
22  const auto &cons_arr = lev_new[Vars::cons].array(mfi);
23  prob->init_uniform(gbx, cons_arr);
24  }
25 }

◆ init_zphys()

void ERF::init_zphys ( int  lev,
amrex::Real  time 
)
554 {
555  if (solverChoice.init_type != InitType::WRFInput && solverChoice.init_type != InitType::Metgrid)
556  {
557  if (lev > 0) {
558  //
559  // First interpolate from coarser level if there is one
560  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
561  // have been pre-filled - this includes ghost cells both inside and outside
562  // the domain
563  //
564  InterpFromCoarseLevel(*z_phys_nd[lev], z_phys_nd[lev]->nGrowVect(),
565  IntVect(0,0,0), // do not fill ghost cells outside the domain
566  *z_phys_nd[lev-1], 0, 0, 1,
567  geom[lev-1], geom[lev],
568  refRatio(lev-1), &node_bilinear_interp,
570  }
571 
572  int ngrow = ComputeGhostCells(solverChoice) + 2;
573  Box bx(surroundingNodes(Geom(lev).Domain())); bx.grow(ngrow);
574  FArrayBox terrain_fab(makeSlab(bx,2,0),1);
575 
576  //
577  // If we are using fitted mesh then we use the surface as defined above
578  // If we are not using fitted mesh but are using z_levels, we still need z_phys (for now)
579  // but we need to use a flat terrain for the mesh itself (the EB data has already been made
580  // from the correct terrain)
581  //
582  if (solverChoice.terrain_type != TerrainType::StaticFittedMesh &&
583  solverChoice.terrain_type != TerrainType::MovingFittedMesh) {
584  terrain_fab.template setVal<RunOn::Device>(0.0);
585  } else {
586  //
587  // Fill the values of the terrain height at k=0 only
588  //
589  prob->init_terrain_surface(geom[lev],terrain_fab,time);
590  }
591 
592  for (MFIter mfi(*z_phys_nd[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
593  {
594  Box isect = terrain_fab.box() & (*z_phys_nd[lev])[mfi].box();
595  if (!isect.isEmpty()) {
596  (*z_phys_nd[lev])[mfi].template copy<RunOn::Device>(terrain_fab,isect,0,isect,0,1);
597  }
598  }
599 
601 
602  z_phys_nd[lev]->FillBoundary(geom[lev].periodicity());
603 
604  if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
605  terrain_blanking[lev]->setVal(1.0);
606  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ngrow);
607  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
608  }
609 
610  if (lev == 0) {
611  Real zmax = z_phys_nd[0]->max(0,0,false);
612  Real rel_diff = (zmax - zlevels_stag[0][zlevels_stag[0].size()-1]) / zmax;
613  if (rel_diff < 1.e-8) {
614  amrex::Print() << "max of zphys_nd " << zmax << std::endl;
615  amrex::Print() << "max of zlevels " << zlevels_stag[0][zlevels_stag[0].size()-1] << std::endl;
616  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(rel_diff < 1.e-8, "Terrain is taller than domain top!");
617  }
618  } // lev == 0
619 
620  } // init_type
621 }
void make_terrain_fitted_coords(int lev, const Geometry &geom, MultiFab &z_phys_nd, Vector< Real > const &z_levels_h, GpuArray< ERF_BC, AMREX_SPACEDIM *2 > &phys_bc_type)
Definition: ERF_TerrainMetrics.cpp:46
Here is the call graph for this function:

◆ InitData()

void ERF::InitData ( )
876 {
877  BL_PROFILE_VAR("ERF::InitData()", InitData);
878  InitData_pre();
879  InitData_post();
880  BL_PROFILE_VAR_STOP(InitData);
881 }
void InitData_pre()
Definition: ERF.cpp:884
void InitData_post()
Definition: ERF.cpp:949
void InitData()
Definition: ERF.cpp:875

Referenced by main().

Here is the caller graph for this function:

◆ InitData_post()

void ERF::InitData_post ( )
950 {
952  {
953  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(finest_level == 0,
954  "Thin immersed body with refinement not currently supported.");
955  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
956  amrex::Print() << "NOTE: Thin immersed body with non-constant dz has not been tested." << std::endl;
957  }
958  }
959 
960  if (!restart_chkfile.empty()) {
961  restart();
962  }
963 
964  //
965  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
966  //
967  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
968  for (int crse_lev = finest_level-1; crse_lev >= 0; crse_lev--) {
969  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
970  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
971  detJ_cc[crse_lev]->FillBoundary(geom[crse_lev].periodicity());
972  z_phys_cc[crse_lev]->FillBoundary(geom[crse_lev].periodicity());
973  }
974  }
975 
976  //
977  // Copy vars_new into vars_old, then use vars_old to fill covered cells in vars_new during AverageDown
978  //
979  if (SolverChoice::terrain_type == TerrainType::EB) {
980  for (int lev = 0; lev <= finest_level; lev++) {
981  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
982  MultiFab::Copy(vars_old[lev][Vars::cons],vars_new[lev][Vars::cons],0,0,ncomp_cons,vars_new[lev][Vars::cons].nGrowVect());
983  }
984  }
985 
986  if (restart_chkfile.empty()) {
987  if (solverChoice.coupling_type == CouplingType::TwoWay) {
988  AverageDown();
989  }
990  }
991 
992 #ifdef ERF_USE_PARTICLES
993  if (restart_chkfile.empty()) {
994  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
996  Warning("Tight coupling has not been tested with Lagrangian microphysics");
997  }
998 
999  for (int lev = 0; lev <= finest_level; lev++) {
1000  dynamic_cast<LagrangianMicrophysics&>(*micro).initParticles(z_phys_nd[lev]);
1001  }
1002  }
1003  }
1004 #endif
1005 
1006  if (!restart_chkfile.empty()) { // Restart from a checkpoint
1007 
1008  // Create the physbc objects for {cons, u, v, w, base state}
1009  // We fill the additional base state ghost cells just in case we have read the old format
1010  for (int lev(0); lev <= finest_level; ++lev) {
1011  make_physbcs(lev);
1012  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
1013  }
1014 
1016  for (int lev(0); lev <= finest_level; ++lev) {
1017  m_forest_drag[lev]->define_drag_field(grids[lev], dmap[lev], geom[lev],
1018  z_phys_cc[lev].get(), z_phys_nd[lev].get());
1019  }
1020  }
1021 
1022 #ifdef ERF_USE_NETCDF
1023  //
1024  // Create the needed bdy_data_xlo etc ... since we don't read it in from checkpoint any more
1025  // This follows init_from_wrfinput()
1026  //
1027  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
1028  if (solverChoice.use_real_bcs) {
1029 
1030  bdy_time_interval = read_times_from_wrfbdy(nc_bdy_file,
1031  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
1032  start_bdy_time);
1033  Real dT = bdy_time_interval;
1034 
1035  int n_time_old = static_cast<int>(t_new[0] / dT);
1036 
1037  int lev = 0;
1038 
1039  int ntimes = std::min(n_time_old+3, static_cast<int>(bdy_data_xlo.size()));
1040 
1041  for (int itime = n_time_old; itime < ntimes; itime++)
1042  {
1043  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
1044  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
1045  real_width);
1046  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
1047  *mf_MUB, *mf_C1H, *mf_C2H,
1049  geom[lev], use_moist);
1050  } // itime
1051  } // use_real_bcs
1052 
1053  if (!nc_low_file.empty())
1054  {
1055  low_time_interval = read_times_from_wrflow(nc_low_file,
1056  low_data_zlo,
1057  start_low_time);
1058  Real dT = low_time_interval;
1059 
1060  int lev = 0;
1061  sst_lev[lev].resize(low_data_zlo.size());
1062  tsk_lev[lev].resize(low_data_zlo.size());
1063 
1064  int n_time_old = static_cast<int>(t_new[0] / dT);
1065 
1066  int ntimes = std::min(n_time_old+2, static_cast<int>(low_data_zlo.size()));
1067 
1068  for (int itime = n_time_old; itime < ntimes; itime++)
1069  {
1070  read_from_wrflow(itime, nc_low_file, geom[lev].Domain(), low_data_zlo);
1071 
1072  // Need to read PSFC
1073  FArrayBox NC_fab_var_file;
1074  for (int idx = 0; idx < num_boxes_at_level[lev]; idx++) {
1075  int success, use_theta_m;
1076  read_from_wrfinput(lev, boxes_at_level[lev][idx], nc_init_file[lev][0],
1077  NC_fab_var_file, "PSFC", geom[lev],
1078  use_theta_m, success);
1079  auto& var_fab = NC_fab_var_file;
1080 #ifdef _OPENMP
1081 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1082 #endif
1083  for ( MFIter mfi(*mf_PSFC[lev], false); mfi.isValid(); ++mfi )
1084  {
1085  FArrayBox &cur_fab = (*mf_PSFC[lev])[mfi];
1086  cur_fab.template copy<RunOn::Device>(var_fab, 0, 0, 1);
1087  }
1088  var_fab.clear();
1089  }
1090 
1091  update_sst_tsk(itime, geom[lev], ba2d[lev],
1092  sst_lev[lev], tsk_lev[lev],
1093  m_SurfaceLayer, low_data_zlo,
1094  vars_new[lev][Vars::cons], *mf_PSFC[lev],
1095  solverChoice.rdOcp, use_moist);
1096  } // itime
1097  }
1098 #endif
1099  } // end restart
1100 
1101 #ifdef ERF_USE_PARTICLES
1102  /* If using a Lagrangian microphysics model, its particle container has now been
1103  constructed and initialized (calls to micro->Init). So, add its pointer to
1104  ERF::particleData and remove its name from list of unallocated particle containers. */
1105  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1106  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1107  const auto& pc_ptr( dynamic_cast<LagrangianMicrophysics&>(*micro).getParticleContainer() );
1108  particleData.pushBack(pc_name, pc_ptr);
1109  particleData.getNamesUnalloc().remove(pc_name);
1110  }
1111 #endif
1112 
1113  if (input_bndry_planes) {
1114  // Read the "time.dat" file to know what data is available
1115  m_r2d->read_time_file();
1116 
1117  // We haven't populated dt yet, set to 0 to ensure assert doesn't crash
1118  Real dt_dummy = 0.0;
1119  m_r2d->read_input_files(t_new[0],dt_dummy,m_bc_extdir_vals);
1120  }
1121 
1123  {
1124  h_rhotheta_src.resize(max_level+1, Vector<Real>(0));
1125  d_rhotheta_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1126  for (int lev = 0; lev <= finest_level; lev++) {
1127  const int domlen = geom[lev].Domain().length(2);
1128  h_rhotheta_src[lev].resize(domlen, 0.0_rt);
1129  d_rhotheta_src[lev].resize(domlen, 0.0_rt);
1130  prob->update_rhotheta_sources(t_new[0],
1131  h_rhotheta_src[lev], d_rhotheta_src[lev],
1132  geom[lev], z_phys_cc[lev]);
1133  }
1134  }
1135 
1137  {
1138  h_u_geos.resize(max_level+1, Vector<Real>(0));
1139  d_u_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1140  h_v_geos.resize(max_level+1, Vector<Real>(0));
1141  d_v_geos.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1142  for (int lev = 0; lev <= finest_level; lev++) {
1143  const int domlen = geom[lev].Domain().length(2);
1144  h_u_geos[lev].resize(domlen, 0.0_rt);
1145  d_u_geos[lev].resize(domlen, 0.0_rt);
1146  h_v_geos[lev].resize(domlen, 0.0_rt);
1147  d_v_geos[lev].resize(domlen, 0.0_rt);
1149  prob->update_geostrophic_profile(t_new[0],
1150  h_u_geos[lev], d_u_geos[lev],
1151  h_v_geos[lev], d_v_geos[lev],
1152  geom[lev], z_phys_cc[lev]);
1153  } else {
1154  if (SolverChoice::mesh_type == MeshType::VariableDz) {
1155  amrex::Print() << "Note: 1-D geostrophic wind profile input is not defined for real terrain" << std::endl;
1156  }
1158  h_u_geos[lev], d_u_geos[lev],
1159  h_v_geos[lev], d_v_geos[lev],
1160  geom[lev],
1161  zlevels_stag[0]);
1162  }
1163  }
1164  }
1165 
1167  {
1168  h_rhoqt_src.resize(max_level+1, Vector<Real>(0));
1169  d_rhoqt_src.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1170  for (int lev = 0; lev <= finest_level; lev++) {
1171  const int domlen = geom[lev].Domain().length(2);
1172  h_rhoqt_src[lev].resize(domlen, 0.0_rt);
1173  d_rhoqt_src[lev].resize(domlen, 0.0_rt);
1174  prob->update_rhoqt_sources(t_new[0],
1175  h_rhoqt_src[lev], d_rhoqt_src[lev],
1176  geom[lev], z_phys_cc[lev]);
1177  }
1178  }
1179 
1181  {
1182  h_w_subsid.resize(max_level+1, Vector<Real>(0));
1183  d_w_subsid.resize(max_level+1, Gpu::DeviceVector<Real>(0));
1184  for (int lev = 0; lev <= finest_level; lev++) {
1185  const int domlen = geom[lev].Domain().length(2) + 1; // lives on z-faces
1186  h_w_subsid[lev].resize(domlen, 0.0_rt);
1187  d_w_subsid[lev].resize(domlen, 0.0_rt);
1188  prob->update_w_subsidence(t_new[0],
1189  h_w_subsid[lev], d_w_subsid[lev],
1190  geom[lev], z_phys_nd[lev]);
1191  }
1192  }
1193 
1196  {
1197  initRayleigh();
1198  if (solverChoice.init_type == InitType::Input_Sounding)
1199  {
1200  // Overwrite ubar, vbar, and thetabar with input profiles;
1201  // wbar is assumed to be 0. Note: the tau coefficient set by
1202  // prob->erf_init_rayleigh() is still used
1203  bool restarting = (!restart_chkfile.empty());
1204  setRayleighRefFromSounding(restarting);
1205  }
1206  }
1207 
1208  // Read in sponge data from input file
1209  if(solverChoice.spongeChoice.sponge_type == "input_sponge")
1210  {
1211  initSponge();
1212  bool restarting = (!restart_chkfile.empty());
1213  setSpongeRefFromSounding(restarting);
1214  }
1215 
1216  if (solverChoice.pert_type == PerturbationType::Source ||
1217  solverChoice.pert_type == PerturbationType::Direct ||
1218  solverChoice.pert_type == PerturbationType::CPM) {
1219  if (is_it_time_for_action(istep[0], t_new[0], dt[0], pert_interval, -1.)) {
1220  turbPert.debug(t_new[0]);
1221  }
1222  }
1223 
1224  // We only write the file at level 0 for now
1225  if (output_bndry_planes)
1226  {
1227  // Create the WriteBndryPlanes object so we can handle writing of boundary plane data
1228  m_w2d = std::make_unique<WriteBndryPlanes>(grids,geom);
1229 
1230  Real time = 0.;
1231  if (time >= bndry_output_planes_start_time) {
1232  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
1233  m_w2d->write_planes(0, time, vars_new, is_moist);
1234  }
1235  }
1236 
1237  //
1238  // If we are starting from scratch, we have the option to project the initial velocity field
1239  // regardless of how we initialized.
1240  // pp_inc is used as scratch space here; we zero it out after the projection
1241  //
1242  if (restart_chkfile == "")
1243  {
1245  Real dummy_dt = 1.0;
1246  if (verbose > 0) {
1247  amrex::Print() << "Projecting initial velocity field" << std::endl;
1248  }
1249  for (int lev = 0; lev <= finest_level; ++lev)
1250  {
1251  project_velocity(lev, dummy_dt);
1252  pp_inc[lev].setVal(0.);
1253  gradp[lev][GpVars::gpx].setVal(0.);
1254  gradp[lev][GpVars::gpy].setVal(0.);
1255  gradp[lev][GpVars::gpz].setVal(0.);
1256  }
1257  }
1258  }
1259 
1260  // Copy from new into old just in case
1261  for (int lev = 0; lev <= finest_level; ++lev)
1262  {
1263  auto& lev_new = vars_new[lev];
1264  auto& lev_old = vars_old[lev];
1265 
1266  // ***************************************************************************
1267  // Physical bc's at domain boundary
1268  // ***************************************************************************
1269  IntVect ngvect_cons = vars_new[lev][Vars::cons].nGrowVect();
1270  IntVect ngvect_vels = vars_new[lev][Vars::xvel].nGrowVect();
1271 
1272  int ncomp_cons = lev_new[Vars::cons].nComp();
1273  bool do_fb = true;
1274 
1275 #ifdef ERF_USE_NETCDF
1276  // We call this here because it is an ERF routine
1277  if (solverChoice.use_real_bcs && (lev==0)) {
1278  int icomp_cons = 0;
1279  bool cons_only = false;
1280  Vector<MultiFab*> mfs_vec = {&lev_new[Vars::cons],&lev_new[Vars::xvel],
1281  &lev_new[Vars::yvel],&lev_new[Vars::zvel]};
1283  fill_from_realbdy_upwind(mfs_vec,t_new[lev],cons_only,icomp_cons,
1284  ncomp_cons,ngvect_cons,ngvect_vels);
1285  } else {
1286  fill_from_realbdy(mfs_vec,t_new[lev],cons_only,icomp_cons,
1287  ncomp_cons,ngvect_cons,ngvect_vels);
1288  }
1289  do_fb = false;
1290  }
1291 #endif
1292 
1293  (*physbcs_cons[lev])(lev_new[Vars::cons],lev_new[Vars::xvel],lev_new[Vars::yvel],0,ncomp_cons,
1294  ngvect_cons,t_new[lev],BCVars::cons_bc,do_fb);
1295  ( *physbcs_u[lev])(lev_new[Vars::xvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1296  ngvect_vels,t_new[lev],BCVars::xvel_bc,do_fb);
1297  ( *physbcs_v[lev])(lev_new[Vars::yvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1298  ngvect_vels,t_new[lev],BCVars::yvel_bc,do_fb);
1299  ( *physbcs_w[lev])(lev_new[Vars::zvel],lev_new[Vars::xvel],lev_new[Vars::yvel],
1300  ngvect_vels,t_new[lev],BCVars::zvel_bc,do_fb);
1301 
1302  MultiFab::Copy(lev_old[Vars::cons],lev_new[Vars::cons],0,0,ncomp_cons,lev_new[Vars::cons].nGrowVect());
1303  MultiFab::Copy(lev_old[Vars::xvel],lev_new[Vars::xvel],0,0, 1,lev_new[Vars::xvel].nGrowVect());
1304  MultiFab::Copy(lev_old[Vars::yvel],lev_new[Vars::yvel],0,0, 1,lev_new[Vars::yvel].nGrowVect());
1305  MultiFab::Copy(lev_old[Vars::zvel],lev_new[Vars::zvel],0,0, 1,lev_new[Vars::zvel].nGrowVect());
1306  }
1307 
1308  // Compute the minimum dz in the domain at each level (to be used for setting the timestep)
1309  dz_min.resize(max_level+1);
1310  for (int lev = 0; lev <= finest_level; ++lev)
1311  {
1312  dz_min[lev] = geom[lev].CellSize(2);
1313  if ( SolverChoice::mesh_type != MeshType::ConstantDz ) {
1314  dz_min[lev] *= (*detJ_cc[lev]).min(0);
1315  }
1316  }
1317 
1318  // We don't need to recompute dt[lev] on restart because we read it in from the checkpoint file.
1319  if (restart_chkfile.empty()) {
1320  ComputeDt();
1321  }
1322 
1323  // Check the viscous limit
1327  Real delta = std::min({geom[finest_level].CellSize(0),
1328  geom[finest_level].CellSize(1),
1329  dz_min[finest_level]});
1330  if (dc.dynamic_viscosity == 0) {
1331  Print() << "Note: Molecular diffusion specified but dynamic_viscosity has not been specified" << std::endl;
1332  } else {
1333  Real nu = dc.dynamic_viscosity / dc.rho0_trans;
1334  Real viscous_limit = 0.5 * delta*delta / nu;
1335  Print() << "Viscous CFL is " << dt[finest_level] / viscous_limit << std::endl;
1336  if (fixed_dt[finest_level] >= viscous_limit) {
1337  Warning("Specified fixed_dt is above the viscous limit");
1338  } else if (dt[finest_level] >= viscous_limit) {
1339  Warning("Adaptive dt based on convective CFL only is above the viscous limit");
1340  }
1341  }
1342  }
1343 
1344  // Fill ghost cells/faces
1345  for (int lev = 0; lev <= finest_level; ++lev)
1346  {
1347  if (lev > 0 && cf_width >= 0) {
1349  }
1350 
1351  auto& lev_new = vars_new[lev];
1352 
1353  //
1354  // Fill boundary conditions -- not sure why we need this here
1355  //
1356  bool fillset = false;
1357  if (lev == 0) {
1358  FillPatchCrseLevel(lev, t_new[lev],
1359  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]});
1360  } else {
1361  FillPatchFineLevel(lev, t_new[lev],
1362  {&lev_new[Vars::cons],&lev_new[Vars::xvel],&lev_new[Vars::yvel],&lev_new[Vars::zvel]},
1363  {&lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
1364  base_state[lev], base_state[lev],
1365  fillset);
1366  }
1367 
1368  //
1369  // We do this here to make sure level (lev-1) boundary conditions are filled
1370  // before we interpolate to level (lev) ghost cells
1371  //
1372  if (lev < finest_level) {
1373  auto& lev_old = vars_old[lev];
1374  MultiFab::Copy(lev_old[Vars::cons],lev_new[Vars::cons],0,0,lev_old[Vars::cons].nComp(),lev_old[Vars::cons].nGrowVect());
1375  MultiFab::Copy(lev_old[Vars::xvel],lev_new[Vars::xvel],0,0,lev_old[Vars::xvel].nComp(),lev_old[Vars::xvel].nGrowVect());
1376  MultiFab::Copy(lev_old[Vars::yvel],lev_new[Vars::yvel],0,0,lev_old[Vars::yvel].nComp(),lev_old[Vars::yvel].nGrowVect());
1377  MultiFab::Copy(lev_old[Vars::zvel],lev_new[Vars::zvel],0,0,lev_old[Vars::zvel].nComp(),lev_old[Vars::zvel].nGrowVect());
1378  }
1379 
1380  //
1381  // We fill the ghost cell values of the base state in case it wasn't done in the initialization
1382  //
1383  base_state[lev].FillBoundary(geom[lev].periodicity());
1384 
1385  // For moving terrain only
1386  if (solverChoice.terrain_type == TerrainType::MovingFittedMesh) {
1387  MultiFab::Copy(base_state_new[lev],base_state[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
1388  base_state_new[lev].FillBoundary(geom[lev].periodicity());
1389  }
1390 
1391  }
1392 
1393  // Allow idealized cases over water, used to set lmask
1394  ParmParse pp("erf");
1395  int is_land;
1396  for (int lev = 0; lev <= finest_level; ++lev)
1397  {
1398  if (pp.query("is_land", is_land, lev)) {
1399  if (is_land == 1) {
1400  amrex::Print() << "Level " << lev << " is land" << std::endl;
1401  } else if (is_land == 0) {
1402  amrex::Print() << "Level " << lev << " is water" << std::endl;
1403  } else {
1404  Error("is_land should be 0 or 1");
1405  }
1406  lmask_lev[lev][0]->setVal(is_land);
1407  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
1408  }
1409  }
1410 
1411  // If lev > 0, we need to fill bc's by interpolation from coarser grid
1412  for (int lev = 1; lev <= finest_level; ++lev)
1413  {
1414  Real time_for_fp = 0.; // This is not actually used
1415  Vector<Real> ftime = {time_for_fp, time_for_fp};
1416  Vector<Real> ctime = {time_for_fp, time_for_fp};
1417  if (lat_m[lev]) {
1418  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1419  Vector<MultiFab*> fmf = {lat_m[lev ].get(), lat_m[lev ].get()};
1420  Vector<MultiFab*> cmf = {lat_m[lev-1].get(), lat_m[lev-1].get()};
1421  IntVect ngv = lat_m[lev]->nGrowVect(); ngv[2] = 0;
1422  Interpolater* mapper = &cell_cons_interp;
1423  FillPatchTwoLevels(*lat_m[lev].get(), ngv, IntVect(0,0,0),
1424  time_for_fp, cmf, ctime, fmf, ftime,
1425  0, 0, 1, geom[lev-1], geom[lev],
1426  refRatio(lev-1), mapper, domain_bcs_type,
1427  BCVars::cons_bc);
1428  }
1429  if (lon_m[lev]) {
1430  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1431  Vector<MultiFab*> fmf = {lon_m[lev ].get(), lon_m[lev ].get()};
1432  Vector<MultiFab*> cmf = {lon_m[lev-1].get(), lon_m[lev-1].get()};
1433  IntVect ngv = lon_m[lev]->nGrowVect(); ngv[2] = 0;
1434  Interpolater* mapper = &cell_cons_interp;
1435  FillPatchTwoLevels(*lon_m[lev].get(), ngv, IntVect(0,0,0),
1436  time_for_fp, cmf, ctime, fmf, ftime,
1437  0, 0, 1, geom[lev-1], geom[lev],
1438  refRatio(lev-1), mapper, domain_bcs_type,
1439  BCVars::cons_bc);
1440  } // lon_m
1441  if (sinPhi_m[lev]) {
1442  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1443  Vector<MultiFab*> fmf = {sinPhi_m[lev ].get(), sinPhi_m[lev ].get()};
1444  Vector<MultiFab*> cmf = {sinPhi_m[lev-1].get(), sinPhi_m[lev-1].get()};
1445  IntVect ngv = sinPhi_m[lev]->nGrowVect(); ngv[2] = 0;
1446  Interpolater* mapper = &cell_cons_interp;
1447  FillPatchTwoLevels(*sinPhi_m[lev].get(), ngv, IntVect(0,0,0),
1448  time_for_fp, cmf, ctime, fmf, ftime,
1449  0, 0, 1, geom[lev-1], geom[lev],
1450  refRatio(lev-1), mapper, domain_bcs_type,
1451  BCVars::cons_bc);
1452  } // sinPhi
1453  if (cosPhi_m[lev]) {
1454  // Call FillPatchTwoLevels which ASSUMES that all ghost cells at lev-1 have already been filled
1455  Vector<MultiFab*> fmf = {cosPhi_m[lev ].get(), cosPhi_m[lev ].get()};
1456  Vector<MultiFab*> cmf = {cosPhi_m[lev-1].get(), cosPhi_m[lev-1].get()};
1457  IntVect ngv = cosPhi_m[lev]->nGrowVect(); ngv[2] = 0;
1458  Interpolater* mapper = &cell_cons_interp;
1459  FillPatchTwoLevels(*cosPhi_m[lev].get(), ngv, IntVect(0,0,0),
1460  time_for_fp, cmf, ctime, fmf, ftime,
1461  0, 0, 1, geom[lev-1], geom[lev],
1462  refRatio(lev-1), mapper, domain_bcs_type,
1463  BCVars::cons_bc);
1464  } // cosPhi
1465  } // lev
1466 
1467 #ifdef ERF_USE_WW3_COUPLING
1468  int my_lev = 0;
1469  amrex::Print() << " About to call send_to_ww3 from ERF.cpp" << std::endl;
1470  send_to_ww3(my_lev);
1471  amrex::Print() << " About to call read_waves from ERF.cpp" << std::endl;
1472  read_waves(my_lev);
1473  // send_to_ww3(my_lev);
1474 #endif
1475 
1476  // Configure SurfaceLayer params if used
1477  // NOTE: we must set up the MOST routine after calling FillPatch
1478  // in order to have lateral ghost cells filled (MOST + terrain interp).
1479  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1480  {
1481  bool rotate = solverChoice.use_rotate_surface_flux;
1482  if (rotate) {
1483  Print() << "Using surface layer model with stress rotations" << std::endl;
1484  }
1485 
1486  //
1487  // This constructor will make the ABLMost object but not allocate the arrays at each level.
1488  //
1489  m_SurfaceLayer = std::make_unique<SurfaceLayer>(geom, rotate, pp_prefix, Qv_prim,
1490  z_phys_nd,
1494 #ifdef ERF_USE_NETCDF
1495  , bdy_time_interval
1496 #endif
1497  );
1498  // This call will allocate the arrays at each level. If we regrid later, either changing
1499  // the number of level sor just the grids at each existing level, we will call an update routine
1500  // to redefine the internal arrays in m_SurfaceLayer.
1501  int nlevs = geom.size();
1502  for (int lev = 0; lev < nlevs; lev++)
1503  {
1504  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
1505  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
1506  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
1507  mfv_old, Theta_prim[lev], Qv_prim[lev],
1508  Qr_prim[lev], z_phys_nd[lev],
1509  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
1511  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
1512  }
1513 
1514 
1515  if (restart_chkfile != "") {
1516  // Update surface fields if needed (and available)
1518  }
1519 
1520  // We now configure ABLMost params here so that we can print the averages at t=0
1521  // Note we don't fill ghost cells here because this is just for diagnostics
1522  for (int lev = 0; lev <= finest_level; ++lev)
1523  {
1524  Real time = t_new[lev];
1525  IntVect ng = Theta_prim[lev]->nGrowVect();
1526 
1527  MultiFab::Copy( *Theta_prim[lev], vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, ng);
1528  MultiFab::Divide(*Theta_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1529 
1530  if (solverChoice.moisture_type != MoistureType::None) {
1531  ng = Qv_prim[lev]->nGrowVect();
1532 
1533  MultiFab::Copy( *Qv_prim[lev], vars_new[lev][Vars::cons], RhoQ1_comp, 0, 1, ng);
1534  MultiFab::Divide(*Qv_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1535 
1536  int rhoqr_comp = solverChoice.moisture_indices.qr;
1537  if (rhoqr_comp > -1) {
1538  MultiFab::Copy( *Qr_prim[lev], vars_new[lev][Vars::cons], rhoqr_comp, 0, 1, ng);
1539  MultiFab::Divide(*Qr_prim[lev], vars_new[lev][Vars::cons], Rho_comp, 0, 1, ng);
1540  } else {
1541  Qr_prim[lev]->setVal(0.0);
1542  }
1543  }
1544  m_SurfaceLayer->update_mac_ptrs(lev, vars_new, Theta_prim, Qv_prim, Qr_prim);
1545 
1546  if (restart_chkfile == "") {
1547  // Only do this if starting from scratch; if restarting, then
1548  // we don't want to call update_fluxes multiple times because
1549  // it will change u* and theta* from their previous values
1550  m_SurfaceLayer->update_pblh(lev, vars_new, z_phys_cc[lev].get(),
1552  m_SurfaceLayer->update_fluxes(lev, time, vars_new[lev][Vars::cons], z_phys_nd[lev]);
1553 
1554  // Initialize tke(x,y,z) as a function of u*(x,y)
1555  if (solverChoice.turbChoice[lev].init_tke_from_ustar) {
1556  Real qkefac = 1.0;
1557  if (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25 ||
1558  solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF)
1559  {
1560  // https://github.com/NCAR/MYNN-EDMF/blob/90f36c25259ec1960b24325f5b29ac7c5adeac73/module_bl_mynnedmf.F90#L1325-L1333
1561  const Real B1 = solverChoice.turbChoice[lev].pbl_mynn.B1;
1562  qkefac = 1.5 * std::pow(B1, 2.0/3.0);
1563  }
1564  m_SurfaceLayer->init_tke_from_ustar(lev, vars_new[lev][Vars::cons], z_phys_nd[lev], qkefac);
1565  }
1566  }
1567  }
1568  } // end if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer)
1569 
1570  // Update micro vars before first plot file
1571  if (solverChoice.moisture_type != MoistureType::None) {
1572  for (int lev = 0; lev <= finest_level; ++lev) micro->Update_Micro_Vars_Lev(lev, vars_new[lev][Vars::cons]);
1573  }
1574 
1575  // Fill time averaged velocities before first plot file
1576  if (solverChoice.time_avg_vel) {
1577  for (int lev = 0; lev <= finest_level; ++lev) {
1578  Time_Avg_Vel_atCC(dt[lev], t_avg_cnt[lev], vel_t_avg[lev].get(),
1579  vars_new[lev][Vars::xvel],
1580  vars_new[lev][Vars::yvel],
1581  vars_new[lev][Vars::zvel]);
1582  }
1583  }
1584 
1585  // check for additional plotting variables that are available after particle containers
1586  // are setup.
1587  const std::string& pv3d_1 = "plot_vars_1" ; appendPlotVariables(pv3d_1,plot3d_var_names_1);
1588  const std::string& pv3d_2 = "plot_vars_2" ; appendPlotVariables(pv3d_2,plot3d_var_names_2);
1589  const std::string& pv2d_1 = "plot2d_vars_1"; appendPlotVariables(pv2d_1,plot2d_var_names_1);
1590  const std::string& pv2d_2 = "plot2d_vars_2"; appendPlotVariables(pv2d_2,plot2d_var_names_2);
1591 
1592  if ( restart_chkfile.empty() && (m_check_int > 0 || m_check_per > 0.) )
1593  {
1597  }
1598 
1599  if ( (restart_chkfile.empty()) ||
1600  (!restart_chkfile.empty() && plot_file_on_restart) )
1601  {
1602  if (m_plot3d_int_1 > 0 || m_plot3d_per_1 > 0.)
1603  {
1607  }
1608  if (m_plot3d_int_2 > 0 || m_plot3d_per_2 > 0.)
1609  {
1613  }
1614  if (m_plot2d_int_1 > 0 || m_plot2d_per_1 > 0.)
1615  {
1619  }
1620  if (m_plot2d_int_2 > 0 || m_plot2d_per_2 > 0.)
1621  {
1625  }
1626  if (m_subvol_int > 0 || m_subvol_per > 0.) {
1627  WriteSubvolume();
1628  last_subvol_step = istep[0];
1630  }
1631  }
1632 
1633  // Set these up here because we need to know which MPI rank "cell" is on...
1634  if (pp.contains("data_log"))
1635  {
1636  int num_datalogs = pp.countval("data_log");
1637  datalog.resize(num_datalogs);
1638  datalogname.resize(num_datalogs);
1639  pp.queryarr("data_log",datalogname,0,num_datalogs);
1640  for (int i = 0; i < num_datalogs; i++) {
1642  }
1643  }
1644 
1645  if (pp.contains("der_data_log"))
1646  {
1647  int num_der_datalogs = pp.countval("der_data_log");
1648  der_datalog.resize(num_der_datalogs);
1649  der_datalogname.resize(num_der_datalogs);
1650  pp.queryarr("der_data_log",der_datalogname,0,num_der_datalogs);
1651  for (int i = 0; i < num_der_datalogs; i++) {
1653  }
1654  }
1655 
1656  if (pp.contains("energy_data_log"))
1657  {
1658  int num_energy_datalogs = pp.countval("energy_data_log");
1659  tot_e_datalog.resize(num_energy_datalogs);
1660  tot_e_datalogname.resize(num_energy_datalogs);
1661  pp.queryarr("energy_data_log",tot_e_datalogname,0,num_energy_datalogs);
1662  for (int i = 0; i < num_energy_datalogs; i++) {
1664  }
1665  }
1666 
1667  if (solverChoice.rad_type != RadiationType::None)
1668  {
1669  // Create data log for radiation model if requested
1670  rad[0]->setupDataLog();
1671  }
1672 
1673 
1674  if (restart_chkfile.empty() && profile_int > 0) {
1675  if (destag_profiles) {
1676  // all variables cell-centered
1678  } else {
1679  // some variables staggered
1681  }
1682  }
1683 
1684  if (pp.contains("sample_point_log") && pp.contains("sample_point"))
1685  {
1686  int lev = 0;
1687 
1688  int num_samplepts = pp.countval("sample_point") / AMREX_SPACEDIM;
1689  if (num_samplepts > 0) {
1690  Vector<int> index; index.resize(num_samplepts*AMREX_SPACEDIM);
1691  samplepoint.resize(num_samplepts);
1692 
1693  pp.queryarr("sample_point",index,0,num_samplepts*AMREX_SPACEDIM);
1694  for (int i = 0; i < num_samplepts; i++) {
1695  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1696  samplepoint[i] = iv;
1697  }
1698  }
1699 
1700  int num_sampleptlogs = pp.countval("sample_point_log");
1701  AMREX_ALWAYS_ASSERT(num_sampleptlogs == num_samplepts);
1702  if (num_sampleptlogs > 0) {
1703  sampleptlog.resize(num_sampleptlogs);
1704  sampleptlogname.resize(num_sampleptlogs);
1705  pp.queryarr("sample_point_log",sampleptlogname,0,num_sampleptlogs);
1706 
1707  for (int i = 0; i < num_sampleptlogs; i++) {
1709  }
1710  }
1711 
1712  }
1713 
1714  if (pp.contains("sample_line_log") && pp.contains("sample_line"))
1715  {
1716  int lev = 0;
1717 
1718  int num_samplelines = pp.countval("sample_line") / AMREX_SPACEDIM;
1719  if (num_samplelines > 0) {
1720  Vector<int> index; index.resize(num_samplelines*AMREX_SPACEDIM);
1721  sampleline.resize(num_samplelines);
1722 
1723  pp.queryarr("sample_line",index,0,num_samplelines*AMREX_SPACEDIM);
1724  for (int i = 0; i < num_samplelines; i++) {
1725  IntVect iv(index[AMREX_SPACEDIM*i+0],index[AMREX_SPACEDIM*i+1],index[AMREX_SPACEDIM*i+2]);
1726  sampleline[i] = iv;
1727  }
1728  }
1729 
1730  int num_samplelinelogs = pp.countval("sample_line_log");
1731  AMREX_ALWAYS_ASSERT(num_samplelinelogs == num_samplelines);
1732  if (num_samplelinelogs > 0) {
1733  samplelinelog.resize(num_samplelinelogs);
1734  samplelinelogname.resize(num_samplelinelogs);
1735  pp.queryarr("sample_line_log",samplelinelogname,0,num_samplelinelogs);
1736 
1737  for (int i = 0; i < num_samplelinelogs; i++) {
1739  }
1740  }
1741 
1742  }
1743 
1748  }
1749 
1750  // Create object to do line and plane sampling if needed
1751  bool do_line = false; bool do_plane = false;
1752  pp.query("do_line_sampling",do_line); pp.query("do_plane_sampling",do_plane);
1753  if (do_line) {
1754  if (line_sampling_interval < 0 && line_sampling_per < 0) {
1755  Abort("Need to specify line_sampling_interval or line_sampling_per");
1756  }
1757  line_sampler = std::make_unique<LineSampler>();
1758  line_sampler->write_coords(z_phys_cc);
1759  }
1760  if (do_plane) {
1762  Abort("Need to specify plane_sampling_interval or plane_sampling_per");
1763  }
1764  plane_sampler = std::make_unique<PlaneSampler>();
1765  }
1766 
1767  if ( solverChoice.terrain_type == TerrainType::EB ||
1768  solverChoice.terrain_type == TerrainType::ImmersedForcing)
1769  {
1770  bool write_eb_surface = false;
1771  pp.query("write_eb_surface", write_eb_surface);
1772  if (write_eb_surface) WriteMyEBSurface();
1773  }
1774 
1775 }
void initRayleigh()
Initialize Rayleigh damping profiles.
Definition: ERF_InitRayleigh.cpp:14
amrex::Vector< std::string > samplelinelogname
Definition: ERF.H:1575
void setRayleighRefFromSounding(bool restarting)
Set Rayleigh mean profiles from input sounding.
Definition: ERF_InitRayleigh.cpp:55
amrex::Vector< amrex::IntVect > sampleline
Definition: ERF.H:1576
amrex::Real plane_sampling_per
Definition: ERF.H:1559
static amrex::Real sum_per
Definition: ERF.H:1177
void setRecordDataInfo(int i, const std::string &filename)
Definition: ERF.H:1482
static bool plot_file_on_restart
Definition: ERF.H:1001
amrex::Vector< std::string > lsm_flux_name
Definition: ERF.H:864
void WriteMyEBSurface()
Definition: ERF_EBWriteSurface.cpp:5
void write_1D_profiles_stag(amrex::Real time)
Definition: ERF_Write1DProfiles_stag.cpp:25
void sum_energy_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:318
amrex::Vector< std::unique_ptr< std::fstream > > samplelinelog
Definition: ERF.H:1574
static int sum_interval
Definition: ERF.H:1175
static int pert_interval
Definition: ERF.H:1176
amrex::Real line_sampling_per
Definition: ERF.H:1558
void restart()
Definition: ERF.cpp:1814
void write_1D_profiles(amrex::Real time)
Definition: ERF_Write1DProfiles.cpp:17
int profile_int
Definition: ERF.H:1068
bool destag_profiles
Definition: ERF.H:1069
void appendPlotVariables(const std::string &pp_plot_var_names, amrex::Vector< std::string > &plot_var_names)
Definition: ERF_Plotfile.cpp:228
amrex::Vector< std::string > tot_e_datalogname
Definition: ERF.H:1568
static int output_bndry_planes
Definition: ERF.H:1234
static std::string nc_bdy_file
Definition: ERF.H:1194
void AverageDown()
Definition: ERF_AverageDown.cpp:16
static amrex::Real bndry_output_planes_start_time
Definition: ERF.H:1237
void project_velocity(int lev, amrex::Real dt)
Definition: ERF_PoissonSolve.cpp:10
std::string restart_chkfile
Definition: ERF.H:1023
amrex::Vector< std::string > sampleptlogname
Definition: ERF.H:1571
void sum_derived_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:187
void sum_integrated_quantities(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:15
void setRecordDerDataInfo(int i, const std::string &filename)
Definition: ERF.H:1495
amrex::Vector< std::unique_ptr< std::fstream > > sampleptlog
Definition: ERF.H:1570
std::unique_ptr< WriteBndryPlanes > m_w2d
Definition: ERF.H:1296
void init_geo_wind_profile(const std::string input_file, amrex::Vector< amrex::Real > &u_geos, amrex::Gpu::DeviceVector< amrex::Real > &u_geos_d, amrex::Vector< amrex::Real > &v_geos, amrex::Gpu::DeviceVector< amrex::Real > &v_geos_d, const amrex::Geometry &lgeom, const amrex::Vector< amrex::Real > &zlev_stag)
Definition: ERF_InitGeowind.cpp:10
amrex::Vector< std::string > lsm_data_name
Definition: ERF.H:862
void initSponge()
Initialize sponge profiles.
Definition: ERF_InitSponge.cpp:35
std::unique_ptr< PlaneSampler > plane_sampler
Definition: ERF.H:1561
amrex::Vector< std::unique_ptr< std::fstream > > tot_e_datalog
Definition: ERF.H:1565
int real_width
Definition: ERF.H:1195
void setRecordEnergyDataInfo(int i, const std::string &filename)
Definition: ERF.H:1508
int plane_sampling_interval
Definition: ERF.H:1557
static bool is_it_time_for_action(int nstep, amrex::Real time, amrex::Real dt, int action_interval, amrex::Real action_per)
Definition: ERF_WriteScalarProfiles.cpp:747
static std::string nc_low_file
Definition: ERF.H:1200
void Construct_ERFFillPatchers(int lev)
Definition: ERF.cpp:2580
void setRecordSampleLineInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1538
void setSpongeRefFromSounding(bool restarting)
Set sponge mean profiles from input sounding.
Definition: ERF_InitSponge.cpp:65
int line_sampling_interval
Definition: ERF.H:1556
amrex::Vector< amrex::IntVect > samplepoint
Definition: ERF.H:1572
std::unique_ptr< LineSampler > line_sampler
Definition: ERF.H:1560
void setRecordSamplePointInfo(int i, int lev, amrex::IntVect &cell, const std::string &filename)
Definition: ERF.H:1521
void ReadCheckpointFileSurfaceLayer()
Definition: ERF_Checkpoint.cpp:1035
static MoistureModelType modelType(const MoistureType a_moisture_type)
query if a specified moisture model is Eulerian or Lagrangian
Definition: ERF_Microphysics.H:86
bool have_zero_flux_faces
Definition: ERF_AdvStruct.H:440
amrex::Real rho0_trans
Definition: ERF_DiffStruct.H:91
amrex::Real dynamic_viscosity
Definition: ERF_DiffStruct.H:96
bool have_geo_wind_profile
Definition: ERF_DataStruct.H:968
std::string abl_geo_wind_table
Definition: ERF_DataStruct.H:967
bool use_rotate_surface_flux
Definition: ERF_DataStruct.H:939
bool do_forest_drag
Definition: ERF_DataStruct.H:989
void debug(amrex::Real)
Definition: ERF_TurbPertStruct.H:613
Here is the call graph for this function:

◆ InitData_pre()

void ERF::InitData_pre ( )
885 {
886  // Initialize the start time for our CPU-time tracker
887  startCPUTime = ParallelDescriptor::second();
888 
889  // Create the ReadBndryPlanes object so we can read boundary plane data
890  // m_r2d is used by init_bcs so we must instantiate this class before
891  if (input_bndry_planes) {
892  Print() << "Defining r2d for the first time " << std::endl;
893  m_r2d = std::make_unique<ReadBndryPlanes>(geom[0], solverChoice.rdOcp);
894  }
895 
896  if (restart_chkfile.empty()) {
897  // Start simulation from the beginning
898  InitFromScratch(0.0);
899  } else {
900  // For initialization this is done in init_only; it is done here for restart
901  init_bcs();
902  }
903 
904  // Verify solver choices
905  for (int lev(0); lev <= max_level; ++lev) {
906  // BC compatibility
907  if ( ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
908  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ||
909  (solverChoice.turbChoice[lev].pbl_type == PBLType::YSU) ||
910  (solverChoice.turbChoice[lev].pbl_type == PBLType::MRF)
911  ) &&
912  phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::surface_layer ) {
913  Abort("MYNN2.5/MYNNEDMF/YSU/MRF PBL Model requires MOST at lower boundary");
914  }
915  if ( (solverChoice.turbChoice[lev].les_type == LESType::Deardorff) &&
916  (solverChoice.turbChoice[lev].Ce_wall > 0) &&
917  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::surface_layer) &&
918  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::slip_wall) &&
919  (phys_bc_type[Orientation(Direction::z,Orientation::low)] != ERF_BC::no_slip_wall) )
920  {
921  Warning("Deardorff LES assumes wall at zlo when applying Ce_wall");
922  }
923 
924  if ( (solverChoice.const_massflux_u != 0) &&
925  (phys_bc_type[Orientation(Direction::x,Orientation::low)] != ERF_BC::periodic ) )
926  {
927  Abort("Constant mass flux (in x) should be used with periodic boundaries");
928  }
929  if ( (solverChoice.const_massflux_v != 0) &&
930  (phys_bc_type[Orientation(Direction::y,Orientation::low)] != ERF_BC::periodic ) )
931  {
932  Abort("Constant mass flux (in y) should be used with periodic boundaries");
933  }
934 
935  // mesoscale diffusion
936  if ((geom[lev].CellSize(0) > 2000.) || (geom[lev].CellSize(1) > 2000.))
937  {
938  if ( (solverChoice.turbChoice[lev].les_type == LESType::Smagorinsky) &&
939  (!solverChoice.turbChoice[lev].smag2d)) {
940  Warning("Should use 2-D Smagorinsky for mesoscale resolution");
941  } else if (solverChoice.turbChoice[lev].les_type == LESType::Deardorff) {
942  Warning("Should not use Deardorff LES for mesoscale resolution");
943  }
944  }
945  }
946 }
void init_bcs()
Definition: ERF_InitBCs.cpp:20

◆ initHSE() [1/2]

void ERF::initHSE ( )
private

Initialize HSE.

143 {
144  for (int lev = 0; lev <= finest_level; lev++)
145  {
146  initHSE(lev);
147  }
148 }

◆ initHSE() [2/2]

void ERF::initHSE ( int  lev)
private

Initialize density and pressure base state in hydrostatic equilibrium.

21 {
22  // This integrates up through column to update p_hse, pi_hse, th_hse;
23  // r_hse is not const b/c FillBoundary is called at the end for r_hse and p_hse
24 
25  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
26  MultiFab p_hse (base_state[lev], make_alias, BaseState::p0_comp, 1);
27  MultiFab pi_hse(base_state[lev], make_alias, BaseState::pi0_comp, 1);
28  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
29  MultiFab qv_hse(base_state[lev], make_alias, BaseState::qv0_comp, 1);
30 
31  bool all_boxes_touch_bottom = true;
32  Box domain(geom[lev].Domain());
33 
34  int icomp = 0; int ncomp = BaseState::num_comps;
35 
36  if (lev == 0) {
37  BoxArray ba(base_state[lev].boxArray());
38  for (int i = 0; i < ba.size(); i++) {
39  if (ba[i].smallEnd(2) != domain.smallEnd(2)) {
40  all_boxes_touch_bottom = false;
41  }
42  }
43  }
44  else
45  {
46  //
47  // We need to do this interp from coarse level in order to set the values of
48  // the base state inside the domain but outside of the fine region
49  //
50  base_state[lev-1].FillBoundary(geom[lev-1].periodicity());
51  //
52  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
53  // have been pre-filled - this includes ghost cells both inside and outside
54  // the domain
55  //
56  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
57  IntVect(0,0,0), // do not fill ghost cells outside the domain
58  base_state[lev-1], icomp, icomp, ncomp,
59  geom[lev-1], geom[lev],
60  refRatio(lev-1), &cell_cons_interp,
62 
63  // We need to do this here because the interpolation above may leave corners unfilled
64  // when the corners need to be filled by, for example, reflection of the fine ghost
65  // cell outside the fine region but inide the domain.
66  (*physbcs_base[lev])(base_state[lev],icomp,ncomp,base_state[lev].nGrowVect());
67  }
68 
69  if (all_boxes_touch_bottom || lev > 0) {
70 
71  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
73  prob->erf_init_dens_hse_moist(r_hse, z_phys_nd[lev], geom[lev]);
74  } else {
75  prob->erf_init_dens_hse(r_hse, z_phys_nd[lev], z_phys_cc[lev], geom[lev]);
76  }
77 
78  erf_enforce_hse(lev, r_hse, p_hse, pi_hse, th_hse, qv_hse, z_phys_cc[lev]);
79 
80  //
81  // Impose physical bc's on the base state
82  //
83  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
84 
85  } else {
86 
87  BoxArray ba_new(domain);
88 
89  ChopGrids2D(ba_new, domain, ParallelDescriptor::NProcs());
90 
91  DistributionMapping dm_new(ba_new);
92 
93  MultiFab new_base_state(ba_new, dm_new, BaseState::num_comps, base_state[lev].nGrowVect());
94  new_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
95  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
96 
97  MultiFab new_r_hse (new_base_state, make_alias, BaseState::r0_comp, 1);
98  MultiFab new_p_hse (new_base_state, make_alias, BaseState::p0_comp, 1);
99  MultiFab new_pi_hse(new_base_state, make_alias, BaseState::pi0_comp, 1);
100  MultiFab new_th_hse(new_base_state, make_alias, BaseState::th0_comp, 1);
101  MultiFab new_qv_hse(new_base_state, make_alias, BaseState::qv0_comp, 1);
102 
103  std::unique_ptr<MultiFab> new_z_phys_cc;
104  std::unique_ptr<MultiFab> new_z_phys_nd;
105  if (solverChoice.mesh_type != MeshType::ConstantDz) {
106  new_z_phys_cc = std::make_unique<MultiFab>(ba_new,dm_new,1,1);
107  new_z_phys_cc->ParallelCopy(*z_phys_cc[lev],0,0,1,1,1);
108 
109  BoxArray ba_new_nd(ba_new);
110  ba_new_nd.surroundingNodes();
111  new_z_phys_nd = std::make_unique<MultiFab>(ba_new_nd,dm_new,1,1);
112  new_z_phys_nd->ParallelCopy(*z_phys_nd[lev],0,0,1,1,1);
113  }
114 
115  // Initial r_hse may or may not be in HSE -- defined in ERF_Prob.cpp
117  prob->erf_init_dens_hse_moist(new_r_hse, new_z_phys_nd, geom[lev]);
118  } else {
119  prob->erf_init_dens_hse(new_r_hse, new_z_phys_nd, new_z_phys_cc, geom[lev]);
120  }
121 
122  erf_enforce_hse(lev, new_r_hse, new_p_hse, new_pi_hse, new_th_hse, new_qv_hse, new_z_phys_cc);
123 
124  //
125  // Impose physical bc's on the base state
126  //
127  (*physbcs_base[lev])(new_base_state,0,new_base_state.nComp(),new_base_state.nGrowVect());
128 
129  // Now copy back into the original arrays
130  base_state[lev].ParallelCopy(new_base_state,0,0,base_state[lev].nComp(),
131  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
132  }
133 
134  //
135  // Impose physical bc's on the base state -- the values outside the fine region
136  // but inside the domain have already been filled in the call above to InterpFromCoarseLevel
137  //
138  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
139 }
void ChopGrids2D(BoxArray &ba, const Box &domain, int target_size)
Definition: ERF_ChopGrids.cpp:21
void erf_enforce_hse(int lev, amrex::MultiFab &dens, amrex::MultiFab &pres, amrex::MultiFab &pi, amrex::MultiFab &th, amrex::MultiFab &qv, std::unique_ptr< amrex::MultiFab > &z_cc)
Definition: ERF_Init1D.cpp:160
bool use_moist_background
Definition: ERF_DataStruct.H:976
Here is the call graph for this function:

◆ initialize_integrator()

void ERF::initialize_integrator ( int  lev,
amrex::MultiFab &  cons_mf,
amrex::MultiFab &  vel_mf 
)
private
681 {
682  const BoxArray& ba(cons_mf.boxArray());
683  const DistributionMapping& dm(cons_mf.DistributionMap());
684 
685  int ncomp_cons = cons_mf.nComp();
686 
687  // Initialize the integrator memory
688  Vector<MultiFab> int_state; // integration state data structure example
689  int_state.push_back(MultiFab(cons_mf, make_alias, 0, ncomp_cons)); // cons
690  int_state.push_back(MultiFab(convert(ba,IntVect(1,0,0)), dm, 1, vel_mf.nGrow())); // xmom
691  int_state.push_back(MultiFab(convert(ba,IntVect(0,1,0)), dm, 1, vel_mf.nGrow())); // ymom
692  int_state.push_back(MultiFab(convert(ba,IntVect(0,0,1)), dm, 1, vel_mf.nGrow())); // zmom
693 
694  mri_integrator_mem[lev] = std::make_unique<MRISplitIntegrator<Vector<MultiFab> > >(int_state);
695  mri_integrator_mem[lev]->setNoSubstepping((solverChoice.substepping_type[lev] == SubsteppingType::None));
696  mri_integrator_mem[lev]->setAnelastic(solverChoice.anelastic[lev]);
697  mri_integrator_mem[lev]->setNcompCons(ncomp_cons);
698  mri_integrator_mem[lev]->setForceFirstStageSingleSubstep(solverChoice.force_stage1_single_substep);
699 }

◆ InitializeFromFile()

void ERF::InitializeFromFile ( )
private

◆ InitializeLevelFromData()

void ERF::InitializeLevelFromData ( int  lev,
const amrex::MultiFab &  initial_data 
)
private

◆ initializeMicrophysics()

void ERF::initializeMicrophysics ( const int &  a_nlevsmax)
private
Parameters
a_nlevsmaxnumber of AMR levels
1780 {
1781  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Eulerian) {
1782 
1783  micro = std::make_unique<EulerianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1784 
1785  } else if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
1786 #ifdef ERF_USE_PARTICLES
1787 
1788  micro = std::make_unique<LagrangianMicrophysics>(a_nlevsmax, solverChoice.moisture_type);
1789  /* Lagrangian microphysics models will have a particle container; it needs to be added
1790  to ERF::particleData */
1791  const auto& pc_name( dynamic_cast<LagrangianMicrophysics&>(*micro).getName() );
1792  /* The particle container has not yet been constructed and initialized, so just add
1793  its name here for now (so that functions to set plotting variables can see it). */
1794  particleData.addName( pc_name );
1795 
1796 #else
1797  Abort("Lagrangian microphysics can be used when compiled with ERF_USE_PARTICLES");
1798 #endif
1799  }
1800 
1801  qmoist.resize(a_nlevsmax);
1802  return;
1803 }
amrex::Vector< amrex::Vector< amrex::MultiFab * > > qmoist
Definition: ERF.H:846
Here is the call graph for this function:

◆ initRayleigh()

void ERF::initRayleigh ( )
private

Initialize Rayleigh damping profiles.

Initialization function for host and device vectors used to store averaged quantities when calculating the effects of Rayleigh Damping.

15 {
16  const int khi = geom[0].Domain().bigEnd(2);
17  solverChoice.rayleigh_ztop = (solverChoice.terrain_type == TerrainType::None) ? geom[0].ProbHi(2) : zlevels_stag[0][khi+1];
18 
19  h_rayleigh_ptrs.resize(max_level+1);
20  d_rayleigh_ptrs.resize(max_level+1);
21 
22  for (int lev = 0; lev <= finest_level; lev++)
23  {
24  // These have 4 components: ubar, vbar, wbar, thetabar
25  h_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
26  d_rayleigh_ptrs[lev].resize(Rayleigh::nvars);
27 
28  const int zlen_rayleigh = geom[lev].Domain().length(2);
29 
30  // Allocate space for these 1D vectors
31  for (int n = 0; n < Rayleigh::nvars; n++) {
32  h_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
33  d_rayleigh_ptrs[lev][n].resize(zlen_rayleigh, 0.0_rt);
34  }
35 
36  // Init the host vectors
37  prob->erf_init_rayleigh(h_rayleigh_ptrs[lev], geom[lev], z_phys_nd[lev], solverChoice.rayleigh_zdamp);
38 
39  // Copy from host vectors to device vectors
40  for (int n = 0; n < Rayleigh::nvars; n++) {
41  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][n].begin(), h_rayleigh_ptrs[lev][n].end(),
42  d_rayleigh_ptrs[lev][n].begin());
43  }
44  }
45 }
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_rayleigh_ptrs
Definition: ERF.H:1271
amrex::Real rayleigh_zdamp
Definition: ERF_DataStruct.H:895
amrex::Real rayleigh_ztop
Definition: ERF_DataStruct.H:896

◆ initSponge()

void ERF::initSponge ( )
private

Initialize sponge profiles.

Initialization function for host and device vectors used to store the effects of sponge Damping.

36 {
37  h_sponge_ptrs.resize(max_level+1);
38  d_sponge_ptrs.resize(max_level+1);
39 
40  for (int lev = 0; lev <= finest_level; lev++)
41  {
42  // These have 2 components: ubar, vbar
45 
46  const int zlen_sponge = geom[lev].Domain().length(2);
47 
48  // Allocate space for these 1D vectors
49  for (int n = 0; n < Sponge::nvars_sponge; n++) {
50  h_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
51  d_sponge_ptrs[lev][n].resize(zlen_sponge, 0.0_rt);
52  }
53 
54  }
55 }
amrex::Vector< amrex::Vector< amrex::Vector< amrex::Real > > > h_sponge_ptrs
Definition: ERF.H:1274

◆ input_sponge()

void ERF::input_sponge ( int  lev)

High level wrapper for sponge x and y velocities level data from input sponge data.

Parameters
levInteger specifying the current level
18 {
19  // We only want to read the file once
20  if (lev == 0) {
22  Error("input_sounding file name must be provided via input");
23 
24  // this will interpolate the input profiles to the nominal height levels
25  // (ranging from 0 to the domain top)
27  }
28 }
InputSpongeData input_sponge_data
Definition: ERF.H:753
void read_from_file(const amrex::Geometry &geom, const amrex::Vector< amrex::Real > &zlevels_stag)
Definition: ERF_InputSpongeData.H:28
std::string input_sponge_file
Definition: ERF_InputSpongeData.H:111

◆ InterpWeatherDataOntoMesh()

void ERF::InterpWeatherDataOntoMesh ( const amrex::Geometry &  geom_weather,
amrex::MultiFab &  weather_forecast_interp,
amrex::Vector< amrex::Vector< amrex::MultiFab >> &  forecast_state 
)
271 {
272 
273  MultiFab& weather_mf = weather_forecast_data;
274  MultiFab& erf_mf_cons = forecast_state[0][Vars::cons];
275  MultiFab& erf_mf_xvel = forecast_state[0][Vars::xvel];
276  MultiFab& erf_mf_yvel = forecast_state[0][Vars::yvel];
277  MultiFab& erf_mf_zvel = forecast_state[0][Vars::zvel];
278  MultiFab& erf_mf_latlon = forecast_state[0][4];
279 
280  erf_mf_cons.setVal(0.0);
281  erf_mf_xvel.setVal(0.0);
282  erf_mf_yvel.setVal(0.0);
283  erf_mf_zvel.setVal(0.0);
284  erf_mf_latlon.setVal(0.0);
285 
286  BoxList bl_erf = erf_mf_cons.boxArray().boxList();
287  BoxList bl_weather = weather_mf.boxArray().boxList();
288 
289  const auto prob_lo_erf = geom[0].ProbLoArray();
290  const auto dx_erf = geom[0].CellSizeArray();
291 
292  for (auto& b : bl_erf) {
293  // You look at the lo corner of b, and find out the lowest cell in
294  // coarse weather data you need for the interpolation. That gives
295  // you the lo corner of the new b. Similarly, you can find out the
296  // hi corner of the new b. For cells outside the coarse_weath_data's
297  // bounding data, it's up to you. You probably want to use a biased
298  // interpolation stencil.
299 
300  // Get the cell indices of the bottom corner and top corner
301  const IntVect& lo_erf = b.smallEnd(); // Lower corner (inclusive)
302  const IntVect& hi_erf = b.bigEnd(); // Upper corner (inclusive)
303 
304  Real x = prob_lo_erf[0] + lo_erf[0] * dx_erf[0];
305  Real y = prob_lo_erf[1] + lo_erf[1] * dx_erf[1];
306  Real z = prob_lo_erf[2] + lo_erf[2] * dx_erf[2];
307 
308  auto idx_lo = find_bound_idx(x, y, z, bl_weather, geom_weather, BoundType::Lo);
309 
310  x = prob_lo_erf[0] + (hi_erf[0]+1) * dx_erf[0];
311  y = prob_lo_erf[1] + (hi_erf[1]+1) * dx_erf[1];
312  z = prob_lo_erf[2] + (hi_erf[2]+1) * dx_erf[2];
313 
314  auto idx_hi = find_bound_idx(x, y, z, bl_weather, geom_weather, BoundType::Hi);
315 
316  b.setSmall(idx_lo);
317  b.setBig(idx_hi);
318  }
319 
320  BoxArray cba(std::move(bl_erf));
321  cba.convert(IndexType::TheNodeType()); // <-- Make it nodal in all directions
322  MultiFab tmp_coarse_data(cba, erf_mf_cons.DistributionMap(), weather_mf.nComp(), 0);
323  tmp_coarse_data.ParallelCopy(weather_mf);
324 
325  //PlotMultiFab(weather_mf, geom_weather, "plt_coarse_weather_par_copy",MultiFabType::NC);
326 
327  const auto prob_lo_weather = geom_weather.ProbLoArray();
328  const auto dx_weather = geom_weather.CellSizeArray();
329 
330  for (MFIter mfi(erf_mf_cons); mfi.isValid(); ++mfi) {
331  const Array4<Real> &fine_cons_arr = erf_mf_cons.array(mfi);
332  const Array4<Real> &fine_xvel_arr = erf_mf_xvel.array(mfi);
333  const Array4<Real> &fine_yvel_arr = erf_mf_yvel.array(mfi);
334  //const Array4<Real> &fine_zvel_arr = erf_mf_zvel.array(mfi);
335  const Array4<Real> &fine_latlon_arr = erf_mf_latlon.array(mfi);
336 
337  const Array4<Real> &crse_arr = tmp_coarse_data.array(mfi);
338 
339  const Box& gbx = mfi.growntilebox(); // tilebox + ghost cells
340 
341  const Box &gtbx = mfi.tilebox(IntVect(1,0,0));
342  const Box &gtby = mfi.tilebox(IntVect(0,1,0));
343  //const Box &gtbz = mfi.tilebox(IntVect(0,0,1));
344 
345  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
346  // Physical location of the fine node
347  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
348  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
349  Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
350 
351  Real rho = interpolate_from_coarse(crse_arr, 0, x, y, z, prob_lo_weather.data(), dx_weather.data());
352  Real lat = interpolate_from_coarse(crse_arr, 8, x, y, z, prob_lo_weather.data(), dx_weather.data());
353  Real lon = interpolate_from_coarse(crse_arr, 9, x, y, z, prob_lo_weather.data(), dx_weather.data());
354 
355  fine_cons_arr(i,j,k,Rho_comp) = rho;
356 
357  fine_latlon_arr(i,j,k,0) = lat;
358  fine_latlon_arr(i,j,k,1) = lon;
359  });
360 
361  ParallelFor(gtbx, gtby,
362  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
363  // Physical location of the fine node
364  Real x = prob_lo_erf[0] + i * dx_erf[0];
365  Real y = prob_lo_erf[1] + (j+0.5) * dx_erf[1];
366  Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
367  fine_xvel_arr(i, j, k, 0) = interpolate_from_coarse(crse_arr, 1, x, y, z, prob_lo_weather.data(), dx_weather.data());
368  },
369  [=] AMREX_GPU_DEVICE(int i, int j, int k) {
370  // Physical location of the fine node
371  Real x = prob_lo_erf[0] + (i+0.5) * dx_erf[0];
372  Real y = prob_lo_erf[1] + j * dx_erf[1];
373  Real z = prob_lo_erf[2] + (k+0.5) * dx_erf[2];
374  fine_yvel_arr(i, j, k, 0) = interpolate_from_coarse(crse_arr, 2, x, y, z, prob_lo_weather.data(), dx_weather.data());
375  });
376  }
377 
378  /*Vector<std::string> varnames = {
379  "rho", "uvel", "vvel", "wvel", "theta", "qv", "qc", "qr"
380  }; // Customize variable names
381 
382  Vector<std::string> varnames_cons = {
383  "rho", "rhotheta", "ke", "sc", "rhoqv", "rhoqc", "rhoqr"
384  }; // Customize variable names
385 
386  Vector<std::string> varnames_plot_mf = {
387  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel", "latitude", "longitude"
388  }; // Customize variable names
389 
390 
391  const Real time = 0.0;
392 
393  std::string pltname = "plt_interp";
394 
395  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
396  10, 0);
397 
398  plot_mf.setVal(0.0);
399 
400  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
401  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
402  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
403  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
404  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
405  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
406  const Array4<Real> &erf_mf_latlon_arr = erf_mf_latlon.array(mfi);
407 
408  const Box& bx = mfi.validbox();
409 
410  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
411  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
412  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
413  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
414  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
415  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
416 
417  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
418  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
419  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
420 
421  plot_mf_arr(i,j,k,8) = erf_mf_latlon_arr(i,j,k,0);
422  plot_mf_arr(i,j,k,9) = erf_mf_latlon_arr(i,j,k,1);
423  });
424  }
425 
426 
427  WriteSingleLevelPlotfile(
428  pltname,
429  plot_mf,
430  varnames_plot_mf,
431  geom[0],
432  time,
433  0 // level
434  );*/
435 }
AMREX_GPU_DEVICE amrex::Real interpolate_from_coarse(const amrex::Array4< const amrex::Real > &crse, int n, amrex::Real x, amrex::Real y, amrex::Real z, const amrex::Real *prob_lo_crse, const amrex::Real *dx_crse)
Definition: ERF_Interpolation_Bilinear.H:77
IntVect find_bound_idx(const Real &x, const Real &y, const Real &z, const BoxList &bl_weather, const Geometry &geom_weather, BoundType bound_type)
Definition: ERF_WeatherDataInterpolation.cpp:217
Here is the call graph for this function:

◆ is_it_time_for_action()

bool ERF::is_it_time_for_action ( int  nstep,
amrex::Real  time,
amrex::Real  dt,
int  action_interval,
amrex::Real  action_per 
)
static

Helper function which uses the current step number, time, and timestep to determine whether it is time to take an action specified at every interval of timesteps.

Parameters
nstepTimestep number
timeCurrent time
dtlevTimestep for the current level
action_intervalInterval in number of timesteps for taking action
action_perInterval in simulation time for taking action
748 {
749  bool int_test = (action_interval > 0 && nstep % action_interval == 0);
750 
751  bool per_test = false;
752  if (action_per > 0.0) {
753  const int num_per_old = static_cast<int>(amrex::Math::floor((time - dtlev) / action_per));
754  const int num_per_new = static_cast<int>(amrex::Math::floor((time) / action_per));
755 
756  if (num_per_old != num_per_new) {
757  per_test = true;
758  }
759  }
760 
761  return int_test || per_test;
762 }

◆ make_eb_box()

void ERF::make_eb_box ( )

◆ make_eb_regular()

void ERF::make_eb_regular ( )

◆ make_physbcs()

void ERF::make_physbcs ( int  lev)
private
703 {
704  if (SolverChoice::mesh_type == MeshType::VariableDz) {
705  AMREX_ALWAYS_ASSERT(z_phys_nd[lev] != nullptr);
706  }
707 
708  physbcs_cons[lev] = std::make_unique<ERFPhysBCFunct_cons> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
710  z_phys_nd[lev], solverChoice.use_real_bcs, th_bc_data[lev].data());
711  physbcs_u[lev] = std::make_unique<ERFPhysBCFunct_u> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
713  z_phys_nd[lev], solverChoice.use_real_bcs, xvel_bc_data[lev].data());
714  physbcs_v[lev] = std::make_unique<ERFPhysBCFunct_v> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
716  z_phys_nd[lev], solverChoice.use_real_bcs, yvel_bc_data[lev].data());
717  physbcs_w[lev] = std::make_unique<ERFPhysBCFunct_w> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d,
720  solverChoice.use_real_bcs, zvel_bc_data[lev].data());
721  physbcs_base[lev] = std::make_unique<ERFPhysBCFunct_base> (lev, geom[lev], domain_bcs_type, domain_bcs_type_d, z_phys_nd[lev],
722  (solverChoice.terrain_type == TerrainType::MovingFittedMesh));
723 }

◆ make_subdomains()

void ERF::make_subdomains ( const amrex::BoxList &  ba,
amrex::Vector< amrex::BoxArray > &  bins 
)
7 {
8  Vector<BoxList> bins_bl;
9 
10  // Clear out any old bins
11  bins.clear();
12 
13  // Iterate over boxes
14  for (auto bx : bl)
15  {
16  bool added = false;
17 
18  // Try to add box to existing bin
19  for (int j = 0; j < bins_bl.size(); ++j) {
20  BoxList& bin = bins_bl[j];
21  bool touches = false;
22 
23  for (auto& b : bin)
24  {
25  Box gbx(bx); gbx.grow(1);
26  if (gbx.intersects(b)) {
27  touches = true;
28  break;
29  }
30  }
31 
32  if (touches) {
33  bin.push_back(bx);
34  added = true;
35  break;
36  }
37  }
38 
39  // If box couldn't be added to existing bin, create new bin
40  if (!added) {
41  BoxList new_bin;
42  new_bin.push_back(bx);
43  bins_bl.push_back(new_bin);
44  }
45  }
46 
47  // Convert the BoxLists to BoxArrays
48  for (int i = 0; i < bins_bl.size(); ++i) {
49  bins.push_back(BoxArray(bins_bl[i]));
50  }
51 }

◆ MakeDiagnosticAverage()

void ERF::MakeDiagnosticAverage ( amrex::Vector< amrex::Real > &  h_havg,
amrex::MultiFab &  S,
int  n 
)
2535 {
2536  // Get the number of cells in z at level 0
2537  int dir_z = AMREX_SPACEDIM-1;
2538  auto domain = geom[0].Domain();
2539  int size_z = domain.length(dir_z);
2540  int start_z = domain.smallEnd()[dir_z];
2541  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2542 
2543  // resize the level 0 horizontal average vectors
2544  h_havg.resize(size_z, 0.0_rt);
2545 
2546  // Get the cell centered data and construct sums
2547 #ifdef _OPENMP
2548 #pragma omp parallel if (Gpu::notInLaunchRegion())
2549 #endif
2550  for (MFIter mfi(S); mfi.isValid(); ++mfi) {
2551  const Box& box = mfi.validbox();
2552  const IntVect& se = box.smallEnd();
2553  const IntVect& be = box.bigEnd();
2554 
2555  auto fab_arr = S[mfi].array();
2556 
2557  FArrayBox fab_reduce(box, 1, The_Async_Arena());
2558  auto arr_reduce = fab_reduce.array();
2559 
2560  ParallelFor(box, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2561  arr_reduce(i, j, k, 0) = fab_arr(i,j,k,n);
2562  });
2563 
2564  for (int k=se[dir_z]; k <= be[dir_z]; ++k) {
2565  Box kbox(box); kbox.setSmall(dir_z,k); kbox.setBig(dir_z,k);
2566  h_havg[k-start_z] += fab_reduce.sum<RunOn::Device>(kbox,0);
2567  }
2568  }
2569 
2570  // combine sums from different MPI ranks
2571  ParallelDescriptor::ReduceRealSum(h_havg.dataPtr(), h_havg.size());
2572 
2573  // divide by the total number of cells we are averaging over
2574  for (int k = 0; k < size_z; ++k) {
2575  h_havg[k] /= area_z;
2576  }
2577 }

◆ MakeEBGeometry()

void ERF::MakeEBGeometry ( )

◆ MakeFilename_EyeTracker_latlon()

std::string ERF::MakeFilename_EyeTracker_latlon ( int  nstep)
631  {
632  // Ensure output directory exists
633  const std::string dir = "Output_HurricaneTracker/latlon";
634  if (!fs::exists(dir)) {
635  fs::create_directories(dir);
636  }
637 
638  // Construct filename with zero-padded step
639  std::ostringstream oss;
640  if(nstep==0){
641  oss << dir << "/hurricane_track_latlon" << std::setw(7) << std::setfill('0') << nstep << ".txt";
642  } else {
643  oss << dir << "/hurricane_track_latlon" << std::setw(7) << std::setfill('0') << nstep+1 << ".txt";
644  }
645 
646  return oss.str();
647 }

◆ MakeFilename_EyeTracker_maxvel()

std::string ERF::MakeFilename_EyeTracker_maxvel ( int  nstep)
650  {
651  // Ensure output directory exists
652  const std::string dir = "Output_HurricaneTracker/maxvel";
653  if (!fs::exists(dir)) {
654  fs::create_directories(dir);
655  }
656 
657  // Construct filename with zero-padded step
658  std::ostringstream oss;
659  if(nstep==0){
660  oss << dir << "/hurricane_maxvel_" << std::setw(7) << std::setfill('0') << nstep << ".txt";
661  } else {
662  oss << dir << "/hurricane_maxvel_" << std::setw(7) << std::setfill('0') << nstep+1 << ".txt";
663  }
664 
665  return oss.str();
666 }

◆ MakeHorizontalAverages()

void ERF::MakeHorizontalAverages ( )
2429 {
2430  int lev = 0;
2431 
2432  // First, average down all levels (if doing two-way coupling)
2433  if (solverChoice.coupling_type == CouplingType::TwoWay) {
2434  AverageDown();
2435  }
2436 
2437  MultiFab mf(grids[lev], dmap[lev], 5, 0);
2438 
2439  int zdir = 2;
2440  auto domain = geom[0].Domain();
2441 
2442  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
2443  bool is_anelastic = (solverChoice.anelastic[lev] == 1);
2444 
2445  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2446  const Box& bx = mfi.validbox();
2447  auto fab_arr = mf.array(mfi);
2448  auto const hse_arr = base_state[lev].const_array(mfi);
2449  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2450  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2451  Real dens = cons_arr(i, j, k, Rho_comp);
2452  fab_arr(i, j, k, 0) = dens;
2453  fab_arr(i, j, k, 1) = cons_arr(i, j, k, RhoTheta_comp) / dens;
2454  if (!use_moisture) {
2455  if (is_anelastic) {
2456  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2457  } else {
2458  fab_arr(i,j,k,2) = getPgivenRTh(cons_arr(i,j,k,RhoTheta_comp));
2459  }
2460  }
2461  });
2462  }
2463 
2464  if (use_moisture)
2465  {
2466  for (MFIter mfi(mf); mfi.isValid(); ++mfi) {
2467  const Box& bx = mfi.validbox();
2468  auto fab_arr = mf.array(mfi);
2469  auto const hse_arr = base_state[lev].const_array(mfi);
2470  auto const cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
2471  int ncomp = vars_new[lev][Vars::cons].nComp();
2472 
2473  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) {
2474  Real dens = cons_arr(i, j, k, Rho_comp);
2475  if (is_anelastic) {
2476  fab_arr(i,j,k,2) = hse_arr(i,j,k,BaseState::p0_comp);
2477  } else {
2478  Real qv = cons_arr(i, j, k, RhoQ1_comp) / dens;
2479  fab_arr(i, j, k, 2) = getPgivenRTh(cons_arr(i, j, k, RhoTheta_comp), qv);
2480  }
2481  fab_arr(i, j, k, 3) = (ncomp > RhoQ1_comp ? cons_arr(i, j, k, RhoQ1_comp) / dens : 0.0);
2482  fab_arr(i, j, k, 4) = (ncomp > RhoQ2_comp ? cons_arr(i, j, k, RhoQ2_comp) / dens : 0.0);
2483  });
2484  }
2485 
2486  Gpu::HostVector<Real> h_avg_qv = sumToLine(mf,3,1,domain,zdir);
2487  Gpu::HostVector<Real> h_avg_qc = sumToLine(mf,4,1,domain,zdir);
2488  }
2489 
2490  // Sum in the horizontal plane
2491  Gpu::HostVector<Real> h_avg_density = sumToLine(mf,0,1,domain,zdir);
2492  Gpu::HostVector<Real> h_avg_temperature = sumToLine(mf,1,1,domain,zdir);
2493  Gpu::HostVector<Real> h_avg_pressure = sumToLine(mf,2,1,domain,zdir);
2494 
2495  // Divide by the total number of cells we are averaging over
2496  int size_z = domain.length(zdir);
2497  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
2498  int klen = static_cast<int>(h_avg_density.size());
2499 
2500  for (int k = 0; k < klen; ++k) {
2501  h_havg_density[k] /= area_z;
2502  h_havg_temperature[k] /= area_z;
2503  h_havg_pressure[k] /= area_z;
2504  if (solverChoice.moisture_type != MoistureType::None)
2505  {
2506  h_havg_qc[k] /= area_z;
2507  h_havg_qv[k] /= area_z;
2508  }
2509  } // k
2510 
2511  // resize device vectors
2512  d_havg_density.resize(size_z, 0.0_rt);
2513  d_havg_temperature.resize(size_z, 0.0_rt);
2514  d_havg_pressure.resize(size_z, 0.0_rt);
2515 
2516  // copy host vectors to device vectors
2517  Gpu::copy(Gpu::hostToDevice, h_havg_density.begin(), h_havg_density.end(), d_havg_density.begin());
2518  Gpu::copy(Gpu::hostToDevice, h_havg_temperature.begin(), h_havg_temperature.end(), d_havg_temperature.begin());
2519  Gpu::copy(Gpu::hostToDevice, h_havg_pressure.begin(), h_havg_pressure.end(), d_havg_pressure.begin());
2520 
2521  if (solverChoice.moisture_type != MoistureType::None)
2522  {
2523  d_havg_qv.resize(size_z, 0.0_rt);
2524  d_havg_qc.resize(size_z, 0.0_rt);
2525  Gpu::copy(Gpu::hostToDevice, h_havg_qv.begin(), h_havg_qv.end(), d_havg_qv.begin());
2526  Gpu::copy(Gpu::hostToDevice, h_havg_qc.begin(), h_havg_qc.end(), d_havg_qc.begin());
2527  }
2528 }
amrex::Gpu::DeviceVector< amrex::Real > d_havg_temperature
Definition: ERF.H:1289
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qv
Definition: ERF.H:1291
amrex::Vector< amrex::Real > h_havg_pressure
Definition: ERF.H:1284
amrex::Vector< amrex::Real > h_havg_qc
Definition: ERF.H:1286
amrex::Vector< amrex::Real > h_havg_density
Definition: ERF.H:1282
amrex::Gpu::DeviceVector< amrex::Real > d_havg_qc
Definition: ERF.H:1292
amrex::Gpu::DeviceVector< amrex::Real > d_havg_density
Definition: ERF.H:1288
amrex::Vector< amrex::Real > h_havg_temperature
Definition: ERF.H:1283
amrex::Gpu::DeviceVector< amrex::Real > d_havg_pressure
Definition: ERF.H:1290
amrex::Vector< amrex::Real > h_havg_qv
Definition: ERF.H:1285
Here is the call graph for this function:

◆ MakeNewLevelFromCoarse()

void ERF::MakeNewLevelFromCoarse ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
291 {
292  AMREX_ALWAYS_ASSERT(lev > 0);
293 
294  if (verbose) {
295  amrex::Print() <<" NEW BA FROM COARSE AT LEVEL " << lev << " " << ba << std::endl;
296  }
297 
298  //
299  // Grow the subdomains vector and build the subdomains vector at this level
300  //
301  subdomains.resize(lev+1);
302  //
303  // Create subdomains at each level within the domain such that
304  // 1) all boxes in a given subdomain are "connected"
305  // 2) no boxes in a subdomain touch any boxes in any other subdomain
306  //
308  BoxArray dom(geom[lev].Domain());
309  subdomains[lev].push_back(dom);
310  } else {
311  make_subdomains(ba.simplified_list(), subdomains[lev]);
312  }
313 
314  if (lev == 0) init_bcs();
315 
316  //********************************************************************************************
317  // This allocates all kinds of things, including but not limited to: solution arrays,
318  // terrain arrays, metric terms and base state.
319  // *******************************************************************************************
320  init_stuff(lev, ba, dm, vars_new[lev], vars_old[lev], base_state[lev], z_phys_nd[lev]);
321 
322  t_new[lev] = time;
323  t_old[lev] = time - 1.e200;
324 
325  // ********************************************************************************************
326  // Build the data structures for metric quantities used with terrain-fitted coordinates
327  // ********************************************************************************************
328  if ( solverChoice.terrain_type == TerrainType::EB ||
329  solverChoice.terrain_type == TerrainType::ImmersedForcing)
330  {
331  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
332  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
333  if (solverChoice.terrain_type == TerrainType::EB) {
334  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
335  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
336  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
337  }
338  }
339  init_zphys(lev, time);
341 
342  //
343  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
344  //
345  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
346  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
347  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
348  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
349  }
350  }
351 
352  // ********************************************************************************************
353  // Build the data structures for canopy model (depends upon z_phys)
354  // ********************************************************************************************
356  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
357  }
358 
359  //********************************************************************************************
360  // Microphysics
361  // *******************************************************************************************
362  int q_size = micro->Get_Qmoist_Size(lev);
363  qmoist[lev].resize(q_size);
364  micro->Define(lev, solverChoice);
365  if (solverChoice.moisture_type != MoistureType::None)
366  {
367  micro->Init(lev, vars_new[lev][Vars::cons],
368  grids[lev], Geom(lev), 0.0,
369  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
370  }
371  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
372  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
373  }
374 
375  //********************************************************************************************
376  // Radiation
377  // *******************************************************************************************
378  if (solverChoice.rad_type != RadiationType::None)
379  {
380  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
381  }
382 
383  // *****************************************************************************************************
384  // Initialize the boundary conditions (after initializing the terrain but before calling
385  // initHSE or FillCoarsePatch)
386  // *****************************************************************************************************
387  make_physbcs(lev);
388 
389  // ********************************************************************************************
390  // Update the base state at this level by interpolation from coarser level
391  // ********************************************************************************************
392  InterpFromCoarseLevel(base_state[lev], base_state[lev].nGrowVect(),
393  IntVect(0,0,0), // do not fill ghost cells outside the domain
394  base_state[lev-1], 0, 0, base_state[lev].nComp(),
395  geom[lev-1], geom[lev],
396  refRatio(lev-1), &cell_cons_interp,
398 
399  // Impose bc's outside the domain
400  (*physbcs_base[lev])(base_state[lev],0,base_state[lev].nComp(),base_state[lev].nGrowVect());
401 
402  // ********************************************************************************************
403  // Build the data structures for calculating diffusive/turbulent terms
404  // ********************************************************************************************
405  update_diffusive_arrays(lev, ba, dm);
406 
407  // ********************************************************************************************
408  // Fill data at the new level by interpolation from the coarser level
409  // Note that internal to FillCoarsePatch we will convert velocity to momentum,
410  // then interpolate momentum, then convert momentum back to velocity
411  // Also note that FillCoarsePatch is hard-wired to act only on lev_new at coarse and fine
412  // ********************************************************************************************
413  FillCoarsePatch(lev, time);
414 
415  // ********************************************************************************************
416  // Initialize the integrator class
417  // ********************************************************************************************
418  dt_mri_ratio[lev] = dt_mri_ratio[lev-1];
420 
421  // ********************************************************************************************
422  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
423  // ********************************************************************************************
424  if (lev > 0 && cf_width >= 0) {
427  }
428 
429  // ********************************************************************************************
430  // Create the SurfaceLayer arrays at this (new) level
431  // ********************************************************************************************
432  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
433  int nlevs = finest_level+1;
434  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
435  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
436  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
437  mfv_old, Theta_prim[lev], Qv_prim[lev],
438  Qr_prim[lev], z_phys_nd[lev],
439  Hwave[lev].get(), Lwave[lev].get(), eddyDiffs_lev[lev].get(),
441  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
442  }
443 
444 #ifdef ERF_USE_PARTICLES
445  // particleData.Redistribute();
446 #endif
447 }
void update_diffusive_arrays(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewArrays.cpp:457
void initialize_integrator(int lev, amrex::MultiFab &cons_mf, amrex::MultiFab &vel_mf)
Definition: ERF_MakeNewArrays.cpp:680
void make_subdomains(const amrex::BoxList &ba, amrex::Vector< amrex::BoxArray > &bins)
Definition: ERF_MakeSubdomains.cpp:6
void update_terrain_arrays(int lev)
Definition: ERF_MakeNewArrays.cpp:658
void init_zphys(int lev, amrex::Real time)
Definition: ERF_MakeNewArrays.cpp:553
void init_stuff(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &lev_new, amrex::Vector< amrex::MultiFab > &lev_old, amrex::MultiFab &tmp_base_state, std::unique_ptr< amrex::MultiFab > &tmp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:24
void Define_ERFFillPatchers(int lev)
Definition: ERF.cpp:2606

◆ MakeNewLevelFromScratch()

void ERF::MakeNewLevelFromScratch ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
27 {
28  BoxArray ba;
29  DistributionMapping dm;
30  Box domain(Geom(0).Domain());
31  if (lev == 0 && restart_chkfile.empty() &&
32  (max_grid_size[0][0] >= domain.length(0)) &&
33  (max_grid_size[0][1] >= domain.length(1)) &&
34  ba_in.size() != ParallelDescriptor::NProcs())
35  {
36  // We only decompose in z if max_grid_size_z indicates we should
37  bool decompose_in_z = (max_grid_size[0][2] < domain.length(2));
38 
39  ba = ERFPostProcessBaseGrids(Geom(0).Domain(),decompose_in_z);
40  dm = DistributionMapping(ba);
41  } else {
42  ba = ba_in;
43  dm = dm_in;
44  }
45 
46  // ********************************************************************************************
47  // Define grids[lev] to be ba
48  // ********************************************************************************************
49  SetBoxArray(lev, ba);
50 
51  // ********************************************************************************************
52  // Define dmap[lev] to be dm
53  // ********************************************************************************************
54  SetDistributionMap(lev, dm);
55 
56  if (verbose) {
57  amrex::Print() << "BA FROM SCRATCH AT LEVEL " << lev << " " << ba << std::endl;
58  // amrex::Print() <<" SIMPLIFIED BA FROM SCRATCH AT LEVEL " << lev << " " << ba.simplified_list() << std::endl;
59  }
60 
61  subdomains.resize(lev+1);
62  if ( (lev == 0) || (
64  (solverChoice.init_type != InitType::WRFInput) && (solverChoice.init_type != InitType::Metgrid) ) ) {
65  BoxArray dom(geom[lev].Domain());
66  subdomains[lev].push_back(dom);
67  } else {
68  //
69  // Create subdomains at each level within the domain such that
70  // 1) all boxes in a given subdomain are "connected"
71  // 2) no boxes in a subdomain touch any boxes in any other subdomain
72  //
73  make_subdomains(ba.simplified_list(), subdomains[lev]);
74  }
75 
76  if (lev == 0) init_bcs();
77 
78  if ( solverChoice.terrain_type == TerrainType::EB ||
79  solverChoice.terrain_type == TerrainType::ImmersedForcing)
80  {
81  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
82  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
83  if (solverChoice.terrain_type == TerrainType::EB) {
84  eb[lev]->make_all_factories(lev, geom[lev], grids[lev], dmap[lev], eb_level);
85  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
86  eb[lev]->make_cc_factory(lev, geom[lev], grids[lev], dmap[lev], eb_level);
87  }
88  } else {
89  // m_factory[lev] = std::make_unique<FabFactory<FArrayBox>>();
90  }
91 
92  auto& lev_new = vars_new[lev];
93  auto& lev_old = vars_old[lev];
94 
95  //********************************************************************************************
96  // This allocates all kinds of things, including but not limited to: solution arrays,
97  // terrain arrays, metric terms and base state.
98  // *******************************************************************************************
99  init_stuff(lev, ba, dm, lev_new, lev_old, base_state[lev], z_phys_nd[lev]);
100 
101  //********************************************************************************************
102  // Land Surface Model
103  // *******************************************************************************************
104  int lsm_data_size = lsm.Get_Data_Size();
105  int lsm_flux_size = lsm.Get_Flux_Size();
106  lsm_data[lev].resize(lsm_data_size);
107  lsm_data_name.resize(lsm_data_size);
108  lsm_flux[lev].resize(lsm_flux_size);
109  lsm_flux_name.resize(lsm_flux_size);
110  lsm.Define(lev, solverChoice);
111  if (solverChoice.lsm_type != LandSurfaceType::None)
112  {
113  lsm.Init(lev, vars_new[lev][Vars::cons], Geom(lev), 0.0); // dummy dt value
114  }
115  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
116  lsm_data[lev][mvar] = lsm.Get_Data_Ptr(lev,mvar);
117  lsm_data_name[mvar] = lsm.Get_DataName(mvar);
118  }
119  for (int mvar(0); mvar<lsm_flux[lev].size(); ++mvar) {
120  lsm_flux[lev][mvar] = lsm.Get_Flux_Ptr(lev,mvar);
121  lsm_flux_name[mvar] = lsm.Get_FluxName(mvar);
122  }
123 
124 
125 
126  // ********************************************************************************************
127  // Build the data structures for calculating diffusive/turbulent terms
128  // ********************************************************************************************
129  update_diffusive_arrays(lev, ba, dm);
130 
131  // ********************************************************************************************
132  // Build the data structures for holding sea surface temps and skin temps
133  // ********************************************************************************************
134  sst_lev[lev].resize(1); sst_lev[lev][0] = nullptr;
135  tsk_lev[lev].resize(1); tsk_lev[lev][0] = nullptr;
136 
137  // ********************************************************************************************
138  // Thin immersed body
139  // *******************************************************************************************
140  init_thin_body(lev, ba, dm);
141 
142  // ********************************************************************************************
143  // Initialize the integrator class
144  // ********************************************************************************************
145  initialize_integrator(lev, lev_new[Vars::cons],lev_new[Vars::xvel]);
146 
147  // ********************************************************************************************
148  // Initialize the data itself
149  // If (init_type == InitType::WRFInput) then we are initializing terrain and the initial data in
150  // the same call so we must call init_only before update_terrain_arrays
151  // If (init_type != InitType::WRFInput) then we want to initialize the terrain before the initial data
152  // since we may need to use the grid information before constructing
153  // initial idealized data
154  // ********************************************************************************************
155  if (restart_chkfile.empty()) {
156  if ( (solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid) )
157  {
158  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type == TerrainType::StaticFittedMesh);
159  init_only(lev, time);
160  init_zphys(lev, time);
162  make_physbcs(lev);
163  } else {
164  init_zphys(lev, time);
166  // Note that for init_type != InitType::WRFInput and != InitType::Metgrid,
167  // make_physbcs is called inside init_only
168  init_only(lev, time);
169  }
170  } else {
171  // if restarting and nudging from input sounding, load the input sounding files
172  if (lev == 0 && solverChoice.init_type == InitType::Input_Sounding && solverChoice.nudging_from_input_sounding)
173  {
175  Error("input_sounding file name must be provided via input");
176  }
177 
179 
180  // this will interpolate the input profiles to the nominal height levels
181  // (ranging from 0 to the domain top)
182  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
183  input_sounding_data.read_from_file(geom[lev], zlevels_stag[lev], n);
184  }
185 
186  // this will calculate the hydrostatically balanced density and pressure
187  // profiles following WRF ideal.exe
188  if (solverChoice.sounding_type == SoundingType::Ideal) {
190  } else if (solverChoice.sounding_type == SoundingType::Isentropic ||
191  solverChoice.sounding_type == SoundingType::DryIsentropic) {
192  input_sounding_data.assume_dry = (solverChoice.sounding_type == SoundingType::DryIsentropic);
194  }
195  }
196 
197  // We re-create terrain_blanking on restart rather than storing it in the checkpoint
198  if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
199  int ngrow = ComputeGhostCells(solverChoice) + 2;
200  terrain_blanking[lev]->setVal(1.0);
201  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, ngrow);
202  terrain_blanking[lev]->FillBoundary(geom[lev].periodicity());
203  }
204  }
205 
206  // Read in tables needed for windfarm simulations
207  // fill in Nturb multifab - number of turbines in each mesh cell
208  // write out the vtk files for wind turbine location and/or
209  // actuator disks
210  #ifdef ERF_USE_WINDFARM
211  init_windfarm(lev);
212  #endif
213 
214  // ********************************************************************************************
215  // Build the data structures for canopy model (depends upon z_phys)
216  // ********************************************************************************************
217  if (restart_chkfile.empty()) {
219  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
220  }
221  }
222 
223  //********************************************************************************************
224  // Create wall distance field for RANS model (depends upon z_phys)
225  // *******************************************************************************************
226  if (solverChoice.turbChoice[lev].rans_type != RANSType::None) {
227  // Handle bottom boundary
228  poisson_wall_dist(lev);
229 
230  // Correct the wall distance for immersed bodies
236  geom[lev],
237  z_phys_cc[lev]);
238  }
239  }
240 
241  //********************************************************************************************
242  // Microphysics
243  // *******************************************************************************************
244  int q_size = micro->Get_Qmoist_Size(lev);
245  qmoist[lev].resize(q_size);
246  micro->Define(lev, solverChoice);
247  if (solverChoice.moisture_type != MoistureType::None)
248  {
249  micro->Init(lev, vars_new[lev][Vars::cons],
250  grids[lev], Geom(lev), 0.0,
251  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
252  }
253  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
254  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
255  }
256 
257  //********************************************************************************************
258  // Radiation
259  // *******************************************************************************************
260  if (solverChoice.rad_type != RadiationType::None)
261  {
262  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
263  }
264 
265  // ********************************************************************************************
266  // If we are making a new level then the FillPatcher for this level hasn't been allocated yet
267  // ********************************************************************************************
268  if (lev > 0 && cf_width >= 0) {
271  }
272 
273 #ifdef ERF_USE_PARTICLES
274  if (restart_chkfile.empty()) {
275  if (lev == 0) {
276  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,time);
277  } else {
278  particleData.Redistribute();
279  }
280  }
281 #endif
282 }
BoxArray ERFPostProcessBaseGrids(const Box &domain, bool decompose_in_z)
Definition: ERF_ChopGrids.cpp:6
void thinbody_wall_dist(std::unique_ptr< MultiFab > &wdist, Vector< IntVect > &xfaces, Vector< IntVect > &yfaces, Vector< IntVect > &zfaces, const Geometry &geomdata, std::unique_ptr< MultiFab > &z_phys_cc)
Definition: ERF_ThinBodyWallDist.cpp:12
void init_only(int lev, amrex::Real time)
Definition: ERF.cpp:1876
void poisson_wall_dist(int lev)
Definition: ERF_PoissonWallDist.cpp:20
void init_thin_body(int lev, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm)
Definition: ERF_MakeNewLevel.cpp:722
int Get_Data_Size()
Definition: ERF_LandSurface.H:92
std::string Get_DataName(const int &varIdx)
Definition: ERF_LandSurface.H:98
std::string Get_FluxName(const int &varIdx)
Definition: ERF_LandSurface.H:104
amrex::MultiFab * Get_Flux_Ptr(const int &lev, const int &varIdx)
Definition: ERF_LandSurface.H:86
void Init(const int &lev, const amrex::MultiFab &cons_in, const amrex::Geometry &geom, const amrex::Real &dt_advance)
Definition: ERF_LandSurface.H:43
void Define(const int &lev, SolverChoice &sc)
Definition: ERF_LandSurface.H:36
int Get_Flux_Size()
Definition: ERF_LandSurface.H:95
bool nudging_from_input_sounding
Definition: ERF_DataStruct.H:936
Here is the call graph for this function:

◆ MakeVTKFilename()

std::string ERF::MakeVTKFilename ( int  nstep)
574  {
575  // Ensure output directory exists
576  const std::string dir = "Output_HurricaneTracker";
577  if (!fs::exists(dir)) {
578  fs::create_directory(dir);
579  }
580 
581  // Construct filename with zero-padded step
582  std::ostringstream oss;
583  if(nstep==0){
584  oss << dir << "/hurricane_track_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
585  } else {
586  oss << dir << "/hurricane_track_" << std::setw(7) << std::setfill('0') << nstep+1 << ".vtk";
587  }
588 
589  return oss.str();
590 }

◆ MakeVTKFilename_EyeTracker_xy()

std::string ERF::MakeVTKFilename_EyeTracker_xy ( int  nstep)
612  {
613  // Ensure output directory exists
614  const std::string dir = "Output_HurricaneTracker/xy";
615  if (!fs::exists(dir)) {
616  fs::create_directories(dir);
617  }
618 
619  // Construct filename with zero-padded step
620  std::ostringstream oss;
621  if(nstep==0){
622  oss << dir << "/hurricane_track_xy_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
623  } else {
624  oss << dir << "/hurricane_track_xy_" << std::setw(7) << std::setfill('0') << nstep+1 << ".vtk";
625  }
626 
627  return oss.str();
628 }

◆ MakeVTKFilename_TrackerCircle()

std::string ERF::MakeVTKFilename_TrackerCircle ( int  nstep)
593  {
594  // Ensure output directory exists
595  const std::string dir = "Output_HurricaneTracker/tracker_circle";
596  if (!fs::exists(dir)) {
597  fs::create_directories(dir);
598  }
599 
600  // Construct filename with zero-padded step
601  std::ostringstream oss;
602  if(nstep==0){
603  oss << dir << "/hurricane_tracker_circle_" << std::setw(7) << std::setfill('0') << nstep << ".vtk";
604  } else {
605  oss << dir << "/hurricane_tracker_circle_" << std::setw(7) << std::setfill('0') << nstep+1 << ".vtk";
606  }
607 
608  return oss.str();
609 }

◆ nghost_eb_basic()

static int ERF::nghost_eb_basic ( )
inlinestaticprivate
1602  { return 5; }

◆ nghost_eb_full()

static int ERF::nghost_eb_full ( )
inlinestaticprivate
1609  { return 4; }

◆ nghost_eb_volume()

static int ERF::nghost_eb_volume ( )
inlinestaticprivate
1606  { return 5; }

◆ NumDataLogs()

AMREX_FORCE_INLINE int ERF::NumDataLogs ( )
inlineprivatenoexcept
1398  {
1399  return datalog.size();
1400  }

◆ NumDerDataLogs()

AMREX_FORCE_INLINE int ERF::NumDerDataLogs ( )
inlineprivatenoexcept
1405  {
1406  return der_datalog.size();
1407  }

◆ NumSampleLineLogs()

AMREX_FORCE_INLINE int ERF::NumSampleLineLogs ( )
inlineprivatenoexcept
1434  {
1435  return samplelinelog.size();
1436  }

◆ NumSampleLines()

AMREX_FORCE_INLINE int ERF::NumSampleLines ( )
inlineprivatenoexcept
1460  {
1461  return sampleline.size();
1462  }

◆ NumSamplePointLogs()

AMREX_FORCE_INLINE int ERF::NumSamplePointLogs ( )
inlineprivatenoexcept
1420  {
1421  return sampleptlog.size();
1422  }

◆ NumSamplePoints()

AMREX_FORCE_INLINE int ERF::NumSamplePoints ( )
inlineprivatenoexcept
1447  {
1448  return samplepoint.size();
1449  }

◆ operator=() [1/2]

ERF& ERF::operator= ( const ERF other)
delete

◆ operator=() [2/2]

ERF& ERF::operator= ( ERF &&  other)
deletenoexcept

◆ ParameterSanityChecks()

void ERF::ParameterSanityChecks ( )
private
2362 {
2363  AMREX_ALWAYS_ASSERT(cfl > 0. || fixed_dt[0] > 0.);
2364 
2365  // We don't allow use_real_bcs to be true if init_type is not either InitType::WRFInput or InitType::Metgrid
2366  AMREX_ALWAYS_ASSERT( !solverChoice.use_real_bcs ||
2367  ((solverChoice.init_type == InitType::WRFInput) || (solverChoice.init_type == InitType::Metgrid)) );
2368 
2369  AMREX_ALWAYS_ASSERT(real_width >= 0);
2370  AMREX_ALWAYS_ASSERT(real_set_width >= 0);
2371  AMREX_ALWAYS_ASSERT(real_width >= real_set_width);
2372 
2373  if (cf_width < 0 || cf_set_width < 0 || cf_width < cf_set_width) {
2374  Abort("You must set cf_width >= cf_set_width >= 0");
2375  }
2376  if (max_level > 0 && cf_set_width > 0) {
2377  for (int lev = 1; lev <= max_level; lev++) {
2378  if (cf_set_width%ref_ratio[lev-1][0] != 0 ||
2379  cf_set_width%ref_ratio[lev-1][1] != 0 ||
2380  cf_set_width%ref_ratio[lev-1][2] != 0 ) {
2381  Abort("You must set cf_width to be a multiple of ref_ratio");
2382  }
2383  }
2384  }
2385 
2386  // If fixed_mri_dt_ratio is set, it must be even
2387  if (fixed_mri_dt_ratio > 0 && (fixed_mri_dt_ratio%2 != 0) )
2388  {
2389  Abort("If you specify fixed_mri_dt_ratio, it must be even");
2390  }
2391 
2392  for (int lev = 0; lev <= max_level; lev++)
2393  {
2394  // We ignore fixed_fast_dt if not substepping
2395  if (solverChoice.substepping_type[lev] == SubsteppingType::None) {
2396  fixed_fast_dt[lev] = -1.0;
2397  }
2398 
2399  // If both fixed_dt and fast_dt are specified, their ratio must be an even integer
2400  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio <= 0)
2401  {
2402  Real eps = 1.e-12;
2403  int ratio = static_cast<int>( ( (1.0+eps) * fixed_dt[lev] ) / fixed_fast_dt[lev] );
2404  if (fixed_dt[lev] / fixed_fast_dt[lev] != ratio)
2405  {
2406  Abort("Ratio of fixed_dt to fixed_fast_dt must be an even integer");
2407  }
2408  }
2409 
2410  // If all three are specified, they must be consistent
2411  if (fixed_dt[lev] > 0. && fixed_fast_dt[lev] > 0. && fixed_mri_dt_ratio > 0)
2412  {
2413  if (fixed_dt[lev] / fixed_fast_dt[lev] != fixed_mri_dt_ratio)
2414  {
2415  Abort("Dt is over-specfied");
2416  }
2417  }
2418  } // lev
2419 
2420  if (solverChoice.coupling_type == CouplingType::TwoWay && cf_width > 0) {
2421  Abort("For two-way coupling you must set cf_width = 0");
2422  }
2423 }
int real_set_width
Definition: ERF.H:1196

◆ PlotFileName()

std::string ERF::PlotFileName ( int  lev) const
private

◆ PlotFileVarNames()

Vector< std::string > ERF::PlotFileVarNames ( amrex::Vector< std::string >  plot_var_names)
staticprivate
296 {
297  Vector<std::string> names;
298 
299  names.insert(names.end(), plot_var_names.begin(), plot_var_names.end());
300 
301  return names;
302 
303 }

◆ poisson_wall_dist()

void ERF::poisson_wall_dist ( int  lev)

Calculate wall distances using the Poisson equation

The zlo boundary is assumed to correspond to the land surface. If there are no boundary walls, then the other use case is to calculate wall distances for immersed boundaries (embedded or thin body).

See Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248. https://doi.org/10.1016/S0021-9991(03)00272-9

21 {
22  BL_PROFILE("ERF::poisson_wall_dist()");
23 
24  bool havewall{false};
25  Orientation zlo(Direction::z, Orientation::low);
26  if ( ( phys_bc_type[zlo] == ERF_BC::surface_layer ) ||
27  ( phys_bc_type[zlo] == ERF_BC::no_slip_wall ) )/*||
28  ((phys_bc_type[zlo] == ERF_BC::slip_wall) && (dom_hi.z > dom_lo.z)) )*/
29  {
30  havewall = true;
31  }
32 
33  auto const& geomdata = geom[lev];
34 
35  if (havewall) {
36  if (solverChoice.mesh_type == MeshType::ConstantDz) {
37 // Comment this out to test the wall dist calc in the trivial case:
38 //#if 0
39  Print() << "Directly calculating direct wall distance for constant dz" << std::endl;
40  const Real* prob_lo = geomdata.ProbLo();
41  const Real* dx = geomdata.CellSize();
42  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
43  const Box& bx = mfi.validbox();
44  auto dist_arr = walldist[lev]->array(mfi);
45  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
46  dist_arr(i, j, k) = prob_lo[2] + (k + 0.5) * dx[2];
47  });
48  }
49  return;
50 //#endif
51  } else if (solverChoice.mesh_type == MeshType::StretchedDz) {
52  // TODO: Handle this trivial case
53  Error("Wall dist calc not implemented with grid stretching yet");
54  } else {
55  // TODO
56  Error("Wall dist calc not implemented over terrain yet");
57  }
58  }
59 
60  Print() << "Calculating Poisson wall distance" << std::endl;
61 
62  // Make sure the solver only sees the levels over which we are solving
63  BoxArray nba = walldist[lev]->boxArray();
64  nba.surroundingNodes();
65  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
66  Vector<BoxArray> ba_tmp; ba_tmp.push_back(nba);
67  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(walldist[lev]->DistributionMap());
68 
69  Vector<MultiFab> rhs;
70  Vector<MultiFab> phi;
71 
72  if (solverChoice.terrain_type == TerrainType::EB) {
73  amrex::Error("Wall dist calc not implemented for EB");
74  } else {
75  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
76  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
77  }
78 
79  rhs[0].setVal(-1.0);
80 
81  // Define an overset mask to set dirichlet nodes on walls
82  iMultiFab mask(ba_tmp[0], dm_tmp[0], 1, 0);
83  Vector<const iMultiFab*> overset_mask = {&mask};
84 
85  auto const dom_lo = lbound(geom[lev].Domain());
86  auto const dom_hi = ubound(geom[lev].Domain());
87 
88  // ****************************************************************************
89  // Initialize phi
90  // (It is essential that we do this in order to fill the corners; this is
91  // used if we include blanking.)
92  // ****************************************************************************
93  phi[0].setVal(0.0);
94 
95  // ****************************************************************************
96  // Interior boundaries are marked with phi=0
97  // ****************************************************************************
98  // Overset mask is 0/1: 1 means the node is an unknown. 0 means it's known.
99  mask.setVal(1);
101  Warning("Poisson distance is inaccurate for bodies in open domains that are small compared to the domain size, skipping");
102  return;
103 #if 0
104  Gpu::DeviceVector<IntVect> xfacelist, yfacelist, zfacelist;
105 
106  xfacelist.resize(solverChoice.advChoice.zero_xflux.size());
107  yfacelist.resize(solverChoice.advChoice.zero_yflux.size());
108  zfacelist.resize(solverChoice.advChoice.zero_zflux.size());
109 
110  if (xfacelist.size() > 0) {
111  Gpu::copy(amrex::Gpu::hostToDevice,
114  xfacelist.begin());
115  Print() << " masking interior xfaces" << std::endl;
116  }
117  if (yfacelist.size() > 0) {
118  Gpu::copy(amrex::Gpu::hostToDevice,
121  yfacelist.begin());
122  Print() << " masking interior yfaces" << std::endl;
123  }
124  if (zfacelist.size() > 0) {
125  Gpu::copy(amrex::Gpu::hostToDevice,
128  zfacelist.begin());
129  Print() << " masking interior zfaces" << std::endl;
130  }
131 
132  for (MFIter mfi(phi[0]); mfi.isValid(); ++mfi) {
133  const Box& bx = mfi.validbox();
134 
135  auto phi_arr = phi[0].array(mfi);
136  auto mask_arr = mask.array(mfi);
137 
138  if (xfacelist.size() > 0) {
139  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
140  for (int iface=0; iface < xfacelist.size(); ++iface) {
141  if ((i == xfacelist[iface][0]) &&
142  (j == xfacelist[iface][1]) &&
143  (k == xfacelist[iface][2]))
144  {
145  mask_arr(i, j , k ) = 0;
146  mask_arr(i, j , k+1) = 0;
147  mask_arr(i, j+1, k ) = 0;
148  mask_arr(i, j+1, k+1) = 0;
149  }
150  }
151  });
152  }
153 
154  if (yfacelist.size() > 0) {
155  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
156  for (int iface=0; iface < yfacelist.size(); ++iface) {
157  if ((i == yfacelist[iface][0]) &&
158  (j == yfacelist[iface][1]) &&
159  (k == yfacelist[iface][2]))
160  {
161  mask_arr(i , j, k ) = 0;
162  mask_arr(i , j, k+1) = 0;
163  mask_arr(i+1, j, k ) = 0;
164  mask_arr(i+1, j, k+1) = 0;
165  }
166  }
167  });
168  }
169 
170  if (zfacelist.size() > 0) {
171  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
172  for (int iface=0; iface < zfacelist.size(); ++iface) {
173  if ((i == xfacelist[iface][0]) &&
174  (j == xfacelist[iface][1]) &&
175  (k == xfacelist[iface][2]))
176  {
177  mask_arr(i , j , k) = 0;
178  mask_arr(i , j+1, k) = 0;
179  mask_arr(i+1, j , k) = 0;
180  mask_arr(i+1, j+1, k) = 0;
181  }
182  }
183  });
184  }
185  }
186 #endif
187  }
188 
189  // ****************************************************************************
190  // Setup BCs, with solid domain boundaries being dirichlet
191  // ****************************************************************************
192  amrex::Array<amrex::LinOpBCType,AMREX_SPACEDIM> bc3d_lo, bc3d_hi;
193  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
194  if (geom[0].isPeriodic(dir)) {
195  bc3d_lo[dir] = LinOpBCType::Periodic;
196  bc3d_hi[dir] = LinOpBCType::Periodic;
197  } else {
198  bc3d_lo[dir] = LinOpBCType::Neumann;
199  bc3d_hi[dir] = LinOpBCType::Neumann;
200  }
201  }
202  if (havewall) {
203  Print() << " Poisson zlo BC is dirichlet" << std::endl;
204  bc3d_lo[2] = LinOpBCType::Dirichlet;
205  }
206  Print() << " bc lo : " << bc3d_lo << std::endl;
207  Print() << " bc hi : " << bc3d_hi << std::endl;
208 
209  if (!solverChoice.advChoice.have_zero_flux_faces && !havewall) {
210  Error("No solid boundaries in the computational domain");
211  }
212 
213  LPInfo info;
214 /* Nodal solver cannot have hidden dimensions */
215 #if 0
216  // Allow a hidden direction if the domain is one cell wide
217  if (dom_lo.x == dom_hi.x) {
218  info.setHiddenDirection(0);
219  Print() << " domain is 2D in yz" << std::endl;
220  } else if (dom_lo.y == dom_hi.y) {
221  info.setHiddenDirection(1);
222  Print() << " domain is 2D in xz" << std::endl;
223  } else if (dom_lo.z == dom_hi.z) {
224  info.setHiddenDirection(2);
225  Print() << " domain is 2D in xy" << std::endl;
226  }
227 #endif
228 
229  // ****************************************************************************
230  // Solve nodal masked Poisson problem with MLMG
231  // TODO: different solver for terrain?
232  // ****************************************************************************
233  const Real reltol = solverChoice.poisson_reltol;
234  const Real abstol = solverChoice.poisson_abstol;
235 
236  Real sigma = 1.0;
237  Vector<EBFArrayBoxFactory const*> factory_vec = { &EBFactory(lev) };
238  MLNodeLaplacian mlpoisson(geom_tmp, ba_tmp, dm_tmp, info, factory_vec, sigma);
239 
240  mlpoisson.setDomainBC(bc3d_lo, bc3d_hi);
241 
242  if (lev > 0) {
243  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
244  }
245 
246  mlpoisson.setLevelBC(0, nullptr);
247 
248  mlpoisson.setOversetMask(0, mask);
249 
250  // Solve
251  MLMG mlmg(mlpoisson);
252  int max_iter = 100;
253  mlmg.setMaxIter(max_iter);
254 
255  mlmg.setVerbose(mg_verbose);
256  mlmg.setBottomVerbose(0);
257 
258  mlmg.solve(GetVecOfPtrs(phi),
259  GetVecOfConstPtrs(rhs),
260  reltol, abstol);
261 
262  // Now overwrite with periodic fill outside domain and fine-fine fill inside
263  phi[0].FillBoundary(geom[lev].periodicity());
264 
265  // ****************************************************************************
266  // Compute grad(phi) to get distances
267  // - Note that phi is nodal and walldist is cell-centered
268  // - TODO: include terrain metrics for dphi/dz
269  // ****************************************************************************
270  for (MFIter mfi(*walldist[lev]); mfi.isValid(); ++mfi) {
271  const Box& bx = mfi.validbox();
272 
273  const auto invCellSize = geomdata.InvCellSizeArray();
274 
275  auto const& phi_arr = phi[0].const_array(mfi);
276  auto dist_arr = walldist[lev]->array(mfi);
277 
278  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
279  Real dpdx{0}, dpdy{0}, dpdz{0};
280 
281  // dphi/dx
282  if (dom_lo.x != dom_hi.x) {
283  dpdx = 0.25 * invCellSize[0] * (
284  (phi_arr(i+1, j , k ) - phi_arr(i, j , k ))
285  + (phi_arr(i+1, j , k+1) - phi_arr(i, j , k+1))
286  + (phi_arr(i+1, j+1, k ) - phi_arr(i, j+1, k ))
287  + (phi_arr(i+1, j+1, k+1) - phi_arr(i, j+1, k+1)) );
288  }
289 
290  // dphi/dy
291  if (dom_lo.y != dom_hi.y) {
292  dpdy = 0.25 * invCellSize[1] * (
293  (phi_arr(i , j+1, k ) - phi_arr(i , j, k ))
294  + (phi_arr(i , j+1, k+1) - phi_arr(i , j, k+1))
295  + (phi_arr(i+1, j+1, k ) - phi_arr(i+1, j, k ))
296  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j, k+1)) );
297  }
298 
299  // dphi/dz
300  if (dom_lo.z != dom_hi.z) {
301  dpdz = 0.25 * invCellSize[2] * (
302  (phi_arr(i , j , k+1) - phi_arr(i , j , k))
303  + (phi_arr(i , j+1, k+1) - phi_arr(i , j+1, k))
304  + (phi_arr(i+1, j , k+1) - phi_arr(i+1, j , k))
305  + (phi_arr(i+1, j+1, k+1) - phi_arr(i+1, j+1, k)) );
306  }
307 
308  Real dp_dot_dp = dpdx*dpdx + dpdy*dpdy + dpdz*dpdz;
309  Real phi_avg = 0.125 * (
310  phi_arr(i , j , k ) + phi_arr(i , j , k+1) + phi_arr(i , j+1, k ) + phi_arr(i , j+1, k+1)
311  + phi_arr(i+1, j , k ) + phi_arr(i+1, j , k+1) + phi_arr(i+1, j+1, k ) + phi_arr(i+1, j+1, k+1) );
312  dist_arr(i, j, k) = -std::sqrt(dp_dot_dp) + std::sqrt(dp_dot_dp + 2*phi_avg);
313 
314  // DEBUG: output phi instead
315  //dist_arr(i, j, k) = phi_arr(i, j, k);
316  });
317  }
318 }
if(l_use_mynn &&start_comp<=RhoKE_comp &&end_comp >=RhoKE_comp)
Definition: ERF_DiffQKEAdjustment.H:2
static int mg_verbose
Definition: ERF.H:1171
amrex::Real poisson_reltol
Definition: ERF_DataStruct.H:877
amrex::Real poisson_abstol
Definition: ERF_DataStruct.H:876
Here is the call graph for this function:

◆ post_timestep()

void ERF::post_timestep ( int  nstep,
amrex::Real  time,
amrex::Real  dt_lev 
)
647 {
648  BL_PROFILE("ERF::post_timestep()");
649 
650 #ifdef ERF_USE_PARTICLES
651  particleData.Redistribute();
652 #endif
653 
654  if (solverChoice.coupling_type == CouplingType::TwoWay)
655  {
656  int ncomp = vars_new[0][Vars::cons].nComp();
657  for (int lev = finest_level-1; lev >= 0; lev--)
658  {
659  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
660  // m is the map scale factor at cell centers
661  // Here we pre-divide (rho S) by m^2 before refluxing
662  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
663  const Box& bx = mfi.tilebox();
664  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
665  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
666  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
667  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
668  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
669  {
670  cons_arr(i,j,k,n) /= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
671  });
672  } else {
673  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
674  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
675  {
676  cons_arr(i,j,k,n) *= detJ_arr(i,j,k) / (mfx_arr(i,j,0)*mfy_arr(i,j,0));
677  });
678  }
679  } // mfi
680 
681  // This call refluxes all "slow" cell-centered variables
682  // (i.e. not density or (rho theta) or velocities) from the lev/lev+1 interface onto lev
683  getAdvFluxReg(lev+1)->Reflux(vars_new[lev][Vars::cons], 2, 2, ncomp-2);
684 
685  // Here we multiply (rho S) by m^2 after refluxing
686  for (MFIter mfi(vars_new[lev][Vars::cons], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
687  const Box& bx = mfi.tilebox();
688  const Array4< Real> cons_arr = vars_new[lev][Vars::cons].array(mfi);
689  const Array4<const Real> mfx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
690  const Array4<const Real> mfy_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
691  if (SolverChoice::mesh_type == MeshType::ConstantDz) {
692  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
693  {
694  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0));
695  });
696  } else {
697  const Array4<const Real> detJ_arr = detJ_cc[lev]->const_array(mfi);
698  ParallelFor(bx, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) noexcept
699  {
700  cons_arr(i,j,k,n) *= (mfx_arr(i,j,0)*mfy_arr(i,j,0)) / detJ_arr(i,j,k);
701  });
702  }
703  } // mfi
704 
705  // We need to do this before anything else because refluxing changes the
706  // values of coarse cells underneath fine grids with the assumption they'll
707  // be over-written by averaging down
708  int src_comp;
709  if (solverChoice.anelastic[lev]) {
710  src_comp = 1;
711  } else {
712  src_comp = 0;
713  }
714  int num_comp = ncomp - src_comp;
715  AverageDownTo(lev,src_comp,num_comp);
716  }
717  }
718 
719  if (is_it_time_for_action(nstep, time, dt_lev0, sum_interval, sum_per)) {
722  sum_energy_quantities(time);
723  }
724 
725  if (solverChoice.pert_type == PerturbationType::Source ||
726  solverChoice.pert_type == PerturbationType::Direct ||
727  solverChoice.pert_type == PerturbationType::CPM) {
728  if (is_it_time_for_action(nstep, time, dt_lev0, pert_interval, -1.)) {
729  turbPert.debug(time);
730  }
731  }
732 
733  if (profile_int > 0 && (nstep+1) % profile_int == 0) {
734  if (destag_profiles) {
735  // all variables cell-centered
736  write_1D_profiles(time);
737  } else {
738  // some variables staggered
740  }
741  }
742 
743  if (solverChoice.rad_type != RadiationType::None)
744  {
745  if ( rad_datalog_int > 0 &&
746  (((nstep+1) % rad_datalog_int == 0) || (nstep==0)) ) {
747  if (rad[0]->hasDatalog()) {
748  rad[0]->WriteDataLog(time+start_time);
749  }
750  }
751  }
752 
753  if (output_1d_column) {
754 #ifdef ERF_USE_NETCDF
755  if (is_it_time_for_action(nstep, time, dt_lev0, column_interval, column_per))
756  {
757  int lev_column = 0;
758  for (int lev = finest_level; lev >= 0; lev--)
759  {
760  Real dx_lev = geom[lev].CellSize(0);
761  Real dy_lev = geom[lev].CellSize(1);
762  int i_lev = static_cast<int>(std::floor(column_loc_x / dx_lev));
763  int j_lev = static_cast<int>(std::floor(column_loc_y / dy_lev));
764  if (grids[lev].contains(IntVect(i_lev,j_lev,0))) lev_column = lev;
765  }
766  writeToNCColumnFile(lev_column, column_file_name, column_loc_x, column_loc_y, time);
767  }
768 #else
769  Abort("To output 1D column files ERF must be compiled with NetCDF");
770 #endif
771  }
772 
774  {
777  {
778  bool is_moist = (micro->Get_Qstate_Moist_Size() > 0);
779  m_w2d->write_planes(istep[0], time, vars_new, is_moist);
780  }
781  }
782 
783  // Write plane/line sampler data
785  line_sampler->get_sample_data(geom, vars_new);
786  line_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
787  }
789  plane_sampler->get_sample_data(geom, vars_new);
790  plane_sampler->write_sample_data(t_new, istep, ref_ratio, geom);
791  }
792 
793  // Moving terrain
794  if ( solverChoice.terrain_type == TerrainType::MovingFittedMesh )
795  {
796  for (int lev = finest_level; lev >= 0; lev--)
797  {
798  // Copy z_phs_nd and detJ_cc at end of timestep
799  MultiFab::Copy(*z_phys_nd[lev], *z_phys_nd_new[lev], 0, 0, 1, z_phys_nd[lev]->nGrowVect());
800  MultiFab::Copy( *detJ_cc[lev], *detJ_cc_new[lev], 0, 0, 1, detJ_cc[lev]->nGrowVect());
801  MultiFab::Copy(base_state[lev],base_state_new[lev],0,0,BaseState::num_comps,base_state[lev].nGrowVect());
802 
803  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
804  }
805  }
806 
807  bool is_hurricane_tracker_io=false;
808  ParmParse pp("erf");
809  pp.query("is_hurricane_tracker_io", is_hurricane_tracker_io);
810 
811  if (is_hurricane_tracker_io) {
812  if(nstep == 0 or (nstep+1)%m_plot3d_int_1 == 0){
813  std::string filename = MakeVTKFilename(nstep);
814  Real velmag_threshold = 1e10;
815  pp.query("hurr_track_io_velmag_greater_than", velmag_threshold);
816  if(velmag_threshold==1e10) {
817  Abort("As hurricane tracking IO is active using erf.is_hurricane_tracker_io = true"
818  " there needs to be an input erf.hurr_track_io_velmag_greater_than which specifies the"
819  " magnitude of velocity above which cells will be tagged for refinement.");
820  }
821  int levc=finest_level;
822  MultiFab& U_new = vars_new[levc][Vars::xvel];
823  MultiFab& V_new = vars_new[levc][Vars::yvel];
824  MultiFab& W_new = vars_new[levc][Vars::zvel];
825 
826  HurricaneTracker(levc, U_new, V_new, W_new, velmag_threshold, true);
827  if (ParallelDescriptor::IOProcessor()) {
829  }
830  }
831  }
832 
833  if(solverChoice.io_hurricane_eye_tracker and (nstep == 0 or (nstep+1)%m_plot3d_int_1 == 0)) {
834  int levc=finest_level;
835 
836  HurricaneEyeTracker(geom[levc],
837  vars_new[levc],
845 
846  MultiFab& U_new = vars_new[levc][Vars::xvel];
847  MultiFab& V_new = vars_new[levc][Vars::yvel];
848  MultiFab& W_new = vars_new[levc][Vars::zvel];
849 
850  MultiFab mf_cc_vel(grids[levc], dmap[levc], AMREX_SPACEDIM, IntVect(0,0,0));
851  average_face_to_cellcenter(mf_cc_vel,0,{AMREX_D_DECL(&U_new,&V_new,&W_new)},0);
852 
853  HurricaneMaxVelTracker(geom[levc],
854  mf_cc_vel,
855  t_new[0],
858 
859  std::string filename_tracker = MakeVTKFilename_TrackerCircle(nstep);
860  std::string filename_xy = MakeVTKFilename_EyeTracker_xy(nstep);
861  std::string filename_latlon = MakeFilename_EyeTracker_latlon(nstep);
862  std::string filename_maxvel = MakeFilename_EyeTracker_maxvel(nstep);
863  if (ParallelDescriptor::IOProcessor()) {
864  WriteVTKPolyline(filename_tracker, hurricane_tracker_circle);
866  WriteLinePlot(filename_latlon, hurricane_eye_track_latlon);
867  WriteLinePlot(filename_maxvel, hurricane_maxvel_vs_time);
868  }
869  }
870 
871 } // post_timestep
void HurricaneMaxVelTracker(const amrex::Geometry &geom, const amrex::MultiFab &mf_cc_vel, const amrex::Real &time, const amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_xy, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_maxvel_vs_time)
Definition: ERF_HurricaneDiagnostics.H:281
void HurricaneEyeTracker(const amrex::Geometry &geom, const amrex::Vector< amrex::MultiFab > &S_data, MoistureType moisture_type, const amrex::Vector< amrex::MultiFab > *forecast_state_at_lev, const amrex::Real &hurricane_eye_latitude, const amrex::Real &hurricane_eye_longitude, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_xy, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_eye_track_latlon, amrex::Vector< std::array< amrex::Real, 2 >> &hurricane_tracker_circle)
Definition: ERF_HurricaneDiagnostics.H:255
void make_zcc(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc)
Definition: ERF_TerrainMetrics.cpp:623
std::string MakeFilename_EyeTracker_maxvel(int nstep)
Definition: ERF_Write1DProfiles.cpp:650
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_xy
Definition: ERF.H:154
static amrex::Real column_loc_y
Definition: ERF.H:1230
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_interp
Definition: ERF.H:161
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_tracker_circle
Definition: ERF.H:157
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_maxvel_vs_time
Definition: ERF.H:156
static std::string column_file_name
Definition: ERF.H:1231
AMREX_FORCE_INLINE amrex::YAFluxRegister * getAdvFluxReg(int lev)
Definition: ERF.H:1376
static amrex::Real bndry_output_planes_per
Definition: ERF.H:1236
std::string MakeVTKFilename(int nstep)
Definition: ERF_Write1DProfiles.cpp:574
static amrex::Real column_per
Definition: ERF.H:1228
static amrex::Real column_loc_x
Definition: ERF.H:1229
amrex::Vector< std::array< amrex::Real, 2 > > hurricane_eye_track_latlon
Definition: ERF.H:155
std::string MakeVTKFilename_TrackerCircle(int nstep)
Definition: ERF_Write1DProfiles.cpp:593
std::string MakeVTKFilename_EyeTracker_xy(int nstep)
Definition: ERF_Write1DProfiles.cpp:612
static int bndry_output_planes_interval
Definition: ERF.H:1235
void WriteLinePlot(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_Write1DProfiles.cpp:716
static int output_1d_column
Definition: ERF.H:1226
void WriteVTKPolyline(const std::string &filename, amrex::Vector< std::array< amrex::Real, 2 >> &points_xy)
Definition: ERF_Write1DProfiles.cpp:669
std::string MakeFilename_EyeTracker_latlon(int nstep)
Definition: ERF_Write1DProfiles.cpp:631
static int column_interval
Definition: ERF.H:1227
amrex::Real hurricane_eye_latitude
Definition: ERF_DataStruct.H:1007
amrex::Real hurricane_eye_longitude
Definition: ERF_DataStruct.H:1007
bool io_hurricane_eye_tracker
Definition: ERF_DataStruct.H:1006
Here is the call graph for this function:

◆ post_update()

void ERF::post_update ( amrex::MultiFab &  state_mf,
amrex::Real  time,
const amrex::Geometry &  geom 
)
private

◆ print_banner()

void ERF::print_banner ( MPI_Comm  comm,
std::ostream &  out 
)
static
65  : " << msg << std::endl;
66 }
67 
68 void ERF::print_banner (MPI_Comm comm, std::ostream& out)
69 {
70 #ifdef AMREX_USE_MPI
71  int irank = 0;
72  int num_ranks = 1;
73  MPI_Comm_size(comm, &num_ranks);
74  MPI_Comm_rank(comm, &irank);
75 
76  // Only root process does the printing
77  if (irank != 0) return;
78 #else
79  amrex::ignore_unused(comm);
80 #endif
81 
82  auto etime = std::chrono::system_clock::now();
83  auto etimet = std::chrono::system_clock::to_time_t(etime);
84 #ifndef _WIN32
85  char time_buf[64];
86  ctime_r(&etimet, time_buf);
87  const std::string tstamp(time_buf);
88 #else
89  char* time_buf = new char[64];
90  ctime_s(time_buf, 64, &etimet);
91  const std::string tstamp(time_buf);
92 #endif
93 
94  const char* githash1 = amrex::buildInfoGetGitHash(1);
95  const char* githash2 = amrex::buildInfoGetGitHash(2);
96 
97  // clang-format off
98  out << dbl_line
99  << " ERF (https://github.com/erf-model/ERF)"
100  << std::endl << std::endl
101  << " ERF Git SHA :: " << githash1 << std::endl
102  << " AMReX Git SHA :: " << githash2 << std::endl
103  << " AMReX version :: " << amrex::Version() << std::endl << std::endl
104  << " Exec. time :: " << tstamp
105  << " Build time :: " << amrex::buildInfoGetBuildDate() << std::endl
106  << " C++ compiler :: " << amrex::buildInfoGetComp()
107  << " " << amrex::buildInfoGetCompVersion() << std::endl << std::endl
108  << " MPI :: "
109 #ifdef AMREX_USE_MPI
110  << "ON (Num. ranks = " << num_ranks << ")" << std::endl
111 #else
112  << "OFF " << std::endl
113 #endif
114  << " GPU :: "
115 #ifdef AMREX_USE_GPU
116  << "ON "
117 #if defined(AMREX_USE_CUDA)
118  << "(Backend: CUDA)"
119 #elif defined(AMREX_USE_HIP)
120  << "(Backend: HIP)"
121 #elif defined(AMREX_USE_SYCL)
122  << "(Backend: SYCL)"
123 #endif
124  << std::endl
125 #else
126  << "OFF" << std::endl
127 #endif
128  << " OpenMP :: "
129 #ifdef AMREX_USE_OMP
130  << "ON (Num. threads = " << omp_get_max_threads() << ")" << std::endl
131 #else
132  << "OFF" << std::endl
133 #endif
134  << std::endl;
135 
ERF()
Definition: ERF.cpp:123
const char * buildInfoGetBuildDate()
const char * buildInfoGetComp()
const char * buildInfoGetCompVersion()

Referenced by main().

Here is the caller graph for this function:

◆ print_error()

void ERF::print_error ( MPI_Comm  comm,
const std::string &  msg 
)
static
43  :
44  input_file : Input file with simulation settings
45 
46 Optional:
47  param=value : Overrides for parameters during runtime
48 )doc" << std::endl;
49 }
50 
51 void ERF::print_error (MPI_Comm comm, const std::string& msg)
52 {
53 #ifdef AMREX_USE_MPI
54  int irank = 0;
55  int num_ranks = 1;
56  MPI_Comm_size(comm, &num_ranks);
57  MPI_Comm_rank(comm, &irank);
58 
amrex::Real value
Definition: ERF_HurricaneDiagnostics.H:20

Referenced by main().

Here is the caller graph for this function:

◆ print_summary()

static void ERF::print_summary ( std::ostream &  )
static

◆ print_tpls()

void ERF::print_tpls ( std::ostream &  out)
static
140  ://github.com/erf-model/ERF/blob/development/LICENSE for details. "
141  << dash_line << std::endl;
142  // clang-format on
143 }
144 
145 void ERF::print_tpls (std::ostream& out)
146 {
147  amrex::Vector<std::string> tpls;
148 
149 #ifdef ERF_USE_NETCDF
150  tpls.push_back(std::string("NetCDF ") + NC_VERSION);
151 #endif
152 #ifdef AMREX_USE_SUNDIALS
153  tpls.push_back(std::string("SUNDIALS ") + SUNDIALS_VERSION);
154 #endif
155 
156  if (!tpls.empty()) {
157  out << " Enabled third-party libraries: ";
158  for (const auto& val : tpls) {
struct @19 out
static void print_tpls(std::ostream &)
Definition: ERF_ConsoleIO.cpp:137

◆ print_usage()

void ERF::print_usage ( MPI_Comm  comm,
std::ostream &  out 
)
static
27 {
28 #ifdef AMREX_USE_MPI
29  int irank = 0;
30  int num_ranks = 1;
31  MPI_Comm_size(comm, &num_ranks);
32  MPI_Comm_rank(comm, &irank);
33 
34  // Only root process does the printing
35  if (irank != 0) return;
36 #else
37  amrex::ignore_unused(comm);
38 #endif
39 
40  out << R"doc(Usage:
41  ERF3d.*.ex <input_file> [param=value] [param=value] ...

Referenced by main().

Here is the caller graph for this function:

◆ project_momenta()

void ERF::project_momenta ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level momenta to enforce the anelastic constraint Note that the level may or may not be level 0.

42 {
43  BL_PROFILE("ERF::project_momenta()");
44 
45  // Make sure the solver only sees the levels over which we are solving
46  Vector<BoxArray> ba_tmp; ba_tmp.push_back(mom_mf[Vars::cons].boxArray());
47  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(mom_mf[Vars::cons].DistributionMap());
48  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
49 
50  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp, 1);
51 
52  Vector<MultiFab> rhs;
53  Vector<MultiFab> phi;
54 
55  if (solverChoice.terrain_type == TerrainType::EB)
56  {
57  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
58  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1, MFInfo(), EBFactory(lev));
59  } else {
60  rhs.resize(1); rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
61  phi.resize(1); phi[0].define(ba_tmp[0], dm_tmp[0], 1, 1);
62  }
63 
64  MultiFab rhs_lev(rhs[0], make_alias, 0, 1);
65 
66  auto dxInv = geom[lev].InvCellSizeArray();
67 
68  // Inflow on an x-face -- note only the normal velocity is used in the projection
69  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow") {
71  IntVect{1,0,0},t_new[lev],BCVars::xvel_bc,false);
72  }
73 
74  // Inflow on a y-face -- note only the normal velocity is used in the projection
75  if (domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
77  IntVect{0,1,0},t_new[lev],BCVars::yvel_bc,false);
78  }
79 
80  if (domain_bc_type[0] == "Inflow" || domain_bc_type[3] == "Inflow" ||
81  domain_bc_type[1] == "Inflow" || domain_bc_type[4] == "Inflow") {
82  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
83  vars_new[lev][Vars::yvel], IntVect{0},
84  vars_new[lev][Vars::zvel], IntVect{0},
85  vars_new[lev][Vars::cons],
86  mom_mf[IntVars::xmom],
87  mom_mf[IntVars::ymom],
88  mom_mf[IntVars::zmom],
89  Geom(lev).Domain(),
91  }
92 
93  // If !fixed_density, we must convert (rho u) which came in
94  // to (rho0 u) which is what we will project
96  ConvertForProjection(mom_mf[Vars::cons], r_hse,
97  mom_mf[IntVars::xmom],
98  mom_mf[IntVars::ymom],
99  mom_mf[IntVars::zmom],
100  Geom(lev).Domain(),
102  }
103 
104  //
105  // ****************************************************************************
106  // Now convert the rho0w MultiFab to hold Omega rather than rhow
107  // ****************************************************************************
108  //
109  if (solverChoice.mesh_type == MeshType::VariableDz)
110  {
111  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
112  {
113  const Array4<Real const>& rho0u_arr = mom_mf[IntVars::xmom].const_array(mfi);
114  const Array4<Real const>& rho0v_arr = mom_mf[IntVars::ymom].const_array(mfi);
115  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
116 
117  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
118  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
119  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
120 
121  //
122  // Define Omega from (rho0 W) but store it in the same array
123  //
124  Box tbz = mfi.nodaltilebox(2);
125  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
126  if (k == 0) {
127  rho0w_arr(i,j,k) = Real(0.0);
128  } else {
129  Real rho0w = rho0w_arr(i,j,k);
130  rho0w_arr(i,j,k) = OmegaFromW(i,j,k,rho0w,
131  rho0u_arr,rho0v_arr,
132  mf_u,mf_v,z_nd,dxInv);
133  }
134  });
135  } // mfi
136  }
137 
138  // ****************************************************************************
139  // Compute divergence which will form RHS
140  // Note that we replace "rho0w" with the contravariant momentum, Omega
141  // ****************************************************************************
142  Array<MultiFab const*, AMREX_SPACEDIM> rho0_u_const;
143  rho0_u_const[0] = &mom_mf[IntVars::xmom];
144  rho0_u_const[1] = &mom_mf[IntVars::ymom];
145  rho0_u_const[2] = &mom_mf[IntVars::zmom];
146 
147  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
148 
149  if (solverChoice.mesh_type == MeshType::VariableDz) {
150  MultiFab::Multiply(rhs_lev, *detJ_cc[lev], 0, 0, 1, 0);
151  }
152 
153  // Max norm over the entire MultiFab
154  Real rhsnorm = rhs_lev.norm0();
155 
156  if (mg_verbose > 0) {
157  Print() << "Max/L2 norm of divergence before solve at level " << lev << " : " << rhsnorm << " " <<
158  rhs_lev.norm2() << " and sum " << rhs_lev.sum() << std::endl;
159  }
160 
161 
162  if (lev > 0)
163  {
164  Vector<Real> sum; sum.resize(subdomains[lev].size(),Real(0.));
165 
166  for (MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
167  {
168  Box bx = mfi.validbox();
169  for (int i = 0; i < subdomains[lev].size(); ++i) {
170  if (subdomains[lev][i].intersects(bx)) {
171  sum[i] += rhs_lev[mfi.index()].template sum<RunOn::Device>(0);
172  }
173  }
174  }
175  ParallelDescriptor::ReduceRealSum(sum.data(), sum.size());
176 
177  for (int i = 0; i < subdomains[lev].size(); ++i) {
178  sum[i] /= static_cast<Real>(subdomains[lev][i].numPts());
179  }
180 
181  for ( MFIter mfi(rhs_lev); mfi.isValid(); ++mfi)
182  {
183  Box bx = mfi.validbox();
184  for (int i = 0; i < subdomains[lev].size(); ++i) {
185  if (subdomains[lev][i].intersects(bx)) {
186  rhs_lev[mfi.index()].template minus<RunOn::Device>(sum[i]);
187  if (mg_verbose > 1) {
188  amrex::Print() << " Subtracting " << sum[i] << " in " << rhs_lev[mfi.index()].box() << std::endl;
189  }
190  }
191  }
192  }
193  }
194 
195  // ****************************************************************************
196  //
197  // No need to build the solver if RHS == 0
198  //
199  if (rhsnorm <= solverChoice.poisson_abstol) return;
200  // ****************************************************************************
201 
202  // ****************************************************************************
203  // Initialize phi to 0
204  // (It is essential that we do this in order to fill the corners; these are never
205  // used but the Saxpy requires the values to be initialized.)
206  // ****************************************************************************
207  phi[0].setVal(0.0);
208 
209  Real start_step = static_cast<Real>(ParallelDescriptor::second());
210 
211  // ****************************************************************************
212  // Allocate fluxes
213  // ****************************************************************************
214  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
215  fluxes.resize(1);
216  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
217  if (solverChoice.terrain_type == TerrainType::EB) {
218  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
219  } else {
220  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
221  }
222  }
223 
224  // ****************************************************************************
225  // Choose the solver and solve
226  // ****************************************************************************
227 
228  std::map<int,int> index_map;
229 
230  BoxArray ba(grids[lev]);
231 
232  Vector<MultiFab> rhs_sub; rhs_sub.resize(1);
233  Vector<MultiFab> phi_sub; phi_sub.resize(1);
234  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes_sub; fluxes_sub.resize(1);
235 
236  MultiFab ax_sub, ay_sub, znd_sub;
237 
238  for (int i = 0; i < subdomains[lev].size(); ++i)
239  {
240  if (mg_verbose > 0) {
241  amrex::Print() << " Solving in subdomain " << i << " of " << subdomains[lev].size() << " bins at level " << lev << std::endl;
242  }
243 
244  BoxList bl_sub;
245  Vector<int> dm_sub;
246 
247  for (int j = 0; j < ba.size(); j++)
248  {
249  if (subdomains[lev][i].intersects(ba[j]))
250  {
251  // amrex::Print() <<" INTERSECTS I " << i << " " << j << " " << grids[lev][j] << std::endl;
252  //
253  // Note that bl_sub.size() is effectively a counter which is
254  // incremented above
255  //
256  // if (ParallelDescriptor::MyProc() == j) {
257  // }
258  index_map[bl_sub.size()] = j;
259 
260  // amrex::Print() <<" PUSHING BACK " << j << " " << index_map[bl_sub.size()] << std::endl;
261  bl_sub.push_back(grids[lev][j]);
262  dm_sub.push_back(dmap[lev][j]);
263  } // intersects
264 
265  } // loop over ba (j)
266 
267  BoxArray ba_sub(bl_sub);
268 
269  // Define MultiFabs that hold only the data in this particular subdomain
270  rhs_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, rhs[0].nGrowVect(), MFInfo{}.SetAlloc(false));
271  phi_sub[0].define(ba_sub, DistributionMapping(dm_sub), 1, phi[0].nGrowVect(), MFInfo{}.SetAlloc(false));
272 
273  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
274  fluxes_sub[0][idim].define(convert(ba_sub, IntVect::TheDimensionVector(idim)), DistributionMapping(dm_sub), 1,
275  IntVect::TheZeroVector(), MFInfo{}.SetAlloc(false));
276  }
277 
278  // Link the new MultiFabs to the FABs in the original MultiFabs (no copy required)
279  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi) {
280  int orig_index = index_map[mfi.index()];
281  // amrex::Print() << " INDEX " << orig_index << " TO " << mfi.index() << std::endl;
282  rhs_sub[0].setFab(mfi, FArrayBox(rhs[0][orig_index], amrex::make_alias, 0, 1));
283  phi_sub[0].setFab(mfi, FArrayBox(phi[0][orig_index], amrex::make_alias, 0, 1));
284  fluxes_sub[0][0].setFab(mfi,FArrayBox(fluxes[0][0][orig_index], amrex::make_alias, 0, 1));
285  fluxes_sub[0][1].setFab(mfi,FArrayBox(fluxes[0][1][orig_index], amrex::make_alias, 0, 1));
286  fluxes_sub[0][2].setFab(mfi,FArrayBox(fluxes[0][2][orig_index], amrex::make_alias, 0, 1));
287  }
288 
289  if (solverChoice.mesh_type == MeshType::VariableDz) {
290  ax_sub.define(convert(ba_sub,IntVect(1,0,0)), DistributionMapping(dm_sub), 1,
291  ax[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
292  ay_sub.define(convert(ba_sub,IntVect(0,1,0)), DistributionMapping(dm_sub), 1,
293  ay[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
294  znd_sub.define(convert(ba_sub,IntVect(1,1,1)), DistributionMapping(dm_sub), 1,
295  z_phys_nd[lev]->nGrowVect(), MFInfo{}.SetAlloc(false));
296 
297  for (MFIter mfi(rhs_sub[0]); mfi.isValid(); ++mfi) {
298  int orig_index = index_map[mfi.index()];
299  ax_sub.setFab(mfi, FArrayBox((*ax[lev])[orig_index], amrex::make_alias, 0, 1));
300  ay_sub.setFab(mfi, FArrayBox((*ay[lev])[orig_index], amrex::make_alias, 0, 1));
301  znd_sub.setFab(mfi, FArrayBox((*z_phys_nd[lev])[orig_index], amrex::make_alias, 0, 1));
302  }
303  }
304 
305  if (lev > 0) {
306  amrex::Print() << "RHSSUB BA " << rhs_sub[0].boxArray() << std::endl;
307  }
308 
309  // ****************************************************************************
310  // EB
311  // ****************************************************************************
312  if (solverChoice.terrain_type == TerrainType::EB) {
313  solve_with_EB_mlmg(lev, rhs_sub, phi_sub, fluxes_sub);
314  } else {
315 
316  // ****************************************************************************
317  // No terrain or grid stretching
318  // ****************************************************************************
319  if (solverChoice.mesh_type == MeshType::ConstantDz) {
320 #ifdef ERF_USE_FFT
321  if (use_fft) {
322  Box my_region(subdomains[lev][i].minimalBox());
323  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][i].numPts());
324  if (boxes_make_rectangle) {
325  solve_with_fft(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0]);
326  } else {
327  amrex::Warning("FFT won't work unless the union of boxes is rectangular: defaulting to MLMG");
328  solve_with_mlmg(lev, rhs_sub, phi_sub, fluxes_sub);
329  }
330  } else {
331  solve_with_mlmg(lev, rhs, phi, fluxes);
332  }
333 #else
334  if (use_fft) {
335  amrex::Warning("You set use_fft=true but didn't build with USE_FFT = TRUE; defaulting to MLMG");
336  }
337  solve_with_mlmg(lev, rhs_sub, phi_sub, fluxes_sub);
338 #endif
339  } // No terrain or grid stretching
340 
341  // ****************************************************************************
342  // Grid stretching (flat terrain)
343  // ****************************************************************************
344  else if (solverChoice.mesh_type == MeshType::StretchedDz) {
345 #ifndef ERF_USE_FFT
346  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT solver");
347 #else
348  Box my_region(subdomains[lev][i].minimalBox());
349  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][i].numPts());
350  if (!boxes_make_rectangle) {
351  amrex::Abort("FFT won't work unless the union of boxes is rectangular");
352  } else {
353  if (!use_fft) {
354  amrex::Warning("Using FFT even though you didn't set use_fft to true; it's the best choice");
355  }
356  solve_with_fft(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0]);
357  }
358 #endif
359  } // grid stretching
360 
361  // ****************************************************************************
362  // General terrain
363  // ****************************************************************************
364  else if (solverChoice.mesh_type == MeshType::VariableDz) {
365 #ifdef ERF_USE_FFT
366  Box my_region(subdomains[lev][i].minimalBox());
367  bool boxes_make_rectangle = (my_region.numPts() == subdomains[lev][i].numPts());
368  if (!boxes_make_rectangle) {
369  amrex::Abort("FFT preconditioner for GMRES won't work unless the union of boxes is rectangular");
370  } else {
371  solve_with_gmres(lev, my_region, rhs_sub[0], phi_sub[0], fluxes_sub[0], ax_sub, ay_sub, znd_sub);
372  }
373 #else
374  amrex::Abort("Rebuild with USE_FFT = TRUE so you can use the FFT preconditioner for GMRES");
375 #endif
376  } // general terrain
377 
378  } // not EB
379 
380  } // loop over subdomains (i)
381 
382  // ****************************************************************************
383  // Print time in solve
384  // ****************************************************************************
385  Real end_step = static_cast<Real>(ParallelDescriptor::second());
386  if (mg_verbose > 0) {
387  amrex::Print() << "Time in solve " << end_step - start_step << std::endl;
388  }
389 
390  // ****************************************************************************
391  // Subtract dt grad(phi) from the momenta (rho0u, rho0v, Omega)
392  // ****************************************************************************
393  MultiFab::Add(mom_mf[IntVars::xmom],fluxes[0][0],0,0,1,0);
394  MultiFab::Add(mom_mf[IntVars::ymom],fluxes[0][1],0,0,1,0);
395  MultiFab::Add(mom_mf[IntVars::zmom],fluxes[0][2],0,0,1,0);
396 
397  // ****************************************************************************
398  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
399  // ****************************************************************************
400  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
401  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
402  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
403 
404  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
405  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
406  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
407 
408  //
409  // This call is only to verify the divergence after the solve
410  // It is important we do this before computing the rho0w_arr from Omega back to rho0w
411  //
412  // ****************************************************************************
413  // THIS IS SIMPLY VERIFYING THE DIVERGENCE AFTER THE SOLVE
414  // ****************************************************************************
415  //
416  if (mg_verbose > 0)
417  {
418  compute_divergence(lev, rhs_lev, rho0_u_const, geom_tmp[0]);
419 
420  if (solverChoice.mesh_type == MeshType::VariableDz) {
421  MultiFab::Multiply(rhs_lev, *detJ_cc[lev], 0, 0, 1, 0);
422  }
423 
424  Print() << "Max/L2 norm of divergence after solve at level " << lev << " : " << rhs_lev.norm0() << " " <<
425  rhs_lev.norm2() << " and sum " << rhs_lev.sum() << std::endl;
426 
427 #if 0
428  // FOR DEBUGGING ONLY
429  for ( MFIter mfi(rhs_lev,TilingIfNotGPU()); mfi.isValid(); ++mfi)
430  {
431  const Array4<Real const>& rhs_arr = rhs_lev.const_array(mfi);
432  Box bx = mfi.validbox();
433  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
434  if (std::abs(rhs_arr(i,j,k)) > 1.e-10) {
435  amrex::AllPrint() << "RHS AFTER SOLVE AT " <<
436  IntVect(i,j,k) << " " << rhs_arr(i,j,k) << std::endl;
437  }
438  });
439  } // mfi
440 #endif
441 
442  } // mg_verbose
443 
444  //
445  // ****************************************************************************
446  // Now convert the rho0w MultiFab back to holding (rho0w) rather than Omega
447  // ****************************************************************************
448  //
449  if (solverChoice.mesh_type == MeshType::VariableDz)
450  {
451  for (MFIter mfi(mom_mf[Vars::cons],TilingIfNotGPU()); mfi.isValid(); ++mfi)
452  {
453  Box tbz = mfi.nodaltilebox(2);
454  const Array4<Real >& rho0u_arr = mom_mf[IntVars::xmom].array(mfi);
455  const Array4<Real >& rho0v_arr = mom_mf[IntVars::ymom].array(mfi);
456  const Array4<Real >& rho0w_arr = mom_mf[IntVars::zmom].array(mfi);
457  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
458  const Array4<Real const>& mf_u = mapfac[lev][MapFacType::u_x]->const_array(mfi);
459  const Array4<Real const>& mf_v = mapfac[lev][MapFacType::v_y]->const_array(mfi);
460  ParallelFor(tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept {
461  Real omega = rho0w_arr(i,j,k);
462  rho0w_arr(i,j,k) = WFromOmega(i,j,k,omega,
463  rho0u_arr,rho0v_arr,
464  mf_u,mf_v,z_nd,dxInv);
465  });
466  } // mfi
467  }
468 
469  // If !fixed_density, we must convert (rho0 u) back
470  // to (rho0 u) which is what we will pass back out
472  ConvertForProjection(r_hse, mom_mf[Vars::cons],
473  mom_mf[IntVars::xmom],
474  mom_mf[IntVars::ymom],
475  mom_mf[IntVars::zmom],
476  Geom(lev).Domain(),
478  }
479 
480  // ****************************************************************************
481  // Update pressure variable with phi -- note that phi is dt * change in pressure
482  // ****************************************************************************
483  MultiFab::Saxpy(pp_inc[lev], 1.0/l_dt, phi[0],0,0,1,1);
484 }
void ConvertForProjection(const MultiFab &den_div, const MultiFab &den_mlt, MultiFab &xmom, MultiFab &ymom, MultiFab &zmom, const Box &domain, const Vector< BCRec > &domain_bcs_type_h)
Definition: ERF_ConvertForProjection.cpp:25
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real OmegaFromW(int &i, int &j, int &k, amrex::Real w, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:406
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real WFromOmega(int &i, int &j, int &k, amrex::Real omega, const amrex::Array4< const amrex::Real > &u_arr, const amrex::Array4< const amrex::Real > &v_arr, const amrex::Array4< const amrex::Real > &mf_u, const amrex::Array4< const amrex::Real > &mf_v, const amrex::Array4< const amrex::Real > &z_nd, const amrex::GpuArray< amrex::Real, AMREX_SPACEDIM > &dxInv)
Definition: ERF_TerrainMetrics.H:456
static bool use_fft
Definition: ERF.H:1172
void compute_divergence(int lev, amrex::MultiFab &rhs, amrex::Array< amrex::MultiFab const *, AMREX_SPACEDIM > rho0_u_const, amrex::Geometry const &geom_at_lev)
Definition: ERF_ComputeDivergence.cpp:10
void solve_with_mlmg(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithMLMG.cpp:40
void solve_with_gmres(int lev, const amrex::Box &subdomain, amrex::MultiFab &rhs, amrex::MultiFab &p, amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &fluxes, amrex::MultiFab &ax_sub, amrex::MultiFab &ay_sub, amrex::MultiFab &znd_sub)
Definition: ERF_SolveWithGMRES.cpp:12
void solve_with_EB_mlmg(int lev, amrex::Vector< amrex::MultiFab > &rhs, amrex::Vector< amrex::MultiFab > &p, amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &fluxes)
Definition: ERF_SolveWithEBMLMG.cpp:19
@ omega
Definition: ERF_Morrison.H:53
Here is the call graph for this function:

◆ project_velocity()

void ERF::project_velocity ( int  lev,
amrex::Real  dt 
)

Project the single-level velocity field to enforce the anelastic constraint Note that the level may or may not be level 0.

11 {
12  BL_PROFILE("ERF::project_velocity()");
13  VelocityToMomentum(vars_new[lev][Vars::xvel], IntVect{0},
14  vars_new[lev][Vars::yvel], IntVect{0},
15  vars_new[lev][Vars::zvel], IntVect{0},
16  vars_new[lev][Vars::cons],
17  rU_new[lev], rV_new[lev], rW_new[lev],
18  Geom(lev).Domain(), domain_bcs_type);
19 
20  Vector<MultiFab> tmp_mom;
21 
22  tmp_mom.push_back(MultiFab(vars_new[lev][Vars::cons],make_alias,0,1));
23  tmp_mom.push_back(MultiFab(rU_new[lev],make_alias,0,1));
24  tmp_mom.push_back(MultiFab(rV_new[lev],make_alias,0,1));
25  tmp_mom.push_back(MultiFab(rW_new[lev],make_alias,0,1));
26 
27  project_momenta(lev, l_dt, tmp_mom);
28 
30  vars_new[lev][Vars::yvel],
31  vars_new[lev][Vars::zvel],
32  vars_new[lev][Vars::cons],
33  rU_new[lev], rV_new[lev], rW_new[lev],
34  Geom(lev).Domain(), domain_bcs_type);
35  }
void project_momenta(int lev, amrex::Real dt, amrex::Vector< amrex::MultiFab > &vars)
Definition: ERF_PoissonSolve.cpp:41
Here is the call graph for this function:

◆ project_velocity_tb()

void ERF::project_velocity_tb ( int  lev,
amrex::Real  dt,
amrex::Vector< amrex::MultiFab > &  vars 
)

Project the single-level velocity field to enforce incompressibility with a thin body

21 {
22  BL_PROFILE("ERF::project_velocity_tb()");
23  AMREX_ALWAYS_ASSERT(solverChoice.mesh_type == MeshType::ConstantDz);
24 
25  // Make sure the solver only sees the levels over which we are solving
26  Vector<BoxArray> ba_tmp; ba_tmp.push_back(vmf[Vars::cons].boxArray());
27  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(vmf[Vars::cons].DistributionMap());
28  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
29 
30  // Use the default settings
31  LPInfo info;
32  std::unique_ptr<MLPoisson> p_mlpoisson;
33 #if 0
34  if (overset_imask[0]) {
35  // Add overset mask around thin body
36  p_mlpoisson = std::make_unique<MLPoisson>(geom, grids, dmap, GetVecOfConstPtrs(overset_imask), info);
37  }
38  else
39 #endif
40  {
41  // Use the default settings
42  p_mlpoisson = std::make_unique<MLPoisson>(geom_tmp, ba_tmp, dm_tmp, info);
43  }
44 
45  auto bclo = get_projection_bc(Orientation::low);
46  auto bchi = get_projection_bc(Orientation::high);
47  bool need_adjust_rhs = (projection_has_dirichlet(bclo) || projection_has_dirichlet(bchi)) ? false : true;
48  p_mlpoisson->setDomainBC(bclo, bchi);
49 
50  if (lev > 0) {
51  p_mlpoisson->setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
52  }
53 
54  p_mlpoisson->setLevelBC(0, nullptr);
55 
56  Vector<MultiFab> rhs;
57  Vector<MultiFab> phi;
58  Vector<Array<MultiFab,AMREX_SPACEDIM> > fluxes;
59  Vector<Array<MultiFab,AMREX_SPACEDIM> > deltaf; // f^* - f^{n-1}
60  Vector<Array<MultiFab,AMREX_SPACEDIM> > u_plus_dtdf; // u + dt*deltaf
61 
62  // Used to pass array of const MFs to ComputeDivergence
63  Array<MultiFab const*, AMREX_SPACEDIM> u;
64 
65  rhs.resize(1);
66  phi.resize(1);
67  fluxes.resize(1);
68  deltaf.resize(1);
69  u_plus_dtdf.resize(1);
70 
71  rhs[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
72  phi[0].define(ba_tmp[0], dm_tmp[0], 1, 0);
73  rhs[0].setVal(0.0);
74  phi[0].setVal(0.0);
75 
76  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
77  fluxes[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
78  u_plus_dtdf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
79 
80  deltaf[0][idim].define(convert(ba_tmp[0], IntVect::TheDimensionVector(idim)), dm_tmp[0], 1, 0);
81  deltaf[0][idim].setVal(0.0); // start with f^* == f^{n-1}
82  }
83 
84 #if 0
85  // DEBUG
86  u[0] = &(vmf[Vars::xvel]);
87  u[1] = &(vmf[Vars::yvel]);
88  u[2] = &(vmf[Vars::zvel]);
89  computeDivergence(rhs[0], u, geom[0]);
90  Print() << "Max norm of divergence before solve at level 0 : " << rhs[0].norm0() << std::endl;
91 #endif
92 
93  for (int itp = 0; itp < solverChoice.ncorr; ++itp)
94  {
95  // Calculate u + dt*deltaf
96  for (int idim = 0; idim < 3; ++idim) {
97  MultiFab::Copy(u_plus_dtdf[0][idim], deltaf[0][idim], 0, 0, 1, 0);
98  u_plus_dtdf[0][0].mult(-l_dt,0,1,0);
99  }
100  MultiFab::Add(u_plus_dtdf[0][0], vmf[Vars::xvel], 0, 0, 1, 0);
101  MultiFab::Add(u_plus_dtdf[0][1], vmf[Vars::yvel], 0, 0, 1, 0);
102  MultiFab::Add(u_plus_dtdf[0][2], vmf[Vars::zvel], 0, 0, 1, 0);
103 
104  u[0] = &(u_plus_dtdf[0][0]);
105  u[1] = &(u_plus_dtdf[0][1]);
106  u[2] = &(u_plus_dtdf[0][2]);
107  computeDivergence(rhs[0], u, geom_tmp[0]);
108 
109 #if 0
110  // DEBUG
111  if (itp==0) {
112  for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
113  {
114  const Box& bx = mfi.tilebox();
115  const Array4<Real const>& divU = rhs[0].const_array(mfi);
116  const Array4<Real const>& uarr = vmf[Vars::xvel].const_array(mfi);
117  const Array4<Real const>& varr = vmf[Vars::yvel].const_array(mfi);
118  const Array4<Real const>& warr = vmf[Vars::zvel].const_array(mfi);
119  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
120  {
121  if ((i>=120) && (i<=139) && (j==0) && ((k>=127)&&(k<=128))) {
122  amrex::AllPrint() << "before project div"<<IntVect(i,j,k)<<" = "<< divU(i,j,k)
123  << " u: " << uarr(i,j,k) << " " << uarr(i+1,j,k)
124  << " v: " << varr(i,j,k) << " " << varr(i,j+1,k)
125  << " w: " << warr(i,j,k) << " " << warr(i,j,k+1)
126  << std::endl;
127  }
128  });
129  }
130  }
131 #endif
132 
133  // If all Neumann BCs, adjust RHS to make sure we can converge
134  if (need_adjust_rhs) {
135  Real offset = volWgtSumMF(lev, rhs[0], 0, false);
136  // amrex::Print() << "Poisson solvability offset = " << offset << std::endl;
137  rhs[0].plus(-offset, 0, 1);
138  }
139 
140  // Initialize phi to 0
141  phi[0].setVal(0.0);
142 
143  MLMG mlmg(*p_mlpoisson);
144  int max_iter = 100;
145  mlmg.setMaxIter(max_iter);
146 
147  mlmg.setVerbose(mg_verbose);
148  //mlmg.setBottomVerbose(mg_verbose);
149 
150  // solve for dt*p
151  mlmg.solve(GetVecOfPtrs(phi),
152  GetVecOfConstPtrs(rhs),
155 
156  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
157 
158  // Calculate new intermediate body force with updated gradp
159  if (thin_xforce[lev]) {
160  MultiFab::Copy( deltaf[0][0], fluxes[0][0], 0, 0, 1, 0);
161  ApplyInvertedMask(deltaf[0][0], *xflux_imask[0]);
162  }
163  if (thin_yforce[lev]) {
164  MultiFab::Copy( deltaf[0][1], fluxes[0][1], 0, 0, 1, 0);
165  ApplyInvertedMask(deltaf[0][1], *yflux_imask[0]);
166  }
167  if (thin_zforce[lev]) {
168  MultiFab::Copy( deltaf[0][2], fluxes[0][2], 0, 0, 1, 0);
169  ApplyInvertedMask(deltaf[0][2], *zflux_imask[0]);
170  }
171 
172  // DEBUG
173  // for (MFIter mfi(rhs[0], TilingIfNotGPU()); mfi.isValid(); ++mfi)
174  // {
175  // const Box& bx = mfi.tilebox();
176  // const Array4<Real const>& dfz_arr = deltaf[0][2].const_array(mfi);
177  // ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
178  // {
179  // if ((i>=120) && (i<=139) && (j==0) && (k==128)) {
180  // amrex::AllPrint()
181  // << " piter" << itp
182  // << " dfz"<<IntVect(i,j,k)<<" = "<< dfz_arr(i,j,k)
183  // << std::endl;
184  // }
185  // });
186  // }
187 
188  // Update pressure variable with phi -- note that phi is change in pressure, not the full pressure
189  MultiFab::Saxpy(pp_inc[lev], 1.0, phi[0],0,0,1,0);
190 
191  // Subtract grad(phi) from the velocity components
192  Real beta = 1.0;
193  MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
194  MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
195  MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
196  if (thin_xforce[lev]) {
197  ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
198  }
199  if (thin_yforce[lev]) {
200  ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
201  }
202  if (thin_zforce[lev]) {
203  ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
204  }
205  } // itp: pressure-force iterations
206 
207  // ****************************************************************************
208  // Define gradp from fluxes -- note that fluxes is dt * change in Gp
209  // ****************************************************************************
210  MultiFab::Saxpy(gradp[lev][GpVars::gpx],-1.0/l_dt,fluxes[0][0],0,0,1,0);
211  MultiFab::Saxpy(gradp[lev][GpVars::gpy],-1.0/l_dt,fluxes[0][1],0,0,1,0);
212  MultiFab::Saxpy(gradp[lev][GpVars::gpz],-1.0/l_dt,fluxes[0][2],0,0,1,0);
213 
214  gradp[lev][GpVars::gpx].FillBoundary(geom_tmp[0].periodicity());
215  gradp[lev][GpVars::gpy].FillBoundary(geom_tmp[0].periodicity());
216  gradp[lev][GpVars::gpz].FillBoundary(geom_tmp[0].periodicity());
217 
218  // Subtract grad(phi) from the velocity components
219 // Real beta = 1.0;
220 // for (int ilev = lev_min; ilev <= lev_max; ++ilev) {
221 // MultiFab::Saxpy(vmf[Vars::xvel], beta, fluxes[0][0], 0, 0, 1, 0);
222 // MultiFab::Saxpy(vmf[Vars::yvel], beta, fluxes[0][1], 0, 0, 1, 0);
223 // MultiFab::Saxpy(vmf[Vars::zvel], beta, fluxes[0][2], 0, 0, 1, 0);
224 // if (thin_xforce[lev]) {
225 // ApplyMask(vmf[Vars::xvel], *xflux_imask[0]);
226 // }
227 // if (thin_yforce[lev]) {
228 // ApplyMask(vmf[Vars::yvel], *yflux_imask[0]);
229 // }
230 // if (thin_zforce[lev]) {
231 // ApplyMask(vmf[Vars::zvel], *zflux_imask[0]);
232 // }
233 // }
234 
235 #if 0
236  // Confirm that the velocity is now divergence free
237  u[0] = &(vmf[Vars::xvel]);
238  u[1] = &(vmf[Vars::yvel]);
239  u[2] = &(vmf[Vars::zvel]);
240  computeDivergence(rhs[0], u, geom_tmp[0]);
241  Print() << "Max norm of divergence after solve at level " << lev << " : " << rhs[0].norm0() << std::endl;
242 
243 #endif
244 }
AMREX_FORCE_INLINE IntVect offset(const int face_dir, const int normal)
Definition: ERF_ReadBndryPlanes.cpp:28
AMREX_GPU_HOST AMREX_FORCE_INLINE void ApplyInvertedMask(amrex::MultiFab &dst, const amrex::iMultiFab &imask, const int nghost=0)
Definition: ERF_Utils.H:421
amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > get_projection_bc(amrex::Orientation::Side side) const noexcept
Definition: ERF_SolveWithMLMG.cpp:17
bool projection_has_dirichlet(amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM > bcs) const
Definition: ERF_PoissonSolve_tb.cpp:8
amrex::Real volWgtSumMF(int lev, const amrex::MultiFab &mf, int comp, bool finemask)
Definition: ERF_WriteScalarProfiles.cpp:651
int ncorr
Definition: ERF_DataStruct.H:875
Here is the call graph for this function:

◆ projection_has_dirichlet()

bool ERF::projection_has_dirichlet ( amrex::Array< amrex::LinOpBCType, AMREX_SPACEDIM >  bcs) const
9 {
10  for (int dir = 0; dir < AMREX_SPACEDIM; ++dir) {
11  if (bcs[dir] == LinOpBCType::Dirichlet) return true;
12  }
13  return false;
14 }

◆ ReadCheckpointFile()

void ERF::ReadCheckpointFile ( )

ERF function for reading data from a checkpoint file during restart.

448 {
449  Print() << "Restart from native checkpoint " << restart_chkfile << "\n";
450 
451  // Header
452  std::string File(restart_chkfile + "/Header");
453 
454  VisMF::IO_Buffer io_buffer(VisMF::GetIOBufferSize());
455 
456  Vector<char> fileCharPtr;
457  ParallelDescriptor::ReadAndBcastFile(File, fileCharPtr);
458  std::string fileCharPtrString(fileCharPtr.dataPtr());
459  std::istringstream is(fileCharPtrString, std::istringstream::in);
460 
461  std::string line, word;
462 
463  int chk_ncomp_cons, chk_ncomp;
464 
465  // read in title line
466  std::getline(is, line);
467 
468  // read in finest_level
469  is >> finest_level;
470  GotoNextLine(is);
471 
472  // read the number of components
473  // for each variable we store
474 
475  // conservative, cell-centered vars
476  is >> chk_ncomp_cons;
477  GotoNextLine(is);
478 
479  // x-velocity on faces
480  is >> chk_ncomp;
481  GotoNextLine(is);
482  AMREX_ASSERT(chk_ncomp == 1);
483 
484  // y-velocity on faces
485  is >> chk_ncomp;
486  GotoNextLine(is);
487  AMREX_ASSERT(chk_ncomp == 1);
488 
489  // z-velocity on faces
490  is >> chk_ncomp;
491  GotoNextLine(is);
492  AMREX_ASSERT(chk_ncomp == 1);
493 
494  // read in array of istep
495  std::getline(is, line);
496  {
497  std::istringstream lis(line);
498  int i = 0;
499  while (lis >> word) {
500  istep[i++] = std::stoi(word);
501  }
502  }
503 
504  // read in array of dt
505  std::getline(is, line);
506  {
507  std::istringstream lis(line);
508  int i = 0;
509  while (lis >> word) {
510  dt[i++] = std::stod(word);
511  }
512  }
513 
514  // read in array of t_new
515  std::getline(is, line);
516  {
517  std::istringstream lis(line);
518  int i = 0;
519  while (lis >> word) {
520  t_new[i++] = std::stod(word);
521  }
522  }
523 
524  for (int lev = 0; lev <= finest_level; ++lev) {
525  // read in level 'lev' BoxArray from Header
526  BoxArray ba;
527  ba.readFrom(is);
528  GotoNextLine(is);
529 
530  // create a distribution mapping
531  DistributionMapping dm { ba, ParallelDescriptor::NProcs() };
532 
533  MakeNewLevelFromScratch (lev, t_new[lev], ba, dm);
534  }
535 
536  // ncomp is only valid after we MakeNewLevelFromScratch (asks micro how many vars)
537  // NOTE: Data is written over ncomp, so check that we match the header file
538  int ncomp_cons = vars_new[0][Vars::cons].nComp();
539 
540  // NOTE: QKE was removed so this is for backward compatibility
541  AMREX_ASSERT((chk_ncomp_cons==ncomp_cons) || ((chk_ncomp_cons-1)==ncomp_cons));
542  //
543  // See if we have a written separate file that tells how many components and how many ghost cells
544  // we have of the base state
545  //
546  // If we can't find the file, then set the number of components to the original number = 3
547  //
548  int ncomp_base_to_read = 3;
549  IntVect ng_base = IntVect{1};
550  {
551  std::string BaseStateFile(restart_chkfile + "/num_base_state_comps");
552 
553  if (amrex::FileExists(BaseStateFile))
554  {
555  Vector<char> BaseStatefileCharPtr;
556  ParallelDescriptor::ReadAndBcastFile(BaseStateFile, BaseStatefileCharPtr);
557  std::string BaseStatefileCharPtrString(BaseStatefileCharPtr.dataPtr());
558 
559  // We set this to the default value of 3 but allow it be larger if th0 and qv0 were written
560  std::istringstream isb(BaseStatefileCharPtrString, std::istringstream::in);
561  isb >> ncomp_base_to_read;
562  isb >> ng_base;
563  }
564  }
565 
566  // read in the MultiFab data
567  for (int lev = 0; lev <= finest_level; ++lev)
568  {
569  // NOTE: For backward compatibility (chk file has QKE)
570  if ((chk_ncomp_cons-1)==ncomp_cons) {
571  MultiFab cons(grids[lev],dmap[lev],chk_ncomp_cons,0);
572  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
573 
574  // Copy up to RhoKE_comp
575  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,(RhoKE_comp+1),0);
576 
577  // Only if we have a PBL model do we need to copy QKE is src to KE in dst
578  if ( (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNN25) ||
579  (solverChoice.turbChoice[lev].pbl_type == PBLType::MYNNEDMF) ) {
580  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+1),RhoKE_comp,1,0);
581  vars_new[lev][Vars::cons].mult(0.5,RhoKE_comp,1,0);
582  }
583 
584  // Copy other components
585  int ncomp_remainder = ncomp_cons - (RhoKE_comp + 1);
586  MultiFab::Copy(vars_new[lev][Vars::cons],cons,(RhoKE_comp+2),(RhoKE_comp+1),ncomp_remainder,0);
587 
588  vars_new[lev][Vars::cons].setBndry(1.0e34);
589  } else {
590  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
591  VisMF::Read(cons, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Cell"));
592  MultiFab::Copy(vars_new[lev][Vars::cons],cons,0,0,ncomp_cons,0);
593  vars_new[lev][Vars::cons].setBndry(1.0e34);
594  }
595 
596  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
597  VisMF::Read(xvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "XFace"));
598  MultiFab::Copy(vars_new[lev][Vars::xvel],xvel,0,0,1,0);
599  vars_new[lev][Vars::xvel].setBndry(1.0e34);
600 
601  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
602  VisMF::Read(yvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "YFace"));
603  MultiFab::Copy(vars_new[lev][Vars::yvel],yvel,0,0,1,0);
604  vars_new[lev][Vars::yvel].setBndry(1.0e34);
605 
606  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
607  VisMF::Read(zvel, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "ZFace"));
608  MultiFab::Copy(vars_new[lev][Vars::zvel],zvel,0,0,1,0);
609  vars_new[lev][Vars::zvel].setBndry(1.0e34);
610 
611  if (solverChoice.anelastic[lev] == 1) {
612  MultiFab ppinc(grids[lev],dmap[lev],1,0);
613  VisMF::Read(ppinc, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PP_Inc"));
614  MultiFab::Copy(pp_inc[lev],ppinc,0,0,1,0);
615  pp_inc[lev].FillBoundary(geom[lev].periodicity());
616 
617  MultiFab gpx(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
618  VisMF::Read(gpx, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpx"));
619  MultiFab::Copy(gradp[lev][GpVars::gpx],gpx,0,0,1,0);
620  gradp[lev][GpVars::gpx].FillBoundary(geom[lev].periodicity());
621 
622  MultiFab gpy(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
623  VisMF::Read(gpy, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpy"));
624  MultiFab::Copy(gradp[lev][GpVars::gpy],gpy,0,0,1,0);
625  gradp[lev][GpVars::gpy].FillBoundary(geom[lev].periodicity());
626 
627  MultiFab gpz(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
628  VisMF::Read(gpz, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Gpz"));
629  MultiFab::Copy(gradp[lev][GpVars::gpz],gpz,0,0,1,0);
630  gradp[lev][GpVars::gpz].FillBoundary(geom[lev].periodicity());
631  }
632 
633  // Note that we read the ghost cells of the base state (unlike above)
634 
635  // The original base state only had 3 components and 1 ghost cell -- we read this
636  // here to be consistent with the old style
637  MultiFab base(grids[lev],dmap[lev],ncomp_base_to_read,ng_base);
638  VisMF::Read(base, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "BaseState"));
639 
640  MultiFab::Copy(base_state[lev],base,0,0,ncomp_base_to_read,ng_base);
641 
642  // Create theta0 from p0, rh0
643  if (ncomp_base_to_read < 4) {
644  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
645  {
646  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
647  const Box& bx = mfi.tilebox();
648  Array4<Real> const& fab = base_state[lev].array(mfi);
649  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
650  {
652  / fab(i,j,k,BaseState::r0_comp);
653  });
654  }
655  }
656  // Default theta0 to 0
657  if (ncomp_base_to_read < 5) {
658  for (MFIter mfi(base_state[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
659  {
660  // We only compute theta_0 on valid cells since we will impose domain BC's after restart
661  const Box& bx = mfi.tilebox();
662  Array4<Real> const& fab = base_state[lev].array(mfi);
663  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
664  {
665  fab(i,j,k,BaseState::qv0_comp) = 0.0;
666  });
667  }
668  }
669  base_state[lev].FillBoundary(geom[lev].periodicity());
670 
671  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
672  // Note that we also read the ghost cells of z_phys_nd
673  IntVect ng = z_phys_nd[lev]->nGrowVect();
674  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
675  VisMF::Read(z_height, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z_Phys_nd"));
676  MultiFab::Copy(*z_phys_nd[lev],z_height,0,0,1,ng);
678 
679  if (SolverChoice::mesh_type == MeshType::VariableDz) {
680  MultiFab z_slab(convert(ba2d[lev],IntVect(1,1,1)),dmap[lev],1,0);
681  int klo = geom[lev].Domain().smallEnd(2);
682  for (MFIter mfi(z_slab); mfi.isValid(); ++mfi) {
683  Box nbx = mfi.tilebox();
684  Array4<Real const> const& z_arr = z_phys_nd[lev]->const_array(mfi);
685  Array4<Real > const& z_slab_arr = z_slab.array(mfi);
686  ParallelFor(nbx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
687  {
688  z_slab_arr(i,j,k) = z_arr(i,j,klo);
689  });
690  }
691  Real z_min = z_slab.min(0);
692  Real z_max = z_slab.max(0);
693 
694  auto dz = geom[lev].CellSize()[2];
695  if (z_max - z_min < 1.e-8 * dz) {
696  SolverChoice::set_mesh_type(MeshType::StretchedDz);
697  if (verbose > 0) {
698  amrex::Print() << "Resetting mesh type to StretchedDz since terrain is flat" << std::endl;
699  }
700  }
701  }
702  }
703 
704  // Read in the moisture model restart variables
705  std::vector<int> qmoist_indices;
706  std::vector<std::string> qmoist_names;
707  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
708  int qmoist_nvar = qmoist_indices.size();
709  for (int var = 0; var < qmoist_nvar; var++) {
710  const int ncomp = 1;
711  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
712  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
713  VisMF::Read(moist_vars, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", qmoist_names[var]));
714  MultiFab::Copy(*(qmoist[lev][qmoist_indices[var]]),moist_vars,0,0,ncomp,ng_moist);
715  }
716 
717 #if defined(ERF_USE_WINDFARM)
718  if(solverChoice.windfarm_type == WindFarmType::Fitch or
719  solverChoice.windfarm_type == WindFarmType::EWP or
720  solverChoice.windfarm_type == WindFarmType::SimpleAD){
721  IntVect ng = Nturb[lev].nGrowVect();
722  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng);
723  VisMF::Read(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "NumTurb"));
724  MultiFab::Copy(Nturb[lev],mf_Nturb,0,0,1,ng);
725  }
726 #endif
727 
728  if (solverChoice.lsm_type != LandSurfaceType::None) {
729  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
730  BoxArray ba = lsm_data[lev][mvar]->boxArray();
731  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
732  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
733  int nvar = lsm_data[lev][mvar]->nComp();
734  MultiFab lsm_vars(ba,dm,nvar,ng);
735  VisMF::Read(lsm_vars, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LsmVars"));
736  MultiFab::Copy(*(lsm_data[lev][mvar]),lsm_vars,0,0,nvar,ng);
737  }
738  }
739 
740 
741  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
742  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
743 
744  std::string MapFacMFileName(restart_chkfile + "/Level_0/MapFactor_mx_H");
745  if (amrex::FileExists(MapFacMFileName)) {
746  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_mx"));
747  } else {
748  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_m"));
749  }
750  MultiFab::Copy(*mapfac[lev][MapFacType::m_x],mf_m,0,0,1,ng);
751 
752 #if 0
754  VisMF::Read(mf_m, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_my"));
755  MultiFab::Copy(*mapfac[lev][MapFacType::m_y],mf_m,0,0,1,ng);
756  }
757 #endif
758 
759  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
760  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
761 
762  std::string MapFacUFileName(restart_chkfile + "/Level_0/MapFactor_ux_H");
763  if (amrex::FileExists(MapFacUFileName)) {
764  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_ux"));
765  } else {
766  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_u"));
767  }
768  MultiFab::Copy(*mapfac[lev][MapFacType::u_x],mf_u,0,0,1,ng);
769 
770 #if 0
772  VisMF::Read(mf_u, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_uy"));
773  MultiFab::Copy(*mapfac[lev][MapFacType::u_y],mf_u,0,0,1,ng);
774  }
775 #endif
776 
777  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
778  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
779 
780  std::string MapFacVFileName(restart_chkfile + "/Level_0/MapFactor_vx_H");
781  if (amrex::FileExists(MapFacVFileName)) {
782  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vx"));
783  } else {
784  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_v"));
785  }
786  MultiFab::Copy(*mapfac[lev][MapFacType::v_x],mf_v,0,0,1,ng);
787 
788 #if 0
790  VisMF::Read(mf_v, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MapFactor_vy"));
791  MultiFab::Copy(*mapfac[lev][MapFacType::v_y],mf_v,0,0,1,ng);
792  }
793 #endif
794 
795 
796  // NOTE: We read MOST data in ReadCheckpointFileMOST (see below)!
797 
798  // See if we wrote out SST data
799  std::string FirstSSTFileName(restart_chkfile + "/Level_0/SST_0_H");
800  if (amrex::FileExists(FirstSSTFileName))
801  {
802  amrex::Print() << "Reading SST data" << std::endl;
803  int ntimes = 1;
804  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
805  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
806  sst_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
807  for (int nt(0); nt<ntimes; ++nt) {
808  VisMF::Read(sst_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
809  "SST_" + std::to_string(nt)));
810  MultiFab::Copy(*sst_lev[lev][nt],sst_at_t,0,0,1,ng);
811  }
812  }
813 
814  // See if we wrote out TSK data
815  std::string FirstTSKFileName(restart_chkfile + "/Level_0/TSK_0_H");
816  if (amrex::FileExists(FirstTSKFileName))
817  {
818  amrex::Print() << "Reading TSK data" << std::endl;
819  int ntimes = 1;
820  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
821  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
822  tsk_lev[lev][0] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ng);
823  for (int nt(0); nt<ntimes; ++nt) {
824  VisMF::Read(tsk_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
825  "TSK_" + std::to_string(nt)));
826  MultiFab::Copy(*tsk_lev[lev][nt],tsk_at_t,0,0,1,ng);
827  }
828  }
829 
830  std::string LMaskFileName(restart_chkfile + "/Level_0/LMASK_0_H");
831  if (amrex::FileExists(LMaskFileName))
832  {
833  amrex::Print() << "Reading LMASK data" << std::endl;
834  int ntimes = 1;
835  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
836  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
837  for (int nt(0); nt<ntimes; ++nt) {
838  VisMF::Read(lmask_at_t, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_",
839  "LMASK_" + std::to_string(nt)));
840  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
841  const Box& bx = mfi.growntilebox();
842  Array4<int> const& dst_arr = lmask_lev[lev][nt]->array(mfi);
843  Array4<Real> const& src_arr = lmask_at_t.array(mfi);
844  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
845  {
846  dst_arr(i,j,k) = int(src_arr(i,j,k));
847  });
848  }
849  }
850  } else {
851  // Allow idealized cases over water, used to set lmask
852  ParmParse pp("erf");
853  int is_land;
854  if (pp.query("is_land", is_land, lev)) {
855  if (is_land == 1) {
856  amrex::Print() << "Level " << lev << " is land" << std::endl;
857  } else if (is_land == 0) {
858  amrex::Print() << "Level " << lev << " is water" << std::endl;
859  } else {
860  Error("is_land should be 0 or 1");
861  }
862  lmask_lev[lev][0]->setVal(is_land);
863  } else {
864  // Default to land everywhere if not specified
865  lmask_lev[lev][0]->setVal(1);
866  }
867  lmask_lev[lev][0]->FillBoundary(geom[lev].periodicity());
868  }
869 
870  IntVect ngv = ng; ngv[2] = 0;
871 
872  // Read lat/lon if it exists
874  amrex::Print() << "Reading Lat/Lon variables" << std::endl;
875  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
876  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
877  VisMF::Read(lat, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LAT"));
878  VisMF::Read(lon, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "LON"));
879  lat_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
880  lon_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
881  MultiFab::Copy(*lat_m[lev],lat,0,0,1,ngv);
882  MultiFab::Copy(*lon_m[lev],lon,0,0,1,ngv);
883  }
884 
885 #ifdef ERF_USE_NETCDF
886  // Read sinPhi and cosPhi if it exists
888  amrex::Print() << "Reading Coriolis factors" << std::endl;
889  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
890  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
891  VisMF::Read(sphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "SinPhi"));
892  VisMF::Read(cphi, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "CosPhi"));
893  sinPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
894  cosPhi_m[lev] = std::make_unique<MultiFab>(ba2d[lev],dmap[lev],1,ngv);
895  MultiFab::Copy(*sinPhi_m[lev],sphi,0,0,1,ngv);
896  MultiFab::Copy(*cosPhi_m[lev],cphi,0,0,1,ngv);
897  }
898 
899  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
900 
901  if (lev == 0) {
902  MultiFab tmp1d(ba1d[0],dmap[0],1,0);
903 
904  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C1H"));
905  MultiFab::Copy(*mf_C1H,tmp1d,0,0,1,0);
906 
907  VisMF::Read(tmp1d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "C2H"));
908  MultiFab::Copy(*mf_C2H,tmp1d,0,0,1,0);
909 
910  MultiFab tmp2d(ba2d[0],dmap[0],1,mf_MUB->nGrowVect());
911 
912  VisMF::Read(tmp2d, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "MUB"));
913  MultiFab::Copy(*mf_MUB,tmp2d,0,0,1,mf_MUB->nGrowVect());
914  }
915  }
916 #endif
917 
918  } // for lev
919 
920 #ifdef ERF_USE_PARTICLES
921  restartTracers((ParGDBBase*)GetParGDB(),restart_chkfile);
922  if (Microphysics::modelType(solverChoice.moisture_type) == MoistureModelType::Lagrangian) {
923  dynamic_cast<LagrangianMicrophysics&>(*micro).restartParticles((ParGDBBase*)GetParGDB(),restart_chkfile);
924  }
925 #endif
926 
927 #if 0
928 #ifdef ERF_USE_NETCDF
929  // Read bdy_data files
930  if ( ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
932  {
933  int ioproc = ParallelDescriptor::IOProcessorNumber(); // I/O rank
934  int num_time;
935  int num_var;
936  Vector<Box> bx_v;
937  if (ParallelDescriptor::IOProcessor()) {
938  // Open header file and read from it
939  std::ifstream bdy_h_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_H"));
940  bdy_h_file >> num_time;
941  bdy_h_file >> num_var;
942  bdy_h_file >> start_bdy_time;
943  bdy_h_file >> bdy_time_interval;
944  bdy_h_file >> real_width;
945  bx_v.resize(4*num_var);
946  for (int ivar(0); ivar<num_var; ++ivar) {
947  bdy_h_file >> bx_v[4*ivar ];
948  bdy_h_file >> bx_v[4*ivar+1];
949  bdy_h_file >> bx_v[4*ivar+2];
950  bdy_h_file >> bx_v[4*ivar+3];
951  }
952 
953  // IO size the FABs
954  bdy_data_xlo.resize(num_time);
955  bdy_data_xhi.resize(num_time);
956  bdy_data_ylo.resize(num_time);
957  bdy_data_yhi.resize(num_time);
958  for (int itime(0); itime<num_time; ++itime) {
959  bdy_data_xlo[itime].resize(num_var);
960  bdy_data_xhi[itime].resize(num_var);
961  bdy_data_ylo[itime].resize(num_var);
962  bdy_data_yhi[itime].resize(num_var);
963  for (int ivar(0); ivar<num_var; ++ivar) {
964  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
965  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
966  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
967  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
968  }
969  }
970 
971  // Open data file and read from it
972  std::ifstream bdy_d_file(MultiFabFileFullPrefix(0, restart_chkfile, "Level_", "bdy_D"));
973  for (int itime(0); itime<num_time; ++itime) {
974  for (int ivar(0); ivar<num_var; ++ivar) {
975  bdy_data_xlo[itime][ivar].readFrom(bdy_d_file);
976  bdy_data_xhi[itime][ivar].readFrom(bdy_d_file);
977  bdy_data_ylo[itime][ivar].readFrom(bdy_d_file);
978  bdy_data_yhi[itime][ivar].readFrom(bdy_d_file);
979  }
980  }
981  } // IO
982 
983  // Broadcast the data
984  ParallelDescriptor::Barrier();
985  ParallelDescriptor::Bcast(&start_bdy_time,1,ioproc);
986  ParallelDescriptor::Bcast(&bdy_time_interval,1,ioproc);
987  ParallelDescriptor::Bcast(&real_width,1,ioproc);
988  ParallelDescriptor::Bcast(&num_time,1,ioproc);
989  ParallelDescriptor::Bcast(&num_var,1,ioproc);
990 
991  // Everyone size their boxes
992  bx_v.resize(4*num_var);
993 
994  ParallelDescriptor::Bcast(bx_v.dataPtr(),bx_v.size(),ioproc);
995 
996  // Everyone but IO size their FABs
997  if (!ParallelDescriptor::IOProcessor()) {
998  bdy_data_xlo.resize(num_time);
999  bdy_data_xhi.resize(num_time);
1000  bdy_data_ylo.resize(num_time);
1001  bdy_data_yhi.resize(num_time);
1002  for (int itime(0); itime<num_time; ++itime) {
1003  bdy_data_xlo[itime].resize(num_var);
1004  bdy_data_xhi[itime].resize(num_var);
1005  bdy_data_ylo[itime].resize(num_var);
1006  bdy_data_yhi[itime].resize(num_var);
1007  for (int ivar(0); ivar<num_var; ++ivar) {
1008  bdy_data_xlo[itime][ivar].resize(bx_v[4*ivar ]);
1009  bdy_data_xhi[itime][ivar].resize(bx_v[4*ivar+1]);
1010  bdy_data_ylo[itime][ivar].resize(bx_v[4*ivar+2]);
1011  bdy_data_yhi[itime][ivar].resize(bx_v[4*ivar+3]);
1012  }
1013  }
1014  }
1015 
1016  for (int itime(0); itime<num_time; ++itime) {
1017  for (int ivar(0); ivar<num_var; ++ivar) {
1018  ParallelDescriptor::Bcast(bdy_data_xlo[itime][ivar].dataPtr(),bdy_data_xlo[itime][ivar].box().numPts(),ioproc);
1019  ParallelDescriptor::Bcast(bdy_data_xhi[itime][ivar].dataPtr(),bdy_data_xhi[itime][ivar].box().numPts(),ioproc);
1020  ParallelDescriptor::Bcast(bdy_data_ylo[itime][ivar].dataPtr(),bdy_data_ylo[itime][ivar].box().numPts(),ioproc);
1021  ParallelDescriptor::Bcast(bdy_data_yhi[itime][ivar].dataPtr(),bdy_data_yhi[itime][ivar].box().numPts(),ioproc);
1022  }
1023  }
1024  } // init_type == WRFInput or Metgrid
1025 #endif
1026 #endif
1027 }
struct @19 in
static void GotoNextLine(std::istream &is)
Definition: ERF_Checkpoint.cpp:16
void MakeNewLevelFromScratch(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:25
bool variable_coriolis
Definition: ERF_DataStruct.H:971
bool has_lat_lon
Definition: ERF_DataStruct.H:970
static void set_mesh_type(MeshType new_mesh_type)
Definition: ERF_DataStruct.H:855
Here is the call graph for this function:

◆ ReadCheckpointFileSurfaceLayer()

void ERF::ReadCheckpointFileSurfaceLayer ( )

ERF function for reading additional data for MOST from a checkpoint file during restart.

This is called after the ABLMost object is instantiated.

1036 {
1037  for (int lev = 0; lev <= finest_level; ++lev)
1038  {
1039  amrex::Print() << "Reading MOST variables" << std::endl;
1040 
1041  IntVect ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
1042  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
1043  MultiFab* dst = nullptr;
1044 
1045  // U*
1046  std::string UstarFileName(restart_chkfile + "/Level_0/Ustar_H");
1047  if (amrex::FileExists(UstarFileName)) {
1048  dst = m_SurfaceLayer->get_u_star(lev);
1049  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Ustar"));
1050  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1051  }
1052 
1053  // W*
1054  std::string WstarFileName(restart_chkfile + "/Level_0/Wstar_H");
1055  if (amrex::FileExists(WstarFileName)) {
1056  dst = m_SurfaceLayer->get_w_star(lev);
1057  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Wstar"));
1058  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1059  }
1060 
1061  // T*
1062  std::string TstarFileName(restart_chkfile + "/Level_0/Tstar_H");
1063  if (amrex::FileExists(TstarFileName)) {
1064  dst = m_SurfaceLayer->get_t_star(lev);
1065  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Tstar"));
1066  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1067  }
1068 
1069  // Q*
1070  std::string QstarFileName(restart_chkfile + "/Level_0/Qstar_H");
1071  if (amrex::FileExists(QstarFileName)) {
1072  dst = m_SurfaceLayer->get_q_star(lev);
1073  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qstar"));
1074  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1075  }
1076 
1077  // Olen
1078  std::string OlenFileName(restart_chkfile + "/Level_0/Olen_H");
1079  if (amrex::FileExists(OlenFileName)) {
1080  dst = m_SurfaceLayer->get_olen(lev);
1081  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Olen"));
1082  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1083  }
1084 
1085  // Qsurf
1086  std::string QsurfFileName(restart_chkfile + "/Level_0/Qsurf_H");
1087  if (amrex::FileExists(QsurfFileName)) {
1088  dst = m_SurfaceLayer->get_q_surf(lev);
1089  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Qsurf"));
1090  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1091  }
1092 
1093  // PBLH
1094  std::string PBLHFileName(restart_chkfile + "/Level_0/PBLH_H");
1095  if (amrex::FileExists(PBLHFileName)) {
1096  dst = m_SurfaceLayer->get_pblh(lev);
1097  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "PBLH"));
1098  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1099  }
1100 
1101  // Z0
1102  std::string Z0FileName(restart_chkfile + "/Level_0/Z0_H");
1103  if (amrex::FileExists(Z0FileName)) {
1104  dst = m_SurfaceLayer->get_z0(lev);
1105  VisMF::Read(m_var, MultiFabFileFullPrefix(lev, restart_chkfile, "Level_", "Z0"));
1106  MultiFab::Copy(*dst,m_var,0,0,1,ng);
1107  }
1108  }
1109 }

◆ ReadParameters()

void ERF::ReadParameters ( )
private
2008 {
2009  {
2010  ParmParse pp; // Traditionally, max_step and stop_time do not have prefix.
2011  pp.query("max_step", max_step);
2012  if (max_step < 0) {
2013  max_step = std::numeric_limits<int>::max();
2014  }
2015 
2016  std::string start_datetime, stop_datetime;
2017  if (pp.query("start_datetime", start_datetime)) {
2018  if (start_datetime.length() == 16) { // YYYY-MM-DD HH:MM
2019  start_datetime += ":00"; // add seconds
2020  }
2021  start_time = getEpochTime(start_datetime, datetime_format);
2022 
2023  if (pp.query("stop_datetime", stop_datetime)) {
2024  if (stop_datetime.length() == 16) { // YYYY-MM-DD HH:MM
2025  stop_datetime += ":00"; // add seconds
2026  }
2027  stop_time = getEpochTime(stop_datetime, datetime_format);
2028  }
2029 
2030  use_datetime = true;
2031 
2032  } else {
2033  pp.query("stop_time", stop_time);
2034  pp.query("start_time", start_time); // This is optional, it defaults to 0
2035  }
2036  }
2037 
2038  ParmParse pp(pp_prefix);
2039  ParmParse pp_amr("amr");
2040  {
2041  pp.query("regrid_level_0_on_restart", regrid_level_0_on_restart);
2042  pp.query("regrid_int", regrid_int);
2043  pp.query("check_file", check_file);
2044 
2045  // The regression tests use "amr.restart" and "amr.m_check_int" so we allow
2046  // for those or "erf.restart" / "erf.m_check_int" with the former taking
2047  // precedence if both are specified
2048  pp.query("check_int", m_check_int);
2049  pp.query("check_per", m_check_per);
2050  pp_amr.query("check_int", m_check_int);
2051  pp_amr.query("check_per", m_check_per);
2052 
2053  pp.query("restart", restart_chkfile);
2054  pp_amr.query("restart", restart_chkfile);
2055 
2056  // Verbosity
2057  pp.query("v", verbose);
2058  pp.query("mg_v", mg_verbose);
2059  pp.query("use_fft", use_fft);
2060 #ifndef ERF_USE_FFT
2061  if (use_fft) {
2062  amrex::Abort("You must build with USE_FFT in order to set use_fft = true in your inputs file");
2063  }
2064 #endif
2065 
2066  // Frequency of diagnostic output
2067  pp.query("sum_interval", sum_interval);
2068  pp.query("sum_period" , sum_per);
2069 
2070  pp.query("pert_interval", pert_interval);
2071 
2072  // Time step controls
2073  pp.query("cfl", cfl);
2074  pp.query("substepping_cfl", sub_cfl);
2075  pp.query("init_shrink", init_shrink);
2076  pp.query("change_max", change_max);
2077  pp.query("dt_max_initial", dt_max_initial);
2078  pp.query("dt_max", dt_max);
2079 
2080  fixed_dt.resize(max_level+1,-1.);
2081  fixed_fast_dt.resize(max_level+1,-1.);
2082 
2083  pp.query("fixed_dt", fixed_dt[0]);
2084  pp.query("fixed_fast_dt", fixed_fast_dt[0]);
2085 
2086  for (int lev = 1; lev <= max_level; lev++)
2087  {
2088  fixed_dt[lev] = fixed_dt[lev-1] / static_cast<Real>(MaxRefRatio(lev-1));
2089  fixed_fast_dt[lev] = fixed_fast_dt[lev-1] / static_cast<Real>(MaxRefRatio(lev-1));
2090  }
2091 
2092  pp.query("fixed_mri_dt_ratio", fixed_mri_dt_ratio);
2093 
2094  // We use this to keep track of how many boxes we read in from WRF initialization
2095  num_files_at_level.resize(max_level+1,0);
2096 
2097  // We use this to keep track of how many boxes are specified thru the refinement indicators
2098  num_boxes_at_level.resize(max_level+1,0);
2099  boxes_at_level.resize(max_level+1);
2100 
2101  // We always have exactly one file at level 0
2102  num_boxes_at_level[0] = 1;
2103  boxes_at_level[0].resize(1);
2104  boxes_at_level[0][0] = geom[0].Domain();
2105 
2106 #ifdef ERF_USE_NETCDF
2107  nc_init_file.resize(max_level+1);
2108 
2109  // NetCDF wrfinput initialization files -- possibly multiple files at each of multiple levels
2110  // but we always have exactly one file at level 0
2111  for (int lev = 0; lev <= max_level; lev++) {
2112  const std::string nc_file_names = Concatenate("nc_init_file_",lev,1);
2113  if (pp.contains(nc_file_names.c_str())) {
2114  int num_files = pp.countval(nc_file_names.c_str());
2115  num_files_at_level[lev] = num_files;
2116  nc_init_file[lev].resize(num_files);
2117  pp.queryarr(nc_file_names.c_str(), nc_init_file[lev],0,num_files);
2118  for (int j = 0; j < num_files; j++) {
2119  Print() << "Reading NC init file names at level " << lev << " and index " << j << " : " << nc_init_file[lev][j] << std::endl;
2120  } // j
2121  } // if pp.contains
2122  } // lev
2123 
2124  // NetCDF wrfbdy lateral boundary file
2125  if (pp.query("nc_bdy_file", nc_bdy_file)) {
2126  Print() << "Reading NC bdy file name " << nc_bdy_file << std::endl;
2127  }
2128 
2129  // NetCDF wrflow lateral boundary file
2130  if (pp.query("nc_low_file", nc_low_file)) {
2131  Print() << "Reading NC low file name " << nc_low_file << std::endl;
2132  }
2133 
2134 #endif
2135 
2136  // Options for vertical interpolation of met_em*.nc data.
2137  pp.query("metgrid_debug_quiescent", metgrid_debug_quiescent);
2138  pp.query("metgrid_debug_isothermal", metgrid_debug_isothermal);
2139  pp.query("metgrid_debug_dry", metgrid_debug_dry);
2140  pp.query("metgrid_debug_psfc", metgrid_debug_psfc);
2141  pp.query("metgrid_debug_msf", metgrid_debug_msf);
2142  pp.query("metgrid_interp_theta", metgrid_interp_theta);
2143  pp.query("metgrid_basic_linear", metgrid_basic_linear);
2144  pp.query("metgrid_use_below_sfc", metgrid_use_below_sfc);
2145  pp.query("metgrid_use_sfc", metgrid_use_sfc);
2146  pp.query("metgrid_retain_sfc", metgrid_retain_sfc);
2147  pp.query("metgrid_proximity", metgrid_proximity);
2148  pp.query("metgrid_order", metgrid_order);
2149  pp.query("metgrid_force_sfc_k", metgrid_force_sfc_k);
2150 
2151  // Set default to FullState for now ... later we will try Perturbation
2152  interpolation_type = StateInterpType::FullState;
2153  pp.query_enum_case_insensitive("interpolation_type" ,interpolation_type);
2154 
2155  PlotFileType plotfile3d_type_temp = PlotFileType::None;
2156  pp.query_enum_case_insensitive("plotfile_type" ,plotfile3d_type_temp);
2157  pp.query_enum_case_insensitive("plotfile_type_1",plotfile3d_type_1);
2158  pp.query_enum_case_insensitive("plotfile_type_2",plotfile3d_type_2);
2159 
2160  PlotFileType plotfile2d_type_temp = PlotFileType::None;
2161  pp.query_enum_case_insensitive("plotfile2d_type" ,plotfile2d_type_temp);
2162  pp.query_enum_case_insensitive("plotfile2d_type_1",plotfile2d_type_1);
2163  pp.query_enum_case_insensitive("plotfile2d_type_2",plotfile2d_type_2);
2164  //
2165  // This option is for backward consistency -- if only plotfile_type is set,
2166  // then it will be used for both 1 and 2 if and only if they are not set
2167  //
2168  // Default is native amrex if no type is specified
2169  //
2170  if (plotfile3d_type_temp == PlotFileType::None) {
2171  if (plotfile3d_type_1 == PlotFileType::None) {
2172  plotfile3d_type_1 = PlotFileType::Amrex;
2173  }
2174  if (plotfile3d_type_2 == PlotFileType::None) {
2175  plotfile3d_type_2 = PlotFileType::Amrex;
2176  }
2177  } else {
2178  if (plotfile3d_type_1 == PlotFileType::None) {
2179  plotfile3d_type_1 = plotfile3d_type_temp;
2180  } else {
2181  amrex::Abort("You must set either plotfile_type or plotfile_type_1, not both");
2182  }
2183  if (plotfile3d_type_2 == PlotFileType::None) {
2184  plotfile3d_type_2 = plotfile3d_type_temp;
2185  } else {
2186  amrex::Abort("You must set either plotfile_type or plotfile_type_2, not both");
2187  }
2188  }
2189  if (plotfile2d_type_temp == PlotFileType::None) {
2190  if (plotfile2d_type_1 == PlotFileType::None) {
2191  plotfile2d_type_1 = PlotFileType::Amrex;
2192  }
2193  if (plotfile2d_type_2 == PlotFileType::None) {
2194  plotfile2d_type_2 = PlotFileType::Amrex;
2195  }
2196  } else {
2197  if (plotfile2d_type_1 == PlotFileType::None) {
2198  plotfile2d_type_1 = plotfile2d_type_temp;
2199  } else {
2200  amrex::Abort("You must set either plotfile2d_type or plotfile2d_type_1, not both");
2201  }
2202  if (plotfile2d_type_2 == PlotFileType::None) {
2203  plotfile2d_type_2 = plotfile2d_type_temp;
2204  } else {
2205  amrex::Abort("You must set either plotfile2d_type or plotfile2d_type_2, not both");
2206  }
2207  }
2208 #ifndef ERF_USE_NETCDF
2209  if (plotfile3d_type_1 == PlotFileType::Netcdf ||
2210  plotfile3d_type_2 == PlotFileType::Netcdf ||
2211  plotfile2d_type_1 == PlotFileType::Netcdf ||
2212  plotfile2d_type_2 == PlotFileType::Netcdf) {
2213  amrex::Abort("Plotfile type = Netcdf is not allowed without USE_NETCDF = TRUE");
2214  }
2215 #endif
2216 
2217  pp.query("plot_file_1" , plot3d_file_1);
2218  pp.query("plot_file_2" , plot3d_file_2);
2219  pp.query("plot2d_file_1", plot2d_file_1);
2220  pp.query("plot2d_file_2", plot2d_file_2);
2221 
2222  pp.query("plot_int_1" , m_plot3d_int_1);
2223  pp.query("plot_int_2" , m_plot3d_int_2);
2224  pp.query("plot_per_1" , m_plot3d_per_1);
2225  pp.query("plot_per_2" , m_plot3d_per_2);
2226 
2227  pp.query("plot2d_int_1" , m_plot2d_int_1);
2228  pp.query("plot2d_int_2" , m_plot2d_int_2);
2229  pp.query("plot2d_per_1", m_plot2d_per_1);
2230  pp.query("plot2d_per_2", m_plot2d_per_2);
2231 
2232  pp.query("subvol_file", subvol_file);
2233  pp.query("subvol_int" , m_subvol_int);
2234  pp.query("subvol_per" , m_subvol_per);
2235 
2236  pp.query("expand_plotvars_to_unif_rr",m_expand_plotvars_to_unif_rr);
2237 
2238  pp.query("plot_face_vels",m_plot_face_vels);
2239 
2240  if ( (m_plot3d_int_1 > 0 && m_plot3d_per_1 > 0) ||
2241  (m_plot3d_int_2 > 0 && m_plot3d_per_2 > 0.) ) {
2242  Abort("Must choose only one of plot_int or plot_per");
2243  }
2244  if ( (m_plot2d_int_1 > 0 && m_plot2d_per_1 > 0) ||
2245  (m_plot2d_int_2 > 0 && m_plot2d_per_2 > 0.) ) {
2246  Abort("Must choose only one of plot_int or plot_per");
2247  }
2248 
2249  pp.query("profile_int", profile_int);
2250  pp.query("destag_profiles", destag_profiles);
2251 
2252  pp.query("plot_lsm", plot_lsm);
2253 #ifdef ERF_USE_RRTMGP
2254  pp.query("plot_rad", plot_rad);
2255 #endif
2256  pp.query("profile_rad_int", rad_datalog_int);
2257 
2258  pp.query("output_1d_column", output_1d_column);
2259  pp.query("column_per", column_per);
2260  pp.query("column_interval", column_interval);
2261  pp.query("column_loc_x", column_loc_x);
2262  pp.query("column_loc_y", column_loc_y);
2263  pp.query("column_file_name", column_file_name);
2264 
2265  // Sampler output frequency
2266  pp.query("line_sampling_per", line_sampling_per);
2267  pp.query("line_sampling_interval", line_sampling_interval);
2268  pp.query("plane_sampling_per", plane_sampling_per);
2269  pp.query("plane_sampling_interval", plane_sampling_interval);
2270 
2271  // Specify information about outputting planes of data
2272  pp.query("output_bndry_planes", output_bndry_planes);
2273  pp.query("bndry_output_planes_interval", bndry_output_planes_interval);
2274  pp.query("bndry_output_planes_per", bndry_output_planes_per);
2275  pp.query("bndry_output_start_time", bndry_output_planes_start_time);
2276 
2277  // Specify whether ingest boundary planes of data
2278  pp.query("input_bndry_planes", input_bndry_planes);
2279 
2280  // Query the set and total widths for wrfbdy interior ghost cells
2281  pp.query("real_width", real_width);
2282  pp.query("real_set_width", real_set_width);
2283 
2284  // If using real boundaries, do we extrapolate w (or set to 0)
2285  pp.query("real_extrap_w", real_extrap_w);
2286 
2287  // Query the set and total widths for crse-fine interior ghost cells
2288  pp.query("cf_width", cf_width);
2289  pp.query("cf_set_width", cf_set_width);
2290 
2291  // AmrMesh iterate on grids?
2292  bool iterate(true);
2293  pp_amr.query("iterate_grids",iterate);
2294  if (!iterate) SetIterateToFalse();
2295  }
2296 
2297 #ifdef ERF_USE_PARTICLES
2298  readTracersParams();
2299 #endif
2300 
2301  solverChoice.init_params(max_level,pp_prefix);
2302 
2303 #ifndef ERF_USE_NETCDF
2304  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(( (solverChoice.init_type != InitType::WRFInput) &&
2305  (solverChoice.init_type != InitType::Metgrid ) &&
2306  (solverChoice.init_type != InitType::NCFile ) ),
2307  "init_type cannot be 'WRFInput', 'MetGrid' or 'NCFile' if we don't build with netcdf!");
2308 #endif
2309 
2310  // Query the canopy model file name
2311  std::string forestfile;
2312  solverChoice.do_forest_drag = pp.query("forest_file", forestfile);
2314  for (int lev = 0; lev <= max_level; ++lev) {
2315  m_forest_drag[lev] = std::make_unique<ForestDrag>(forestfile);
2316  }
2317  }
2318 
2319  // If init from WRFInput or Metgrid make sure a valid file name is present
2320  if ((solverChoice.init_type == InitType::WRFInput) ||
2321  (solverChoice.init_type == InitType::Metgrid) ||
2322  (solverChoice.init_type == InitType::NCFile) ) {
2323  for (int lev = 0; lev <= max_level; lev++) {
2324  int num_files = nc_init_file[lev].size();
2325  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(num_files>0, "A file name must be present for init type WRFInput, Metgrid or NCFile.");
2326  for (int j = 0; j < num_files; j++) {
2327  AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!nc_init_file[lev][j].empty(), "Valid file name must be present for init type WRFInput, Metgrid or NCFile.");
2328  } //j
2329  } // lev
2330  } // InitType
2331 
2332  // What type of land surface model to use
2333  // NOTE: Must be checked after init_params
2334  if (solverChoice.lsm_type == LandSurfaceType::SLM) {
2335  lsm.SetModel<SLM>();
2336  Print() << "SLM land surface model!\n";
2337  } else if (solverChoice.lsm_type == LandSurfaceType::MM5) {
2338  lsm.SetModel<MM5>();
2339  Print() << "MM5 land surface model!\n";
2340 #ifdef ERF_USE_NOAHMP
2341  } else if (solverChoice.lsm_type == LandSurfaceType::NOAHMP) {
2342  lsm.SetModel<NOAHMP>();
2343  Print() << "Noah-MP land surface model!\n";
2344 #endif
2345  } else if (solverChoice.lsm_type == LandSurfaceType::None) {
2346  lsm.SetModel<NullSurf>();
2347  Print() << "Null land surface model!\n";
2348  } else {
2349  Abort("Dont know this LandSurfaceType!") ;
2350  }
2351 
2352  if (verbose > 0) {
2353  solverChoice.display(max_level,pp_prefix);
2354  }
2355 
2357 }
AMREX_GPU_HOST AMREX_FORCE_INLINE std::time_t getEpochTime(const std::string &dateTime, const std::string &dateTimeFormat)
Definition: ERF_EpochTime.H:15
bool metgrid_basic_linear
Definition: ERF.H:1209
bool metgrid_debug_msf
Definition: ERF.H:1207
std::string plot2d_file_2
Definition: ERF.H:1050
std::string plot3d_file_1
Definition: ERF.H:1047
bool plot_rad
Definition: ERF.H:882
bool m_plot_face_vels
Definition: ERF.H:1063
std::string plot3d_file_2
Definition: ERF.H:1048
int regrid_int
Definition: ERF.H:1040
bool metgrid_retain_sfc
Definition: ERF.H:1212
bool metgrid_use_sfc
Definition: ERF.H:1211
amrex::Vector< int > num_files_at_level
Definition: ERF.H:785
bool metgrid_debug_quiescent
Definition: ERF.H:1203
bool metgrid_interp_theta
Definition: ERF.H:1208
bool regrid_level_0_on_restart
Definition: ERF.H:1044
int metgrid_force_sfc_k
Definition: ERF.H:1215
bool real_extrap_w
Definition: ERF.H:1197
bool metgrid_use_below_sfc
Definition: ERF.H:1210
std::string subvol_file
Definition: ERF.H:1051
amrex::Real metgrid_proximity
Definition: ERF.H:1213
std::string plot2d_file_1
Definition: ERF.H:1049
bool metgrid_debug_dry
Definition: ERF.H:1205
bool metgrid_debug_isothermal
Definition: ERF.H:1204
bool metgrid_debug_psfc
Definition: ERF.H:1206
void ParameterSanityChecks()
Definition: ERF.cpp:2361
bool m_expand_plotvars_to_unif_rr
Definition: ERF.H:1052
std::string check_file
Definition: ERF.H:1072
int metgrid_order
Definition: ERF.H:1214
bool plot_lsm
Definition: ERF.H:1065
void SetModel()
Definition: ERF_LandSurface.H:28
Definition: ERF_MM5.H:26
Definition: ERF_NOAHMP.H:49
Definition: ERF_NullSurf.H:8
Definition: ERF_SLM.H:26
void display(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:660
void init_params(int max_level, std::string pp_prefix)
Definition: ERF_DataStruct.H:125
Here is the call graph for this function:

◆ refinement_criteria_setup()

void ERF::refinement_criteria_setup ( )
private

Function to define the refinement criteria based on user input

224 {
225  if (max_level > 0)
226  {
227  ParmParse pp(pp_prefix);
228  Vector<std::string> refinement_indicators;
229  pp.queryarr("refinement_indicators",refinement_indicators,0,pp.countval("refinement_indicators"));
230 
231  for (int i=0; i<refinement_indicators.size(); ++i)
232  {
233  std::string ref_prefix = pp_prefix + "." + refinement_indicators[i];
234 
235  ParmParse ppr(ref_prefix);
236  RealBox realbox;
237  int lev_for_box;
238 
239  int num_real_lo = ppr.countval("in_box_lo");
240  int num_indx_lo = ppr.countval("in_box_lo_indices");
241  int num_real_hi = ppr.countval("in_box_hi");
242  int num_indx_hi = ppr.countval("in_box_hi_indices");
243 
244  AMREX_ALWAYS_ASSERT(num_real_lo == num_real_hi);
245  AMREX_ALWAYS_ASSERT(num_indx_lo == num_indx_hi);
246 
247  if ( !((num_real_lo >= AMREX_SPACEDIM-1 && num_indx_lo == 0) ||
248  (num_indx_lo >= AMREX_SPACEDIM-1 && num_real_lo == 0) ||
249  (num_indx_lo == 0 && num_real_lo == 0)) )
250  {
251  amrex::Abort("Must only specify box for refinement using real OR index space");
252  }
253 
254  if (num_real_lo > 0) {
255  std::vector<Real> rbox_lo(3), rbox_hi(3);
256  ppr.get("max_level",lev_for_box);
257  if (lev_for_box <= max_level)
258  {
259  if (n_error_buf[0] != IntVect::TheZeroVector()) {
260  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
261  }
262 
263  const Real* plo = geom[lev_for_box].ProbLo();
264  const Real* phi = geom[lev_for_box].ProbHi();
265 
266  ppr.getarr("in_box_lo",rbox_lo,0,num_real_lo);
267  ppr.getarr("in_box_hi",rbox_hi,0,num_real_hi);
268 
269  if (rbox_lo[0] < plo[0]) rbox_lo[0] = plo[0];
270  if (rbox_lo[1] < plo[1]) rbox_lo[1] = plo[1];
271  if (rbox_hi[0] > phi[0]) rbox_hi[0] = phi[0];
272  if (rbox_hi[1] > phi[1]) rbox_hi[1] = phi[1];
273  if (num_real_lo < AMREX_SPACEDIM) {
274  rbox_lo[2] = plo[2];
275  rbox_hi[2] = phi[2];
276  }
277 
278  realbox = RealBox(&(rbox_lo[0]),&(rbox_hi[0]));
279 
280  Print() << "Realbox read in and intersected laterally with domain is " << realbox << std::endl;
281 
282  num_boxes_at_level[lev_for_box] += 1;
283 
284  int ilo, jlo, klo;
285  int ihi, jhi, khi;
286  const auto* dx = geom[lev_for_box].CellSize();
287  ilo = static_cast<int>((rbox_lo[0] - plo[0])/dx[0]);
288  jlo = static_cast<int>((rbox_lo[1] - plo[1])/dx[1]);
289  ihi = static_cast<int>((rbox_hi[0] - plo[0])/dx[0]-1);
290  jhi = static_cast<int>((rbox_hi[1] - plo[1])/dx[1]-1);
291  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
292  // Search for k indices corresponding to nominal grid
293  // AGL heights
294  const Box& domain = geom[lev_for_box].Domain();
295  klo = domain.smallEnd(2) - 1;
296  khi = domain.smallEnd(2) - 1;
297 
298  if (rbox_lo[2] <= zlevels_stag[lev_for_box][domain.smallEnd(2)])
299  {
300  klo = domain.smallEnd(2);
301  }
302  else
303  {
304  for (int k=domain.smallEnd(2); k<=domain.bigEnd(2)+1; ++k) {
305  if (zlevels_stag[lev_for_box][k] > rbox_lo[2]) {
306  klo = k-1;
307  break;
308  }
309  }
310  }
311  AMREX_ASSERT(klo >= domain.smallEnd(2));
312 
313  if (rbox_hi[2] >= zlevels_stag[lev_for_box][domain.bigEnd(2)+1])
314  {
315  khi = domain.bigEnd(2);
316  }
317  else
318  {
319  for (int k=klo+1; k<=domain.bigEnd(2)+1; ++k) {
320  if (zlevels_stag[lev_for_box][k] > rbox_hi[2]) {
321  khi = k-1;
322  break;
323  }
324  }
325  }
326  AMREX_ASSERT((khi <= domain.bigEnd(2)) && (khi > klo));
327 
328  // Need to update realbox because tagging is based on
329  // the initial _un_deformed grid
330  realbox = RealBox(plo[0]+ ilo *dx[0], plo[1]+ jlo *dx[1], plo[2]+ klo *dx[2],
331  plo[0]+(ihi+1)*dx[0], plo[1]+(jhi+1)*dx[1], plo[2]+(khi+1)*dx[2]);
332  } else {
333  klo = static_cast<int>((rbox_lo[2] - plo[2])/dx[2]);
334  khi = static_cast<int>((rbox_hi[2] - plo[2])/dx[2]-1);
335  }
336 
337  Box bx(IntVect(ilo,jlo,klo),IntVect(ihi,jhi,khi));
338  if ( (ilo%ref_ratio[lev_for_box-1][0] != 0) || ((ihi+1)%ref_ratio[lev_for_box-1][0] != 0) ||
339  (jlo%ref_ratio[lev_for_box-1][1] != 0) || ((jhi+1)%ref_ratio[lev_for_box-1][1] != 0) ||
340  (klo%ref_ratio[lev_for_box-1][2] != 0) || ((khi+1)%ref_ratio[lev_for_box-1][2] != 0) )
341  {
342  amrex::Print() << "Box : " << bx << std::endl;
343  amrex::Print() << "RealBox : " << realbox << std::endl;
344  amrex::Print() << "ilo, ihi+1, jlo, jhi+1, klo, khi+1 by ref_ratio : "
345  << ilo%ref_ratio[lev_for_box-1][0] << " " << (ihi+1)%ref_ratio[lev_for_box-1][0] << " "
346  << jlo%ref_ratio[lev_for_box-1][1] << " " << (jhi+1)%ref_ratio[lev_for_box-1][1] << " "
347  << klo%ref_ratio[lev_for_box-1][2] << " " << (khi+1)%ref_ratio[lev_for_box-1][2] << std::endl;
348  amrex::Error("Fine box is not legit with this ref_ratio");
349  }
350  boxes_at_level[lev_for_box].push_back(bx);
351  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
352  } // lev
353 
354  if (solverChoice.init_type == InitType::WRFInput) {
355  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
356  amrex::Error("Number of boxes doesn't match number of input files");
357 
358  }
359  }
360 
361  } else if (num_indx_lo > 0) {
362 
363  std::vector<int> box_lo(3), box_hi(3);
364  ppr.get("max_level",lev_for_box);
365  if (lev_for_box <= max_level)
366  {
367  if (n_error_buf[0] != IntVect::TheZeroVector()) {
368  amrex::Abort("Don't use n_error_buf > 0 when setting the box explicitly");
369  }
370 
371  ppr.getarr("in_box_lo_indices",box_lo,0,AMREX_SPACEDIM);
372  ppr.getarr("in_box_hi_indices",box_hi,0,AMREX_SPACEDIM);
373 
374  Box bx(IntVect(box_lo[0],box_lo[1],box_lo[2]),IntVect(box_hi[0],box_hi[1],box_hi[2]));
375  amrex::Print() << "BOX " << bx << std::endl;
376 
377  const auto* dx = geom[lev_for_box].CellSize();
378  const Real* plo = geom[lev_for_box].ProbLo();
379  realbox = RealBox(plo[0]+ box_lo[0] *dx[0], plo[1]+ box_lo[1] *dx[1], plo[2]+ box_lo[2] *dx[2],
380  plo[0]+(box_hi[0]+1)*dx[0], plo[1]+(box_hi[1]+1)*dx[1], plo[2]+(box_hi[2]+1)*dx[2]);
381 
382  Print() << "Reading " << bx << " at level " << lev_for_box << std::endl;
383  num_boxes_at_level[lev_for_box] += 1;
384 
385  if ( (box_lo[0]%ref_ratio[lev_for_box-1][0] != 0) || ((box_hi[0]+1)%ref_ratio[lev_for_box-1][0] != 0) ||
386  (box_lo[1]%ref_ratio[lev_for_box-1][1] != 0) || ((box_hi[1]+1)%ref_ratio[lev_for_box-1][1] != 0) ||
387  (box_lo[2]%ref_ratio[lev_for_box-1][2] != 0) || ((box_hi[2]+1)%ref_ratio[lev_for_box-1][2] != 0) )
388  amrex::Error("Fine box is not legit with this ref_ratio");
389  boxes_at_level[lev_for_box].push_back(bx);
390  Print() << "Saving in 'boxes at level' as " << bx << std::endl;
391  } // lev
392 
393  if (solverChoice.init_type == InitType::WRFInput) {
394  if (num_boxes_at_level[lev_for_box] != num_files_at_level[lev_for_box]) {
395  amrex::Error("Number of boxes doesn't match number of input files");
396 
397  }
398  }
399  }
400 
401  AMRErrorTagInfo info;
402 
403  if (realbox.ok()) {
404  info.SetRealBox(realbox);
405  }
406  if (ppr.countval("start_time") > 0) {
407  Real ref_min_time; ppr.get("start_time",ref_min_time);
408  info.SetMinTime(ref_min_time);
409  }
410  if (ppr.countval("end_time") > 0) {
411  Real ref_max_time; ppr.get("end_time",ref_max_time);
412  info.SetMaxTime(ref_max_time);
413  }
414  if (ppr.countval("max_level") > 0) {
415  int ref_max_level; ppr.get("max_level",ref_max_level);
416  info.SetMaxLevel(ref_max_level);
417  }
418 
419  if (ppr.countval("value_greater")) {
420  int num_val = ppr.countval("value_greater");
421  Vector<Real> value(num_val);
422  ppr.getarr("value_greater",value,0,num_val);
423  std::string field; ppr.get("field_name",field);
424  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GREATER,field,info));
425  }
426  else if (ppr.countval("value_less")) {
427  int num_val = ppr.countval("value_less");
428  Vector<Real> value(num_val);
429  ppr.getarr("value_less",value,0,num_val);
430  std::string field; ppr.get("field_name",field);
431  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::LESS,field,info));
432  }
433  else if (ppr.countval("adjacent_difference_greater")) {
434  int num_val = ppr.countval("adjacent_difference_greater");
435  Vector<Real> value(num_val);
436  ppr.getarr("adjacent_difference_greater",value,0,num_val);
437  std::string field; ppr.get("field_name",field);
438  ref_tags.push_back(AMRErrorTag(value,AMRErrorTag::GRAD,field,info));
439  }
440  else if (realbox.ok())
441  {
442  ref_tags.push_back(AMRErrorTag(info));
443  } else {
444  Abort(std::string("Unrecognized refinement indicator for " + refinement_indicators[i]).c_str());
445  }
446  } // loop over criteria
447  } // if max_level > 0
448 }
Here is the call graph for this function:

◆ remake_zphys()

void ERF::remake_zphys ( int  lev,
amrex::Real  time,
std::unique_ptr< amrex::MultiFab > &  temp_zphys_nd 
)
625 {
626  if (lev > 0)
627  {
628  //
629  // First interpolate from coarser level
630  // NOTE: this interpolater assumes that ALL ghost cells of the coarse MultiFab
631  // have been pre-filled - this includes ghost cells both inside and outside
632  // the domain
633  //
634  InterpFromCoarseLevel(*temp_zphys_nd, z_phys_nd[lev]->nGrowVect(),
635  IntVect(0,0,0), // do not fill ghost cells outside the domain
636  *z_phys_nd[lev-1], 0, 0, 1,
637  geom[lev-1], geom[lev],
638  refRatio(lev-1), &node_bilinear_interp,
640 
641  // This recomputes the fine values using the bottom terrain at the fine resolution,
642  // and also fills values of z_phys_nd outside the domain
643  make_terrain_fitted_coords(lev,geom[lev],*temp_zphys_nd,zlevels_stag[lev],phys_bc_type);
644 
645  std::swap(temp_zphys_nd, z_phys_nd[lev]);
646 
647  } // lev > 0
648 
649  if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
650  //
651  // This assumes we have already remade the EBGeometry
652  //
653  terrain_blanking[lev]->setVal(1.0);
654  MultiFab::Subtract(*terrain_blanking[lev], EBFactory(lev).getVolFrac(), 0, 0, 1, z_phys_nd[lev]->nGrowVect());
655  }
656 }
Here is the call graph for this function:

◆ RemakeLevel()

void ERF::RemakeLevel ( int  lev,
amrex::Real  time,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
override
455 {
456  if (verbose) {
457  amrex::Print() <<" REMAKING WITH NEW BA AT LEVEL " << lev << " " << ba << std::endl;
458  }
459 
460  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::MovingFittedMesh);
461 
462  BoxArray ba_old(vars_new[lev][Vars::cons].boxArray());
463  DistributionMapping dm_old(vars_new[lev][Vars::cons].DistributionMap());
464 
465  if (verbose) {
466  amrex::Print() <<" OLD BA AT LEVEL " << lev << " " << ba_old << std::endl;
467  }
468 
469  //
470  // Re-define subdomain at this level within the domain such that
471  // 1) all boxes in a given subdomain are "connected"
472  // 2) no boxes in a subdomain touch any boxes in any other subdomain
473  //
474  if (solverChoice.anelastic[lev] == 1) {
475  make_subdomains(ba.simplified_list(), subdomains[lev]);
476  }
477 
478  int ncomp_cons = vars_new[lev][Vars::cons].nComp();
479  IntVect ngrow_state = vars_new[lev][Vars::cons].nGrowVect();
480 
481  int ngrow_vels = ComputeGhostCells(solverChoice);
482 
483  Vector<MultiFab> temp_lev_new(Vars::NumTypes);
484  Vector<MultiFab> temp_lev_old(Vars::NumTypes);
485  MultiFab temp_base_state;
486 
487  std::unique_ptr<MultiFab> temp_zphys_nd;
488 
489  //********************************************************************************************
490  // This allocates all kinds of things, including but not limited to: solution arrays,
491  // terrain arrays and metrics, and base state.
492  // *******************************************************************************************
493  init_stuff(lev, ba, dm, temp_lev_new, temp_lev_old, temp_base_state, temp_zphys_nd);
494 
495  // ********************************************************************************************
496  // Build the data structures for terrain-related quantities
497  // ********************************************************************************************
498  if ( solverChoice.terrain_type == TerrainType::EB ||
499  solverChoice.terrain_type == TerrainType::ImmersedForcing)
500  {
501  const amrex::EB2::IndexSpace& ebis = amrex::EB2::IndexSpace::top();
502  const EB2::Level& eb_level = ebis.getLevel(geom[lev]);
503  if (solverChoice.terrain_type == TerrainType::EB) {
504  eb[lev]->make_all_factories(lev, geom[lev], ba, dm, eb_level);
505  } else if (solverChoice.terrain_type == TerrainType::ImmersedForcing) {
506  eb[lev]->make_cc_factory(lev, geom[lev], ba, dm, eb_level);
507  }
508  }
509  remake_zphys(lev, time, temp_zphys_nd);
511 
512  // ********************************************************************************************
513  // Make sure that detJ and z_phys_cc are the average of the data on a finer level if there is one
514  // ********************************************************************************************
515  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
516  for (int crse_lev = lev-1; crse_lev >= 0; crse_lev--) {
517  average_down( *detJ_cc[crse_lev+1], *detJ_cc[crse_lev], 0, 1, refRatio(crse_lev));
518  average_down(*z_phys_cc[crse_lev+1], *z_phys_cc[crse_lev], 0, 1, refRatio(crse_lev));
519  }
520  }
521 
522  // ********************************************************************************************
523  // Build the data structures for canopy model (depends upon z_phys)
524  // ********************************************************************************************
526  m_forest_drag[lev]->define_drag_field(ba, dm, geom[lev], z_phys_cc[lev].get(), z_phys_nd[lev].get());
527  }
528 
529  // *****************************************************************************************************
530  // Create the physbcs objects (after initializing the terrain but before calling FillCoarsePatch
531  // *****************************************************************************************************
532  make_physbcs(lev);
533 
534  // ********************************************************************************************
535  // Update the base state at this level by interpolation from coarser level AND copy
536  // from previous (pre-regrid) base_state array
537  // ********************************************************************************************
538  if (lev > 0) {
539  Interpolater* mapper = &cell_cons_interp;
540 
541  Vector<MultiFab*> fmf = {&base_state[lev ], &base_state[lev ]};
542  Vector<MultiFab*> cmf = {&base_state[lev-1], &base_state[lev-1]};
543  Vector<Real> ftime = {time, time};
544  Vector<Real> ctime = {time, time};
545 
546  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
547  FillPatchTwoLevels(temp_base_state, temp_base_state.nGrowVect(), IntVect(0,0,0),
548  time, cmf, ctime, fmf, ftime,
549  0, 0, temp_base_state.nComp(), geom[lev-1], geom[lev],
550  refRatio(lev-1), mapper, domain_bcs_type,
552 
553  // Impose bc's outside the domain
554  (*physbcs_base[lev])(temp_base_state,0,temp_base_state.nComp(),base_state[lev].nGrowVect());
555 
556  // *************************************************************************************************
557  // This will fill the temporary MultiFabs with data from vars_new
558  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
559  // NOTE: we must create the new base state before calling FillPatch because we will
560  // interpolate perturbational quantities
561  // *************************************************************************************************
562  FillPatchFineLevel(lev, time, {&temp_lev_new[Vars::cons],&temp_lev_new[Vars::xvel],
563  &temp_lev_new[Vars::yvel],&temp_lev_new[Vars::zvel]},
564  {&temp_lev_new[Vars::cons],&rU_new[lev],&rV_new[lev],&rW_new[lev]},
565  base_state[lev], temp_base_state, false);
566  } else {
567  temp_base_state.ParallelCopy(base_state[lev],0,0,base_state[lev].nComp(),
568  base_state[lev].nGrowVect(),base_state[lev].nGrowVect());
569  temp_lev_new[Vars::cons].ParallelCopy(vars_new[lev][Vars::cons],0,0,ncomp_cons,ngrow_state,ngrow_state);
570  temp_lev_new[Vars::xvel].ParallelCopy(vars_new[lev][Vars::xvel],0,0, 1,ngrow_vels,ngrow_vels);
571  temp_lev_new[Vars::yvel].ParallelCopy(vars_new[lev][Vars::yvel],0,0, 1,ngrow_vels,ngrow_vels);
572 
573  temp_lev_new[Vars::zvel].setVal(0.);
574  temp_lev_new[Vars::zvel].ParallelCopy(vars_new[lev][Vars::zvel],0,0, 1,
575  IntVect(ngrow_vels,ngrow_vels,0),IntVect(ngrow_vels,ngrow_vels,0));
576  }
577 
578  // Now swap the pointers since we needed both old and new in the FillPatch
579  std::swap(temp_base_state, base_state[lev]);
580 
581  // ********************************************************************************************
582  // Copy from new into old just in case
583  // ********************************************************************************************
584  MultiFab::Copy(temp_lev_old[Vars::cons],temp_lev_new[Vars::cons],0,0,ncomp_cons,ngrow_state);
585  MultiFab::Copy(temp_lev_old[Vars::xvel],temp_lev_new[Vars::xvel],0,0, 1,ngrow_vels);
586  MultiFab::Copy(temp_lev_old[Vars::yvel],temp_lev_new[Vars::yvel],0,0, 1,ngrow_vels);
587  MultiFab::Copy(temp_lev_old[Vars::zvel],temp_lev_new[Vars::zvel],0,0, 1,IntVect(ngrow_vels,ngrow_vels,0));
588 
589  // ********************************************************************************************
590  // Now swap the pointers
591  // ********************************************************************************************
592  for (int var_idx = 0; var_idx < Vars::NumTypes; ++var_idx) {
593  std::swap(temp_lev_new[var_idx], vars_new[lev][var_idx]);
594  std::swap(temp_lev_old[var_idx], vars_old[lev][var_idx]);
595  }
596 
597  t_new[lev] = time;
598  t_old[lev] = time - 1.e200;
599 
600  // ********************************************************************************************
601  // Build the data structures for calculating diffusive/turbulent terms
602  // ********************************************************************************************
603  update_diffusive_arrays(lev, ba, dm);
604 
605  //********************************************************************************************
606  // Microphysics
607  // *******************************************************************************************
608  int q_size = micro->Get_Qmoist_Size(lev);
609  qmoist[lev].resize(q_size);
610  micro->Define(lev, solverChoice);
611  if (solverChoice.moisture_type != MoistureType::None)
612  {
613  micro->Init(lev, vars_new[lev][Vars::cons],
614  grids[lev], Geom(lev), 0.0,
615  z_phys_nd[lev], detJ_cc[lev]); // dummy dt value
616  }
617  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
618  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
619  }
620 
621  //********************************************************************************************
622  // Radiation
623  // *******************************************************************************************
624  if (solverChoice.rad_type != RadiationType::None)
625  {
626  rad[lev]->Init(geom[lev], ba, &vars_new[lev][Vars::cons]);
627  }
628 
629  // ********************************************************************************************
630  // Initialize the integrator class
631  // ********************************************************************************************
633 
634  // We need to re-define the FillPatcher if the grids have changed
635  if (lev > 0 && cf_width >= 0) {
636  bool ba_changed = (ba != ba_old);
637  bool dm_changed = (dm != dm_old);
638  if (ba_changed || dm_changed) {
640  }
641  }
642 
643  // ********************************************************************************************
644  // Update the SurfaceLayer arrays at this level
645  // ********************************************************************************************
646  if (phys_bc_type[Orientation(Direction::z,Orientation::low)] == ERF_BC::surface_layer) {
647  int nlevs = finest_level+1;
648  Vector<MultiFab*> mfv_old = {&vars_old[lev][Vars::cons], &vars_old[lev][Vars::xvel],
649  &vars_old[lev][Vars::yvel], &vars_old[lev][Vars::zvel]};
650  m_SurfaceLayer->make_SurfaceLayer_at_level(lev,nlevs,
651  mfv_old, Theta_prim[lev], Qv_prim[lev],
652  Qr_prim[lev], z_phys_nd[lev],
653  Hwave[lev].get(),Lwave[lev].get(),eddyDiffs_lev[lev].get(),
655  sst_lev[lev], tsk_lev[lev], lmask_lev[lev]);
656  }
657 
658  // These calls are done in AmrCore::regrid if this is a regrid at lev > 0
659  // For a level 0 regrid we must explicitly do them here
660  if (lev == 0) {
661  // Define grids[lev] to be ba
662  SetBoxArray(lev, ba);
663 
664  // Define dmap[lev] to be dm
665  SetDistributionMap(lev, dm);
666  }
667 
668 #ifdef ERF_USE_PARTICLES
669  particleData.Redistribute();
670 #endif
671 }
void remake_zphys(int lev, amrex::Real time, std::unique_ptr< amrex::MultiFab > &temp_zphys_nd)
Definition: ERF_MakeNewArrays.cpp:624

◆ restart()

void ERF::restart ( )
1815 {
1816  auto dRestartTime0 = amrex::second();
1817 
1819 
1821  //
1822  // Coarsening before we split the grids ensures that each resulting
1823  // grid will have an even number of cells in each direction.
1824  //
1825  BoxArray new_ba(amrex::coarsen(Geom(0).Domain(),2));
1826  //
1827  // Now split up into list of grids within max_grid_size[0] limit.
1828  //
1829  new_ba.maxSize(max_grid_size[0]/2);
1830  //
1831  // Now refine these boxes back to level 0.
1832  //
1833  new_ba.refine(2);
1834 
1835  if (refine_grid_layout) {
1836  ChopGrids(0, new_ba, ParallelDescriptor::NProcs());
1837  }
1838 
1839  if (new_ba != grids[0]) {
1840  DistributionMapping new_dm(new_ba);
1841  RemakeLevel(0,t_new[0],new_ba,new_dm);
1842  }
1843  }
1844 
1845 #ifdef ERF_USE_PARTICLES
1846  // We call this here without knowing whether the particles have already been initialized or not
1847  initializeTracers((ParGDBBase*)GetParGDB(),z_phys_nd,t_new[0]);
1848 #endif
1849 
1850  Real cur_time = t_new[0];
1851  if (m_check_per > 0.) {last_check_file_time = cur_time;}
1852  if (m_plot2d_per_1 > 0.) {last_plot2d_file_time_1 = std::floor(cur_time/m_plot2d_per_1) * m_plot2d_per_1;}
1853  if (m_plot2d_per_2 > 0.) {last_plot2d_file_time_2 = std::floor(cur_time/m_plot2d_per_2) * m_plot2d_per_2;}
1854  if (m_plot3d_per_1 > 0.) {last_plot3d_file_time_1 = std::floor(cur_time/m_plot3d_per_1) * m_plot3d_per_1;}
1855  if (m_plot3d_per_2 > 0.) {last_plot3d_file_time_2 = std::floor(cur_time/m_plot3d_per_2) * m_plot3d_per_2;}
1856 
1857  if (m_check_int > 0.) {last_check_file_step = istep[0];}
1858  if (m_plot2d_int_1 > 0.) {last_plot2d_file_step_1 = istep[0];}
1859  if (m_plot2d_int_2 > 0.) {last_plot2d_file_step_2 = istep[0];}
1860  if (m_plot3d_int_1 > 0.) {last_plot3d_file_step_1 = istep[0];}
1861  if (m_plot3d_int_2 > 0.) {last_plot3d_file_step_2 = istep[0];}
1862 
1863  if (verbose > 0)
1864  {
1865  auto dRestartTime = amrex::second() - dRestartTime0;
1866  ParallelDescriptor::ReduceRealMax(dRestartTime,ParallelDescriptor::IOProcessorNumber());
1867  amrex::Print() << "Restart time = " << dRestartTime << " seconds." << '\n';
1868  }
1869 }
void RemakeLevel(int lev, amrex::Real time, const amrex::BoxArray &ba, const amrex::DistributionMapping &dm) override
Definition: ERF_MakeNewLevel.cpp:454
void ReadCheckpointFile()
Definition: ERF_Checkpoint.cpp:447

◆ sample_lines()

void ERF::sample_lines ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling data along a line along the z-dimension at the (x,y) indices specified and writes it to an output file.

Parameters
levCurrent level
timeCurrent time
cellIntVect containing the x,y-dimension indices to sample along z
mfMultiFab from which we sample the data
564 {
565  int ifile = 0;
566 
567  const int ncomp = mf.nComp(); // cell-centered state vars
568 
569  MultiFab mf_vels(grids[lev], dmap[lev], AMREX_SPACEDIM, 0);
570  average_face_to_cellcenter(mf_vels, 0,
571  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
572 
573  //
574  // Sample the data at a line (in direction "dir") in space
575  // In this case we sample in the vertical direction so dir = 2
576  // The "k" value of "cell" is ignored
577  //
578  int dir = 2;
579  MultiFab my_line = get_line_data(mf, dir, cell);
580  MultiFab my_line_vels = get_line_data(mf_vels, dir, cell);
581  MultiFab my_line_tau11 = get_line_data(*Tau[lev][TauType::tau11], dir, cell);
582  MultiFab my_line_tau12 = get_line_data(*Tau[lev][TauType::tau12], dir, cell);
583  MultiFab my_line_tau13 = get_line_data(*Tau[lev][TauType::tau13], dir, cell);
584  MultiFab my_line_tau22 = get_line_data(*Tau[lev][TauType::tau22], dir, cell);
585  MultiFab my_line_tau23 = get_line_data(*Tau[lev][TauType::tau23], dir, cell);
586  MultiFab my_line_tau33 = get_line_data(*Tau[lev][TauType::tau33], dir, cell);
587 
588  for (MFIter mfi(my_line, false); mfi.isValid(); ++mfi)
589  {
590  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
591 
592  std::ostream& sample_log = SampleLineLog(ifile);
593  if (sample_log.good()) {
594  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << time;
595  const auto& my_line_arr = my_line[0].const_array();
596  const auto& my_line_vels_arr = my_line_vels[0].const_array();
597  const auto& my_line_tau11_arr = my_line_tau11[0].const_array();
598  const auto& my_line_tau12_arr = my_line_tau12[0].const_array();
599  const auto& my_line_tau13_arr = my_line_tau13[0].const_array();
600  const auto& my_line_tau22_arr = my_line_tau22[0].const_array();
601  const auto& my_line_tau23_arr = my_line_tau23[0].const_array();
602  const auto& my_line_tau33_arr = my_line_tau33[0].const_array();
603  const Box& my_box = my_line[0].box();
604  const int klo = my_box.smallEnd(2);
605  const int khi = my_box.bigEnd(2);
606  int i = cell[0];
607  int j = cell[1];
608  for (int n = 0; n < ncomp; n++) {
609  for (int k = klo; k <= khi; k++) {
610  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_arr(i,j,k,n);
611  }
612  }
613  for (int n = 0; n < AMREX_SPACEDIM; n++) {
614  for (int k = klo; k <= khi; k++) {
615  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_vels_arr(i,j,k,n);
616  }
617  }
618  for (int k = klo; k <= khi; k++) {
619  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau11_arr(i,j,k);
620  }
621  for (int k = klo; k <= khi; k++) {
622  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau12_arr(i,j,k);
623  }
624  for (int k = klo; k <= khi; k++) {
625  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau13_arr(i,j,k);
626  }
627  for (int k = klo; k <= khi; k++) {
628  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau22_arr(i,j,k);
629  }
630  for (int k = klo; k <= khi; k++) {
631  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau23_arr(i,j,k);
632  }
633  for (int k = klo; k <= khi; k++) {
634  sample_log << std::setw(datwidth) << std::setprecision(datprecision) << my_line_tau33_arr(i,j,k);
635  }
636  sample_log << std::endl;
637  } // if good
638  } // mfi
639 }
const int datwidth
Definition: ERF.H:1004
AMREX_FORCE_INLINE std::ostream & SampleLineLog(int i)
Definition: ERF.H:1426
const int datprecision
Definition: ERF.H:1005

◆ sample_points()

void ERF::sample_points ( int  lev,
amrex::Real  time,
amrex::IntVect  cell,
amrex::MultiFab &  mf 
)

Utility function for sampling MultiFab data at a specified cell index.

Parameters
levLevel for the associated MultiFab data
timeCurrent time
cellIntVect containing the indexes for the cell where we want to sample
mfMultiFab from which we wish to sample data
528 {
529  int ifile = 0;
530 
531  //
532  // Sample the data at a single point in space
533  //
534  int ncomp = mf.nComp();
535  Vector<Real> my_point = get_cell_data(mf, cell);
536 
537  if (!my_point.empty()) {
538 
539  // HERE DO WHATEVER YOU WANT TO THE DATA BEFORE WRITING
540 
541  std::ostream& sample_log = SamplePointLog(ifile);
542  if (sample_log.good()) {
543  sample_log << std::setw(datwidth) << time;
544  for (int i = 0; i < ncomp; ++i)
545  {
546  sample_log << std::setw(datwidth) << my_point[i];
547  }
548  sample_log << std::endl;
549  } // if good
550  } // only write from processor that holds the cell
551 }
AMREX_FORCE_INLINE std::ostream & SamplePointLog(int i)
Definition: ERF.H:1412

◆ SampleLine()

amrex::IntVect& ERF::SampleLine ( int  i)
inlineprivate
1453  {
1454  return sampleline[i];
1455  }

◆ SampleLineLog()

AMREX_FORCE_INLINE std::ostream& ERF::SampleLineLog ( int  i)
inlineprivate
1427  {
1428  return *samplelinelog[i];
1429  }

◆ SampleLineLogName()

std::string ERF::SampleLineLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith samplelinelog file.

1586 { return samplelinelogname[i]; }

◆ SamplePoint()

amrex::IntVect& ERF::SamplePoint ( int  i)
inlineprivate
1440  {
1441  return samplepoint[i];
1442  }

◆ SamplePointLog()

AMREX_FORCE_INLINE std::ostream& ERF::SamplePointLog ( int  i)
inlineprivate
1413  {
1414  return *sampleptlog[i];
1415  }

◆ SamplePointLogName()

std::string ERF::SamplePointLogName ( int  i) const
inlineprivatenoexcept

The filename of the ith sampleptlog file.

1583 { return sampleptlogname[i]; }

◆ setPlotVariables()

void ERF::setPlotVariables ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
25 {
26  ParmParse pp(pp_prefix);
27 
28  if (pp.contains(pp_plot_var_names.c_str()))
29  {
30  std::string nm;
31 
32  int nPltVars = pp.countval(pp_plot_var_names.c_str());
33 
34  for (int i = 0; i < nPltVars; i++)
35  {
36  pp.get(pp_plot_var_names.c_str(), nm, i);
37 
38  // Add the named variable to our list of plot variables
39  // if it is not already in the list
40  if (!containerHasElement(plot_var_names, nm)) {
41  plot_var_names.push_back(nm);
42  }
43  }
44  } else {
45  //
46  // The default is to add none of the variables to the list
47  //
48  plot_var_names.clear();
49  }
50 
51  // Get state variables in the same order as we define them,
52  // since they may be in any order in the input list
53  Vector<std::string> tmp_plot_names;
54 
55  for (int i = 0; i < cons_names.size(); ++i) {
56  if ( containerHasElement(plot_var_names, cons_names[i]) ) {
57  if (solverChoice.moisture_type == MoistureType::None) {
58  if (cons_names[i] != "rhoQ1" && cons_names[i] != "rhoQ2" && cons_names[i] != "rhoQ3" &&
59  cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
60  {
61  tmp_plot_names.push_back(cons_names[i]);
62  }
63  } else if (solverChoice.moisture_type == MoistureType::Kessler) { // allow rhoQ1, rhoQ2, rhoQ3
64  if (cons_names[i] != "rhoQ4" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
65  {
66  tmp_plot_names.push_back(cons_names[i]);
67  }
68  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
69  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
70  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow rhoQ1, rhoQ2
71  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ4" &&
72  cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
73  {
74  tmp_plot_names.push_back(cons_names[i]);
75  }
76  } else if ( (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
77  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow rhoQ1, rhoQ2, rhoQ4
78  if (cons_names[i] != "rhoQ3" && cons_names[i] != "rhoQ5" && cons_names[i] != "rhoQ6")
79  {
80  tmp_plot_names.push_back(cons_names[i]);
81  }
82  } else
83  {
84  // For moisture_type SAM and Morrison we have all six variables
85  tmp_plot_names.push_back(cons_names[i]);
86  }
87  }
88  }
89 
90  // check for velocity since it's not in cons_names
91  // if we are asked for any velocity component, we will need them all
92  if (containerHasElement(plot_var_names, "x_velocity") ||
93  containerHasElement(plot_var_names, "y_velocity") ||
94  containerHasElement(plot_var_names, "z_velocity")) {
95  tmp_plot_names.push_back("x_velocity");
96  tmp_plot_names.push_back("y_velocity");
97  tmp_plot_names.push_back("z_velocity");
98  }
99 
100  //
101  // If the model we are running doesn't have the variable listed in the inputs file,
102  // just ignore it rather than aborting
103  //
104  for (int i = 0; i < derived_names.size(); ++i) {
105  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
106  bool ok_to_add = ( (solverChoice.terrain_type == TerrainType::ImmersedForcing) ||
107  (derived_names[i] != "terrain_IB_mask") );
108  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
109  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
110  (derived_names[i] != "detJ") );
111  ok_to_add &= ( (SolverChoice::terrain_type == TerrainType::StaticFittedMesh) ||
112  (SolverChoice::terrain_type == TerrainType::MovingFittedMesh) ||
113  (derived_names[i] != "z_phys") );
114 #ifndef ERF_USE_WINDFARM
115  ok_to_add &= (derived_names[i] != "SMark0" && derived_names[i] != "SMark1");
116 #endif
117  if (ok_to_add)
118  {
119  if (solverChoice.moisture_type == MoistureType::None) { // no moist quantities allowed
120  if (derived_names[i] != "qv" && derived_names[i] != "qc" && derived_names[i] != "qrain" &&
121  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
122  derived_names[i] != "qt" && derived_names[i] != "qn" && derived_names[i] != "qp" &&
123  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
124  {
125  tmp_plot_names.push_back(derived_names[i]);
126  }
127  } else if ( (solverChoice.moisture_type == MoistureType::Kessler ) ||
128  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
129  (solverChoice.moisture_type == MoistureType::SAM_NoIce ) ) { // allow qv, qc, qrain
130  if (derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
131  derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
132  {
133  tmp_plot_names.push_back(derived_names[i]);
134  }
135  } else if ( (solverChoice.moisture_type == MoistureType::SatAdj) ||
136  (solverChoice.moisture_type == MoistureType::SAM_NoPrecip_NoIce) ||
137  (solverChoice.moisture_type == MoistureType::Kessler_NoRain) ) { // allow qv, qc
138  if (derived_names[i] != "qrain" &&
139  derived_names[i] != "qi" && derived_names[i] != "qsnow" && derived_names[i] != "qgraup" &&
140  derived_names[i] != "qp" &&
141  derived_names[i] != "rain_accum" && derived_names[i] != "snow_accum" && derived_names[i] != "graup_accum")
142  {
143  tmp_plot_names.push_back(derived_names[i]);
144  }
145  } else
146  {
147  // For moisture_type SAM and Morrison we have all moist quantities
148  tmp_plot_names.push_back(derived_names[i]);
149  }
150  } // use_terrain?
151  } // hasElement
152  }
153 
154 #ifdef ERF_USE_WINDFARM
155  for (int i = 0; i < derived_names.size(); ++i) {
156  if ( containerHasElement(plot_var_names, derived_names[i]) ) {
157  if(solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP) {
158  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0") {
159  tmp_plot_names.push_back(derived_names[i]);
160  }
161  }
162  if( solverChoice.windfarm_type == WindFarmType::SimpleAD or
163  solverChoice.windfarm_type == WindFarmType::GeneralAD ) {
164  if(derived_names[i] == "num_turb" or derived_names[i] == "SMark0" or derived_names[i] == "SMark1") {
165  tmp_plot_names.push_back(derived_names[i]);
166  }
167  }
168  }
169  }
170 #endif
171 
172 #ifdef ERF_USE_PARTICLES
173  const auto& particles_namelist( particleData.getNamesUnalloc() );
174  for (auto it = particles_namelist.cbegin(); it != particles_namelist.cend(); ++it) {
175  std::string tmp( (*it)+"_count" );
176  if (containerHasElement(plot_var_names, tmp) ) {
177  tmp_plot_names.push_back(tmp);
178  }
179  }
180 #endif
181 
182  plot_var_names = tmp_plot_names;
183 }
const amrex::Vector< std::string > derived_names
Definition: ERF.H:1087
const amrex::Vector< std::string > cons_names
Definition: ERF.H:1080
Here is the call graph for this function:

◆ setPlotVariables2D()

void ERF::setPlotVariables2D ( const std::string &  pp_plot_var_names,
amrex::Vector< std::string > &  plot_var_names 
)
private
187 {
188  ParmParse pp(pp_prefix);
189 
190  if (pp.contains(pp_plot_var_names.c_str()))
191  {
192  std::string nm;
193 
194  int nPltVars = pp.countval(pp_plot_var_names.c_str());
195 
196  for (int i = 0; i < nPltVars; i++)
197  {
198  pp.get(pp_plot_var_names.c_str(), nm, i);
199 
200  // Add the named variable to our list of plot variables
201  // if it is not already in the list
202  if (!containerHasElement(plot_var_names, nm)) {
203  plot_var_names.push_back(nm);
204  }
205  }
206  } else {
207  //
208  // The default is to add none of the variables to the list
209  //
210  plot_var_names.clear();
211  }
212 
213  // Get state variables in the same order as we define them,
214  // since they may be in any order in the input list
215  Vector<std::string> tmp_plot_names;
216 
217  // 2D plot variables
218  for (int i = 0; i < derived_names_2d.size(); ++i) {
219  if (containerHasElement(plot_var_names, derived_names_2d[i]) ) {
220  tmp_plot_names.push_back(derived_names_2d[i]);
221  }
222  }
223 
224  plot_var_names = tmp_plot_names;
225 }
const amrex::Vector< std::string > derived_names_2d
Definition: ERF.H:1128
Here is the call graph for this function:

◆ setRayleighRefFromSounding()

void ERF::setRayleighRefFromSounding ( bool  restarting)
private

Set Rayleigh mean profiles from input sounding.

Sets the Rayleigh Damping averaged quantities from an externally supplied input sounding data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
56 {
57  // If we are restarting then we haven't read the input_sounding file yet
58  // so we need to read it here
59  // TODO: should we store this information in the checkpoint file instead?
60  if (restarting) {
62  for (int n = 0; n < input_sounding_data.n_sounding_files; n++) {
64  }
65  }
66 
67  const Real* z_inp_sound = input_sounding_data.z_inp_sound[0].dataPtr();
68  const Real* U_inp_sound = input_sounding_data.U_inp_sound[0].dataPtr();
69  const Real* V_inp_sound = input_sounding_data.V_inp_sound[0].dataPtr();
70  const Real* theta_inp_sound = input_sounding_data.theta_inp_sound[0].dataPtr();
71  const int inp_sound_size = input_sounding_data.size(0);
72 
73  int refine_fac{1};
74  for (int lev = 0; lev <= finest_level; lev++)
75  {
76  const int klo = geom[lev].Domain().smallEnd(2);
77  const int khi = geom[lev].Domain().bigEnd(2);
78  const int Nz = khi - klo + 1;
79 
80  Vector<Real> zcc(Nz);
81  Vector<Real> zlevels_sub(zlevels_stag[0].begin()+klo/refine_fac,
82  zlevels_stag[0].begin()+khi/refine_fac+2);
83  expand_and_interpolate_1d(zcc, zlevels_sub, refine_fac, true);
84 #if 0
85  amrex::AllPrint() << "lev="<<lev<<" : (refine_fac="<<refine_fac<<",klo="<<klo<<",khi="<<khi<<") ";
86  for (int k = 0; k < zlevels_sub.size(); k++) { amrex::AllPrint() << zlevels_sub[k] << " "; }
87  amrex::AllPrint() << " --> ";
88  for (int k = 0; k < Nz; k++) { amrex::AllPrint() << zcc[k] << " "; }
89  amrex::AllPrint() << std::endl;
90 #endif
91 
92  for (int k = 0; k < Nz; k++)
93  {
94  h_rayleigh_ptrs[lev][Rayleigh::ubar][k] = interpolate_1d(z_inp_sound, U_inp_sound, zcc[k], inp_sound_size);
95  h_rayleigh_ptrs[lev][Rayleigh::vbar][k] = interpolate_1d(z_inp_sound, V_inp_sound, zcc[k], inp_sound_size);
96  h_rayleigh_ptrs[lev][Rayleigh::wbar][k] = Real(0.0);
97  h_rayleigh_ptrs[lev][Rayleigh::thetabar][k] = interpolate_1d(z_inp_sound, theta_inp_sound, zcc[k], inp_sound_size);
98  }
99 
100  // Copy from host version to device version
101  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::ubar].begin(), h_rayleigh_ptrs[lev][Rayleigh::ubar].end(),
102  d_rayleigh_ptrs[lev][Rayleigh::ubar].begin());
103  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::vbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::vbar].end(),
104  d_rayleigh_ptrs[lev][Rayleigh::vbar].begin());
105  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::wbar].begin(), h_rayleigh_ptrs[lev][Rayleigh::wbar].end(),
106  d_rayleigh_ptrs[lev][Rayleigh::wbar].begin());
107  Gpu::copy(Gpu::hostToDevice, h_rayleigh_ptrs[lev][Rayleigh::thetabar].begin(), h_rayleigh_ptrs[lev][Rayleigh::thetabar].end(),
108  d_rayleigh_ptrs[lev][Rayleigh::thetabar].begin());
109 
110  refine_fac *= ref_ratio[lev][2];
111  }
112 }
AMREX_FORCE_INLINE void expand_and_interpolate_1d(amrex::Vector< amrex::Real > &znew, const amrex::Vector< amrex::Real > &zorig, int refine_fac, bool destag=false)
Definition: ERF_Interpolation_1D.H:85
amrex::Vector< amrex::Vector< amrex::Real > > theta_inp_sound
Definition: ERF_InputSoundingData.H:407
amrex::Vector< amrex::Vector< amrex::Real > > z_inp_sound
Definition: ERF_InputSoundingData.H:407
amrex::Vector< amrex::Vector< amrex::Real > > U_inp_sound
Definition: ERF_InputSoundingData.H:407
amrex::Vector< amrex::Vector< amrex::Real > > V_inp_sound
Definition: ERF_InputSoundingData.H:407
int size(int itime) const
Definition: ERF_InputSoundingData.H:382
Here is the call graph for this function:

◆ setRecordDataInfo()

void ERF::setRecordDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1483  {
1484  if (amrex::ParallelDescriptor::IOProcessor())
1485  {
1486  datalog[i] = std::make_unique<std::fstream>();
1487  datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1488  if (!datalog[i]->good()) {
1489  amrex::FileOpenFailed(filename);
1490  }
1491  }
1492  amrex::ParallelDescriptor::Barrier("ERF::setRecordDataInfo");
1493  }

◆ setRecordDerDataInfo()

void ERF::setRecordDerDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1496  {
1497  if (amrex::ParallelDescriptor::IOProcessor())
1498  {
1499  der_datalog[i] = std::make_unique<std::fstream>();
1500  der_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1501  if (!der_datalog[i]->good()) {
1502  amrex::FileOpenFailed(filename);
1503  }
1504  }
1505  amrex::ParallelDescriptor::Barrier("ERF::setRecordDerDataInfo");
1506  }

◆ setRecordEnergyDataInfo()

void ERF::setRecordEnergyDataInfo ( int  i,
const std::string &  filename 
)
inlineprivate
1509  {
1510  if (amrex::ParallelDescriptor::IOProcessor())
1511  {
1512  tot_e_datalog[i] = std::make_unique<std::fstream>();
1513  tot_e_datalog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1514  if (!tot_e_datalog[i]->good()) {
1515  amrex::FileOpenFailed(filename);
1516  }
1517  }
1518  amrex::ParallelDescriptor::Barrier("ERF::setRecordEnergyDataInfo");
1519  }

◆ setRecordSampleLineInfo()

void ERF::setRecordSampleLineInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1539  {
1540  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1541  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1542  {
1543  const amrex::Box& bx = mfi.validbox();
1544  if (bx.contains(cell)) {
1545  samplelinelog[i] = std::make_unique<std::fstream>();
1546  samplelinelog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1547  if (!samplelinelog[i]->good()) {
1548  amrex::FileOpenFailed(filename);
1549  }
1550  }
1551  }
1552  amrex::ParallelDescriptor::Barrier("ERF::setRecordSampleLineInfo");
1553  }

◆ setRecordSamplePointInfo()

void ERF::setRecordSamplePointInfo ( int  i,
int  lev,
amrex::IntVect &  cell,
const std::string &  filename 
)
inlineprivate
1522  {
1523  amrex::MultiFab dummy(grids[lev],dmap[lev],1,0);
1524  for (amrex::MFIter mfi(dummy); mfi.isValid(); ++mfi)
1525  {
1526  const amrex::Box& bx = mfi.validbox();
1527  if (bx.contains(cell)) {
1528  sampleptlog[i] = std::make_unique<std::fstream>();
1529  sampleptlog[i]->open(filename.c_str(),std::ios::out|std::ios::app);
1530  if (!sampleptlog[i]->good()) {
1531  amrex::FileOpenFailed(filename);
1532  }
1533  }
1534  }
1535  amrex::ParallelDescriptor::Barrier("ERF::setRecordSamplePointInfo");
1536  }

◆ setSpongeRefFromSounding()

void ERF::setSpongeRefFromSounding ( bool  restarting)
private

Set sponge mean profiles from input sounding.

Sets the sponge damping averaged quantities from an externally supplied input sponge data file.

Parameters
[in]restartingBoolean parameter that indicates whether we are currently restarting from a checkpoint file.
66 {
67  // If we are restarting then we haven't read the input_sponge file yet
68  // so we need to read it here
69  // TODO: should we store this information in the checkpoint file instead?
70  if (restarting) {
72  }
73 
74  const Real* z_inp_sponge = input_sponge_data.z_inp_sponge.dataPtr();
75  const Real* U_inp_sponge = input_sponge_data.U_inp_sponge.dataPtr();
76  const Real* V_inp_sponge = input_sponge_data.V_inp_sponge.dataPtr();
77  const int inp_sponge_size = input_sponge_data.size();
78 
79  for (int lev = 0; lev <= finest_level; lev++)
80  {
81  const int khi = geom[lev].Domain().bigEnd()[2];
82  Vector<Real> zcc(khi+1);
83 
84  if (z_phys_cc[lev]) {
85  // use_terrain=1
86  // calculate the damping strength based on the max height at each k
88  } else {
89  const auto *const prob_lo = geom[lev].ProbLo();
90  const auto *const dx = geom[lev].CellSize();
91  for (int k = 0; k <= khi; k++)
92  {
93  zcc[k] = prob_lo[2] + (k+0.5) * dx[2];
94  }
95  }
96 
97  for (int k = 0; k <= khi; k++)
98  {
99  h_sponge_ptrs[lev][Sponge::ubar_sponge][k] = interpolate_1d(z_inp_sponge, U_inp_sponge, zcc[k], inp_sponge_size);
100  h_sponge_ptrs[lev][Sponge::vbar_sponge][k] = interpolate_1d(z_inp_sponge, V_inp_sponge, zcc[k], inp_sponge_size);
101  }
102 
103  // Copy from host version to device version
104  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::ubar_sponge].begin(), h_sponge_ptrs[lev][Sponge::ubar_sponge].end(),
105  d_sponge_ptrs[lev][Sponge::ubar_sponge].begin());
106  Gpu::copy(Gpu::hostToDevice, h_sponge_ptrs[lev][Sponge::vbar_sponge].begin(), h_sponge_ptrs[lev][Sponge::vbar_sponge].end(),
107  d_sponge_ptrs[lev][Sponge::vbar_sponge].begin());
108  }
109 }
AMREX_FORCE_INLINE void reduce_to_max_per_height(amrex::Vector< amrex::Real > &v, std::unique_ptr< amrex::MultiFab > &mf)
Definition: ERF_ParFunctions.H:8
amrex::Vector< amrex::Real > V_inp_sponge
Definition: ERF_InputSpongeData.H:114
amrex::Vector< amrex::Real > z_inp_sponge
Definition: ERF_InputSpongeData.H:114
amrex::Vector< amrex::Real > U_inp_sponge
Definition: ERF_InputSpongeData.H:114
int size() const
Definition: ERF_InputSpongeData.H:102
Here is the call graph for this function:

◆ solve_with_EB_mlmg()

void ERF::solve_with_EB_mlmg ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using EB_enabled MLMG Note that the level may or may not be level 0.

20 {
21  BL_PROFILE("ERF::solve_with_EB_mlmg()");
22 
23  auto const dom_lo = lbound(geom[lev].Domain());
24  auto const dom_hi = ubound(geom[lev].Domain());
25 
26  LPInfo info;
27  // Allow a hidden direction if the domain is one cell wide in any lateral direction
28  if (dom_lo.x == dom_hi.x) {
29  info.setHiddenDirection(0);
30  } else if (dom_lo.y == dom_hi.y) {
31  info.setHiddenDirection(1);
32  }
33 
34  // Make sure the solver only sees the levels over which we are solving
35  Vector<BoxArray> ba_tmp; ba_tmp.push_back(rhs[0].boxArray());
36  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(rhs[0].DistributionMap());
37  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
38 
39  auto bclo = get_projection_bc(Orientation::low);
40  auto bchi = get_projection_bc(Orientation::high);
41 
42  // amrex::Print() << "BCLO " << bclo[0] << " " << bclo[1] << " " << bclo[2] << std::endl;
43  // amrex::Print() << "BCHI " << bchi[0] << " " << bchi[1] << " " << bchi[2] << std::endl;
44 
47 
48  // ****************************************************************************
49  // Multigrid solve
50  // ****************************************************************************
51 
52  MLEBABecLap mleb (geom_tmp, ba_tmp, dm_tmp, info, {&EBFactory(lev)});
53 
54  mleb.setMaxOrder(2);
55  mleb.setDomainBC(bclo, bchi);
56  mleb.setLevelBC(0, nullptr);
57 
58  //
59  // This sets A = 0, B = 1 so that
60  // the operator A alpha - b del dot beta grad to b
61  // becomes - del dot beta grad
62  //
63  mleb.setScalars(0.0, 1.0);
64 
65  Array<MultiFab,AMREX_SPACEDIM> bcoef;
66  for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
67  bcoef[idim].define(convert(ba_tmp[0],IntVect::TheDimensionVector(idim)),
68  dm_tmp[0], 1, 0, MFInfo(), EBFactory(lev));
69  bcoef[idim].setVal(-1.0);
70  }
71  mleb.setBCoeffs(0, amrex::GetArrOfConstPtrs(bcoef));
72 
73  MLMG mlmg(mleb);
74 
75  int max_iter = 100;
76  mlmg.setMaxIter(max_iter);
77  mlmg.setVerbose(mg_verbose);
78  mlmg.setBottomVerbose(0);
79 
80  mlmg.solve(GetVecOfPtrs(phi), GetVecOfConstPtrs(rhs), reltol, abstol);
81 
82  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
83 
84  ImposeBCsOnPhi(lev,phi[0], geom[lev].Domain());
85 
86  //
87  // This arises because we solve MINUS del dot beta grad phi = div (rho u)
88  //
89  fluxes[0][0].mult(-1.);
90  fluxes[0][1].mult(-1.);
91  fluxes[0][2].mult(-1.);
92 }
void ImposeBCsOnPhi(int lev, amrex::MultiFab &phi, const amrex::Box &subdomain)
Definition: ERF_ImposeBCsOnPhi.cpp:12

◆ solve_with_gmres()

void ERF::solve_with_gmres ( int  lev,
const amrex::Box &  subdomain,
amrex::MultiFab &  rhs,
amrex::MultiFab &  p,
amrex::Array< amrex::MultiFab, AMREX_SPACEDIM > &  fluxes,
amrex::MultiFab &  ax_sub,
amrex::MultiFab &  ay_sub,
amrex::MultiFab &  znd_sub 
)

Solve the Poisson equation using FFT-preconditioned GMRES

15 {
16 #ifdef ERF_USE_FFT
17  BL_PROFILE("ERF::solve_with_gmres()");
18 
21 
22  auto const dom_lo = lbound(Geom(lev).Domain());
23  auto const dom_hi = ubound(Geom(lev).Domain());
24 
25  auto const sub_lo = lbound(subdomain);
26  auto const sub_hi = ubound(subdomain);
27 
28  auto dx = Geom(lev).CellSizeArray();
29 
30  Geometry my_geom;
31 
32  Array<int,AMREX_SPACEDIM> is_per; is_per[0] = 0; is_per[1] = 0; is_per[2] = 0;
33  if (Geom(lev).isPeriodic(0) && sub_lo.x == dom_lo.x && sub_hi.x == dom_hi.x) { is_per[0] = 1;}
34  if (Geom(lev).isPeriodic(1) && sub_lo.y == dom_lo.y && sub_hi.y == dom_hi.y) { is_per[1] = 1;}
35 
36  int coord_sys = 0;
37 
38  // If subdomain == domain then we pass Geom(lev) to the FFT solver
39  if (subdomain == Geom(lev).Domain()) {
40  my_geom.define(Geom(lev).Domain(), Geom(lev).ProbDomain(), coord_sys, is_per);
41  } else {
42  // else we create a new geometry based only on the subdomain
43  // The information in my_geom used by the FFT routines is:
44  // 1) my_geom.Domain()
45  // 2) my_geom.CellSize()
46  // 3) my_geom.isAllPeriodic() / my_geom.periodicity()
47  RealBox rb( sub_lo.x *dx[0], sub_lo.y *dx[1], sub_lo.z *dx[2],
48  (sub_hi.x+1)*dx[0], (sub_hi.y+1)*dx[1], (sub_hi.z+1)*dx[2]);
49  my_geom.define(subdomain, rb, coord_sys, is_per);
50  }
51 
52  amrex::GMRES<MultiFab, TerrainPoisson> gmsolver;
53 
54  TerrainPoisson tp(my_geom, rhs.boxArray(), rhs.DistributionMap(), domain_bc_type,
55  stretched_dz_d[lev], ax_sub, ay_sub, &znd_sub);
56 
57  gmsolver.define(tp);
58 
59  gmsolver.setVerbose(mg_verbose);
60 
61  gmsolver.setRestartLength(50);
62 
63  tp.usePrecond(true);
64 
65  gmsolver.solve(phi, rhs, reltol, abstol);
66 
67  tp.getFluxes(phi, fluxes);
68 #else
69  amrex::ignore_unused(lev, rhs, phi, fluxes, ax_sub, ay_sub, znd_sub);
70 #endif
71 
72  // ****************************************************************************
73  // Impose bc's on pprime
74  // ****************************************************************************
75  ImposeBCsOnPhi(lev, phi, subdomain);
76 }

◆ solve_with_mlmg()

void ERF::solve_with_mlmg ( int  lev,
amrex::Vector< amrex::MultiFab > &  rhs,
amrex::Vector< amrex::MultiFab > &  p,
amrex::Vector< amrex::Array< amrex::MultiFab, AMREX_SPACEDIM >> &  fluxes 
)

Solve the Poisson equation using MLMG Note that the level may or may not be level 0.

41 {
42  BL_PROFILE("ERF::solve_with_mlmg()");
43 
44  auto const dom_lo = lbound(geom[lev].Domain());
45  auto const dom_hi = ubound(geom[lev].Domain());
46 
47  LPInfo info;
48  // Allow a hidden direction if the domain is one cell wide in any lateral direction
49  if (dom_lo.x == dom_hi.x) {
50  info.setHiddenDirection(0);
51  } else if (dom_lo.y == dom_hi.y) {
52  info.setHiddenDirection(1);
53  }
54 
55  // Make sure the solver only sees the levels over which we are solving
56  Vector<BoxArray> ba_tmp; ba_tmp.push_back(rhs[0].boxArray());
57  Vector<DistributionMapping> dm_tmp; dm_tmp.push_back(rhs[0].DistributionMap());
58  Vector<Geometry> geom_tmp; geom_tmp.push_back(geom[lev]);
59 
60  auto bclo = get_projection_bc(Orientation::low);
61  auto bchi = get_projection_bc(Orientation::high);
62 
63  // amrex::Print() << "BCLO " << bclo[0] << " " << bclo[1] << " " << bclo[2] << std::endl;
64  // amrex::Print() << "BCHI " << bchi[0] << " " << bchi[1] << " " << bchi[2] << std::endl;
65 
68 
69  // ****************************************************************************
70  // Multigrid solve
71  // ****************************************************************************
72 
73  MLPoisson mlpoisson(geom_tmp, ba_tmp, dm_tmp, info);
74  mlpoisson.setDomainBC(bclo, bchi);
75  if (lev > 0) {
76  mlpoisson.setCoarseFineBC(nullptr, ref_ratio[lev-1], LinOpBCType::Neumann);
77  }
78  mlpoisson.setLevelBC(0, nullptr);
79 
80  // Use low order for outflow at physical boundaries
81  mlpoisson.setMaxOrder(2);
82 
83  MLMG mlmg(mlpoisson);
84  int max_iter = 100;
85  mlmg.setMaxIter(max_iter);
86 
87  mlmg.setVerbose(mg_verbose);
88  mlmg.setBottomVerbose(0);
89 
90  mlmg.solve(GetVecOfPtrs(phi),
91  GetVecOfConstPtrs(rhs),
92  reltol, abstol);
93  mlmg.getFluxes(GetVecOfArrOfPtrs(fluxes));
94 
95  // ****************************************************************************
96  // Impose bc's on pprime
97  // ****************************************************************************
98  ImposeBCsOnPhi(lev, phi[0], geom[lev].Domain());
99 }

◆ sum_derived_quantities()

void ERF::sum_derived_quantities ( amrex::Real  time)
188 {
189  if (verbose <= 0 || NumDerDataLogs() <= 0) return;
190 
191  int lev = 0;
192 
193  AMREX_ALWAYS_ASSERT(lev == 0);
194 
195  // ************************************************************************
196  // WARNING: we are not filling ghost cells other than periodic outside the domain
197  // ************************************************************************
198 
199  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
200  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
201 
202  // Average all three components of velocity (on faces) to the cell center
203  average_face_to_cellcenter(mf_cc_vel,0,
204  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
205  &vars_new[lev][Vars::yvel],
206  &vars_new[lev][Vars::zvel]});
207  mf_cc_vel.FillBoundary(geom[lev].periodicity());
208 
209  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
210  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
211  }
212 
213  MultiFab r_wted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
214  MultiFab unwted_magvelsq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
215  MultiFab enstrophysq(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
216  MultiFab theta_mf(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
217 
218 #ifdef _OPENMP
219 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
220 #endif
221  for (MFIter mfi(unwted_magvelsq, TilingIfNotGPU()); mfi.isValid(); ++mfi)
222  {
223  const Box& bx = mfi.tilebox();
224  auto& src_fab = mf_cc_vel[mfi];
225 
226  auto& dest1_fab = unwted_magvelsq[mfi];
227  derived::erf_dermagvelsq(bx, dest1_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
228 
229  auto& dest2_fab = enstrophysq[mfi];
230  derived::erf_derenstrophysq(bx, dest2_fab, 0, 1, src_fab, Geom(lev), t_new[0], nullptr, lev);
231  }
232 
233  // Copy the MF holding 1/2(u^2 + v^2 + w^2) into the MF that will hold 1/2 rho (u^2 + v^2 + w^2)d
234  MultiFab::Copy(r_wted_magvelsq, unwted_magvelsq, 0, 0, 1, 0);
235 
236  // Multiply the MF holding 1/2(u^2 + v^2 + w^2) by rho to get 1/2 rho (u^2 + v^2 + w^2)
237  MultiFab::Multiply(r_wted_magvelsq, vars_new[lev][Vars::cons], 0, 0, 1, 0);
238 
239  // Copy the MF holding (rho theta) into "theta_mf"
240  MultiFab::Copy(theta_mf, vars_new[lev][Vars::cons], RhoTheta_comp, 0, 1, 0);
241 
242  // Divide (rho theta) by rho to get theta in the MF "theta_mf"
243  MultiFab::Divide(theta_mf, vars_new[lev][Vars::cons], Rho_comp, 0, 1, 0);
244 
245  Real unwted_avg = volWgtSumMF(lev, unwted_magvelsq, 0, false);
246  Real r_wted_avg = volWgtSumMF(lev, r_wted_magvelsq, 0, false);
247  Real enstrsq_avg = volWgtSumMF(lev, enstrophysq, 0, false);
248  Real theta_avg = volWgtSumMF(lev, theta_mf, 0, false);
249 
250  // Get volume including terrain (consistent with volWgtSumMF routine)
251  MultiFab volume(grids[lev], dmap[lev], 1, 0);
252  auto const& dx = geom[lev].CellSizeArray();
253  Real cell_vol = dx[0]*dx[1]*dx[2];
254  volume.setVal(cell_vol);
255  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
256  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
257  }
258 #ifdef _OPENMP
259 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
260 #endif
261  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
262  {
263  const Box& tbx = mfi.tilebox();
264  auto dst = volume.array(mfi);
265  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
266  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
267  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
268  {
269  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
270  });
271  }
272  Real vol = volume.sum();
273 
274  unwted_avg /= vol;
275  r_wted_avg /= vol;
276  enstrsq_avg /= vol;
277  theta_avg /= vol;
278 
279  const int nfoo = 4;
280  Real foo[nfoo] = {unwted_avg,r_wted_avg,enstrsq_avg,theta_avg};
281 #ifdef AMREX_LAZY
282  Lazy::QueueReduction([=]() mutable {
283 #endif
284  ParallelDescriptor::ReduceRealSum(
285  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
286 
287  if (ParallelDescriptor::IOProcessor()) {
288  int i = 0;
289  unwted_avg = foo[i++];
290  r_wted_avg = foo[i++];
291  enstrsq_avg = foo[i++];
292  theta_avg = foo[i++];
293 
294  std::ostream& data_log_der = DerDataLog(0);
295 
296  if (time == 0.0) {
297  data_log_der << std::setw(datwidth) << " time";
298  data_log_der << std::setw(datwidth) << " ke_den";
299  data_log_der << std::setw(datwidth) << " velsq";
300  data_log_der << std::setw(datwidth) << " enstrophy";
301  data_log_der << std::setw(datwidth) << " int_energy";
302  data_log_der << std::endl;
303  }
304  data_log_der << std::setw(datwidth) << std::setprecision(timeprecision) << time;
305  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << unwted_avg;
306  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << r_wted_avg;
307  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << enstrsq_avg;
308  data_log_der << std::setw(datwidth) << std::setprecision(datprecision) << theta_avg;
309  data_log_der << std::endl;
310 
311  } // if IOProcessor
312 #ifdef AMREX_LAZY
313  }
314 #endif
315 }
AMREX_FORCE_INLINE std::ostream & DerDataLog(int i)
Definition: ERF.H:1390
AMREX_FORCE_INLINE int NumDerDataLogs() noexcept
Definition: ERF.H:1404
void erf_dermagvelsq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:346
void erf_derenstrophysq(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:284
Here is the call graph for this function:

◆ sum_energy_quantities()

void ERF::sum_energy_quantities ( amrex::Real  time)
319 {
320  if ( (verbose <= 0) || (tot_e_datalog.size() < 1) ) { return; }
321 
322  int lev = 0;
323 
324  AMREX_ALWAYS_ASSERT(lev == 0);
325 
326  // ************************************************************************
327  // WARNING: we are not filling ghost cells other than periodic outside the domain
328  // ************************************************************************
329 
330  MultiFab mf_cc_vel(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
331  mf_cc_vel.setVal(0.); // We just do this to avoid uninitialized values
332 
333  // Average all three components of velocity (on faces) to the cell center
334  average_face_to_cellcenter(mf_cc_vel,0,
335  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
336  &vars_new[lev][Vars::yvel],
337  &vars_new[lev][Vars::zvel]});
338  mf_cc_vel.FillBoundary(geom[lev].periodicity());
339 
340  if (!geom[lev].isPeriodic(0) || !geom[lev].isPeriodic(1) || !geom[lev].isPeriodic(2)) {
341  amrex::Warning("Ghost cells outside non-periodic physical boundaries are not filled -- vel set to 0 there");
342  }
343 
344  MultiFab tot_mass (grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
345  MultiFab tot_energy(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(0,0,0));
346 
347  auto const& dx = geom[lev].CellSizeArray();
348  bool is_moist = (solverChoice.moisture_type != MoistureType::None);
349 
350 #ifdef _OPENMP
351 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
352 #endif
353  for (MFIter mfi(tot_mass, TilingIfNotGPU()); mfi.isValid(); ++mfi)
354  {
355  const Box& bx = mfi.tilebox();
356 
357  const Array4<Real>& cc_vel_arr = mf_cc_vel.array(mfi);
358  const Array4<Real>& tot_mass_arr = tot_mass.array(mfi);
359  const Array4<Real>& tot_energy_arr = tot_energy.array(mfi);
360  const Array4<const Real>& cons_arr = vars_new[lev][Vars::cons].const_array(mfi);
361  const Array4<const Real>& z_arr = (z_phys_nd[lev]) ? z_phys_nd[lev]->const_array(mfi) :
362  Array4<const Real>{};
363  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
364  {
365  Real Qv = (is_moist) ? cons_arr(i,j,k,RhoQ1_comp) : 0.0;
366  Real Qc = (is_moist) ? cons_arr(i,j,k,RhoQ2_comp) : 0.0;
367  Real Qt = Qv + Qc;
368  Real Rhod = cons_arr(i,j,k,Rho_comp);
369  Real Rhot = Rhod * (1.0 + Qt);
370  Real Temp = getTgivenRandRTh(Rhod, cons_arr(i,j,k,RhoTheta_comp), Qv);
371  Real TKE = 0.5 * ( cc_vel_arr(i,j,k,0)*cc_vel_arr(i,j,k,0)
372  + cc_vel_arr(i,j,k,1)*cc_vel_arr(i,j,k,1)
373  + cc_vel_arr(i,j,k,2)*cc_vel_arr(i,j,k,2) );
374  Real zval = (z_arr) ? z_arr(i,j,k) : Real(k)*dx[2];
375 
376  Real Cv = Cp_d - R_d;
377  Real Cvv = Cp_v - R_v;
378  Real Cpv = Cp_v;
379 
380  tot_mass_arr(i,j,k) = Rhot;
381  tot_energy_arr(i,j,k) = Rhod * ( (Cv + Cvv*Qv + Cpv*Qc)*Temp - L_v*Qc
382  + (1.0 + Qt)*TKE + (1.0 + Qt)*CONST_GRAV*zval );
383 
384  });
385 
386  }
387 
388  Real tot_mass_avg = volWgtSumMF(lev, tot_mass , 0, false);
389  Real tot_energy_avg = volWgtSumMF(lev, tot_energy, 0, false);
390 
391  // Get volume including terrain (consistent with volWgtSumMF routine)
392  MultiFab volume(grids[lev], dmap[lev], 1, 0);
393  Real cell_vol = dx[0]*dx[1]*dx[2];
394  volume.setVal(cell_vol);
395  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
396  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
397  }
398 #ifdef _OPENMP
399 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
400 #endif
401  for (MFIter mfi(volume, TilingIfNotGPU()); mfi.isValid(); ++mfi)
402  {
403  const Box& tbx = mfi.tilebox();
404  auto dst = volume.array(mfi);
405  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
406  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
407  ParallelFor(tbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
408  {
409  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
410  });
411  }
412  Real vol = volume.sum();
413 
414  // Divide by the volume
415  tot_mass_avg /= vol;
416  tot_energy_avg /= vol;
417 
418  const int nfoo = 2;
419  Real foo[nfoo] = {tot_mass_avg,tot_energy_avg};
420 #ifdef AMREX_LAZY
421  Lazy::QueueReduction([=]() mutable {
422 #endif
423  ParallelDescriptor::ReduceRealSum(
424  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
425 
426  if (ParallelDescriptor::IOProcessor()) {
427  int i = 0;
428  tot_mass_avg = foo[i++];
429  tot_energy_avg = foo[i++];
430 
431  std::ostream& data_log_energy = *tot_e_datalog[0];
432 
433  if (time == 0.0) {
434  data_log_energy << std::setw(datwidth) << " time";
435  data_log_energy << std::setw(datwidth) << " tot_mass";
436  data_log_energy << std::setw(datwidth) << " tot_energy";
437  data_log_energy << std::endl;
438  }
439  data_log_energy << std::setw(datwidth) << std::setprecision(timeprecision) << time;
440  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_mass_avg;
441  data_log_energy << std::setw(datwidth) << std::setprecision(datprecision) << tot_energy_avg;
442  data_log_energy << std::endl;
443 
444  } // if IOProcessor
445 #ifdef AMREX_LAZY
446  }
447 #endif
448 }
constexpr amrex::Real R_v
Definition: ERF_Constants.H:11
constexpr amrex::Real Cp_d
Definition: ERF_Constants.H:12
constexpr amrex::Real CONST_GRAV
Definition: ERF_Constants.H:21
constexpr amrex::Real Cp_v
Definition: ERF_Constants.H:13
constexpr amrex::Real R_d
Definition: ERF_Constants.H:10
constexpr amrex::Real L_v
Definition: ERF_Constants.H:16
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real getTgivenRandRTh(const amrex::Real rho, const amrex::Real rhotheta, const amrex::Real qv=0.0)
Definition: ERF_EOS.H:46
Here is the call graph for this function:

◆ sum_integrated_quantities()

void ERF::sum_integrated_quantities ( amrex::Real  time)

Computes the integrated quantities on the grid such as the total scalar and total mass quantities. Prints and writes to output file.

Parameters
timeCurrent time
16 {
17  BL_PROFILE("ERF::sum_integrated_quantities()");
18 
19  if (verbose <= 0)
20  return;
21 
22  // Single level sum
23  Real mass_sl;
24 
25  // Multilevel sums
26  Real mass_ml = 0.0;
27  Real rhth_ml = 0.0;
28  Real scal_ml = 0.0;
29  Real mois_ml = 0.0;
30 
31 #if 1
32  mass_sl = volWgtSumMF(0,vars_new[0][Vars::cons],Rho_comp,false);
33  for (int lev = 0; lev <= finest_level; lev++) {
34  mass_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],Rho_comp,true);
35  }
36 #else
37  for (int lev = 0; lev <= finest_level; lev++) {
38  MultiFab pert_dens(vars_new[lev][Vars::cons].boxArray(),
39  vars_new[lev][Vars::cons].DistributionMap(),
40  1,0);
41  MultiFab r_hse (base_state[lev], make_alias, BaseState::r0_comp, 1);
42  for ( MFIter mfi(pert_dens,TilingIfNotGPU()); mfi.isValid(); ++mfi)
43  {
44  const Box& bx = mfi.tilebox();
45  const Array4<Real >& pert_dens_arr = pert_dens.array(mfi);
46  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
47  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
48  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
49  pert_dens_arr(i, j, k, 0) = S_arr(i,j,k,Rho_comp) - r0_arr(i,j,k);
50  });
51  }
52  if (lev == 0) {
53  mass_sl = volWgtSumMF(0,pert_dens,0,false);
54  }
55  mass_ml += volWgtSumMF(lev,pert_dens,0,true);
56  } // lev
57 #endif
58 
59  Real rhth_sl = volWgtSumMF(0,vars_new[0][Vars::cons], RhoTheta_comp,false);
60  Real scal_sl = volWgtSumMF(0,vars_new[0][Vars::cons],RhoScalar_comp,false);
61  Real mois_sl = 0.0;
62  if (solverChoice.moisture_type != MoistureType::None) {
63  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
64  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
65  mois_sl += volWgtSumMF(0,vars_new[0][Vars::cons],RhoQ1_comp+qoff,false);
66  }
67  }
68 
69  for (int lev = 0; lev <= finest_level; lev++) {
70  rhth_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons], RhoTheta_comp,true);
71  scal_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoScalar_comp,true);
72  if (solverChoice.moisture_type != MoistureType::None) {
73  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
74  for (int qoff(0); qoff<n_qstate_moist; ++qoff) {
75  mois_ml += volWgtSumMF(lev,vars_new[lev][Vars::cons],RhoQ1_comp+qoff,false);
76  }
77  }
78  }
79 
80  Gpu::HostVector<Real> h_avg_ustar; h_avg_ustar.resize(1);
81  Gpu::HostVector<Real> h_avg_tstar; h_avg_tstar.resize(1);
82  Gpu::HostVector<Real> h_avg_olen; h_avg_olen.resize(1);
83  if ((m_SurfaceLayer != nullptr) && (NumDataLogs() > 0)) {
84  Box domain = geom[0].Domain();
85  int zdir = 2;
86  h_avg_ustar = sumToLine(*m_SurfaceLayer->get_u_star(0),0,1,domain,zdir);
87  h_avg_tstar = sumToLine(*m_SurfaceLayer->get_t_star(0),0,1,domain,zdir);
88  h_avg_olen = sumToLine(*m_SurfaceLayer->get_olen(0) ,0,1,domain,zdir);
89 
90  // Divide by the total number of cells we are averaging over
91  Real area_z = static_cast<Real>(domain.length(0)*domain.length(1));
92  h_avg_ustar[0] /= area_z;
93  h_avg_tstar[0] /= area_z;
94  h_avg_olen[0] /= area_z;
95 
96  } else {
97  h_avg_ustar[0] = 0.;
98  h_avg_tstar[0] = 0.;
99  h_avg_olen[0] = 0.;
100  }
101 
102  const int nfoo = 8;
103  Real foo[nfoo] = {mass_sl,rhth_sl,scal_sl,mois_sl,mass_ml,rhth_ml,scal_ml,mois_ml};
104 #ifdef AMREX_LAZY
105  Lazy::QueueReduction([=]() mutable {
106 #endif
107  ParallelDescriptor::ReduceRealSum(
108  foo, nfoo, ParallelDescriptor::IOProcessorNumber());
109 
110  if (ParallelDescriptor::IOProcessor()) {
111  int i = 0;
112  mass_sl = foo[i++];
113  rhth_sl = foo[i++];
114  scal_sl = foo[i++];
115  mois_sl = foo[i++];
116  mass_ml = foo[i++];
117  rhth_ml = foo[i++];
118  scal_ml = foo[i++];
119  mois_ml = foo[i++];
120 
121  Print() << '\n';
122  Print() << "TIME= " << std::setw(datwidth) << std::setprecision(timeprecision) << std::left << time << '\n';
123  if (finest_level == 0) {
124 #if 1
125  Print() << " MASS = " << mass_sl << '\n';
126 #else
127  Print() << " PERT MASS = " << mass_sl << '\n';
128 #endif
129  Print() << " RHO THETA = " << rhth_sl << '\n';
130  Print() << " RHO SCALAR = " << scal_sl << '\n';
131  Print() << " RHO QTOTAL = " << mois_sl << '\n';
132  } else {
133 #if 1
134  Print() << " MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
135 #else
136  Print() << " PERT MASS SL/ML = " << mass_sl << " " << mass_ml << '\n';
137 #endif
138  Print() << " RHO THETA SL/ML = " << rhth_sl << " " << rhth_ml << '\n';
139  Print() << " RHO SCALAR SL/ML = " << scal_sl << " " << scal_ml << '\n';
140  Print() << " RHO QTOTAL SL/ML = " << mois_sl << " " << mois_ml << '\n';
141  }
142 
143  // The first data log only holds scalars
144  if (NumDataLogs() > 0)
145  {
146  int n_d = 0;
147  std::ostream& data_log1 = DataLog(n_d);
148  if (data_log1.good()) {
149  if (time == 0.0) {
150  data_log1 << std::setw(datwidth) << " time";
151  data_log1 << std::setw(datwidth) << " u_star";
152  data_log1 << std::setw(datwidth) << " t_star";
153  data_log1 << std::setw(datwidth) << " olen";
154  data_log1 << std::endl;
155  } // time = 0
156 
157  // Write the quantities at this time
158  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time;
159  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_ustar[0];
160  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_tstar[0];
161  data_log1 << std::setw(datwidth) << std::setprecision(datprecision) << h_avg_olen[0];
162  data_log1 << std::endl;
163  } // if good
164  } // loop over i
165  } // if IOProcessor
166 #ifdef AMREX_LAZY
167  });
168 #endif
169 
170  // This is just an alias for convenience
171  int lev = 0;
172  if (NumSamplePointLogs() > 0 && NumSamplePoints() > 0) {
173  for (int i = 0; i < NumSamplePoints(); ++i)
174  {
175  sample_points(lev, time, SamplePoint(i), vars_new[lev][Vars::cons]);
176  }
177  }
178  if (NumSampleLineLogs() > 0 && NumSampleLines() > 0) {
179  for (int i = 0; i < NumSampleLines(); ++i)
180  {
181  sample_lines(lev, time, SampleLine(i), vars_new[lev][Vars::cons]);
182  }
183  }
184 }
AMREX_FORCE_INLINE int NumSampleLineLogs() noexcept
Definition: ERF.H:1433
AMREX_FORCE_INLINE int NumSamplePointLogs() noexcept
Definition: ERF.H:1419
amrex::IntVect & SampleLine(int i)
Definition: ERF.H:1452
AMREX_FORCE_INLINE int NumSamplePoints() noexcept
Definition: ERF.H:1446
AMREX_FORCE_INLINE int NumSampleLines() noexcept
Definition: ERF.H:1459
amrex::IntVect & SamplePoint(int i)
Definition: ERF.H:1439
void sample_points(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:527
AMREX_FORCE_INLINE std::ostream & DataLog(int i)
Definition: ERF.H:1383
AMREX_FORCE_INLINE int NumDataLogs() noexcept
Definition: ERF.H:1397
void sample_lines(int lev, amrex::Real time, amrex::IntVect cell, amrex::MultiFab &mf)
Definition: ERF_WriteScalarProfiles.cpp:563

◆ timeStep()

void ERF::timeStep ( int  lev,
amrex::Real  time,
int  iteration 
)
private

Function that coordinates the evolution across levels – this calls Advance to do the actual advance at this level, then recursively calls itself at finer levels

Parameters
[in]levlevel of refinement (coarsest level is 0)
[in]timestart time for time advance
[in]iterationtime step counter
18 {
19  //
20  // We need to FillPatch the coarse level before assessing whether to regrid
21  // We have not done the swap yet so we fill the "new" which will become the "old"
22  //
23  MultiFab& S_new = vars_new[lev][Vars::cons];
24  MultiFab& U_new = vars_new[lev][Vars::xvel];
25  MultiFab& V_new = vars_new[lev][Vars::yvel];
26  MultiFab& W_new = vars_new[lev][Vars::zvel];
27 
28 #ifdef ERF_USE_NETCDF
29  //
30  // Since we now only read in a subset of the time slices in wrfbdy and
31  // wrflowinp, we need to check whether it's time to read in more.
32  //
33  bool use_moist = (solverChoice.moisture_type != MoistureType::None);
34  if (solverChoice.use_real_bcs && (lev==0)) {
35  Real dT = bdy_time_interval;
36 
37  int n_time_old = static_cast<int>( (time ) / dT);
38  int n_time_new = static_cast<int>( (time+dt[lev]) / dT);
39 
40  int ntimes = bdy_data_xlo.size();
41  for (int itime = 0; itime < ntimes; itime++)
42  {
43  //if (bdy_data_xlo[itime].size() > 0) {
44  // amrex::Print() << "HAVE DATA AT TIME " << itime << std::endl;
45  //} else {
46  // amrex::Print() << " NO DATA AT TIME " << itime << std::endl;
47  //}
48 
49  bool clear_itime = (itime < n_time_old);
50 
51  if (clear_itime && bdy_data_xlo[itime].size() > 0) {
52  bdy_data_xlo[itime].clear();
53  bdy_data_xhi[itime].clear();
54  bdy_data_ylo[itime].clear();
55  bdy_data_yhi[itime].clear();
56  //amrex::Print() << "CLEAR BDY DATA AT TIME " << itime << std::endl;
57  }
58 
59  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
60  //if (need_itime) amrex::Print() << "NEED BDY DATA AT TIME " << itime << std::endl;
61 
62  if (bdy_data_xlo[itime].size() == 0 && need_itime) {
63  read_from_wrfbdy(itime,nc_bdy_file,geom[0].Domain(),
64  bdy_data_xlo,bdy_data_xhi,bdy_data_ylo,bdy_data_yhi,
65  real_width);
66 
67  convert_all_wrfbdy_data(itime, geom[0].Domain(), bdy_data_xlo, bdy_data_xhi, bdy_data_ylo, bdy_data_yhi,
68  *mf_MUB, *mf_C1H, *mf_C2H,
70  geom[lev], use_moist);
71  }
72  } // itime
73  } // use_real_bcs && lev == 0
74 
75  if (!nc_low_file.empty() && (lev==0)) {
76  Real dT = low_time_interval;
77 
78  int n_time_old = static_cast<int>( (time ) / dT);
79  int n_time_new = static_cast<int>( (time+dt[lev]) / dT);
80 
81  int ntimes = bdy_data_xlo.size();
82  for (int itime = 0; itime < ntimes; itime++)
83  {
84  bool clear_itime = (itime < n_time_old);
85 
86  if (clear_itime && low_data_zlo[itime].size() > 0) {
87  low_data_zlo[itime].clear();
88  //amrex::Print() << "CLEAR LOW DATA AT TIME " << itime << std::endl;
89  }
90 
91  bool need_itime = (itime >= n_time_old && itime <= n_time_new+1);
92  //if (need_itime) amrex::Print() << "NEED LOW DATA AT TIME " << itime << std::endl;
93 
94  if (low_data_zlo[itime].size() == 0 && need_itime) {
95  read_from_wrflow(itime, nc_low_file, geom[lev].Domain(), low_data_zlo);
96 
97  update_sst_tsk(itime, geom[lev], ba2d[lev],
98  sst_lev[lev], tsk_lev[lev],
99  m_SurfaceLayer, low_data_zlo,
100  S_new, *mf_PSFC[lev],
101  solverChoice.rdOcp, use_moist);
102  }
103  } // itime
104  } // have nc_low_file && lev == 0
105 #endif
106 
107  //
108  // NOTE: the momenta here are not fillpatched (they are only used as scratch space)
109  //
110  if (lev == 0) {
111  FillPatchCrseLevel(lev, time, {&S_new, &U_new, &V_new, &W_new});
112  } else if (lev < finest_level) {
113  FillPatchFineLevel(lev, time, {&S_new, &U_new, &V_new, &W_new},
114  {&S_new, &rU_new[lev], &rV_new[lev], &rW_new[lev]},
115  base_state[lev], base_state[lev]);
116  }
117 
118  if (regrid_int > 0) // We may need to regrid
119  {
120  // help keep track of whether a level was already regridded
121  // from a coarser level call to regrid
122  static Vector<int> last_regrid_step(max_level+1, 0);
123 
124  // regrid changes level "lev+1" so we don't regrid on max_level
125  // also make sure we don't regrid fine levels again if
126  // it was taken care of during a coarser regrid
127  if (lev < max_level)
128  {
129  if ( (istep[lev] % regrid_int == 0) && (istep[lev] > last_regrid_step[lev]) )
130  {
131  // regrid could add newly refine levels (if finest_level < max_level)
132  // so we save the previous finest level index
133  int old_finest = finest_level;
134 
135  regrid(lev, time);
136 
137 #ifdef ERF_USE_PARTICLES
138  if (finest_level != old_finest) {
139  particleData.Redistribute();
140  }
141 #endif
142 
143  // mark that we have regridded this level already
144  for (int k = lev; k <= finest_level; ++k) {
145  last_regrid_step[k] = istep[k];
146  }
147 
148  // if there are newly created levels, set the time step
149  for (int k = old_finest+1; k <= finest_level; ++k) {
150  dt[k] = dt[k-1] / MaxRefRatio(k-1);
151  }
152  } // if
153  } // lev
154  }
155 
156  // Update what we call "old" and "new" time
157  t_old[lev] = t_new[lev];
158  t_new[lev] += dt[lev];
159 
160  if (Verbose()) {
161  amrex::Print() << "[Level " << lev << " step " << istep[lev]+1 << "] ";
162  amrex::Print() << std::setprecision(timeprecision)
163  << "ADVANCE from elapsed time = " << t_old[lev] << " to " << t_new[lev]
164  << " with dt = " << dt[lev] << std::endl;
165  }
166 
167 #ifdef ERF_USE_WW3_COUPLING
168  amrex::Print() << " About to call send_to_ww3 from ERF_Timestep" << std::endl;
169  send_to_ww3(lev);
170  amrex::Print() << " About to call read_waves from ERF_Timestep" << std::endl;
171  read_waves(lev);
172  //send_to_ww3(lev);
173  //read_waves(lev);
174  //send_to_ww3(lev);
175 #endif
176 
177  // Advance a single level for a single time step
178  Advance(lev, time, dt[lev], istep[lev], nsubsteps[lev]);
179 
180  ++istep[lev];
181 
182  if (Verbose()) {
183  amrex::Print() << "[Level " << lev << " step " << istep[lev] << "] ";
184  amrex::Print() << "Advanced " << CountCells(lev) << " cells" << std::endl;
185  }
186 
187  if (lev < finest_level)
188  {
189  // recursive call for next-finer level
190  for (int i = 1; i <= nsubsteps[lev+1]; ++i)
191  {
192  Real strt_time_for_fine = time + (i-1)*dt[lev+1];
193  timeStep(lev+1, strt_time_for_fine, i);
194  }
195  }
196 
197  if (verbose && lev == 0 && solverChoice.moisture_type != MoistureType::None) {
198  amrex::Print() << "Cloud fraction " << time << " " << cloud_fraction(time) << std::endl;
199  }
200 }
amrex::Real cloud_fraction(amrex::Real time)
Definition: ERF_WriteScalarProfiles.cpp:451
void Advance(int lev, amrex::Real time, amrex::Real dt_lev, int iteration, int ncycle)
Definition: ERF_Advance.cpp:23

◆ turbPert_amplitude()

void ERF::turbPert_amplitude ( const int  lev)
private
33 {
34  // Accessing data
35  auto& lev_new = vars_new[lev];
36 
37  // Creating local data
38  int ncons = lev_new[Vars::cons].nComp();
39  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
40 
41  // Defining BoxArray type
42  auto m_ixtype = cons_data.boxArray().ixType();
43 
44 #ifdef _OPENMP
45 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
46 #endif
47  for (MFIter mfi(lev_new[Vars::cons], TileNoZ()); mfi.isValid(); ++mfi) {
48  const Box &bx = mfi.validbox();
49  const auto &cons_pert_arr = cons_data.array(mfi); // Address of perturbation array
50  const amrex::Array4<const amrex::Real> &pert_cell = turbPert.pb_cell[lev].array(mfi); // per-cell perturbation stored in structure
51 
52  turbPert.apply_tpi(lev, bx, RhoTheta_comp, m_ixtype, cons_pert_arr, pert_cell);
53  } // mfi
54 }
Here is the call graph for this function:

◆ turbPert_update()

void ERF::turbPert_update ( const int  lev,
const amrex::Real  dt 
)
private
13 {
14  // Accessing data
15  auto& lev_new = vars_new[lev];
16 
17  // Create aliases to state data to pass to calc_tpi_update
18  int ncons = lev_new[Vars::cons].nComp();
19  MultiFab cons_data(lev_new[Vars::cons], make_alias, 0, ncons);
20  MultiFab xvel_data(lev_new[Vars::xvel], make_alias, 0, 1);
21  MultiFab yvel_data(lev_new[Vars::yvel], make_alias, 0, 1);
22 
23  // Computing perturbation update time
24  turbPert.calc_tpi_update(lev, local_dt, xvel_data, yvel_data, cons_data);
25 
26  Print() << "Successfully initialized turbulent perturbation update time and amplitude with type: "<< turbPert.pt_type <<"\n";
27 }
int pt_type
Definition: ERF_TurbPertStruct.H:631

◆ update_diffusive_arrays()

void ERF::update_diffusive_arrays ( int  lev,
const amrex::BoxArray &  ba,
const amrex::DistributionMapping &  dm 
)
private
458 {
459  // ********************************************************************************************
460  // Diffusive terms
461  // ********************************************************************************************
462  bool l_use_terrain = (SolverChoice::terrain_type != TerrainType::None);
463  bool l_use_kturb = solverChoice.turbChoice[lev].use_kturb;
464  bool l_use_diff = ( (solverChoice.diffChoice.molec_diff_type != MolecDiffType::None) ||
465  l_use_kturb );
466  bool l_need_SmnSmn = solverChoice.turbChoice[lev].use_keqn;
467  bool l_use_moist = ( solverChoice.moisture_type != MoistureType::None );
468  bool l_rotate = ( solverChoice.use_rotate_surface_flux );
469 
470  BoxArray ba12 = convert(ba, IntVect(1,1,0));
471  BoxArray ba13 = convert(ba, IntVect(1,0,1));
472  BoxArray ba23 = convert(ba, IntVect(0,1,1));
473 
474  Tau[lev].resize(9);
475 
476  if (l_use_diff) {
477  //
478  // NOTE: We require ghost cells in the vertical when allowing grids that don't
479  // cover the entire vertical extent of the domain at this level
480  //
481  for (int i = 0; i < 3; i++) {
482  Tau[lev][i] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
483  }
484  Tau[lev][TauType::tau12] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
485  Tau[lev][TauType::tau13] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
486  Tau[lev][TauType::tau23] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
487  Tau[lev][TauType::tau12]->setVal(0.);
488  Tau[lev][TauType::tau13]->setVal(0.);
489  Tau[lev][TauType::tau23]->setVal(0.);
490  if (l_use_terrain) {
491  Tau[lev][TauType::tau21] = std::make_unique<MultiFab>( ba12, dm, 1, IntVect(1,1,1) );
492  Tau[lev][TauType::tau31] = std::make_unique<MultiFab>( ba13, dm, 1, IntVect(1,1,1) );
493  Tau[lev][TauType::tau32] = std::make_unique<MultiFab>( ba23, dm, 1, IntVect(1,1,1) );
494  Tau[lev][TauType::tau21]->setVal(0.);
495  Tau[lev][TauType::tau31]->setVal(0.);
496  Tau[lev][TauType::tau32]->setVal(0.);
497  } else {
498  Tau[lev][TauType::tau21] = nullptr;
499  Tau[lev][TauType::tau31] = nullptr;
500  Tau[lev][TauType::tau32] = nullptr;
501  }
502  SFS_hfx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
503  SFS_hfx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
504  SFS_hfx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
505  SFS_diss_lev[lev] = std::make_unique<MultiFab>( ba , dm, 1, IntVect(1,1,1) );
506  SFS_hfx1_lev[lev]->setVal(0.);
507  SFS_hfx2_lev[lev]->setVal(0.);
508  SFS_hfx3_lev[lev]->setVal(0.);
509  SFS_diss_lev[lev]->setVal(0.);
510  if (l_use_moist) {
511  SFS_q1fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
512  SFS_q2fx3_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,0,1)), dm, 1, IntVect(1,1,1) );
513  SFS_q1fx3_lev[lev]->setVal(0.0);
514  SFS_q2fx3_lev[lev]->setVal(0.0);
515  if (l_rotate) {
516  SFS_q1fx1_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(1,0,0)), dm, 1, IntVect(1,1,1) );
517  SFS_q1fx2_lev[lev] = std::make_unique<MultiFab>( convert(ba,IntVect(0,1,0)), dm, 1, IntVect(1,1,1) );
518  SFS_q1fx1_lev[lev]->setVal(0.0);
519  SFS_q1fx2_lev[lev]->setVal(0.0);
520  } else {
521  SFS_q1fx1_lev[lev] = nullptr;
522  SFS_q1fx2_lev[lev] = nullptr;
523  }
524  } else {
525  SFS_q1fx1_lev[lev] = nullptr;
526  SFS_q1fx2_lev[lev] = nullptr;
527  SFS_q1fx3_lev[lev] = nullptr;
528  SFS_q2fx3_lev[lev] = nullptr;
529  }
530  } else {
531  for (int i = 0; i < 9; i++) {
532  Tau[lev][i] = nullptr;
533  }
534  SFS_hfx1_lev[lev] = nullptr; SFS_hfx2_lev[lev] = nullptr; SFS_hfx3_lev[lev] = nullptr;
535  SFS_diss_lev[lev] = nullptr;
536  }
537 
538  if (l_use_kturb) {
539  eddyDiffs_lev[lev] = std::make_unique<MultiFab>(ba, dm, EddyDiff::NumDiffs, 2);
540  eddyDiffs_lev[lev]->setVal(0.0);
541  if(l_need_SmnSmn) {
542  SmnSmn_lev[lev] = std::make_unique<MultiFab>( ba, dm, 1, 0 );
543  } else {
544  SmnSmn_lev[lev] = nullptr;
545  }
546  } else {
547  eddyDiffs_lev[lev] = nullptr;
548  SmnSmn_lev[lev] = nullptr;
549  }
550 }
@ NumDiffs
Definition: ERF_IndexDefines.H:181

◆ update_terrain_arrays()

void ERF::update_terrain_arrays ( int  lev)
659 {
660  if (SolverChoice::mesh_type == MeshType::StretchedDz ||
661  SolverChoice::mesh_type == MeshType::VariableDz) {
662  make_J(geom[lev],*z_phys_nd[lev],*detJ_cc[lev]);
663  make_areas(geom[lev],*z_phys_nd[lev],*ax[lev],*ay[lev],*az[lev]);
664  make_zcc(geom[lev],*z_phys_nd[lev],*z_phys_cc[lev]);
665  } else { // MeshType::ConstantDz
666  if (SolverChoice::terrain_type == TerrainType::EB) {
667  const auto& ebfact = *eb[lev]->get_const_factory();
668  const MultiFab& volfrac = ebfact.getVolFrac();
669  detJ_cc[lev] = std::make_unique<MultiFab>(volfrac, amrex::make_alias, 0, volfrac.nComp());
670 
671  // Array<const MultiCutFab*, AMREX_SPACEDIM> areafrac = ebfact.getAreaFrac();
672  // ax[lev] = std::make_unique<MultiFab>(*(areafrac[0]), amrex::make_alias, 0, areafrac[0]->nComp());
673  // ay[lev] = std::make_unique<MultiFab>(*(areafrac[1]), amrex::make_alias, 0, areafrac[1]->nComp());
674  // az[lev] = std::make_unique<MultiFab>(*(areafrac[2]), amrex::make_alias, 0, areafrac[2]->nComp());
675  }
676  }
677 }
void make_areas(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &ax, MultiFab &ay, MultiFab &az)
Definition: ERF_TerrainMetrics.cpp:558
void make_J(const Geometry &geom, MultiFab &z_phys_nd, MultiFab &detJ_cc)
Definition: ERF_TerrainMetrics.cpp:520
Here is the call graph for this function:

◆ volWgtSumMF()

Real ERF::volWgtSumMF ( int  lev,
const amrex::MultiFab &  mf,
int  comp,
bool  finemask 
)

Utility function for computing a volume weighted sum of MultiFab data for a single component

Parameters
levCurrent level
mfMultiFab on which we do the volume weighted sum
compIndex of the component we want to sum
localBoolean sets whether or not to reduce the sum over the domain (false) or compute sums local to each MPI rank (true)
finemaskIf a finer level is available, determines whether we mask fine data
655 {
656  BL_PROFILE("ERF::volWgtSumMF()");
657 
658  Real sum = 0.0;
659  MultiFab tmp(grids[lev], dmap[lev], 1, 0);
660  MultiFab::Copy(tmp, mf, comp, 0, 1, 0);
661 
662  // The quantity that is conserved is not (rho S), but rather (rho S / m^2) where
663  // m is the map scale factor at cell centers
664 #ifdef _OPENMP
665 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
666 #endif
667  for (MFIter mfi(tmp, TilingIfNotGPU()); mfi.isValid(); ++mfi) {
668  const Box& bx = mfi.tilebox();
669  const auto dst = tmp.array(mfi);
670  const auto& mfx = mapfac[lev][MapFacType::m_x]->const_array(mfi);
671  const auto& mfy = mapfac[lev][MapFacType::m_y]->const_array(mfi);
672  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
673  {
674  dst(i,j,k) /= (mfx(i,j,0)*mfy(i,j,0));
675  });
676  } // mfi
677 
678  if (lev < finest_level && finemask) {
679  const MultiFab& mask = build_fine_mask(lev+1);
680  MultiFab::Multiply(tmp, mask, 0, 0, 1, 0);
681  }
682 
683  // Get volume including terrain (consistent with volWgtSumMF routine)
684  MultiFab volume(grids[lev], dmap[lev], 1, 0);
685  auto const& dx = geom[lev].CellSizeArray();
686  Real cell_vol = dx[0]*dx[1]*dx[2];
687  volume.setVal(cell_vol);
688  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
689  MultiFab::Multiply(volume, *detJ_cc[lev], 0, 0, 1, 0);
690  }
691 
692  //
693  // Note that when we send in local = true, NO ParallelAllReduce::Sum
694  // is called inside the Dot product -- we will do that before we print
695  //
696  bool local = true;
697  sum = MultiFab::Dot(tmp, 0, volume, 0, 1, 0, local);
698 
699  return sum;
700 }
amrex::MultiFab & build_fine_mask(int lev)
Definition: ERF_WriteScalarProfiles.cpp:710

◆ WeatherDataInterpolation()

void ERF::WeatherDataInterpolation ( const amrex::Real  time)
498 {
499 
500  static Real next_read_forecast_time = -1.0;
501 
502  if (next_read_forecast_time < 0.0) {
503  int next_multiple = static_cast<int>(time / 10800.0);
504  next_read_forecast_time = next_multiple * 10800.0;
505  }
506  if (time >= next_read_forecast_time) {
507 
508  std::string folder = solverChoice.hindcast_boundary_data_dir;
509 
510  // Check if folder exists and is a directory
511  if (!fs::exists(folder) || !fs::is_directory(folder)) {
512  throw std::runtime_error("Error: Folder '" + folder + "' does not exist or is not a directory.");
513  }
514 
515  std::vector<std::string> bin_files;
516 
517  for (const auto& entry : fs::directory_iterator(folder)) {
518  if (!entry.is_regular_file()) continue;
519 
520  std::string fname = entry.path().filename().string();
521  if (fname.size() >= 4 && fname.substr(fname.size() - 4) == ".bin") {
522  bin_files.push_back(entry.path().string());
523  }
524  }
525  std::sort(bin_files.begin(), bin_files.end());
526 
527  // Check if no .bin files were found
528  if (bin_files.empty()) {
529  throw std::runtime_error("Error: No .bin files found in folder '" + folder + "'.");
530  }
531 
532  std::string filename1, filename2;
533 
534  int idx1 = static_cast<int>(time / 10800.0);
535  int idx2 = static_cast<int>(time / 10800.0)+1;
536  std::cout << "Reading weather data " << time << " " << idx1 << " " << idx2 <<" " << bin_files.size() << std::endl;
537 
538  if (idx2 >= static_cast<int>(bin_files.size())) {
539  throw std::runtime_error("Error: Not enough .bin files to cover time " + std::to_string(time));
540  }
541 
542  filename1 = bin_files[idx1];
543  filename2 = bin_files[idx2];
544 
545  BoxArray nba;
546  DistributionMapping dm;
547  Geometry geom_weather;
548 
549  //Read in weather_forecast_1
551  geom_weather,
552  nba,
553  dm);
554 
555  FillWeatherDataMultiFab(filename1,
556  geom_weather,
557  nba,
558  dm,
560 
563 
564  FillWeatherDataMultiFab(filename2,
565  geom_weather,
566  nba,
567  dm,
571 
573 
574  next_read_forecast_time += 10800.0;
575  }
576  Real alpha1 = 1.0 - (time - next_read_forecast_time)/10800.0;
577  Real alpha2 = 1.0 - alpha1;
578 
579  MultiFab& erf_mf_cons = forecast_state_interp[0][Vars::cons];
580  MultiFab& erf_mf_xvel = forecast_state_interp[0][Vars::xvel];
581  MultiFab& erf_mf_yvel = forecast_state_interp[0][Vars::yvel];
582  //MultiFab& erf_mf_zvel = forecast_state_interp[0][Vars::zvel];
583  MultiFab& erf_mf_latlon = forecast_state_interp[0][4];
584 
585  MultiFab::LinComb(forecast_state_interp[0][Vars::cons],
586  alpha1, forecast_state_1[0][Vars::cons], 0,
587  alpha2, forecast_state_2[0][Vars::cons], 0,
588  0, erf_mf_cons.nComp(), forecast_state_interp[0][Vars::cons].nGrow());
589  MultiFab::LinComb(forecast_state_interp[0][Vars::xvel],
590  alpha1, forecast_state_1[0][Vars::xvel], 0,
591  alpha2, forecast_state_2[0][Vars::xvel], 0,
592  0, erf_mf_xvel.nComp(), forecast_state_interp[0][Vars::xvel].nGrow());
593  MultiFab::LinComb(forecast_state_interp[0][Vars::yvel],
594  alpha1, forecast_state_1[0][Vars::yvel], 0,
595  alpha2, forecast_state_2[0][Vars::yvel], 0,
596  0, erf_mf_yvel.nComp(), forecast_state_interp[0][Vars::yvel].nGrow());
597  MultiFab::LinComb(forecast_state_interp[0][4],
598  alpha1, forecast_state_1[0][4], 0,
599  alpha2, forecast_state_2[0][4], 0,
600  0, erf_mf_latlon.nComp(), forecast_state_interp[0][4].nGrow());
601 
602 
603  /*Vector<std::string> varnames_plot_mf = {
604  "rho", "rhotheta", "rhoqv", "rhoqc", "rhoqr", "xvel", "yvel", "zvel", "latitude", "longitude"
605  }; // Customize variable names
606 
607  std::string pltname = "plt_interp";
608 
609  MultiFab plot_mf(erf_mf_cons.boxArray(), erf_mf_cons.DistributionMap(),
610  10, 0);
611 
612  plot_mf.setVal(0.0);
613 
614  for (MFIter mfi(plot_mf); mfi.isValid(); ++mfi) {
615  const Array4<Real> &plot_mf_arr = plot_mf.array(mfi);
616  const Array4<Real> &erf_mf_cons_arr = erf_mf_cons.array(mfi);
617  const Array4<Real> &erf_mf_xvel_arr = erf_mf_xvel.array(mfi);
618  const Array4<Real> &erf_mf_yvel_arr = erf_mf_yvel.array(mfi);
619  const Array4<Real> &erf_mf_zvel_arr = erf_mf_zvel.array(mfi);
620  const Array4<Real> &erf_mf_latlon_arr = erf_mf_latlon.array(mfi);
621 
622  const Box& bx = mfi.validbox();
623 
624  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) {
625  plot_mf_arr(i,j,k,0) = erf_mf_cons_arr(i,j,k,Rho_comp);
626  plot_mf_arr(i,j,k,1) = erf_mf_cons_arr(i,j,k,RhoTheta_comp);
627  plot_mf_arr(i,j,k,2) = erf_mf_cons_arr(i,j,k,RhoQ1_comp);
628  plot_mf_arr(i,j,k,3) = erf_mf_cons_arr(i,j,k,RhoQ2_comp);
629  plot_mf_arr(i,j,k,4) = erf_mf_cons_arr(i,j,k,RhoQ3_comp);
630 
631  plot_mf_arr(i,j,k,5) = (erf_mf_xvel_arr(i,j,k,0) + erf_mf_xvel_arr(i+1,j,k,0))/2.0;
632  plot_mf_arr(i,j,k,6) = (erf_mf_yvel_arr(i,j,k,0) + erf_mf_yvel_arr(i,j+1,k,0))/2.0;
633  plot_mf_arr(i,j,k,7) = (erf_mf_zvel_arr(i,j,k,0) + erf_mf_zvel_arr(i,j,k+1,0))/2.0;
634 
635  plot_mf_arr(i,j,k,8) = erf_mf_latlon_arr(i,j,k,0);
636  plot_mf_arr(i,j,k,9) = erf_mf_latlon_arr(i,j,k,1);
637  });
638  }
639 
640 
641  WriteSingleLevelPlotfile(
642  pltname,
643  plot_mf,
644  varnames_plot_mf,
645  geom[0],
646  time,
647  0 // level
648  );*/
649 
650 
651 
652 }
void CreateWeatherDataGeomBoxArrayDistMap(const std::string &filename, amrex::Geometry &geom_weather, amrex::BoxArray &nba, amrex::DistributionMapping &dm)
Definition: ERF_WeatherDataInterpolation.cpp:155
void CreateForecastStateMultiFabs(amrex::Vector< amrex::Vector< amrex::MultiFab >> &forecast_state)
Definition: ERF_WeatherDataInterpolation.cpp:249
void FillWeatherDataMultiFab(const std::string &filename, const amrex::Geometry &geom_weather, const amrex::BoxArray &nba, const amrex::DistributionMapping &dm, amrex::Vector< amrex::MultiFab > &weather_forecast_data)
Definition: ERF_WeatherDataInterpolation.cpp:438
amrex::Vector< amrex::MultiFab > weather_forecast_data_2
Definition: ERF.H:158
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_2
Definition: ERF.H:160
amrex::Vector< amrex::Vector< amrex::MultiFab > > forecast_state_1
Definition: ERF.H:159
amrex::Vector< amrex::MultiFab > weather_forecast_data_1
Definition: ERF.H:158
void InterpWeatherDataOntoMesh(const amrex::Geometry &geom_weather, amrex::MultiFab &weather_forecast_interp, amrex::Vector< amrex::Vector< amrex::MultiFab >> &forecast_state)
Definition: ERF_WeatherDataInterpolation.cpp:268
std::string hindcast_boundary_data_dir
Definition: ERF_DataStruct.H:1000

◆ Write2DPlotFile()

void ERF::Write2DPlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
1913 {
1914  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
1915  const int ncomp_mf = varnames.size();
1916 
1917  if (ncomp_mf == 0) return;
1918 
1919  // Vector of MultiFabs for cell-centered data
1920  Vector<MultiFab> mf(finest_level+1);
1921  for (int lev = 0; lev <= finest_level; ++lev) {
1922  mf[lev].define(ba2d[lev], dmap[lev], ncomp_mf, 0);
1923  }
1924 
1925 
1926  // **********************************************************************************************
1927  // (Effectively) 2D arrays
1928  // **********************************************************************************************
1929  for (int lev = 0; lev <= finest_level; ++lev)
1930  {
1931  int mf_comp = 0;
1932 
1933  // Set all components to zero in case they aren't defined below
1934  mf[lev].setVal(0.0);
1935 
1936  if (containerHasElement(plot_var_names, "z_surf")) {
1937 #ifdef _OPENMP
1938 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1939 #endif
1940  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1941  {
1942  const Box& bx = mfi.tilebox();
1943  const Array4<Real>& derdat = mf[lev].array(mfi);
1944  const Array4<const Real>& z_phys_arr = z_phys_nd[lev]->const_array(mfi);
1945  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1946  derdat(i, j, k, mf_comp) = Compute_Z_AtWFace(i, j, 0, z_phys_arr);
1947  });
1948  }
1949  mf_comp++;
1950  }
1951 
1952  if (containerHasElement(plot_var_names, "landmask")) {
1953 #ifdef _OPENMP
1954 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1955 #endif
1956  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1957  {
1958  const Box& bx = mfi.tilebox();
1959  const Array4<Real>& derdat = mf[lev].array(mfi);
1960  const Array4<const int>& lmask_arr = lmask_lev[lev][0]->const_array(mfi);
1961  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1962  derdat(i, j, k, mf_comp) = lmask_arr(i, j, 0);
1963  });
1964  }
1965  mf_comp++;
1966  }
1967 
1968  if (containerHasElement(plot_var_names, "mapfac")) {
1969 #ifdef _OPENMP
1970 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1971 #endif
1972  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1973  {
1974  const Box& bx = mfi.tilebox();
1975  const Array4<Real>& derdat = mf[lev].array(mfi);
1976  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
1977  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1978  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
1979  });
1980  }
1981  mf_comp++;
1982  }
1983 
1984  if (containerHasElement(plot_var_names, "lat_m")) {
1985  if (lat_m[lev]) {
1986 #ifdef _OPENMP
1987 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1988 #endif
1989  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1990  {
1991  const Box& bx = mfi.tilebox();
1992  const Array4<Real>& derdat = mf[lev].array(mfi);
1993  const Array4<Real>& data = lat_m[lev]->array(mfi);
1994  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1995  derdat(i, j, k, mf_comp) = data(i,j,0);
1996  });
1997  }
1998  }
1999  mf_comp++;
2000  } // lat_m
2001 
2002  if (containerHasElement(plot_var_names, "lon_m")) {
2003  if (lon_m[lev]) {
2004 #ifdef _OPENMP
2005 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2006 #endif
2007  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2008  {
2009  const Box& bx = mfi.tilebox();
2010  const Array4<Real>& derdat = mf[lev].array(mfi);
2011  const Array4<Real>& data = lon_m[lev]->array(mfi);
2012  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2013  derdat(i, j, k, mf_comp) = data(i,j,0);
2014  });
2015  }
2016  } else {
2017  mf[lev].setVal(0.0,mf_comp,1,0);
2018  }
2019 
2020  mf_comp++;
2021 
2022  } // lon_m
2023 
2024  ///////////////////////////////////////////////////////////////////////
2025  // These quantities are diagnosed by the surface layer
2026  if (containerHasElement(plot_var_names, "u_star")) {
2027 #ifdef _OPENMP
2028 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2029 #endif
2030  if (m_SurfaceLayer) {
2031  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2032  {
2033  const Box& bx = mfi.tilebox();
2034  const auto& derdat = mf[lev].array(mfi);
2035  const auto& ustar = m_SurfaceLayer->get_u_star(lev)->const_array(mfi);
2036  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2037  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2038  });
2039  }
2040  } else {
2041  mf[lev].setVal(-999,mf_comp,1,0);
2042  }
2043  mf_comp++;
2044  } // ustar
2045 
2046  if (containerHasElement(plot_var_names, "w_star")) {
2047 #ifdef _OPENMP
2048 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2049 #endif
2050  if (m_SurfaceLayer) {
2051  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2052  {
2053  const Box& bx = mfi.tilebox();
2054  const auto& derdat = mf[lev].array(mfi);
2055  const auto& ustar = m_SurfaceLayer->get_w_star(lev)->const_array(mfi);
2056  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2057  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2058  });
2059  }
2060  } else {
2061  mf[lev].setVal(-999,mf_comp,1,0);
2062  }
2063  mf_comp++;
2064  } // wstar
2065 
2066  if (containerHasElement(plot_var_names, "t_star")) {
2067 #ifdef _OPENMP
2068 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2069 #endif
2070  if (m_SurfaceLayer) {
2071  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2072  {
2073  const Box& bx = mfi.tilebox();
2074  const auto& derdat = mf[lev].array(mfi);
2075  const auto& ustar = m_SurfaceLayer->get_t_star(lev)->const_array(mfi);
2076  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2077  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2078  });
2079  }
2080  } else {
2081  mf[lev].setVal(-999,mf_comp,1,0);
2082  }
2083  mf_comp++;
2084  } // tstar
2085 
2086  if (containerHasElement(plot_var_names, "q_star")) {
2087 #ifdef _OPENMP
2088 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2089 #endif
2090  if (m_SurfaceLayer) {
2091  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2092  {
2093  const Box& bx = mfi.tilebox();
2094  const auto& derdat = mf[lev].array(mfi);
2095  const auto& ustar = m_SurfaceLayer->get_q_star(lev)->const_array(mfi);
2096  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2097  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2098  });
2099  }
2100  } else {
2101  mf[lev].setVal(-999,mf_comp,1,0);
2102  }
2103  mf_comp++;
2104  } // qstar
2105 
2106  if (containerHasElement(plot_var_names, "Olen")) {
2107 #ifdef _OPENMP
2108 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2109 #endif
2110  if (m_SurfaceLayer) {
2111  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2112  {
2113  const Box& bx = mfi.tilebox();
2114  const auto& derdat = mf[lev].array(mfi);
2115  const auto& ustar = m_SurfaceLayer->get_olen(lev)->const_array(mfi);
2116  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2117  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2118  });
2119  }
2120  } else {
2121  mf[lev].setVal(-999,mf_comp,1,0);
2122  }
2123  mf_comp++;
2124  } // Olen
2125 
2126  if (containerHasElement(plot_var_names, "pblh")) {
2127 #ifdef _OPENMP
2128 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2129 #endif
2130  if (m_SurfaceLayer) {
2131  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2132  {
2133  const Box& bx = mfi.tilebox();
2134  const auto& derdat = mf[lev].array(mfi);
2135  const auto& ustar = m_SurfaceLayer->get_pblh(lev)->const_array(mfi);
2136  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2137  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2138  });
2139  }
2140  } else {
2141  mf[lev].setVal(-999,mf_comp,1,0);
2142  }
2143  mf_comp++;
2144  } // pblh
2145 
2146  if (containerHasElement(plot_var_names, "t_surf")) {
2147 #ifdef _OPENMP
2148 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2149 #endif
2150  if (m_SurfaceLayer) {
2151  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2152  {
2153  const Box& bx = mfi.tilebox();
2154  const auto& derdat = mf[lev].array(mfi);
2155  const auto& ustar = m_SurfaceLayer->get_t_surf(lev)->const_array(mfi);
2156  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2157  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2158  });
2159  }
2160  } else {
2161  mf[lev].setVal(-999,mf_comp,1,0);
2162  }
2163  mf_comp++;
2164  } // tsurf
2165 
2166  if (containerHasElement(plot_var_names, "q_surf")) {
2167 #ifdef _OPENMP
2168 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2169 #endif
2170  if (m_SurfaceLayer) {
2171  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2172  {
2173  const Box& bx = mfi.tilebox();
2174  const auto& derdat = mf[lev].array(mfi);
2175  const auto& ustar = m_SurfaceLayer->get_q_surf(lev)->const_array(mfi);
2176  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2177  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2178  });
2179  }
2180  } else {
2181  mf[lev].setVal(-999,mf_comp,1,0);
2182  }
2183  mf_comp++;
2184  } // qsurf
2185 
2186  if (containerHasElement(plot_var_names, "z0")) {
2187 #ifdef _OPENMP
2188 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
2189 #endif
2190  if (m_SurfaceLayer) {
2191  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
2192  {
2193  const Box& bx = mfi.tilebox();
2194  const auto& derdat = mf[lev].array(mfi);
2195  const auto& ustar = m_SurfaceLayer->get_z0(lev)->const_array(mfi);
2196  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
2197  derdat(i, j, k, mf_comp) = ustar(i, j, 0);
2198  });
2199  }
2200  } else {
2201  mf[lev].setVal(-999,mf_comp,1,0);
2202  }
2203  mf_comp++;
2204  } // z0
2205  } // lev
2206 
2207  std::string plotfilename;
2208  if (which == 1) {
2209  plotfilename = Concatenate(plot2d_file_1, istep[0], 5);
2210  } else if (which == 2) {
2211  plotfilename = Concatenate(plot2d_file_2, istep[0], 5);
2212  }
2213 
2214  Vector<Geometry> my_geom(finest_level+1);
2215 
2216  Array<int,AMREX_SPACEDIM> is_per; is_per[0] = 0; is_per[1] = 0; is_per[2] = 0;
2217  if (geom[0].isPeriodic(0)) { is_per[0] = 1;}
2218  if (geom[0].isPeriodic(1)) { is_per[1] = 1;}
2219 
2220  int coord_sys = 0;
2221 
2222  for (int lev = 0; lev <= finest_level; lev++)
2223  {
2224  Box slab = makeSlab(geom[lev].Domain(),2,0);
2225  auto const slab_lo = lbound(slab);
2226  auto const slab_hi = ubound(slab);
2227 
2228  // Create a new geometry based only on the 2D slab
2229  // We need
2230  // 1) my_geom.Domain()
2231  // 2) my_geom.CellSize()
2232  // 3) my_geom.periodicity()
2233  const auto dx = geom[lev].CellSize();
2234  RealBox rb( slab_lo.x *dx[0], slab_lo.y *dx[1], slab_lo.z *dx[2],
2235  (slab_hi.x+1)*dx[0], (slab_hi.y+1)*dx[1], (slab_hi.z+1)*dx[2]);
2236  my_geom[lev].define(slab, rb, coord_sys, is_per);
2237  }
2238 
2239  if (plotfile_type == PlotFileType::Amrex)
2240  {
2241  Print() << "Writing 2D native plotfile " << plotfilename << "\n";
2242  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
2243  GetVecOfConstPtrs(mf),
2244  varnames, my_geom, t_new[0], istep, refRatio());
2245  writeJobInfo(plotfilename);
2246 
2247 #ifdef ERF_USE_NETCDF
2248  } else if (plotfile_type == PlotFileType::Netcdf) {
2249  int lev = 0;
2250  int l_which = 0;
2251  const Real* p_lo = my_geom[lev].ProbLo();
2252  const Real* p_hi = my_geom[lev].ProbHi();
2253  const auto dx = my_geom[lev].CellSize();
2254  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
2255  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],dx[2]}, {dx[0],dx[1],dx[2]},
2256  my_geom[lev].Domain(), t_new[0], start_bdy_time);
2257 #endif
2258  } else {
2259  // Here we assume the plotfile_type is PlotFileType::None
2260  Print() << "Writing no 2D plotfile since plotfile_type is none" << std::endl;
2261  }
2262 }
void writeNCPlotFile(int lev, int which_subdomain, const std::string &dir, const Vector< const MultiFab * > &plotMF, const Vector< std::string > &plot_var_names, const Vector< int > &, Array< Real, AMREX_SPACEDIM > prob_lo, Array< Real, AMREX_SPACEDIM > prob_hi, Array< Real, AMREX_SPACEDIM > dx_in, const Box &subdomain, const Real time, const Real start_bdy_time)
Definition: ERF_NCPlotFile.cpp:14
AMREX_GPU_DEVICE AMREX_FORCE_INLINE amrex::Real Compute_Z_AtWFace(const int &i, const int &j, const int &k, const amrex::Array4< const amrex::Real > &z_nd)
Definition: ERF_TerrainMetrics.H:368
static amrex::Vector< std::string > PlotFileVarNames(amrex::Vector< std::string > plot_var_names)
Definition: ERF_Plotfile.cpp:295
void writeJobInfo(const std::string &dir) const
Definition: ERF_WriteJobInfo.cpp:9
Here is the call graph for this function:

◆ Write3DPlotFile()

void ERF::Write3DPlotFile ( int  which,
PlotFileType  plotfile_type,
amrex::Vector< std::string >  plot_var_names 
)
308 {
309  auto dPlotTime0 = amrex::second();
310 
311  const Vector<std::string> varnames = PlotFileVarNames(plot_var_names);
312  const int ncomp_mf = varnames.size();
313 
314  int ncomp_cons = vars_new[0][Vars::cons].nComp();
315 
316  if (ncomp_mf == 0) return;
317 
318  // We Fillpatch here because some of the derived quantities require derivatives
319  // which require ghost cells to be filled. We do not need to call FillPatcher
320  // because we don't need to set interior fine points.
321  // NOTE: the momenta here are only used as scratch space, the momenta themselves are not fillpatched
322 
323  // Level 0 FilLPatch
325  &vars_new[0][Vars::yvel], &vars_new[0][Vars::zvel]});
326 
327  for (int lev = 1; lev <= finest_level; ++lev) {
328  bool fillset = false;
329  FillPatchFineLevel(lev, t_new[lev], {&vars_new[lev][Vars::cons], &vars_new[lev][Vars::xvel],
330  &vars_new[lev][Vars::yvel], &vars_new[lev][Vars::zvel]},
331  {&vars_new[lev][Vars::cons], &rU_new[lev], &rV_new[lev], &rW_new[lev]},
332  base_state[lev], base_state[lev], fillset);
333  }
334 
335  // Get qmoist pointers if using moisture
336  bool use_moisture = (solverChoice.moisture_type != MoistureType::None);
337  for (int lev = 0; lev <= finest_level; ++lev) {
338  for (int mvar(0); mvar<qmoist[lev].size(); ++mvar) {
339  qmoist[lev][mvar] = micro->Get_Qmoist_Ptr(lev,mvar);
340  }
341  }
342 
343  // Vector of MultiFabs for cell-centered data
344  Vector<MultiFab> mf(finest_level+1);
345  for (int lev = 0; lev <= finest_level; ++lev) {
346  mf[lev].define(grids[lev], dmap[lev], ncomp_mf, 0);
347  }
348 
349  // Vector of MultiFabs for nodal data
350  Vector<MultiFab> mf_nd(finest_level+1);
351  if ( SolverChoice::mesh_type != MeshType::ConstantDz) {
352  for (int lev = 0; lev <= finest_level; ++lev) {
353  BoxArray nodal_grids(grids[lev]); nodal_grids.surroundingNodes();
354  mf_nd[lev].define(nodal_grids, dmap[lev], 3, 0);
355  mf_nd[lev].setVal(0.);
356  }
357  }
358 
359  // Vector of MultiFabs for face-centered velocity
360  Vector<MultiFab> mf_u(finest_level+1);
361  Vector<MultiFab> mf_v(finest_level+1);
362  Vector<MultiFab> mf_w(finest_level+1);
363  if (m_plot_face_vels) {
364  for (int lev = 0; lev <= finest_level; ++lev) {
365  BoxArray grid_stag_u(grids[lev]); grid_stag_u.surroundingNodes(0);
366  BoxArray grid_stag_v(grids[lev]); grid_stag_v.surroundingNodes(1);
367  BoxArray grid_stag_w(grids[lev]); grid_stag_w.surroundingNodes(2);
368  mf_u[lev].define(grid_stag_u, dmap[lev], 1, 0);
369  mf_v[lev].define(grid_stag_v, dmap[lev], 1, 0);
370  mf_w[lev].define(grid_stag_w, dmap[lev], 1, 0);
371  MultiFab::Copy(mf_u[lev],vars_new[lev][Vars::xvel],0,0,1,0);
372  MultiFab::Copy(mf_v[lev],vars_new[lev][Vars::yvel],0,0,1,0);
373  MultiFab::Copy(mf_w[lev],vars_new[lev][Vars::zvel],0,0,1,0);
374  }
375  }
376 
377  // Array of MultiFabs for cell-centered velocity
378  Vector<MultiFab> mf_cc_vel(finest_level+1);
379 
380  if (containerHasElement(plot_var_names, "x_velocity" ) ||
381  containerHasElement(plot_var_names, "y_velocity" ) ||
382  containerHasElement(plot_var_names, "z_velocity" ) ||
383  containerHasElement(plot_var_names, "magvel" ) ||
384  containerHasElement(plot_var_names, "vorticity_x") ||
385  containerHasElement(plot_var_names, "vorticity_y") ||
386  containerHasElement(plot_var_names, "vorticity_z") ) {
387 
388  for (int lev = 0; lev <= finest_level; ++lev) {
389  mf_cc_vel[lev].define(grids[lev], dmap[lev], AMREX_SPACEDIM, IntVect(1,1,1));
390  mf_cc_vel[lev].setVal(-1.e20);
391  average_face_to_cellcenter(mf_cc_vel[lev],0,
392  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],
393  &vars_new[lev][Vars::yvel],
394  &vars_new[lev][Vars::zvel]});
395  } // lev
396  } // if (vel or vort)
397 
398  // We need ghost cells if computing vorticity
399  if ( containerHasElement(plot_var_names, "vorticity_x")||
400  containerHasElement(plot_var_names, "vorticity_y") ||
401  containerHasElement(plot_var_names, "vorticity_z") )
402  {
403  amrex::Interpolater* mapper = &cell_cons_interp;
404  for (int lev = 1; lev <= finest_level; ++lev)
405  {
406  Vector<MultiFab*> fmf = {&(mf_cc_vel[lev]), &(mf_cc_vel[lev])};
407  Vector<Real> ftime = {t_new[lev], t_new[lev]};
408  Vector<MultiFab*> cmf = {&mf_cc_vel[lev-1], &mf_cc_vel[lev-1]};
409  Vector<Real> ctime = {t_new[lev], t_new[lev]};
410 
411  FillBdyCCVels(mf_cc_vel,lev-1);
412 
413  // Call FillPatch which ASSUMES that all ghost cells at lev-1 have already been filled
414  FillPatchTwoLevels(mf_cc_vel[lev], mf_cc_vel[lev].nGrowVect(), IntVect(0,0,0),
415  t_new[lev], cmf, ctime, fmf, ftime,
416  0, 0, mf_cc_vel[lev].nComp(), geom[lev-1], geom[lev],
417  refRatio(lev-1), mapper, domain_bcs_type,
419  } // lev
420  FillBdyCCVels(mf_cc_vel);
421  } // if (vort)
422 
423 
424  for (int lev = 0; lev <= finest_level; ++lev)
425  {
426  int mf_comp = 0;
427 
428  BoxArray ba(vars_new[lev][Vars::cons].boxArray());
429  DistributionMapping dm = vars_new[lev][Vars::cons].DistributionMap();
430 
431  // First, copy any of the conserved state variables into the output plotfile
432  for (int i = 0; i < cons_names.size(); ++i) {
433  if (containerHasElement(plot_var_names, cons_names[i])) {
434  MultiFab::Copy(mf[lev],vars_new[lev][Vars::cons],i,mf_comp,1,0);
435  mf_comp++;
436  }
437  }
438 
439  // Next, check for velocities
440  if (containerHasElement(plot_var_names, "x_velocity")) {
441  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 0, mf_comp, 1, 0);
442  mf_comp += 1;
443  }
444  if (containerHasElement(plot_var_names, "y_velocity")) {
445  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 1, mf_comp, 1, 0);
446  mf_comp += 1;
447  }
448  if (containerHasElement(plot_var_names, "z_velocity")) {
449  MultiFab::Copy(mf[lev], mf_cc_vel[lev], 2, mf_comp, 1, 0);
450  mf_comp += 1;
451  }
452 
453  // Create multifabs for HSE and pressure fields used to derive other quantities
454  MultiFab r_hse(base_state[lev], make_alias, BaseState::r0_comp , 1);
455  MultiFab p_hse(base_state[lev], make_alias, BaseState::p0_comp , 1);
456  MultiFab th_hse(base_state[lev], make_alias, BaseState::th0_comp, 1);
457 
458  MultiFab pressure;
459 
460  if (solverChoice.anelastic[lev] == 0) {
461  if (containerHasElement(plot_var_names, "pressure") ||
462  containerHasElement(plot_var_names, "pert_pres") ||
463  containerHasElement(plot_var_names, "dpdx") ||
464  containerHasElement(plot_var_names, "dpdy") ||
465  containerHasElement(plot_var_names, "dpdz") ||
466  containerHasElement(plot_var_names, "eq_pot_temp") ||
467  containerHasElement(plot_var_names, "qsat"))
468  {
469  int ng = (containerHasElement(plot_var_names, "dpdx") || containerHasElement(plot_var_names, "dpdy") ||
470  containerHasElement(plot_var_names, "dpdz")) ? 1 : 0;
471 
472  // Allocate space for pressure
473  pressure.define(ba,dm,1,ng);
474 
475  if (ng > 0) {
476  // Default to p_hse as a way of filling ghost cells at domain boundaries
477  MultiFab::Copy(pressure,p_hse,0,0,1,1);
478  }
479 #ifdef _OPENMP
480 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
481 #endif
482  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
483  {
484  const Box& gbx = mfi.growntilebox(IntVect(ng,ng,0));
485 
486  const Array4<Real >& p_arr = pressure.array(mfi);
487  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
488  const int ncomp = vars_new[lev][Vars::cons].nComp();
489 
490  ParallelFor(gbx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
491  {
492  Real qv_for_p = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0;
493  const Real rhotheta = S_arr(i,j,k,RhoTheta_comp);
494  p_arr(i, j, k) = getPgivenRTh(rhotheta,qv_for_p);
495  });
496  } // mfi
497  pressure.FillBoundary(geom[lev].periodicity());
498  } // compute compressible pressure
499  } // not anelastic
500  else {
501  if (containerHasElement(plot_var_names, "dpdx") ||
502  containerHasElement(plot_var_names, "dpdy") ||
503  containerHasElement(plot_var_names, "dpdz") ||
504  containerHasElement(plot_var_names, "eq_pot_temp") ||
505  containerHasElement(plot_var_names, "qsat"))
506  {
507  // Copy p_hse into pressure if using anelastic
508  pressure.define(ba,dm,1,0);
509  MultiFab::Copy(pressure,p_hse,0,0,1,0);
510  }
511  }
512 
513  // Finally, check for any derived quantities and compute them, inserting
514  // them into our output multifab
515  auto calculate_derived = [&](const std::string& der_name,
516  MultiFab& src_mf,
517  decltype(derived::erf_dernull)& der_function)
518  {
519  if (containerHasElement(plot_var_names, der_name)) {
520  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
521 #ifdef _OPENMP
522 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
523 #endif
524  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
525  {
526  const Box& bx = mfi.tilebox();
527  auto& dfab = dmf[mfi];
528  auto& sfab = src_mf[mfi];
529  der_function(bx, dfab, 0, 1, sfab, Geom(lev), t_new[0], nullptr, lev);
530  }
531 
532  mf_comp++;
533  }
534  };
535 
536  // *****************************************************************************************
537  // NOTE: All derived variables computed below **MUST MATCH THE ORDER** of "derived_names"
538  // defined in ERF.H
539  // *****************************************************************************************
540 
541  calculate_derived("soundspeed", vars_new[lev][Vars::cons], derived::erf_dersoundspeed);
542  if (use_moisture) {
543  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dermoisttemp);
544  } else {
545  calculate_derived("temp", vars_new[lev][Vars::cons], derived::erf_dertemp);
546  }
547  calculate_derived("theta", vars_new[lev][Vars::cons], derived::erf_dertheta);
548  calculate_derived("KE", vars_new[lev][Vars::cons], derived::erf_derKE);
549  calculate_derived("scalar", vars_new[lev][Vars::cons], derived::erf_derscalar);
550  calculate_derived("vorticity_x", mf_cc_vel[lev] , derived::erf_dervortx);
551  calculate_derived("vorticity_y", mf_cc_vel[lev] , derived::erf_dervorty);
552  calculate_derived("vorticity_z", mf_cc_vel[lev] , derived::erf_dervortz);
553  calculate_derived("magvel" , mf_cc_vel[lev] , derived::erf_dermagvel);
554 
555  if (containerHasElement(plot_var_names, "divU"))
556  {
557  // TODO TODO TODO -- we need to convert w to omega here!!
558  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
559  Array<MultiFab const*, AMREX_SPACEDIM> u;
560  u[0] = &(vars_new[lev][Vars::xvel]);
561  u[1] = &(vars_new[lev][Vars::yvel]);
562  u[2] = &(vars_new[lev][Vars::zvel]);
563  compute_divergence (lev, dmf, u, geom[lev]);
564  mf_comp += 1;
565  }
566 
567  if (containerHasElement(plot_var_names, "pres_hse"))
568  {
569  MultiFab::Copy(mf[lev],p_hse,0,mf_comp,1,0);
570  mf_comp += 1;
571  }
572  if (containerHasElement(plot_var_names, "dens_hse"))
573  {
574  MultiFab::Copy(mf[lev],r_hse,0,mf_comp,1,0);
575  mf_comp += 1;
576  }
577  if (containerHasElement(plot_var_names, "theta_hse"))
578  {
579  MultiFab::Copy(mf[lev],th_hse,0,mf_comp,1,0);
580  mf_comp += 1;
581  }
582 
583  if (containerHasElement(plot_var_names, "pressure"))
584  {
585  if (solverChoice.anelastic[lev] == 1) {
586  MultiFab::Copy(mf[lev], p_hse, 0, mf_comp, 1, 0);
587  } else {
588  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
589  }
590 
591  mf_comp += 1;
592  }
593 
594  if (containerHasElement(plot_var_names, "pert_pres"))
595  {
596  if (solverChoice.anelastic[lev] == 1) {
597  MultiFab::Copy(mf[lev], pp_inc[lev], 0, mf_comp, 1, 0);
598  } else {
599  MultiFab::Copy(mf[lev], pressure, 0, mf_comp, 1, 0);
600  MultiFab::Subtract(mf[lev],p_hse,0,mf_comp,1,IntVect{0});
601  }
602  mf_comp += 1;
603  }
604 
605  if (containerHasElement(plot_var_names, "pert_dens"))
606  {
607 #ifdef _OPENMP
608 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
609 #endif
610  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
611  {
612  const Box& bx = mfi.tilebox();
613  const Array4<Real>& derdat = mf[lev].array(mfi);
614  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
615  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
616  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
617  derdat(i, j, k, mf_comp) = S_arr(i,j,k,Rho_comp) - r0_arr(i,j,k);
618  });
619  }
620  mf_comp ++;
621  }
622 
623  if (containerHasElement(plot_var_names, "eq_pot_temp"))
624  {
625 #ifdef _OPENMP
626 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
627 #endif
628  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
629  {
630  const Box& bx = mfi.tilebox();
631  const Array4<Real>& derdat = mf[lev].array(mfi);
632  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
633  const Array4<Real const>& p_arr = pressure.const_array(mfi);
634  const int ncomp = vars_new[lev][Vars::cons].nComp();
635  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
636  Real qv = (use_moisture && (ncomp > RhoQ1_comp)) ? S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
637  Real qc = (use_moisture && (ncomp > RhoQ2_comp)) ? S_arr(i,j,k,RhoQ2_comp)/S_arr(i,j,k,Rho_comp) : 0.0;
638  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
639  Real fac = Cp_d + Cp_l*(qv + qc);
640  Real pv = erf_esatw(T)*100.0;
641 
642  derdat(i, j, k, mf_comp) = T*std::pow((p_arr(i,j,k) - pv)/p_0, -R_d/fac)*std::exp(L_v*qv/(fac*T)) ;
643  });
644  }
645  mf_comp ++;
646  }
647 
648 #ifdef ERF_USE_WINDFARM
649  if ( containerHasElement(plot_var_names, "num_turb") and
650  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
651  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
652  {
653  MultiFab::Copy(mf[lev],Nturb[lev],0,mf_comp,1,0);
654  mf_comp ++;
655  }
656 
657  if ( containerHasElement(plot_var_names, "SMark0") and
658  (solverChoice.windfarm_type == WindFarmType::Fitch or solverChoice.windfarm_type == WindFarmType::EWP or
659  solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD) )
660  {
661  MultiFab::Copy(mf[lev],SMark[lev],0,mf_comp,1,0);
662  mf_comp ++;
663  }
664 
665  if (containerHasElement(plot_var_names, "SMark1") and
666  (solverChoice.windfarm_type == WindFarmType::SimpleAD or solverChoice.windfarm_type == WindFarmType::GeneralAD))
667  {
668  MultiFab::Copy(mf[lev],SMark[lev],1,mf_comp,1,0);
669  mf_comp ++;
670  }
671 #endif
672 
673  // **********************************************************************************************
674  // Allocate space if we are computing any pressure gradients
675  // **********************************************************************************************
676 
677  Vector<MultiFab> gradp_temp; gradp_temp.resize(AMREX_SPACEDIM);
678  if (containerHasElement(plot_var_names, "dpdx") ||
679  containerHasElement(plot_var_names, "dpdy") ||
680  containerHasElement(plot_var_names, "dpdz") ||
681  containerHasElement(plot_var_names, "pres_hse_x") ||
682  containerHasElement(plot_var_names, "pres_hse_y"))
683  {
684  gradp_temp[GpVars::gpx].define(convert(ba, IntVect(1,0,0)), dm, 1, 1); gradp_temp[GpVars::gpx].setVal(0.);
685  gradp_temp[GpVars::gpy].define(convert(ba, IntVect(0,1,0)), dm, 1, 1); gradp_temp[GpVars::gpy].setVal(0.);
686  gradp_temp[GpVars::gpz].define(convert(ba, IntVect(0,0,1)), dm, 1, 1); gradp_temp[GpVars::gpz].setVal(0.);
687  }
688 
689  // **********************************************************************************************
690  // These are based on computing gradient of full pressure
691  // **********************************************************************************************
692 
693  if (solverChoice.anelastic[lev] == 0) {
694  if ( (containerHasElement(plot_var_names, "dpdx")) ||
695  (containerHasElement(plot_var_names, "dpdy")) ||
696  (containerHasElement(plot_var_names, "dpdz")) ) {
697  compute_gradp(pressure, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), get_eb(lev), gradp_temp, solverChoice);
698  }
699  }
700 
701  if (containerHasElement(plot_var_names, "dpdx"))
702  {
703  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
704  {
705  const Box& bx = mfi.tilebox();
706  const Array4<Real >& derdat = mf[lev].array(mfi);
707  const Array4<Real const>& gpx_arr = (solverChoice.anelastic[lev] == 1) ?
708  gradp[lev][GpVars::gpx].array(mfi) : gradp_temp[GpVars::gpx].array(mfi);
709  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
710  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
711  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
712  });
713  }
714  mf_comp ++;
715  } // dpdx
716  if (containerHasElement(plot_var_names, "dpdy"))
717  {
718  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
719  {
720  const Box& bx = mfi.tilebox();
721  const Array4<Real >& derdat = mf[lev].array(mfi);
722  const Array4<Real const>& gpy_arr = (solverChoice.anelastic[lev] == 1) ?
723  gradp[lev][GpVars::gpy].array(mfi) : gradp_temp[GpVars::gpy].array(mfi);
724  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
725  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
726  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
727  });
728  }
729  mf_comp ++;
730  } // dpdy
731  if (containerHasElement(plot_var_names, "dpdz"))
732  {
733  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
734  {
735  const Box& bx = mfi.tilebox();
736  const Array4<Real >& derdat = mf[lev].array(mfi);
737  const Array4<Real const>& gpz_arr = (solverChoice.anelastic[lev] == 1) ?
738  gradp[lev][GpVars::gpz].array(mfi) : gradp_temp[GpVars::gpz].array(mfi);
739  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
740  derdat(i ,j ,k, mf_comp) = 0.5 * (gpz_arr(i,j,k+1) + gpz_arr(i,j,k));
741  });
742  }
743  mf_comp ++;
744  } // dpdz
745 
746  // **********************************************************************************************
747  // These are based on computing gradient of basestate pressure
748  // **********************************************************************************************
749 
750  if ( (containerHasElement(plot_var_names, "pres_hse_x")) ||
751  (containerHasElement(plot_var_names, "pres_hse_y")) ) {
752  compute_gradp(p_hse, geom[lev], *z_phys_nd[lev].get(), *z_phys_cc[lev].get(), get_eb(lev), gradp_temp, solverChoice);
753  }
754 
755  if (containerHasElement(plot_var_names, "pres_hse_x"))
756  {
757  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
758  {
759  const Box& bx = mfi.tilebox();
760  const Array4<Real >& derdat = mf[lev].array(mfi);
761  const Array4<Real const>& gpx_arr = gradp_temp[0].array(mfi);
762  const Array4<Real const>& mf_mx_arr = mapfac[lev][MapFacType::m_x]->const_array(mfi);
763  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
764  derdat(i ,j ,k, mf_comp) = 0.5 * (gpx_arr(i+1,j,k) + gpx_arr(i,j,k)) * mf_mx_arr(i,j,0);
765  });
766  }
767  mf_comp += 1;
768  } // pres_hse_x
769 
770  if (containerHasElement(plot_var_names, "pres_hse_y"))
771  {
772  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
773  {
774  const Box& bx = mfi.tilebox();
775  const Array4<Real >& derdat = mf[lev].array(mfi);
776  const Array4<Real const>& gpy_arr = gradp_temp[1].array(mfi);
777  const Array4<Real const>& mf_my_arr = mapfac[lev][MapFacType::m_y]->const_array(mfi);
778  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
779  derdat(i ,j ,k, mf_comp) = 0.5 * (gpy_arr(i,j+1,k) + gpy_arr(i,j,k)) * mf_my_arr(i,j,0);
780  });
781  }
782  mf_comp += 1;
783  } // pres_hse_y
784 
785  // **********************************************************************************************
786  // Metric terms
787  // **********************************************************************************************
788 
789  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
790  if (containerHasElement(plot_var_names, "z_phys"))
791  {
792  MultiFab::Copy(mf[lev],*z_phys_cc[lev],0,mf_comp,1,0);
793  mf_comp ++;
794  }
795 
796  if (containerHasElement(plot_var_names, "detJ"))
797  {
798  MultiFab::Copy(mf[lev],*detJ_cc[lev],0,mf_comp,1,0);
799  mf_comp ++;
800  }
801  } // use_terrain
802 
803  if (containerHasElement(plot_var_names, "mapfac")) {
804  amrex::Print() << "You are plotting a 3D version of mapfac; we suggest using the 2D plotfile instead" << std::endl;
805 #ifdef _OPENMP
806 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
807 #endif
808  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
809  {
810  const Box& bx = mfi.tilebox();
811  const Array4<Real>& derdat = mf[lev].array(mfi);
812  const Array4<Real>& mf_m = mapfac[lev][MapFacType::m_x]->array(mfi);
813  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
814  derdat(i ,j ,k, mf_comp) = mf_m(i,j,0);
815  });
816  }
817  mf_comp ++;
818  }
819 
820  if (containerHasElement(plot_var_names, "lat_m")) {
821  amrex::Print() << "You are plotting a 3D version of lat_m; we suggest using the 2D plotfile instead" << std::endl;
822  if (lat_m[lev]) {
823 #ifdef _OPENMP
824 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
825 #endif
826  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
827  {
828  const Box& bx = mfi.tilebox();
829  const Array4<Real>& derdat = mf[lev].array(mfi);
830  const Array4<Real>& data = lat_m[lev]->array(mfi);
831  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
832  derdat(i, j, k, mf_comp) = data(i,j,0);
833  });
834  }
835  } else {
836  mf[lev].setVal(0.0,mf_comp,1,0);
837  }
838  mf_comp++;
839  } // lat_m
840 
841  if (containerHasElement(plot_var_names, "lon_m")) {
842  amrex::Print() << "You are plotting a 3D version of lon_m; we suggest using the 2D plotfile instead" << std::endl;
843  if (lon_m[lev]) {
844 #ifdef _OPENMP
845 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
846 #endif
847  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
848  {
849  const Box& bx = mfi.tilebox();
850  const Array4<Real>& derdat = mf[lev].array(mfi);
851  const Array4<Real>& data = lon_m[lev]->array(mfi);
852  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
853  derdat(i, j, k, mf_comp) = data(i,j,0);
854  });
855  }
856  } else {
857  mf[lev].setVal(0.0,mf_comp,1,0);
858  }
859  mf_comp++;
860  } // lon_m
861 
863  if (containerHasElement(plot_var_names, "u_t_avg")) {
864 #ifdef _OPENMP
865 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
866 #endif
867  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
868  {
869  const Box& bx = mfi.tilebox();
870  const Array4<Real>& derdat = mf[lev].array(mfi);
871  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
872  const Real norm = t_avg_cnt[lev];
873  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
874  {
875  derdat(i ,j ,k, mf_comp) = data(i,j,k,0) / norm;
876  });
877  }
878  mf_comp ++;
879  }
880 
881  if (containerHasElement(plot_var_names, "v_t_avg")) {
882 #ifdef _OPENMP
883 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
884 #endif
885  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
886  {
887  const Box& bx = mfi.tilebox();
888  const Array4<Real>& derdat = mf[lev].array(mfi);
889  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
890  const Real norm = t_avg_cnt[lev];
891  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
892  {
893  derdat(i ,j ,k, mf_comp) = data(i,j,k,1) / norm;
894  });
895  }
896  mf_comp ++;
897  }
898 
899  if (containerHasElement(plot_var_names, "w_t_avg")) {
900 #ifdef _OPENMP
901 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
902 #endif
903  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
904  {
905  const Box& bx = mfi.tilebox();
906  const Array4<Real>& derdat = mf[lev].array(mfi);
907  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
908  const Real norm = t_avg_cnt[lev];
909  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
910  {
911  derdat(i ,j ,k, mf_comp) = data(i,j,k,2) / norm;
912  });
913  }
914  mf_comp ++;
915  }
916 
917  if (containerHasElement(plot_var_names, "umag_t_avg")) {
918 #ifdef _OPENMP
919 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
920 #endif
921  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
922  {
923  const Box& bx = mfi.tilebox();
924  const Array4<Real>& derdat = mf[lev].array(mfi);
925  const Array4<Real>& data = vel_t_avg[lev]->array(mfi);
926  const Real norm = t_avg_cnt[lev];
927  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
928  {
929  derdat(i ,j ,k, mf_comp) = data(i,j,k,3) / norm;
930  });
931  }
932  mf_comp ++;
933  }
934  }
935 
936  if (containerHasElement(plot_var_names, "nut")) {
937  MultiFab dmf(mf[lev], make_alias, mf_comp, 1);
938  MultiFab cmf(vars_new[lev][Vars::cons], make_alias, 0, 1); // to provide rho only
939 #ifdef _OPENMP
940 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
941 #endif
942  for (MFIter mfi(dmf, TilingIfNotGPU()); mfi.isValid(); ++mfi)
943  {
944  const Box& bx = mfi.tilebox();
945  auto prim = dmf[mfi].array();
946  auto const cons = cmf[mfi].const_array();
947  auto const diff = (*eddyDiffs_lev[lev])[mfi].const_array();
948  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
949  {
950  const Real rho = cons(i, j, k, Rho_comp);
951  const Real Kmv = diff(i, j, k, EddyDiff::Mom_v);
952  prim(i,j,k) = Kmv / rho;
953  });
954  }
955 
956  mf_comp++;
957  }
958 
959  if (containerHasElement(plot_var_names, "Kmv")) {
960  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_v,mf_comp,1,0);
961  mf_comp ++;
962  }
963  if (containerHasElement(plot_var_names, "Kmh")) {
964  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Mom_h,mf_comp,1,0);
965  mf_comp ++;
966  }
967  if (containerHasElement(plot_var_names, "Khv")) {
968  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_v,mf_comp,1,0);
969  mf_comp ++;
970  }
971  if (containerHasElement(plot_var_names, "Khh")) {
972  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Theta_h,mf_comp,1,0);
973  mf_comp ++;
974  }
975  if (containerHasElement(plot_var_names, "Lturb")) {
976  MultiFab::Copy(mf[lev],*eddyDiffs_lev[lev],EddyDiff::Turb_lengthscale,mf_comp,1,0);
977  mf_comp ++;
978  }
979  if (containerHasElement(plot_var_names, "walldist")) {
980  MultiFab::Copy(mf[lev],*walldist[lev],0,mf_comp,1,0);
981  mf_comp ++;
982  }
983  if (containerHasElement(plot_var_names, "diss")) {
984  MultiFab::Copy(mf[lev],*SFS_diss_lev[lev],0,mf_comp,1,0);
985  mf_comp ++;
986  }
987 
988  // TODO: The size of the q variables can vary with different
989  // moisture models. Therefore, certain components may
990  // reside at different indices. For example, Kessler is
991  // warm but precipitating. This puts qp at index 3.
992  // However, SAM is cold and precipitating so qp is index 4.
993  // Need to built an external enum struct or a better pathway.
994 
995  // NOTE: Protect against accessing non-existent data
996  if (use_moisture) {
997  int n_qstate_moist = micro->Get_Qstate_Moist_Size();
998 
999  // Moist density
1000  if(containerHasElement(plot_var_names, "moist_density"))
1001  {
1002  int n_start = RhoQ1_comp; // qv
1003  int n_end = RhoQ2_comp; // qc
1004  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1005  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1006  for (int n_comp(n_start); n_comp <= n_end; ++n_comp) {
1007  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1008  }
1009  mf_comp += 1;
1010  }
1011 
1012  if(containerHasElement(plot_var_names, "qv") && (n_qstate_moist >= 1))
1013  {
1014  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ1_comp, mf_comp, 1, 0);
1015  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1016  mf_comp += 1;
1017  }
1018 
1019  if(containerHasElement(plot_var_names, "qc") && (n_qstate_moist >= 2))
1020  {
1021  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ2_comp, mf_comp, 1, 0);
1022  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1023  mf_comp += 1;
1024  }
1025 
1026  if(containerHasElement(plot_var_names, "qi") && (n_qstate_moist >= 4))
1027  {
1028  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ3_comp, mf_comp, 1, 0);
1029  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1030  mf_comp += 1;
1031  }
1032 
1033  if(containerHasElement(plot_var_names, "qrain") && (n_qstate_moist >= 3))
1034  {
1035  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1036  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start , mf_comp, 1, 0);
1037  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1038  mf_comp += 1;
1039  }
1040 
1041  if(containerHasElement(plot_var_names, "qsnow") && (n_qstate_moist >= 5))
1042  {
1043  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ5_comp, mf_comp, 1, 0);
1044  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1045  mf_comp += 1;
1046  }
1047 
1048  if(containerHasElement(plot_var_names, "qgraup") && (n_qstate_moist >= 6))
1049  {
1050  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], RhoQ6_comp, mf_comp, 1, 0);
1051  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp, mf_comp, 1, 0);
1052  mf_comp += 1;
1053  }
1054 
1055  // Precipitating + non-precipitating components
1056  //--------------------------------------------------------------------------
1057  if(containerHasElement(plot_var_names, "qt"))
1058  {
1059  int n_start = RhoQ1_comp; // qv
1060  int n_end = n_start + n_qstate_moist;
1061  MultiFab::Copy(mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1062  for (int n_comp(n_start+1); n_comp < n_end; ++n_comp) {
1063  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1064  }
1065  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1066  mf_comp += 1;
1067  }
1068 
1069  // Non-precipitating components
1070  //--------------------------------------------------------------------------
1071  if (containerHasElement(plot_var_names, "qn"))
1072  {
1073  int n_start = RhoQ1_comp; // qv
1074  int n_end = RhoQ2_comp; // qc
1075  if (n_qstate_moist > 3) n_end = RhoQ3_comp; // qi
1076  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1077  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1078  MultiFab::Add(mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1079  }
1080  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1081  mf_comp += 1;
1082  }
1083 
1084  // Precipitating components
1085  //--------------------------------------------------------------------------
1086  if(containerHasElement(plot_var_names, "qp") && (n_qstate_moist >= 3))
1087  {
1088  int n_start = (n_qstate_moist > 3) ? RhoQ4_comp : RhoQ3_comp;
1089  int n_end = ncomp_cons - 1;
1090  MultiFab::Copy( mf[lev], vars_new[lev][Vars::cons], n_start, mf_comp, 1, 0);
1091  for (int n_comp(n_start+1); n_comp <= n_end; ++n_comp) {
1092  MultiFab::Add( mf[lev], vars_new[lev][Vars::cons], n_comp, mf_comp, 1, 0);
1093  }
1094  MultiFab::Divide(mf[lev], vars_new[lev][Vars::cons], Rho_comp , mf_comp, 1, 0);
1095  mf_comp += 1;
1096  }
1097 
1098  if (containerHasElement(plot_var_names, "qsat"))
1099  {
1100 #ifdef _OPENMP
1101 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1102 #endif
1103  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1104  {
1105  const Box& bx = mfi.tilebox();
1106  const Array4<Real>& derdat = mf[lev].array(mfi);
1107  const Array4<Real const>& p_arr = pressure.array(mfi);
1108  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1109  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1110  {
1111  Real qv = S_arr(i,j,k,RhoQ1_comp) / S_arr(i,j,k,Rho_comp);
1112  Real T = getTgivenRandRTh(S_arr(i,j,k,Rho_comp), S_arr(i,j,k,RhoTheta_comp), qv);
1113  Real p = p_arr(i,j,k) * Real(0.01);
1114  erf_qsatw(T, p, derdat(i,j,k,mf_comp));
1115  });
1116  }
1117  mf_comp ++;
1118  }
1119 
1120  if ( (solverChoice.moisture_type == MoistureType::Kessler) ||
1121  (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ||
1122  (solverChoice.moisture_type == MoistureType::SAM_NoIce) )
1123  {
1124  int offset = (solverChoice.moisture_type == MoistureType::Morrison_NoIce) ? 5 : 0;
1125  if (containerHasElement(plot_var_names, "rain_accum"))
1126  {
1127  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1128  mf_comp += 1;
1129  }
1130  }
1131  else if ( (solverChoice.moisture_type == MoistureType::SAM) ||
1132  (solverChoice.moisture_type == MoistureType::Morrison) )
1133  {
1134  int offset = (solverChoice.moisture_type == MoistureType::Morrison) ? 5 : 0;
1135  if (containerHasElement(plot_var_names, "rain_accum"))
1136  {
1137  MultiFab::Copy(mf[lev],*(qmoist[lev][offset]),0,mf_comp,1,0);
1138  mf_comp += 1;
1139  }
1140  if (containerHasElement(plot_var_names, "snow_accum"))
1141  {
1142  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+1]),0,mf_comp,1,0);
1143  mf_comp += 1;
1144  }
1145  if (containerHasElement(plot_var_names, "graup_accum"))
1146  {
1147  MultiFab::Copy(mf[lev],*(qmoist[lev][offset+2]),0,mf_comp,1,0);
1148  mf_comp += 1;
1149  }
1150  }
1151 
1152  if (containerHasElement(plot_var_names, "reflectivity")) {
1153  if (solverChoice.moisture_type == MoistureType::Morrison) {
1154 
1155  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1156  const Box& bx = mfi.tilebox();
1157  const Array4<Real>& derdat = mf[lev].array(mfi);
1158  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1159  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
1160 
1161  Real rho = S_arr(i,j,k,Rho_comp);
1162  Real qv = std::max(0.0,S_arr(i,j,k,RhoQ1_comp)/S_arr(i,j,k,Rho_comp));
1163  Real qpr = std::max(0.0,S_arr(i,j,k,RhoQ4_comp)/S_arr(i,j,k,Rho_comp));
1164  Real qps = std::max(0.0,S_arr(i,j,k,RhoQ5_comp)/S_arr(i,j,k,Rho_comp));
1165  Real qpg = std::max(0.0,S_arr(i,j,k,RhoQ6_comp)/S_arr(i,j,k,Rho_comp));
1166 
1167  Real temp = getTgivenRandRTh(S_arr(i,j,k,Rho_comp),
1168  S_arr(i,j,k,RhoTheta_comp),
1169  qv);
1170  derdat(i, j, k, mf_comp) = compute_max_reflectivity_dbz(rho, temp, qpr, qps, qpg,
1171  1, 1, 1, 1) ;
1172  });
1173  }
1174  mf_comp ++;
1175  }
1176  }
1177 
1178  if (solverChoice.moisture_type == MoistureType::Morrison) {
1179  if (containerHasElement(plot_var_names, "max_reflectivity")) {
1180  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1181  const Box& bx = mfi.tilebox();
1182 
1183  const Array4<Real>& derdat = mf[lev].array(mfi);
1184  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1185 
1186  // collapse to i,j box (ignore vertical for now)
1187  Box b2d = bx;
1188  b2d.setSmall(2,0);
1189  b2d.setBig(2,0);
1190 
1191  ParallelFor(b2d, [=] AMREX_GPU_DEVICE(int i, int j, int) noexcept {
1192 
1193  Real max_dbz = -1.0e30;
1194 
1195  // find max reflectivity over k
1196  for (int k = bx.smallEnd(2); k <= bx.bigEnd(2); ++k) {
1197  Real rho = S_arr(i,j,k,Rho_comp);
1198  Real qv = std::max(0.0, S_arr(i,j,k,RhoQ1_comp)/rho);
1199  Real qpr = std::max(0.0, S_arr(i,j,k,RhoQ4_comp)/rho);
1200  Real qps = std::max(0.0, S_arr(i,j,k,RhoQ5_comp)/rho);
1201  Real qpg = std::max(0.0, S_arr(i,j,k,RhoQ6_comp)/rho);
1202 
1203  Real temp = getTgivenRandRTh(rho, S_arr(i,j,k,RhoTheta_comp), qv);
1204 
1205  Real dbz = compute_max_reflectivity_dbz(rho, temp, qpr, qps, qpg,
1206  1, 1, 1, 1);
1207  max_dbz = amrex::max(max_dbz, dbz);
1208  }
1209 
1210  // store max_dbz into *all* levels for this (i,j)
1211  for (int k = bx.smallEnd(2); k <= bx.bigEnd(2); ++k) {
1212  derdat(i, j, k, mf_comp) = max_dbz;
1213  }
1214  });
1215  }
1216  mf_comp++;
1217  }
1218  }
1219  } // use_moisture
1220 
1221  if (containerHasElement(plot_var_names, "terrain_IB_mask"))
1222  {
1223  MultiFab* terrain_blank = terrain_blanking[lev].get();
1224  MultiFab::Copy(mf[lev],*terrain_blank,0,mf_comp,1,0);
1225  mf_comp ++;
1226  }
1227 
1228  if (containerHasElement(plot_var_names, "volfrac")) {
1229  if ( solverChoice.terrain_type == TerrainType::EB ||
1230  solverChoice.terrain_type == TerrainType::ImmersedForcing)
1231  {
1232  MultiFab::Copy(mf[lev], EBFactory(lev).getVolFrac(), 0, mf_comp, 1, 0);
1233  } else {
1234  mf[lev].setVal(1.0, mf_comp, 1, 0);
1235  }
1236  mf_comp += 1;
1237  }
1238 
1239 #ifdef ERF_COMPUTE_ERROR
1240  // Next, check for error in velocities and if desired, output them -- note we output none or all, not just some
1241  if (containerHasElement(plot_var_names, "xvel_err") ||
1242  containerHasElement(plot_var_names, "yvel_err") ||
1243  containerHasElement(plot_var_names, "zvel_err"))
1244  {
1245  //
1246  // Moving terrain ANALYTICAL
1247  //
1248  Real H = geom[lev].ProbHi()[2];
1249  Real Ampl = 0.16;
1250  Real wavelength = 100.;
1251  Real kp = 2. * PI / wavelength;
1252  Real g = CONST_GRAV;
1253  Real omega = std::sqrt(g * kp);
1254  Real omega_t = omega * t_new[lev];
1255 
1256  const auto dx = geom[lev].CellSizeArray();
1257 
1258 #ifdef _OPENMP
1259 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1260 #endif
1261  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1262  {
1263  const Box& bx = mfi.validbox();
1264  Box xbx(bx); xbx.surroundingNodes(0);
1265  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1266  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1267 
1268  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1269 
1270  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1271  {
1272  Real x = i * dx[0];
1273  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1274 
1275  Real z_base = Ampl * std::sin(kp * x - omega_t);
1276  z -= z_base;
1277 
1278  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1279 
1280  xvel_arr(i,j,k) -= -Ampl * omega * fac * std::sin(kp * x - omega_t);
1281  });
1282 
1283  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1284  {
1285  Real x = (i + 0.5) * dx[0];
1286  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1287 
1288  Real z_base = Ampl * std::sin(kp * x - omega_t);
1289  z -= z_base;
1290 
1291  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1292 
1293  zvel_arr(i,j,k) -= Ampl * omega * fac * std::cos(kp * x - omega_t);
1294  });
1295  }
1296 
1297  MultiFab temp_mf(mf[lev].boxArray(), mf[lev].DistributionMap(), AMREX_SPACEDIM, 0);
1298  average_face_to_cellcenter(temp_mf,0,
1299  Array<const MultiFab*,3>{&vars_new[lev][Vars::xvel],&vars_new[lev][Vars::yvel],&vars_new[lev][Vars::zvel]});
1300 
1301  if (containerHasElement(plot_var_names, "xvel_err")) {
1302  MultiFab::Copy(mf[lev],temp_mf,0,mf_comp,1,0);
1303  mf_comp += 1;
1304  }
1305  if (containerHasElement(plot_var_names, "yvel_err")) {
1306  MultiFab::Copy(mf[lev],temp_mf,1,mf_comp,1,0);
1307  mf_comp += 1;
1308  }
1309  if (containerHasElement(plot_var_names, "zvel_err")) {
1310  MultiFab::Copy(mf[lev],temp_mf,2,mf_comp,1,0);
1311  mf_comp += 1;
1312  }
1313 
1314  // Now restore the velocities to what they were
1315 #ifdef _OPENMP
1316 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1317 #endif
1318  for (MFIter mfi(mf[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi)
1319  {
1320  const Box& bx = mfi.validbox();
1321  Box xbx(bx); xbx.surroundingNodes(0);
1322 
1323  const Array4<Real> xvel_arr = vars_new[lev][Vars::xvel].array(mfi);
1324  const Array4<Real> zvel_arr = vars_new[lev][Vars::zvel].array(mfi);
1325 
1326  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1327 
1328  ParallelFor(xbx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1329  {
1330  Real x = i * dx[0];
1331  Real z = 0.25 * (z_nd(i,j,k) + z_nd(i,j+1,k) + z_nd(i,j,k+1) + z_nd(i,j+1,k+1));
1332  Real z_base = Ampl * std::sin(kp * x - omega_t);
1333 
1334  z -= z_base;
1335 
1336  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1337  xvel_arr(i,j,k) += -Ampl * omega * fac * std::sin(kp * x - omega_t);
1338  });
1339  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1340  {
1341  Real x = (i + 0.5) * dx[0];
1342  Real z = 0.25 * ( z_nd(i,j,k) + z_nd(i+1,j,k) + z_nd(i,j+1,k) + z_nd(i+1,j+1,k));
1343  Real z_base = Ampl * std::sin(kp * x - omega_t);
1344 
1345  z -= z_base;
1346  Real fac = std::sinh( kp * (z - H) ) / std::sinh(kp * H);
1347 
1348  zvel_arr(i,j,k) += Ampl * omega * fac * std::cos(kp * x - omega_t);
1349  });
1350  }
1351  } // end xvel_err, yvel_err, zvel_err
1352 
1353  if (containerHasElement(plot_var_names, "pp_err"))
1354  {
1355  // Moving terrain ANALYTICAL
1356 #ifdef _OPENMP
1357 #pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
1358 #endif
1359  for ( MFIter mfi(mf[lev],TilingIfNotGPU()); mfi.isValid(); ++mfi)
1360  {
1361  const Box& bx = mfi.tilebox();
1362  const Array4<Real>& derdat = mf[lev].array(mfi);
1363  const Array4<Real const>& p0_arr = p_hse.const_array(mfi);
1364  const Array4<Real const>& S_arr = vars_new[lev][Vars::cons].const_array(mfi);
1365 
1366  const auto dx = geom[lev].CellSizeArray();
1367  const Array4<Real const>& z_nd = z_phys_nd[lev]->const_array(mfi);
1368  const Array4<Real const>& p_arr = pressure.const_array(mfi);
1369  const Array4<Real const>& r0_arr = r_hse.const_array(mfi);
1370 
1371  Real H = geom[lev].ProbHi()[2];
1372  Real Ampl = 0.16;
1373  Real wavelength = 100.;
1374  Real kp = 2. * PI / wavelength;
1375  Real g = CONST_GRAV;
1376  Real omega = std::sqrt(g * kp);
1377  Real omega_t = omega * t_new[lev];
1378 
1379  ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept
1380  {
1381  derdat(i, j, k, mf_comp) = p_arr(i,j,k) - p0_arr(i,j,k);
1382 
1383  Real rho_hse = r0_arr(i,j,k);
1384 
1385  Real x = (i + 0.5) * dx[0];
1386  Real z = 0.125 * ( z_nd(i,j,k ) + z_nd(i+1,j,k ) + z_nd(i,j+1,k ) + z_nd(i+1,j+1,k )
1387  +z_nd(i,j,k+1) + z_nd(i+1,j,k+1) + z_nd(i,j+1,k+1) + z_nd(i+1,j+1,k+1) );
1388  Real z_base = Ampl * std::sin(kp * x - omega_t);
1389 
1390  z -= z_base;
1391  Real fac = std::cosh( kp * (z - H) ) / std::sinh(kp * H);
1392  Real pprime_exact = -(Ampl * omega * omega / kp) * fac *
1393  std::sin(kp * x - omega_t) * r0_arr(i,j,k);
1394 
1395  derdat(i,j,k,mf_comp) -= pprime_exact;
1396  });
1397  }
1398  mf_comp += 1;
1399  }
1400 #endif
1401 
1402  if (solverChoice.rad_type != RadiationType::None) {
1403  if (containerHasElement(plot_var_names, "qsrc_sw")) {
1404  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 0, mf_comp, 1, 0);
1405  mf_comp += 1;
1406  }
1407  if (containerHasElement(plot_var_names, "qsrc_lw")) {
1408  MultiFab::Copy(mf[lev], *(qheating_rates[lev]), 1, mf_comp, 1, 0);
1409  mf_comp += 1;
1410  }
1411  }
1412 
1413  // *****************************************************************************************
1414  // End of derived variables corresponding to "derived_names" in ERF.H
1415  //
1416  // Particles and microphysics can provide additional outputs, which are handled below.
1417  // *****************************************************************************************
1418 
1419 #ifdef ERF_USE_PARTICLES
1420  const auto& particles_namelist( particleData.getNames() );
1421 
1422  if (containerHasElement(plot_var_names, "tracer_particles_count")) {
1423  if (particles_namelist.size() == 0) {
1424  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1425  temp_dat.setVal(0);
1426  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1427  mf_comp += 1;
1428  } else {
1429  for (ParticlesNamesVector::size_type i = 0; i < particles_namelist.size(); i++) {
1430  if (containerHasElement(plot_var_names, std::string(particles_namelist[i]+"_count"))) {
1431  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 0);
1432  temp_dat.setVal(0);
1433  if (particleData.HasSpecies(particles_namelist[i])) {
1434  particleData[particles_namelist[i]]->Increment(temp_dat, lev);
1435  }
1436  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1437  mf_comp += 1;
1438  }
1439  }
1440  }
1441  }
1442 
1443  Vector<std::string> particle_mesh_plot_names(0);
1444  particleData.GetMeshPlotVarNames( particle_mesh_plot_names );
1445 
1446  for (int i = 0; i < particle_mesh_plot_names.size(); i++) {
1447  std::string plot_var_name(particle_mesh_plot_names[i]);
1448  if (containerHasElement(plot_var_names, plot_var_name) ) {
1449  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1450  temp_dat.setVal(0);
1451  particleData.GetMeshPlotVar(plot_var_name, temp_dat, lev);
1452  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1453  mf_comp += 1;
1454  }
1455  }
1456 #endif
1457 
1458  {
1459  Vector<std::string> microphysics_plot_names;
1460  micro->GetPlotVarNames(microphysics_plot_names);
1461  for (auto& plot_name : microphysics_plot_names) {
1462  if (containerHasElement(plot_var_names, plot_name)) {
1463  MultiFab temp_dat(mf[lev].boxArray(), mf[lev].DistributionMap(), 1, 1);
1464  temp_dat.setVal(0);
1465  micro->GetPlotVar(plot_name, temp_dat, lev);
1466  MultiFab::Copy(mf[lev], temp_dat, 0, mf_comp, 1, 0);
1467  mf_comp += 1;
1468  }
1469  }
1470  }
1471 
1472 
1473  }
1474 
1475  if (solverChoice.terrain_type == TerrainType::EB)
1476  {
1477  for (int lev = 0; lev <= finest_level; ++lev) {
1478  EB_set_covered(mf[lev], 0.0);
1479  }
1480  }
1481 
1482  // Fill terrain distortion MF (nu_nd)
1483  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1484  for (int lev(0); lev <= finest_level; ++lev) {
1485  MultiFab::Copy(mf_nd[lev],*z_phys_nd[lev],0,2,1,0);
1486  Real dz = Geom()[lev].CellSizeArray()[2];
1487  for (MFIter mfi(mf_nd[lev], TilingIfNotGPU()); mfi.isValid(); ++mfi) {
1488  const Box& bx = mfi.tilebox();
1489  Array4<Real> mf_arr = mf_nd[lev].array(mfi);
1490  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
1491  {
1492  mf_arr(i,j,k,2) -= k * dz;
1493  });
1494  }
1495  }
1496  }
1497 
1498  std::string plotfilename;
1499  std::string plotfilenameU;
1500  std::string plotfilenameV;
1501  std::string plotfilenameW;
1502  if (which == 1) {
1503  plotfilename = Concatenate(plot3d_file_1, istep[0], 5);
1504  plotfilenameU = Concatenate(plot3d_file_1+"U", istep[0], 5);
1505  plotfilenameV = Concatenate(plot3d_file_1+"V", istep[0], 5);
1506  plotfilenameW = Concatenate(plot3d_file_1+"W", istep[0], 5);
1507  } else if (which == 2) {
1508  plotfilename = Concatenate(plot3d_file_2, istep[0], 5);
1509  plotfilenameU = Concatenate(plot3d_file_2+"U", istep[0], 5);
1510  plotfilenameV = Concatenate(plot3d_file_2+"V", istep[0], 5);
1511  plotfilenameW = Concatenate(plot3d_file_2+"W", istep[0], 5);
1512  }
1513 
1514  // LSM writes it's own data
1515  if (which==1 && plot_lsm) {
1516  lsm.Plot_Lsm_Data(t_new[0], istep, refRatio());
1517  }
1518 
1519 #ifdef ERF_USE_RRTMGP
1520  /*
1521  // write additional RRTMGP data
1522  // TODO: currently single level only
1523  if (which==1 && plot_rad) {
1524  rad[0]->writePlotfile(plot_file_1, t_new[0], istep[0]);
1525  }
1526  */
1527 #endif
1528 
1529  // Single level
1530  if (finest_level == 0)
1531  {
1532  if (plotfile_type == PlotFileType::Amrex)
1533  {
1534  Print() << "Writing native 3D plotfile " << plotfilename << "\n";
1535  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1536  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1537  GetVecOfConstPtrs(mf),
1538  GetVecOfConstPtrs(mf_nd),
1539  varnames,
1540  Geom(), t_new[0], istep, refRatio());
1541  } else {
1542  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1543  GetVecOfConstPtrs(mf),
1544  varnames,
1545  Geom(), t_new[0], istep, refRatio());
1546  }
1547  writeJobInfo(plotfilename);
1548 
1549  if (m_plot_face_vels) {
1550  Print() << "Writing face velocities" << std::endl;
1551  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1552  GetVecOfConstPtrs(mf_u),
1553  {"x_velocity_stag"},
1554  Geom(), t_new[0], istep, refRatio());
1555  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1556  GetVecOfConstPtrs(mf_v),
1557  {"y_velocity_stag"},
1558  Geom(), t_new[0], istep, refRatio());
1559  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1560  GetVecOfConstPtrs(mf_w),
1561  {"z_velocity_stag"},
1562  Geom(), t_new[0], istep, refRatio());
1563  }
1564 
1565 #ifdef ERF_USE_PARTICLES
1566  particleData.writePlotFile(plotfilename);
1567 #endif
1568 #ifdef ERF_USE_NETCDF
1569  } else if (plotfile_type == PlotFileType::Netcdf) {
1570  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1571  int lev = 0;
1572  int l_which = 0;
1573  const Real* p_lo = geom[lev].ProbLo();
1574  const Real* p_hi = geom[lev].ProbHi();
1575  const auto dx = geom[lev].CellSize();
1576  writeNCPlotFile(lev, l_which, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1577  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1578  geom[lev].Domain(), t_new[0], start_bdy_time);
1579 #endif
1580  } else {
1581  // Here we assume the plotfile_type is PlotFileType::None
1582  Print() << "Writing no 3D plotfile since plotfile_type is none" << std::endl;
1583  }
1584 
1585  } else { // Multilevel
1586 
1587  if (plotfile_type == PlotFileType::Amrex) {
1588 
1589  int lev0 = 0;
1590  int desired_ratio = std::max(std::max(ref_ratio[lev0][0],ref_ratio[lev0][1]),ref_ratio[lev0][2]);
1591  bool any_ratio_one = ( ( (ref_ratio[lev0][0] == 1) || (ref_ratio[lev0][1] == 1) ) ||
1592  (ref_ratio[lev0][2] == 1) );
1593  for (int lev = 1; lev < finest_level; lev++) {
1594  any_ratio_one = any_ratio_one ||
1595  ( ( (ref_ratio[lev][0] == 1) || (ref_ratio[lev][1] == 1) ) ||
1596  (ref_ratio[lev][2] == 1) );
1597  }
1598 
1599  if (any_ratio_one && m_expand_plotvars_to_unif_rr)
1600  {
1601  Vector<IntVect> r2(finest_level);
1602  Vector<Geometry> g2(finest_level+1);
1603  Vector<MultiFab> mf2(finest_level+1);
1604 
1605  mf2[0].define(grids[0], dmap[0], ncomp_mf, 0);
1606 
1607  // Copy level 0 as is
1608  MultiFab::Copy(mf2[0],mf[0],0,0,mf[0].nComp(),0);
1609 
1610  // Define a new multi-level array of Geometry's so that we pass the new "domain" at lev > 0
1611  Array<int,AMREX_SPACEDIM> periodicity =
1612  {Geom()[lev0].isPeriodic(0),Geom()[lev0].isPeriodic(1),Geom()[lev0].isPeriodic(2)};
1613  g2[lev0].define(Geom()[lev0].Domain(),&(Geom()[lev0].ProbDomain()),0,periodicity.data());
1614 
1615  r2[0] = IntVect(desired_ratio/ref_ratio[lev0][0],
1616  desired_ratio/ref_ratio[lev0][1],
1617  desired_ratio/ref_ratio[lev0][2]);
1618 
1619  for (int lev = 1; lev <= finest_level; ++lev) {
1620  if (lev > 1) {
1621  r2[lev-1][0] = r2[lev-2][0] * desired_ratio / ref_ratio[lev-1][0];
1622  r2[lev-1][1] = r2[lev-2][1] * desired_ratio / ref_ratio[lev-1][1];
1623  r2[lev-1][2] = r2[lev-2][2] * desired_ratio / ref_ratio[lev-1][2];
1624  }
1625 
1626  mf2[lev].define(refine(grids[lev],r2[lev-1]), dmap[lev], ncomp_mf, 0);
1627 
1628  // Set the new problem domain
1629  Box d2(Geom()[lev].Domain());
1630  d2.refine(r2[lev-1]);
1631 
1632  g2[lev].define(d2,&(Geom()[lev].ProbDomain()),0,periodicity.data());
1633  }
1634 
1635  //
1636  // We need to make a temporary that is the size of ncomp_mf
1637  // in order to not get an out of bounds error
1638  // even though the values will not be used
1639  //
1640  Vector<BCRec> temp_domain_bcs_type;
1641  temp_domain_bcs_type.resize(ncomp_mf);
1642 
1643  //
1644  // Do piecewise constant interpolation of mf into mf2
1645  //
1646  for (int lev = 1; lev <= finest_level; ++lev) {
1647  Interpolater* mapper_c = &pc_interp;
1648  InterpFromCoarseLevel(mf2[lev], t_new[lev], mf[lev],
1649  0, 0, ncomp_mf,
1650  geom[lev], g2[lev],
1652  r2[lev-1], mapper_c, temp_domain_bcs_type, 0);
1653  }
1654 
1655  // Define an effective ref_ratio which is isotropic to be passed into WriteMultiLevelPlotfile
1656  Vector<IntVect> rr(finest_level);
1657  for (int lev = 0; lev < finest_level; ++lev) {
1658  rr[lev] = IntVect(desired_ratio);
1659  }
1660 
1661  Print() << "Writing 3D plotfile " << plotfilename << "\n";
1662  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1663  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1664  GetVecOfConstPtrs(mf2),
1665  GetVecOfConstPtrs(mf_nd),
1666  varnames,
1667  g2, t_new[0], istep, rr);
1668  } else {
1669  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1670  GetVecOfConstPtrs(mf2), varnames,
1671  g2, t_new[0], istep, rr);
1672  }
1673 
1674  } else {
1675  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
1676  WriteMultiLevelPlotfileWithTerrain(plotfilename, finest_level+1,
1677  GetVecOfConstPtrs(mf),
1678  GetVecOfConstPtrs(mf_nd),
1679  varnames,
1680  geom, t_new[0], istep, ref_ratio);
1681  } else {
1682  WriteMultiLevelPlotfile(plotfilename, finest_level+1,
1683  GetVecOfConstPtrs(mf), varnames,
1684  geom, t_new[0], istep, ref_ratio);
1685  }
1686  if (m_plot_face_vels) {
1687  Print() << "Writing face velocities" << std::endl;
1688  WriteMultiLevelPlotfile(plotfilenameU, finest_level+1,
1689  GetVecOfConstPtrs(mf_u),
1690  {"x_velocity_stag"},
1691  geom, t_new[0], istep, ref_ratio);
1692  WriteMultiLevelPlotfile(plotfilenameV, finest_level+1,
1693  GetVecOfConstPtrs(mf_v),
1694  {"y_velocity_stag"},
1695  geom, t_new[0], istep, ref_ratio);
1696  WriteMultiLevelPlotfile(plotfilenameW, finest_level+1,
1697  GetVecOfConstPtrs(mf_w),
1698  {"z_velocity_stag"},
1699  geom, t_new[0], istep, ref_ratio);
1700  }
1701  } // ref_ratio test
1702 
1703  writeJobInfo(plotfilename);
1704 
1705 #ifdef ERF_USE_PARTICLES
1706  particleData.writePlotFile(plotfilename);
1707 #endif
1708 
1709 #ifdef ERF_USE_NETCDF
1710  } else if (plotfile_type == PlotFileType::Netcdf) {
1711  AMREX_ALWAYS_ASSERT(solverChoice.terrain_type != TerrainType::StaticFittedMesh);
1712  for (int lev = 0; lev <= finest_level; ++lev) {
1713  for (int which_box = 0; which_box < num_boxes_at_level[lev]; which_box++) {
1714  Box bounding_region = (lev == 0) ? geom[lev].Domain() : boxes_at_level[lev][which_box];
1715  const Real* p_lo = geom[lev].ProbLo();
1716  const Real* p_hi = geom[lev].ProbHi();
1717  const auto dx = geom[lev].CellSizeArray();
1718  writeNCPlotFile(lev, which_box, plotfilename, GetVecOfConstPtrs(mf), varnames, istep,
1719  {p_lo[0],p_lo[1],p_lo[2]},{p_hi[0],p_hi[1],p_hi[2]}, {dx[0],dx[1],dx[2]},
1720  bounding_region, t_new[0], start_bdy_time);
1721  }
1722  }
1723 #endif
1724  }
1725  } // end multi-level
1726 
1727  if (verbose > 0)
1728  {
1729  auto dPlotTime = amrex::second() - dPlotTime0;
1730  ParallelDescriptor::ReduceRealMax(dPlotTime,ParallelDescriptor::IOProcessorNumber());
1731  amrex::Print() << "3DPlotfile write time = " << dPlotTime << " seconds." << '\n';
1732  }
1733 }
constexpr amrex::Real PI
Definition: ERF_Constants.H:6
constexpr amrex::Real Cp_l
Definition: ERF_Constants.H:14
#define RhoQ4_comp
Definition: ERF_IndexDefines.H:45
void compute_gradp(const MultiFab &p, const Geometry &geom, MultiFab &z_phys_nd, MultiFab &z_phys_cc, const eb_ &ebfact, Vector< MultiFab > &gradp, const SolverChoice &solverChoice)
Definition: ERF_MakeGradP.cpp:80
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real erf_esatw(amrex::Real t)
Definition: ERF_MicrophysicsUtils.H:68
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void erf_qsatw(amrex::Real t, amrex::Real p, amrex::Real &qsatw)
Definition: ERF_MicrophysicsUtils.H:166
PhysBCFunctNoOp null_bc_for_fill
Definition: ERF_Plotfile.cpp:8
AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE amrex::Real compute_max_reflectivity_dbz(amrex::Real rho_air, amrex::Real tmk, amrex::Real qra, amrex::Real qsn, amrex::Real qgr, int in0r, int in0s, int in0g, int iliqskin)
Definition: ERF_StormDiagnostics.H:13
void WriteMultiLevelPlotfileWithTerrain(const std::string &plotfilename, int nlevels, const amrex::Vector< const amrex::MultiFab * > &mf, const amrex::Vector< const amrex::MultiFab * > &mf_nd, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName="HyperCLaw-V1.1", const std::string &levelPrefix="Level_", const std::string &mfPrefix="Cell", const amrex::Vector< std::string > &extra_dirs=amrex::Vector< std::string >()) const
Definition: ERF_Plotfile.cpp:1736
void Plot_Lsm_Data(amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &ref_ratio)
Definition: ERF_LandSurface.H:110
@ Turb_lengthscale
Definition: ERF_IndexDefines.H:180
@ Mom_h
Definition: ERF_IndexDefines.H:170
@ Theta_h
Definition: ERF_IndexDefines.H:171
@ qpg
Definition: ERF_Morrison.H:41
@ qps
Definition: ERF_Morrison.H:40
@ qpr
Definition: ERF_Morrison.H:39
void erf_dervortx(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:200
void erf_dervorty(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &geomdata, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:228
void erf_dermagvel(const amrex::Box &bx, amrex::FArrayBox &derfab, int dcomp, int ncomp, const amrex::FArrayBox &datfab, const amrex::Geometry &, amrex::Real, const int *, const int)
Definition: ERF_Derive.cpp:319
void erf_dernull(const Box &, FArrayBox &, int, int, const FArrayBox &, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:39
void erf_dertemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:91
void erf_derKE(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:186
void erf_dermoisttemp(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:113
void erf_dersoundspeed(const Box &bx, FArrayBox &derfab, int, int, const FArrayBox &datfab, const Geometry &, Real, const int *, const int)
Definition: ERF_Derive.cpp:58
real(c_double), parameter g
Definition: ERF_module_model_constants.F90:19
Here is the call graph for this function:

◆ write_1D_profiles()

void ERF::write_1D_profiles ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Parameters
timeCurrent time
18 {
19  BL_PROFILE("ERF::write_1D_profiles()");
20 
21  if (NumDataLogs() > 1)
22  {
23  // Define the 1d arrays we will need
24  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
25  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
26  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
27  Gpu::HostVector<Real> h_avg_wthv;
28  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
29  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
30  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
31  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
32  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
33  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
34 
35  if (NumDataLogs() > 1) {
37  h_avg_u, h_avg_v, h_avg_w,
38  h_avg_rho, h_avg_th, h_avg_ksgs,
39  h_avg_Kmv, h_avg_Khv,
40  h_avg_qv, h_avg_qc, h_avg_qr,
41  h_avg_wqv, h_avg_wqc, h_avg_wqr,
42  h_avg_qi, h_avg_qs, h_avg_qg,
43  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
44  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
45  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
46  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
47  h_avg_wthv);
48  }
49 
50  if (NumDataLogs() > 3 && time > 0.) {
51  derive_stress_profiles(h_avg_tau11, h_avg_tau12, h_avg_tau13,
52  h_avg_tau22, h_avg_tau23, h_avg_tau33,
53  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
54  h_avg_sgsdiss);
55  }
56 
57  int hu_size = h_avg_u.size();
58 
59  auto const& dx = geom[0].CellSizeArray();
60  if (ParallelDescriptor::IOProcessor()) {
61  if (NumDataLogs() > 1) {
62  std::ostream& data_log1 = DataLog(1);
63  if (data_log1.good()) {
64  // Write the quantities at this time
65  for (int k = 0; k < hu_size; k++) {
66  Real z;
67  if (zlevels_stag[0].size() > 1) {
68  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
69  } else {
70  z = (k + 0.5)* dx[2];
71  }
72  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
73  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
74  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
75  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
76  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
77  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
78  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
79  << std::endl;
80  } // loop over z
81  } // if good
82  } // NumDataLogs
83 
84  if (NumDataLogs() > 2) {
85  std::ostream& data_log2 = DataLog(2);
86  if (data_log2.good()) {
87  // Write the perturbational quantities at this time
88  for (int k = 0; k < hu_size; k++) {
89  Real z;
90  if (zlevels_stag[0].size() > 1) {
91  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
92  } else {
93  z = (k + 0.5)* dx[2];
94  }
95  Real thv = h_avg_th[k] * (1 + 0.61*h_avg_qv[k] - h_avg_qc[k] - h_avg_qr[k]);
96  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
97  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
98  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " "
99  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " "
100  << h_avg_uw[k] - h_avg_u[k]*h_avg_w[k] << " "
101  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " "
102  << h_avg_vw[k] - h_avg_v[k]*h_avg_w[k] << " "
103  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " "
104  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " "
105  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " "
106  << h_avg_wth[k] - h_avg_w[k]*h_avg_th[k] << " "
107  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " "
108  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
109  // - <u_i u_i> * <u_j>
110  // - 2*<u_i> * <u_i u_j>
111  // + 2*<u_i>*<u_i> * <u_j>
112  << h_avg_uiuiu[k]
113  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_u[k]
114  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + h_avg_w[k]*h_avg_uw[k])
115  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_u[k]
116  << " " // (u'_i u'_i)u'
117  << h_avg_uiuiv[k]
118  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_v[k]
119  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + h_avg_w[k]*h_avg_vw[k])
120  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_v[k]
121  << " " // (u'_i u'_i)v'
122  << h_avg_uiuiw[k]
123  - (h_avg_uu[k] + h_avg_vv[k] + h_avg_ww[k])*h_avg_w[k]
124  - 2*(h_avg_u[k]*h_avg_uw[k] + h_avg_v[k]*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
125  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
126  << " " // (u'_i u'_i)w'
127  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " "
128  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " "
129  << h_avg_pw[k] - h_avg_p[k]*h_avg_w[k] << " "
130  << h_avg_wqv[k] - h_avg_qv[k]*h_avg_w[k] << " "
131  << h_avg_wqc[k] - h_avg_qc[k]*h_avg_w[k] << " "
132  << h_avg_wqr[k] - h_avg_qr[k]*h_avg_w[k] << " "
133  << h_avg_wthv[k] - h_avg_w[k]*thv
134  << std::endl;
135  } // loop over z
136  } // if good
137  } // NumDataLogs
138 
139  if (NumDataLogs() > 3 && time > 0.) {
140  std::ostream& data_log3 = DataLog(3);
141  if (data_log3.good()) {
142  // Write the average stresses
143  for (int k = 0; k < hu_size; k++) {
144  Real z;
145  if (zlevels_stag[0].size() > 1) {
146  z = 0.5 * (zlevels_stag[0][k] + zlevels_stag[0][k+1]);
147  } else {
148  z = (k + 0.5)* dx[2];
149  }
150  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
151  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
152  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
153  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
154  << h_avg_sgshfx[k] << " "
155  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
156  << h_avg_sgsdiss[k]
157  << std::endl;
158  } // loop over z
159  } // if good
160  } // if (NumDataLogs() > 3)
161  } // if IOProcessor
162  } // if (NumDataLogs() > 1)
163 }
void derive_diag_profiles(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles.cpp:190
void derive_stress_profiles(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles.cpp:475

◆ write_1D_profiles_stag()

void ERF::write_1D_profiles_stag ( amrex::Real  time)

Writes 1-dimensional averaged quantities as profiles to output log files at the given time.

Quantities are output at their native grid locations. Therefore, w and associated flux quantities <(•)'w'>, tau13, and tau23 (where '•' includes u, v, p, theta, ...) will be output at staggered heights (i.e., coincident with z faces) rather than cell-center heights to avoid performing additional averaging. Unstaggered (i.e., cell-centered) quantities are output alongside staggered quantities at the lower cell faces in the log file; these quantities will have a zero value at the big end, corresponding to k=Nz+1.

The structure of file should follow ERF_Write1DProfiles.cpp

Parameters
timeCurrent time
26 {
27  BL_PROFILE("ERF::write_1D_profiles()");
28 
29  if (NumDataLogs() > 1)
30  {
31  // Define the 1d arrays we will need
32  Gpu::HostVector<Real> h_avg_u, h_avg_v, h_avg_w;
33  Gpu::HostVector<Real> h_avg_rho, h_avg_th, h_avg_ksgs, h_avg_Kmv, h_avg_Khv;
34  Gpu::HostVector<Real> h_avg_qv, h_avg_qc, h_avg_qr, h_avg_wqv, h_avg_wqc, h_avg_wqr, h_avg_qi, h_avg_qs, h_avg_qg;
35  Gpu::HostVector<Real> h_avg_wthv;
36  Gpu::HostVector<Real> h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth;
37  Gpu::HostVector<Real> h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww;
38  Gpu::HostVector<Real> h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw;
39  Gpu::HostVector<Real> h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw;
40  Gpu::HostVector<Real> h_avg_tau11, h_avg_tau12, h_avg_tau13, h_avg_tau22, h_avg_tau23, h_avg_tau33;
41  Gpu::HostVector<Real> h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx, h_avg_sgsdiss; // only output tau_{theta,w} and epsilon for now
42 
43  if (NumDataLogs() > 1) {
45  h_avg_u, h_avg_v, h_avg_w,
46  h_avg_rho, h_avg_th, h_avg_ksgs,
47  h_avg_Kmv, h_avg_Khv,
48  h_avg_qv, h_avg_qc, h_avg_qr,
49  h_avg_wqv, h_avg_wqc, h_avg_wqr,
50  h_avg_qi, h_avg_qs, h_avg_qg,
51  h_avg_uu, h_avg_uv, h_avg_uw, h_avg_vv, h_avg_vw, h_avg_ww,
52  h_avg_uth, h_avg_vth, h_avg_wth, h_avg_thth,
53  h_avg_uiuiu, h_avg_uiuiv, h_avg_uiuiw,
54  h_avg_p, h_avg_pu, h_avg_pv, h_avg_pw,
55  h_avg_wthv);
56  }
57 
58  if (NumDataLogs() > 3 && time > 0.) {
59  derive_stress_profiles_stag(h_avg_tau11, h_avg_tau12, h_avg_tau13,
60  h_avg_tau22, h_avg_tau23, h_avg_tau33,
61  h_avg_sgshfx, h_avg_sgsq1fx, h_avg_sgsq2fx,
62  h_avg_sgsdiss);
63  }
64 
65  int unstag_size = h_avg_w.size() - 1; // _un_staggered heights
66 
67  auto const& dx = geom[0].CellSizeArray();
68  if (ParallelDescriptor::IOProcessor()) {
69  if (NumDataLogs() > 1) {
70  std::ostream& data_log1 = DataLog(1);
71  if (data_log1.good()) {
72  // Write the quantities at this time
73  for (int k = 0; k < unstag_size; k++) {
74  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
75  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
76  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
77  << h_avg_u[k] << " " << h_avg_v[k] << " " << h_avg_w[k] << " "
78  << h_avg_rho[k] << " " << h_avg_th[k] << " " << h_avg_ksgs[k] << " "
79  << h_avg_Kmv[k] << " " << h_avg_Khv[k] << " "
80  << h_avg_qv[k] << " " << h_avg_qc[k] << " " << h_avg_qr[k] << " "
81  << h_avg_qi[k] << " " << h_avg_qs[k] << " " << h_avg_qg[k]
82  << std::endl;
83  } // loop over z
84  // Write top face values
85  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
86  data_log1 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
87  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
88  << 0 << " " << 0 << " " << h_avg_w[unstag_size] << " "
89  << 0 << " " << 0 << " " << 0 << " " // rho, theta, ksgs
90  << 0 << " " << 0 << " " // Kmv, Khv
91  << 0 << " " << 0 << " " << 0 << " " // qv, qc, qr
92  << 0 << " " << 0 << " " << 0 // qi, qs, qg
93  << std::endl;
94  } // if good
95  } // NumDataLogs
96 
97  if (NumDataLogs() > 2) {
98  std::ostream& data_log2 = DataLog(2);
99  if (data_log2.good()) {
100  // Write the perturbational quantities at this time
101  // For surface values (k=0), assume w = uw = vw = ww = 0
102  Real w_cc = h_avg_w[1] / 2; // w at first cell center
103  Real uw_cc = h_avg_uw[1] / 2; // u*w at first cell center
104  Real vw_cc = h_avg_vw[1] / 2; // v*w at first cell center
105  Real ww_cc = h_avg_ww[1] / 2; // w*w at first cell center
106  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
107  << std::setw(datwidth) << std::setprecision(datprecision) << 0 << " "
108  << h_avg_uu[0] - h_avg_u[0]*h_avg_u[0] << " " // u'u'
109  << h_avg_uv[0] - h_avg_u[0]*h_avg_v[0] << " " // u'v'
110  << 0 << " " // u'w'
111  << h_avg_vv[0] - h_avg_v[0]*h_avg_v[0] << " " // v'v'
112  << 0 << " " // v'w'
113  << 0 << " " // w'w'
114  << h_avg_uth[0] - h_avg_u[0]*h_avg_th[0] << " " // u'th'
115  << h_avg_vth[0] - h_avg_v[0]*h_avg_th[0] << " " // v'th'
116  << 0 << " " // w'th'
117  << h_avg_thth[0] - h_avg_th[0]*h_avg_th[0] << " " // th'th'
118  << h_avg_uiuiu[0]
119  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_u[0]
120  - 2*(h_avg_u[0]*h_avg_uu[0] + h_avg_v[0]*h_avg_uv[0] + w_cc*uw_cc)
121  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_u[0]
122  << " " // (u'_i u'_i)u'
123  << h_avg_uiuiv[0]
124  - (h_avg_uu[0] + h_avg_vv[0] + ww_cc)*h_avg_v[0]
125  - 2*(h_avg_u[0]*h_avg_uv[0] + h_avg_v[0]*h_avg_vv[0] + w_cc*vw_cc)
126  + 2*(h_avg_u[0]*h_avg_u[0] + h_avg_v[0]*h_avg_v[0] + w_cc*w_cc)*h_avg_v[0]
127  << " " // (u'_i u'_i)v'
128  << 0 << " " // (u'_i u'_i)w'
129  << h_avg_pu[0] - h_avg_p[0]*h_avg_u[0] << " " // p'u'
130  << h_avg_pv[0] - h_avg_p[0]*h_avg_v[0] << " " // p'v'
131  << 0 << " " // p'w'
132  << 0 << " " // qv'w'
133  << 0 << " " // qc'w'
134  << 0 << " " // qr'w'
135  << 0 // thv'w'
136  << std::endl;
137 
138  // For internal values, interpolate scalar quantities to faces
139  for (int k = 1; k < unstag_size; k++) {
140  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
141  Real uface = 0.5*(h_avg_u[k] + h_avg_u[k-1]);
142  Real vface = 0.5*(h_avg_v[k] + h_avg_v[k-1]);
143  Real thface = 0.5*(h_avg_th[k] + h_avg_th[k-1]);
144  Real pface = 0.5*(h_avg_p[k] + h_avg_p[k-1]);
145  Real qvface = 0.5*(h_avg_qv[k] + h_avg_qv[k-1]);
146  Real qcface = 0.5*(h_avg_qc[k] + h_avg_qc[k-1]);
147  Real qrface = 0.5*(h_avg_qr[k] + h_avg_qr[k-1]);
148  Real uuface = 0.5*(h_avg_uu[k] + h_avg_uu[k-1]);
149  Real vvface = 0.5*(h_avg_vv[k] + h_avg_vv[k-1]);
150  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
151  w_cc = 0.5*(h_avg_w[k-1] + h_avg_w[k]);
152  uw_cc = 0.5*(h_avg_uw[k-1] + h_avg_uw[k]);
153  vw_cc = 0.5*(h_avg_vw[k-1] + h_avg_vw[k]);
154  ww_cc = 0.5*(h_avg_ww[k-1] + h_avg_ww[k]);
155  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
156  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
157  << h_avg_uu[k] - h_avg_u[k]*h_avg_u[k] << " " // u'u'
158  << h_avg_uv[k] - h_avg_u[k]*h_avg_v[k] << " " // u'v'
159  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
160  << h_avg_vv[k] - h_avg_v[k]*h_avg_v[k] << " " // v'v'
161  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
162  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
163  << h_avg_uth[k] - h_avg_u[k]*h_avg_th[k] << " " // u'th'
164  << h_avg_vth[k] - h_avg_v[k]*h_avg_th[k] << " " // v'th'
165  << h_avg_wth[k] - h_avg_w[k]*thface << " " // w'th'
166  << h_avg_thth[k] - h_avg_th[k]*h_avg_th[k] << " " // th'th'
167  // Note: <u'_i u'_i u'_j> = <u_i u_i u_j>
168  // - <u_i u_i> * <u_j>
169  // - 2*<u_i> * <u_i u_j>
170  // + 2*<u_i>*<u_i> * <u_j>
171  << h_avg_uiuiu[k]
172  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_u[k]
173  - 2*(h_avg_u[k]*h_avg_uu[k] + h_avg_v[k]*h_avg_uv[k] + w_cc*uw_cc)
174  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_u[k]
175  << " " // cell-centered (u'_i u'_i)u'
176  << h_avg_uiuiv[k]
177  - (h_avg_uu[k] + h_avg_vv[k] + ww_cc)*h_avg_v[k]
178  - 2*(h_avg_u[k]*h_avg_uv[k] + h_avg_v[k]*h_avg_vv[k] + w_cc*vw_cc)
179  + 2*(h_avg_u[k]*h_avg_u[k] + h_avg_v[k]*h_avg_v[k] + w_cc*w_cc)*h_avg_v[k]
180  << " " // cell-centered (u'_i u'_i)v'
181  << h_avg_uiuiw[k]
182  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
183  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
184  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
185  << " " // face-centered (u'_i u'_i)w'
186  << h_avg_pu[k] - h_avg_p[k]*h_avg_u[k] << " " // cell-centered p'u'
187  << h_avg_pv[k] - h_avg_p[k]*h_avg_v[k] << " " // cell-centered p'v'
188  << h_avg_pw[k] - pface*h_avg_w[k] << " " // face-centered p'w'
189  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
190  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
191  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
192  << h_avg_wthv[k] - thvface*h_avg_w[k]
193  << std::endl;
194  } // loop over z
195 
196  // Write top face values, extrapolating scalar quantities
197  const int k = unstag_size;
198  Real uface = 1.5*h_avg_u[k-1] - 0.5*h_avg_u[k-2];
199  Real vface = 1.5*h_avg_v[k-1] - 0.5*h_avg_v[k-2];
200  Real thface = 1.5*h_avg_th[k-1] - 0.5*h_avg_th[k-2];
201  Real pface = 1.5*h_avg_p[k-1] - 0.5*h_avg_p[k-2];
202  Real qvface = 1.5*h_avg_qv[k-1] - 0.5*h_avg_qv[k-2];
203  Real qcface = 1.5*h_avg_qc[k-1] - 0.5*h_avg_qc[k-2];
204  Real qrface = 1.5*h_avg_qr[k-1] - 0.5*h_avg_qr[k-2];
205  Real uuface = 1.5*h_avg_uu[k-1] - 0.5*h_avg_uu[k-2];
206  Real vvface = 1.5*h_avg_vv[k-1] - 0.5*h_avg_vv[k-2];
207  Real thvface = thface * (1 + 0.61*qvface - qcface - qrface);
208  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
209  data_log2 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
210  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
211  << 0 << " " // u'u'
212  << 0 << " " // u'v'
213  << h_avg_uw[k] - uface*h_avg_w[k] << " " // u'w'
214  << 0 << " " // v'v'
215  << h_avg_vw[k] - vface*h_avg_w[k] << " " // v'w'
216  << h_avg_ww[k] - h_avg_w[k]*h_avg_w[k] << " " // w'w'
217  << 0 << " " // u'th'
218  << 0 << " " // v'th'
219  << h_avg_wth[k] - thface*h_avg_w[k] << " " // w'th'
220  << 0 << " " // th'th'
221  << 0 << " " // (u'_i u'_i)u'
222  << 0 << " " // (u'_i u'_i)v'
223  << h_avg_uiuiw[k]
224  - (uuface + vvface + h_avg_ww[k])*h_avg_w[k]
225  - 2*(uface*h_avg_uw[k] + vface*h_avg_vw[k] + h_avg_w[k]*h_avg_ww[k])
226  + 2*(uface*uface + vface*vface + h_avg_w[k]*h_avg_w[k])*h_avg_w[k]
227  << " " // (u'_i u'_i)w'
228  << 0 << " " // pu'
229  << 0 << " " // pv'
230  << h_avg_pw[k] - pface*h_avg_w[k] << " " // pw'
231  << h_avg_wqv[k] - qvface*h_avg_w[k] << " "
232  << h_avg_wqc[k] - qcface*h_avg_w[k] << " "
233  << h_avg_wqr[k] - qrface*h_avg_w[k] << " "
234  << h_avg_wthv[k] - thvface*h_avg_w[k]
235  << std::endl;
236  } // if good
237  } // NumDataLogs
238 
239  if (NumDataLogs() > 3 && time > 0.) {
240  std::ostream& data_log3 = DataLog(3);
241  if (data_log3.good()) {
242  // Write the average stresses
243  for (int k = 0; k < unstag_size; k++) {
244  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][k] : k * dx[2];
245  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
246  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
247  << h_avg_tau11[k] << " " << h_avg_tau12[k] << " " << h_avg_tau13[k] << " "
248  << h_avg_tau22[k] << " " << h_avg_tau23[k] << " " << h_avg_tau33[k] << " "
249  << h_avg_sgshfx[k] << " "
250  << h_avg_sgsq1fx[k] << " " << h_avg_sgsq2fx[k] << " "
251  << h_avg_sgsdiss[k]
252  << std::endl;
253  } // loop over z
254  // Write top face values
255  Real NANval = 0.0;
256  Real z = (zlevels_stag[0].size() > 1) ? zlevels_stag[0][unstag_size] : unstag_size * dx[2];
257  data_log3 << std::setw(datwidth) << std::setprecision(timeprecision) << time << " "
258  << std::setw(datwidth) << std::setprecision(datprecision) << z << " "
259  << NANval << " " << NANval << " " << h_avg_tau13[unstag_size] << " "
260  << NANval << " " << h_avg_tau23[unstag_size] << " " << NANval << " "
261  << h_avg_sgshfx[unstag_size] << " "
262  << h_avg_sgsq1fx[unstag_size] << " " << h_avg_sgsq2fx[unstag_size] << " "
263  << NANval
264  << std::endl;
265  } // if good
266  } // if (NumDataLogs() > 3)
267  } // if IOProcessor
268  } // if (NumDataLogs() > 1)
269 }
void derive_diag_profiles_stag(amrex::Real time, amrex::Gpu::HostVector< amrex::Real > &h_avg_u, amrex::Gpu::HostVector< amrex::Real > &h_avg_v, amrex::Gpu::HostVector< amrex::Real > &h_avg_w, amrex::Gpu::HostVector< amrex::Real > &h_avg_rho, amrex::Gpu::HostVector< amrex::Real > &h_avg_th, amrex::Gpu::HostVector< amrex::Real > &h_avg_ksgs, amrex::Gpu::HostVector< amrex::Real > &h_avg_Kmv, amrex::Gpu::HostVector< amrex::Real > &h_avg_Khv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qv, amrex::Gpu::HostVector< amrex::Real > &h_avg_qc, amrex::Gpu::HostVector< amrex::Real > &h_avg_qr, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqv, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqc, amrex::Gpu::HostVector< amrex::Real > &h_avg_wqr, amrex::Gpu::HostVector< amrex::Real > &h_avg_qi, amrex::Gpu::HostVector< amrex::Real > &h_avg_qs, amrex::Gpu::HostVector< amrex::Real > &h_avg_qg, amrex::Gpu::HostVector< amrex::Real > &h_avg_uu, amrex::Gpu::HostVector< amrex::Real > &h_avg_uv, amrex::Gpu::HostVector< amrex::Real > &h_avg_uw, amrex::Gpu::HostVector< amrex::Real > &h_avg_vv, amrex::Gpu::HostVector< amrex::Real > &h_avg_vw, amrex::Gpu::HostVector< amrex::Real > &h_avg_ww, amrex::Gpu::HostVector< amrex::Real > &h_avg_uth, amrex::Gpu::HostVector< amrex::Real > &h_avg_vth, amrex::Gpu::HostVector< amrex::Real > &h_avg_wth, amrex::Gpu::HostVector< amrex::Real > &h_avg_thth, amrex::Gpu::HostVector< amrex::Real > &h_avg_ku, amrex::Gpu::HostVector< amrex::Real > &h_avg_kv, amrex::Gpu::HostVector< amrex::Real > &h_avg_kw, amrex::Gpu::HostVector< amrex::Real > &h_avg_p, amrex::Gpu::HostVector< amrex::Real > &h_avg_pu, amrex::Gpu::HostVector< amrex::Real > &h_avg_pv, amrex::Gpu::HostVector< amrex::Real > &h_avg_pw, amrex::Gpu::HostVector< amrex::Real > &h_avg_wthv)
Definition: ERF_Write1DProfiles_stag.cpp:296
void derive_stress_profiles_stag(amrex::Gpu::HostVector< amrex::Real > &h_avg_tau11, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau12, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau13, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau22, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau23, amrex::Gpu::HostVector< amrex::Real > &h_avg_tau33, amrex::Gpu::HostVector< amrex::Real > &h_avg_hfx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q1fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_q2fx3, amrex::Gpu::HostVector< amrex::Real > &h_avg_diss)
Definition: ERF_Write1DProfiles_stag.cpp:605

◆ writeBuildInfo()

void ERF::writeBuildInfo ( std::ostream &  os)
static
138 {
139  std::string PrettyLine = std::string(78, '=') + "\n";
140  std::string OtherLine = std::string(78, '-') + "\n";
141  std::string SkipSpace = std::string(8, ' ');
142 
143  // build information
144  os << PrettyLine;
145  os << " ERF Build Information\n";
146  os << PrettyLine;
147 
148  os << "build date: " << buildInfoGetBuildDate() << "\n";
149  os << "build machine: " << buildInfoGetBuildMachine() << "\n";
150  os << "build dir: " << buildInfoGetBuildDir() << "\n";
151  os << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
152 
153  os << "\n";
154 
155  os << "COMP: " << buildInfoGetComp() << "\n";
156  os << "COMP version: " << buildInfoGetCompVersion() << "\n";
157 
158  os << "C++ compiler: " << buildInfoGetCXXName() << "\n";
159  os << "C++ flags: " << buildInfoGetCXXFlags() << "\n";
160 
161  os << "\n";
162 
163  os << "Link flags: " << buildInfoGetLinkFlags() << "\n";
164  os << "Libraries: " << buildInfoGetLibraries() << "\n";
165 
166  os << "\n";
167 
168  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
169  os << buildInfoGetModuleName(n) << ": "
170  << buildInfoGetModuleVal(n) << "\n";
171  }
172 
173  os << "\n";
174  const char* githash1 = buildInfoGetGitHash(1);
175  const char* githash2 = buildInfoGetGitHash(2);
176  if (strlen(githash1) > 0) {
177  os << "ERF git hash: " << githash1 << "\n";
178  }
179  if (strlen(githash2) > 0) {
180  os << "AMReX git hash: " << githash2 << "\n";
181  }
182 
183  const char* buildgithash = buildInfoGetBuildGitHash();
184  const char* buildgitname = buildInfoGetBuildGitName();
185  if (strlen(buildgithash) > 0) {
186  os << buildgitname << " git hash: " << buildgithash << "\n";
187  }
188 
189  os << "\n";
190  os << " ERF Compile time variables: \n";
191 
192  os << "\n";
193  os << " ERF Defines: \n";
194 #ifdef _OPENMP
195  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "ON"
196  << std::endl;
197 #else
198  os << std::setw(35) << std::left << "_OPENMP " << std::setw(6) << "OFF"
199  << std::endl;
200 #endif
201 
202 #ifdef MPI_VERSION
203  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
204  << MPI_VERSION << std::endl;
205 #else
206  os << std::setw(35) << std::left << "MPI_VERSION " << std::setw(6)
207  << "UNDEFINED" << std::endl;
208 #endif
209 
210 #ifdef MPI_SUBVERSION
211  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
212  << MPI_SUBVERSION << std::endl;
213 #else
214  os << std::setw(35) << std::left << "MPI_SUBVERSION " << std::setw(6)
215  << "UNDEFINED" << std::endl;
216 #endif
217 
218  os << "\n\n";
219 }

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ WriteCheckpointFile()

void ERF::WriteCheckpointFile ( ) const

ERF function for writing a checkpoint file.

27 {
28  auto dCheckTime0 = amrex::second();
29 
30  // chk00010 write a checkpoint file with this root directory
31  // chk00010/Header this contains information you need to save (e.g., finest_level, t_new, etc.) and also
32  // the BoxArrays at each level
33  // chk00010/Level_0/
34  // chk00010/Level_1/
35  // etc. these subdirectories will hold the MultiFab data at each level of refinement
36 
37  // checkpoint file name, e.g., chk00010
38  const std::string& checkpointname = Concatenate(check_file,istep[0],5);
39 
40  Print() << "Writing native checkpoint " << checkpointname << "\n";
41 
42  const int nlevels = finest_level+1;
43 
44  // ---- prebuild a hierarchy of directories
45  // ---- dirName is built first. if dirName exists, it is renamed. then build
46  // ---- dirName/subDirPrefix_0 .. dirName/subDirPrefix_nlevels-1
47  // ---- if callBarrier is true, call ParallelDescriptor::Barrier()
48  // ---- after all directories are built
49  // ---- ParallelDescriptor::IOProcessor() creates the directories
50  PreBuildDirectorHierarchy(checkpointname, "Level_", nlevels, true);
51 
52  int ncomp_cons = vars_new[0][Vars::cons].nComp();
53 
54  // write Header file
55  if (ParallelDescriptor::IOProcessor()) {
56 
57  std::string HeaderFileName(checkpointname + "/Header");
58  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
59  std::ofstream HeaderFile;
60  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
61  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
62  std::ofstream::trunc |
63  std::ofstream::binary);
64  if(! HeaderFile.good()) {
65  FileOpenFailed(HeaderFileName);
66  }
67 
68  HeaderFile.precision(17);
69 
70  // write out title line
71  HeaderFile << "Checkpoint file for ERF\n";
72 
73  // write out finest_level
74  HeaderFile << finest_level << "\n";
75 
76  // write the number of components
77  // for each variable we store
78 
79  // conservative, cell-centered vars
80  HeaderFile << ncomp_cons << "\n";
81 
82  // x-velocity on faces
83  HeaderFile << 1 << "\n";
84 
85  // y-velocity on faces
86  HeaderFile << 1 << "\n";
87 
88  // z-velocity on faces
89  HeaderFile << 1 << "\n";
90 
91  // write out array of istep
92  for (int i = 0; i < istep.size(); ++i) {
93  HeaderFile << istep[i] << " ";
94  }
95  HeaderFile << "\n";
96 
97  // write out array of dt
98  for (int i = 0; i < dt.size(); ++i) {
99  HeaderFile << dt[i] << " ";
100  }
101  HeaderFile << "\n";
102 
103  // write out array of t_new
104  for (int i = 0; i < t_new.size(); ++i) {
105  HeaderFile << t_new[i] << " ";
106  }
107  HeaderFile << "\n";
108 
109  // write the BoxArray at each level
110  for (int lev = 0; lev <= finest_level; ++lev) {
111  boxArray(lev).writeOn(HeaderFile);
112  HeaderFile << '\n';
113  }
114 
115  // Write separate file that tells how many components we have of the base state
116  std::string BaseStateFileName(checkpointname + "/num_base_state_comps");
117  std::ofstream BaseStateFile;
118  BaseStateFile.open(BaseStateFileName.c_str(), std::ofstream::out |
119  std::ofstream::trunc |
120  std::ofstream::binary);
121  if(! BaseStateFile.good()) {
122  FileOpenFailed(BaseStateFileName);
123  } else {
124  // write out number of components in base state
125  BaseStateFile << BaseState::num_comps << "\n";
126  BaseStateFile << base_state[0].nGrowVect() << "\n";
127  }
128  }
129 
130  // write the MultiFab data to, e.g., chk00010/Level_0/
131  // Here we make copies of the MultiFab with no ghost cells
132  for (int lev = 0; lev <= finest_level; ++lev)
133  {
134  MultiFab cons(grids[lev],dmap[lev],ncomp_cons,0);
135  MultiFab::Copy(cons,vars_new[lev][Vars::cons],0,0,ncomp_cons,0);
136  VisMF::Write(cons, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Cell"));
137 
138  MultiFab xvel(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
139  MultiFab::Copy(xvel,vars_new[lev][Vars::xvel],0,0,1,0);
140  VisMF::Write(xvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "XFace"));
141 
142  MultiFab yvel(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
143  MultiFab::Copy(yvel,vars_new[lev][Vars::yvel],0,0,1,0);
144  VisMF::Write(yvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "YFace"));
145 
146  MultiFab zvel(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
147  MultiFab::Copy(zvel,vars_new[lev][Vars::zvel],0,0,1,0);
148  VisMF::Write(zvel, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "ZFace"));
149 
150  if (solverChoice.anelastic[lev] == 1) {
151  MultiFab ppinc(grids[lev],dmap[lev],1,0);
152  MultiFab::Copy(ppinc,pp_inc[lev],0,0,1,0);
153  VisMF::Write(ppinc, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PP_Inc"));
154 
155  MultiFab gpx(convert(grids[lev],IntVect(1,0,0)),dmap[lev],1,0);
156  MultiFab::Copy(gpx,gradp[lev][GpVars::gpx],0,0,1,0);
157  VisMF::Write(gpx, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpx"));
158 
159  MultiFab gpy(convert(grids[lev],IntVect(0,1,0)),dmap[lev],1,0);
160  MultiFab::Copy(gpy,gradp[lev][GpVars::gpy],0,0,1,0);
161  VisMF::Write(gpy, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpy"));
162 
163  MultiFab gpz(convert(grids[lev],IntVect(0,0,1)),dmap[lev],1,0);
164  MultiFab::Copy(gpz,gradp[lev][GpVars::gpz],0,0,1,0);
165  VisMF::Write(gpz, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Gpz"));
166  }
167 
168  // Note that we write the ghost cells of the base state (unlike above)
169  IntVect ng_base = base_state[lev].nGrowVect();
170  int ncomp_base = base_state[lev].nComp();
171  MultiFab base(grids[lev],dmap[lev],ncomp_base,ng_base);
172  MultiFab::Copy(base,base_state[lev],0,0,ncomp_base,ng_base);
173  VisMF::Write(base, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "BaseState"));
174 
175  if (SolverChoice::mesh_type != MeshType::ConstantDz) {
176  // Note that we also write the ghost cells of z_phys_nd
177  IntVect ng = z_phys_nd[lev]->nGrowVect();
178  MultiFab z_height(convert(grids[lev],IntVect(1,1,1)),dmap[lev],1,ng);
179  MultiFab::Copy(z_height,*z_phys_nd[lev],0,0,1,ng);
180  VisMF::Write(z_height, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z_Phys_nd"));
181  }
182 
183  // We must read and write qmoist with ghost cells because we don't directly impose BCs on these vars
184  // Write the moisture model restart variables
185  std::vector<int> qmoist_indices;
186  std::vector<std::string> qmoist_names;
187  micro->Get_Qmoist_Restart_Vars(lev, solverChoice, qmoist_indices, qmoist_names);
188  int qmoist_nvar = qmoist_indices.size();
189  for (int var = 0; var < qmoist_nvar; var++) {
190  const int ncomp = 1;
191  IntVect ng_moist = qmoist[lev][qmoist_indices[var]]->nGrowVect();
192  MultiFab moist_vars(grids[lev],dmap[lev],ncomp,ng_moist);
193  MultiFab::Copy(moist_vars,*(qmoist[lev][qmoist_indices[var]]),0,0,ncomp,ng_moist);
194  VisMF::Write(moist_vars, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", qmoist_names[var]));
195  }
196 
197 #if defined(ERF_USE_WINDFARM)
198  if(solverChoice.windfarm_type == WindFarmType::Fitch or
199  solverChoice.windfarm_type == WindFarmType::EWP or
200  solverChoice.windfarm_type == WindFarmType::SimpleAD){
201  IntVect ng_turb = Nturb[lev].nGrowVect();
202  MultiFab mf_Nturb(grids[lev],dmap[lev],1,ng_turb);
203  MultiFab::Copy(mf_Nturb,Nturb[lev],0,0,1,ng_turb);
204  VisMF::Write(mf_Nturb, amrex::MultiFabFileFullPrefix(lev, checkpointname, "Level_", "NumTurb"));
205  }
206 #endif
207 
208  if (solverChoice.lsm_type != LandSurfaceType::None) {
209  for (int mvar(0); mvar<lsm_data[lev].size(); ++mvar) {
210  BoxArray ba = lsm_data[lev][mvar]->boxArray();
211  DistributionMapping dm = lsm_data[lev][mvar]->DistributionMap();
212  IntVect ng = lsm_data[lev][mvar]->nGrowVect();
213  int nvar = lsm_data[lev][mvar]->nComp();
214  MultiFab lsm_vars(ba,dm,nvar,ng);
215  MultiFab::Copy(lsm_vars,*(lsm_data[lev][mvar]),0,0,nvar,ng);
216  VisMF::Write(lsm_vars, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LsmVars"));
217  }
218  }
219 
220  IntVect ng = mapfac[lev][MapFacType::m_x]->nGrowVect();
221  MultiFab mf_m(ba2d[lev],dmap[lev],1,ng);
222  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_x],0,0,1,ng);
223  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_mx"));
224 
225 #if 0
227  MultiFab::Copy(mf_m,*mapfac[lev][MapFacType::m_y],0,0,1,ng);
228  VisMF::Write(mf_m, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_my"));
229  }
230 #endif
231 
232  ng = mapfac[lev][MapFacType::u_x]->nGrowVect();
233  MultiFab mf_u(convert(ba2d[lev],IntVect(1,0,0)),dmap[lev],1,ng);
234  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_x],0,0,1,ng);
235  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_ux"));
236 
237 #if 0
239  MultiFab::Copy(mf_u,*mapfac[lev][MapFacType::u_y],0,0,1,ng);
240  VisMF::Write(mf_u, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_uy"));
241  }
242 #endif
243 
244  ng = mapfac[lev][MapFacType::v_x]->nGrowVect();
245  MultiFab mf_v(convert(ba2d[lev],IntVect(0,1,0)),dmap[lev],1,ng);
246  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_x],0,0,1,ng);
247  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vx"));
248 
249 #if 0
251  MultiFab::Copy(mf_v,*mapfac[lev][MapFacType::v_y],0,0,1,ng);
252  VisMF::Write(mf_v, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MapFactor_vy"));
253  }
254 #endif
255 
256  if (m_SurfaceLayer) {
257  amrex::Print() << "Writing SurfaceLayer variables at level " << lev << std::endl;
258  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
259  MultiFab m_var(ba2d[lev],dmap[lev],1,ng);
260  MultiFab* src = nullptr;
261 
262  // U*
263  src = m_SurfaceLayer->get_u_star(lev);
264  MultiFab::Copy(m_var,*src,0,0,1,ng);
265  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Ustar"));
266 
267  // W*
268  src = m_SurfaceLayer->get_w_star(lev);
269  MultiFab::Copy(m_var,*src,0,0,1,ng);
270  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Wstar"));
271 
272  // T*
273  src = m_SurfaceLayer->get_t_star(lev);
274  MultiFab::Copy(m_var,*src,0,0,1,ng);
275  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Tstar"));
276 
277  // Q*
278  src = m_SurfaceLayer->get_q_star(lev);
279  MultiFab::Copy(m_var,*src,0,0,1,ng);
280  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qstar"));
281 
282  // Olen
283  src = m_SurfaceLayer->get_olen(lev);
284  MultiFab::Copy(m_var,*src,0,0,1,ng);
285  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Olen"));
286 
287  // Qsurf
288  src = m_SurfaceLayer->get_q_surf(lev);
289  MultiFab::Copy(m_var,*src,0,0,1,ng);
290  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Qsurf"));
291 
292  // PBLH
293  src = m_SurfaceLayer->get_pblh(lev);
294  MultiFab::Copy(m_var,*src,0,0,1,ng);
295  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "PBLH"));
296 
297  // Z0
298  src = m_SurfaceLayer->get_z0(lev);
299  MultiFab::Copy(m_var,*src,0,0,1,ng);
300  VisMF::Write(m_var, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "Z0"));
301  }
302 
303  if (sst_lev[lev][0]) {
304  int ntimes = 1;
305  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
306  MultiFab sst_at_t(ba2d[lev],dmap[lev],1,ng);
307  for (int nt(0); nt<ntimes; ++nt) {
308  MultiFab::Copy(sst_at_t,*sst_lev[lev][nt],0,0,1,ng);
309  VisMF::Write(sst_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
310  "SST_" + std::to_string(nt)));
311  }
312  }
313 
314  if (tsk_lev[lev][0]) {
315  int ntimes = 1;
316  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
317  MultiFab tsk_at_t(ba2d[lev],dmap[lev],1,ng);
318  for (int nt(0); nt<ntimes; ++nt) {
319  MultiFab::Copy(tsk_at_t,*tsk_lev[lev][nt],0,0,1,ng);
320  VisMF::Write(tsk_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
321  "TSK_" + std::to_string(nt)));
322  }
323  }
324 
325  {
326  int ntimes = 1;
327  ng = vars_new[lev][Vars::cons].nGrowVect(); ng[2]=0;
328  MultiFab lmask_at_t(ba2d[lev],dmap[lev],1,ng);
329  for (int nt(0); nt<ntimes; ++nt) {
330  for (MFIter mfi(lmask_at_t); mfi.isValid(); ++mfi) {
331  const Box& bx = mfi.growntilebox();
332  Array4<int> const& src_arr = lmask_lev[lev][nt]->array(mfi);
333  Array4<Real> const& dst_arr = lmask_at_t.array(mfi);
334  ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k)
335  {
336  dst_arr(i,j,k) = Real(src_arr(i,j,k));
337  });
338  }
339  VisMF::Write(lmask_at_t, MultiFabFileFullPrefix(lev, checkpointname, "Level_",
340  "LMASK_" + std::to_string(nt)));
341  }
342  }
343 
344  IntVect ngv = ng; ngv[2] = 0;
345 
346  // Write lat/lon if it exists
347  if (lat_m[lev] && lon_m[lev] && solverChoice.has_lat_lon) {
348  amrex::Print() << "Writing Lat/Lon variables at level " << lev << std::endl;
349  MultiFab lat(ba2d[lev],dmap[lev],1,ngv);
350  MultiFab lon(ba2d[lev],dmap[lev],1,ngv);
351  MultiFab::Copy(lat,*lat_m[lev],0,0,1,ngv);
352  MultiFab::Copy(lon,*lon_m[lev],0,0,1,ngv);
353  VisMF::Write(lat, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LAT"));
354  VisMF::Write(lon, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "LON"));
355  }
356 
357 
358 #ifdef ERF_USE_NETCDF
359  // Write sinPhi and cosPhi if it exists
360  if (cosPhi_m[lev] && sinPhi_m[lev] && solverChoice.variable_coriolis) {
361  amrex::Print() << "Writing Coriolis factors at level " << lev << std::endl;
362  MultiFab sphi(ba2d[lev],dmap[lev],1,ngv);
363  MultiFab cphi(ba2d[lev],dmap[lev],1,ngv);
364  MultiFab::Copy(sphi,*sinPhi_m[lev],0,0,1,ngv);
365  MultiFab::Copy(cphi,*cosPhi_m[lev],0,0,1,ngv);
366  VisMF::Write(sphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "SinPhi"));
367  VisMF::Write(cphi, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "CosPhi"));
368  }
369 
370  if (solverChoice.use_real_bcs && solverChoice.init_type == InitType::WRFInput) {
371  amrex::Print() << "Writing C1H/C2H/MUB variables at level " << lev << std::endl;
372  MultiFab tmp1d(ba1d[0],dmap[0],1,0);
373 
374  MultiFab::Copy(tmp1d,*mf_C1H,0,0,1,0);
375  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C1H"));
376 
377  MultiFab::Copy(tmp1d,*mf_C2H,0,0,1,0);
378  VisMF::Write(tmp1d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "C2H"));
379 
380  MultiFab tmp2d(ba2d[0],dmap[0],1,mf_MUB->nGrowVect());
381 
382  MultiFab::Copy(tmp2d,*mf_MUB,0,0,1,mf_MUB->nGrowVect());
383  VisMF::Write(tmp2d, MultiFabFileFullPrefix(lev, checkpointname, "Level_", "MUB"));
384  }
385 #endif
386 
387  } // for lev
388 
389 #ifdef ERF_USE_PARTICLES
390  particleData.Checkpoint(checkpointname);
391 #endif
392 
393 #if 0
394 #ifdef ERF_USE_NETCDF
395  // Write bdy_data files
396  if ( ParallelDescriptor::IOProcessor() &&
397  ((solverChoice.init_type==InitType::WRFInput) || (solverChoice.init_type==InitType::Metgrid)) &&
399  {
400  // Vector dimensions
401  int num_time = bdy_data_xlo.size();
402  int num_var = bdy_data_xlo[0].size();
403 
404  // Open header file and write to it
405  std::ofstream bdy_h_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_H"));
406  bdy_h_file << std::setprecision(1) << std::fixed;
407  bdy_h_file << num_time << "\n";
408  bdy_h_file << num_var << "\n";
409  bdy_h_file << start_bdy_time << "\n";
410  bdy_h_file << bdy_time_interval << "\n";
411  bdy_h_file << real_width << "\n";
412  for (int ivar(0); ivar<num_var; ++ivar) {
413  bdy_h_file << bdy_data_xlo[0][ivar].box() << "\n";
414  bdy_h_file << bdy_data_xhi[0][ivar].box() << "\n";
415  bdy_h_file << bdy_data_ylo[0][ivar].box() << "\n";
416  bdy_h_file << bdy_data_yhi[0][ivar].box() << "\n";
417  }
418 
419  // Open data file and write to it
420  std::ofstream bdy_d_file(MultiFabFileFullPrefix(0, checkpointname, "Level_", "bdy_D"));
421  for (int itime(0); itime<num_time; ++itime) {
422  if (bdy_data_xlo[itime].size() > 0) {
423  for (int ivar(0); ivar<num_var; ++ivar) {
424  bdy_data_xlo[itime][ivar].writeOn(bdy_d_file,0,1);
425  bdy_data_xhi[itime][ivar].writeOn(bdy_d_file,0,1);
426  bdy_data_ylo[itime][ivar].writeOn(bdy_d_file,0,1);
427  bdy_data_yhi[itime][ivar].writeOn(bdy_d_file,0,1);
428  }
429  }
430  }
431  }
432 #endif
433 #endif
434 
435  if (verbose > 0)
436  {
437  auto dCheckTime = amrex::second() - dCheckTime0;
438  ParallelDescriptor::ReduceRealMax(dCheckTime,ParallelDescriptor::IOProcessorNumber());
439  amrex::Print() << "Checkpoint write time = " << dCheckTime << " seconds." << '\n';
440  }
441 }

◆ WriteGenericPlotfileHeaderWithTerrain()

void ERF::WriteGenericPlotfileHeaderWithTerrain ( std::ostream &  HeaderFile,
int  nlevels,
const amrex::Vector< amrex::BoxArray > &  bArray,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName,
const std::string &  levelPrefix,
const std::string &  mfPrefix 
) const
1834 {
1835  AMREX_ALWAYS_ASSERT(nlevels <= bArray.size());
1836  AMREX_ALWAYS_ASSERT(nlevels <= my_ref_ratio.size()+1);
1837  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1838 
1839  HeaderFile.precision(17);
1840 
1841  // ---- this is the generic plot file type name
1842  HeaderFile << versionName << '\n';
1843 
1844  HeaderFile << varnames.size() << '\n';
1845 
1846  for (int ivar = 0; ivar < varnames.size(); ++ivar) {
1847  HeaderFile << varnames[ivar] << "\n";
1848  }
1849  HeaderFile << AMREX_SPACEDIM << '\n';
1850  HeaderFile << my_time << '\n';
1851  HeaderFile << finest_level << '\n';
1852  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1853  HeaderFile << my_geom[0].ProbLo(i) << ' ';
1854  }
1855  HeaderFile << '\n';
1856  for (int i = 0; i < AMREX_SPACEDIM; ++i) {
1857  HeaderFile << my_geom[0].ProbHi(i) << ' ';
1858  }
1859  HeaderFile << '\n';
1860  for (int i = 0; i < finest_level; ++i) {
1861  HeaderFile << my_ref_ratio[i][0] << ' ';
1862  }
1863  HeaderFile << '\n';
1864  for (int i = 0; i <= finest_level; ++i) {
1865  HeaderFile << my_geom[i].Domain() << ' ';
1866  }
1867  HeaderFile << '\n';
1868  for (int i = 0; i <= finest_level; ++i) {
1869  HeaderFile << level_steps[i] << ' ';
1870  }
1871  HeaderFile << '\n';
1872  for (int i = 0; i <= finest_level; ++i) {
1873  for (int k = 0; k < AMREX_SPACEDIM; ++k) {
1874  HeaderFile << my_geom[i].CellSize()[k] << ' ';
1875  }
1876  HeaderFile << '\n';
1877  }
1878  HeaderFile << (int) my_geom[0].Coord() << '\n';
1879  HeaderFile << "0\n";
1880 
1881  for (int level = 0; level <= finest_level; ++level) {
1882  HeaderFile << level << ' ' << bArray[level].size() << ' ' << my_time << '\n';
1883  HeaderFile << level_steps[level] << '\n';
1884 
1885  const IntVect& domain_lo = my_geom[level].Domain().smallEnd();
1886  for (int i = 0; i < bArray[level].size(); ++i)
1887  {
1888  // Need to shift because the RealBox ctor we call takes the
1889  // physical location of index (0,0,0). This does not affect
1890  // the usual cases where the domain index starts with 0.
1891  const Box& b = shift(bArray[level][i], -domain_lo);
1892  RealBox loc = RealBox(b, my_geom[level].CellSize(), my_geom[level].ProbLo());
1893  for (int n = 0; n < AMREX_SPACEDIM; ++n) {
1894  HeaderFile << loc.lo(n) << ' ' << loc.hi(n) << '\n';
1895  }
1896  }
1897 
1898  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mfPrefix) << '\n';
1899  }
1900  HeaderFile << "1" << "\n";
1901  HeaderFile << "3" << "\n";
1902  HeaderFile << "amrexvec_nu_x" << "\n";
1903  HeaderFile << "amrexvec_nu_y" << "\n";
1904  HeaderFile << "amrexvec_nu_z" << "\n";
1905  std::string mf_nodal_prefix = "Nu_nd";
1906  for (int level = 0; level <= finest_level; ++level) {
1907  HeaderFile << MultiFabHeaderPath(level, levelPrefix, mf_nodal_prefix) << '\n';
1908  }
1909 }
Coord
Definition: ERF_DataStruct.H:85

◆ writeJobInfo()

void ERF::writeJobInfo ( const std::string &  dir) const
10 {
11  // job_info file with details about the run
12  std::ofstream jobInfoFile;
13  std::string FullPathJobInfoFile = dir;
14  FullPathJobInfoFile += "/job_info";
15  jobInfoFile.open(FullPathJobInfoFile.c_str(), std::ios::out);
16 
17  std::string PrettyLine = "==================================================="
18  "============================\n";
19  std::string OtherLine = "----------------------------------------------------"
20  "----------------------------\n";
21  std::string SkipSpace = " ";
22 
23  // job information
24  jobInfoFile << PrettyLine;
25  jobInfoFile << " ERF Job Information\n";
26  jobInfoFile << PrettyLine;
27 
28  jobInfoFile << "inputs file: " << inputs_name << "\n\n";
29 
30  jobInfoFile << "number of MPI processes: "
31  << ParallelDescriptor::NProcs() << "\n";
32 #ifdef _OPENMP
33  jobInfoFile << "number of threads: " << omp_get_max_threads() << "\n";
34 #endif
35 
36  jobInfoFile << "\n";
37  jobInfoFile << "CPU time used since start of simulation (CPU-hours): "
38  << getCPUTime() / 3600.0;
39 
40  jobInfoFile << "\n\n";
41 
42  // plotfile information
43  jobInfoFile << PrettyLine;
44  jobInfoFile << " Plotfile Information\n";
45  jobInfoFile << PrettyLine;
46 
47  time_t now = time(nullptr);
48 
49  // Convert now to tm struct for local timezone
50  tm* localtm = localtime(&now);
51  jobInfoFile << "output data / time: " << asctime(localtm);
52 
53  std::string currentDir = FileSystem::CurrentPath();
54  jobInfoFile << "output dir: " << currentDir << "\n";
55 
56  jobInfoFile << "\n\n";
57 
58  // build information
59  jobInfoFile << PrettyLine;
60  jobInfoFile << " Build Information\n";
61  jobInfoFile << PrettyLine;
62 
63  jobInfoFile << "build date: " << buildInfoGetBuildDate() << "\n";
64  jobInfoFile << "build machine: " << buildInfoGetBuildMachine() << "\n";
65  jobInfoFile << "build dir: " << buildInfoGetBuildDir() << "\n";
66  jobInfoFile << "AMReX dir: " << buildInfoGetAMReXDir() << "\n";
67 
68  jobInfoFile << "\n";
69 
70  jobInfoFile << "COMP: " << buildInfoGetComp() << "\n";
71  jobInfoFile << "COMP version: " << buildInfoGetCompVersion() << "\n";
72 
73  jobInfoFile << "\n";
74 
75  for (int n = 1; n <= buildInfoGetNumModules(); n++) {
76  jobInfoFile << buildInfoGetModuleName(n) << ": "
77  << buildInfoGetModuleVal(n) << "\n";
78  }
79 
80  jobInfoFile << "\n";
81 
82  const char* githash1 = buildInfoGetGitHash(1);
83  const char* githash2 = buildInfoGetGitHash(2);
84  if (strlen(githash1) > 0) {
85  jobInfoFile << "ERF git hash: " << githash1 << "\n";
86  }
87  if (strlen(githash2) > 0) {
88  jobInfoFile << "AMReX git hash: " << githash2 << "\n";
89  }
90 
91  const char* buildgithash = buildInfoGetBuildGitHash();
92  const char* buildgitname = buildInfoGetBuildGitName();
93  if (strlen(buildgithash) > 0) {
94  jobInfoFile << buildgitname << " git hash: " << buildgithash << "\n";
95  }
96 
97  jobInfoFile << "\n\n";
98 
99  // grid information
100  jobInfoFile << PrettyLine;
101  jobInfoFile << " Grid Information\n";
102  jobInfoFile << PrettyLine;
103 
104  int f_lev = finest_level;
105 
106  for (int i = 0; i <= f_lev; i++) {
107  jobInfoFile << " level: " << i << "\n";
108  jobInfoFile << " number of boxes = " << grids[i].size() << "\n";
109  jobInfoFile << " maximum zones = ";
110  for (int n = 0; n < AMREX_SPACEDIM; n++) {
111  jobInfoFile << geom[i].Domain().length(n) << " ";
112  }
113  jobInfoFile << "\n\n";
114  }
115 
116  jobInfoFile << " Boundary conditions\n";
117 
118  jobInfoFile << " -x: " << domain_bc_type[0] << "\n";
119  jobInfoFile << " +x: " << domain_bc_type[3] << "\n";
120  jobInfoFile << " -y: " << domain_bc_type[1] << "\n";
121  jobInfoFile << " +y: " << domain_bc_type[4] << "\n";
122  jobInfoFile << " -z: " << domain_bc_type[2] << "\n";
123  jobInfoFile << " +z: " << domain_bc_type[5] << "\n";
124 
125  jobInfoFile << "\n\n";
126 
127  // runtime parameters
128  jobInfoFile << PrettyLine;
129  jobInfoFile << " Inputs File Parameters\n";
130  jobInfoFile << PrettyLine;
131 
132  ParmParse::dumpTable(jobInfoFile, true);
133  jobInfoFile.close();
134 }
std::string inputs_name
Definition: main.cpp:14
static amrex::Real getCPUTime()
Definition: ERF.H:1468
Here is the call graph for this function:

◆ WriteLinePlot()

void ERF::WriteLinePlot ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
718 {
719  std::ofstream ofs(filename);
720  if (!ofs.is_open()) {
721  amrex::Print() << "Error: Could not open file " << filename << " for writing.\n";
722  return;
723  }
724 
725  ofs << std::setprecision(10) << std::scientific;
726  ofs << "# x y\n";
727 
728  for (const auto& p : points_xy) {
729  ofs << p[0] << " " << p[1] << "\n";
730  }
731 
732  ofs.close();
733 
734  amrex::Print() << "Line plot data written to " << filename << "\n";
735 }

◆ WriteMultiLevelPlotfileWithTerrain()

void ERF::WriteMultiLevelPlotfileWithTerrain ( const std::string &  plotfilename,
int  nlevels,
const amrex::Vector< const amrex::MultiFab * > &  mf,
const amrex::Vector< const amrex::MultiFab * > &  mf_nd,
const amrex::Vector< std::string > &  varnames,
const amrex::Vector< amrex::Geometry > &  my_geom,
amrex::Real  time,
const amrex::Vector< int > &  level_steps,
const amrex::Vector< amrex::IntVect > &  my_ref_ratio,
const std::string &  versionName = "HyperCLaw-V1.1",
const std::string &  levelPrefix = "Level_",
const std::string &  mfPrefix = "Cell",
const amrex::Vector< std::string > &  extra_dirs = amrex::Vector<std::string>() 
) const
1748 {
1749  BL_PROFILE("WriteMultiLevelPlotfileWithTerrain()");
1750 
1751  AMREX_ALWAYS_ASSERT(nlevels <= mf.size());
1752  AMREX_ALWAYS_ASSERT(nlevels <= rr.size()+1);
1753  AMREX_ALWAYS_ASSERT(nlevels <= level_steps.size());
1754  AMREX_ALWAYS_ASSERT(mf[0]->nComp() == varnames.size());
1755 
1756  bool callBarrier(false);
1757  PreBuildDirectorHierarchy(plotfilename, levelPrefix, nlevels, callBarrier);
1758  if (!extra_dirs.empty()) {
1759  for (const auto& d : extra_dirs) {
1760  const std::string ed = plotfilename+"/"+d;
1761  PreBuildDirectorHierarchy(ed, levelPrefix, nlevels, callBarrier);
1762  }
1763  }
1764  ParallelDescriptor::Barrier();
1765 
1766  if (ParallelDescriptor::MyProc() == ParallelDescriptor::NProcs()-1) {
1767  Vector<BoxArray> boxArrays(nlevels);
1768  for(int level(0); level < boxArrays.size(); ++level) {
1769  boxArrays[level] = mf[level]->boxArray();
1770  }
1771 
1772  auto f = [=]() {
1773  VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
1774  std::string HeaderFileName(plotfilename + "/Header");
1775  std::ofstream HeaderFile;
1776  HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
1777  HeaderFile.open(HeaderFileName.c_str(), std::ofstream::out |
1778  std::ofstream::trunc |
1779  std::ofstream::binary);
1780  if( ! HeaderFile.good()) FileOpenFailed(HeaderFileName);
1781  WriteGenericPlotfileHeaderWithTerrain(HeaderFile, nlevels, boxArrays, varnames,
1782  my_geom, time, level_steps, rr, versionName,
1783  levelPrefix, mfPrefix);
1784  };
1785 
1786  if (AsyncOut::UseAsyncOut()) {
1787  AsyncOut::Submit(std::move(f));
1788  } else {
1789  f();
1790  }
1791  }
1792 
1793  std::string mf_nodal_prefix = "Nu_nd";
1794  for (int level = 0; level <= finest_level; ++level)
1795  {
1796  if (AsyncOut::UseAsyncOut()) {
1797  VisMF::AsyncWrite(*mf[level],
1798  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix),
1799  true);
1800  VisMF::AsyncWrite(*mf_nd[level],
1801  MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix),
1802  true);
1803  } else {
1804  const MultiFab* data;
1805  std::unique_ptr<MultiFab> mf_tmp;
1806  if (mf[level]->nGrowVect() != 0) {
1807  mf_tmp = std::make_unique<MultiFab>(mf[level]->boxArray(),
1808  mf[level]->DistributionMap(),
1809  mf[level]->nComp(), 0, MFInfo(),
1810  mf[level]->Factory());
1811  MultiFab::Copy(*mf_tmp, *mf[level], 0, 0, mf[level]->nComp(), 0);
1812  data = mf_tmp.get();
1813  } else {
1814  data = mf[level];
1815  }
1816  VisMF::Write(*data , MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mfPrefix));
1817  VisMF::Write(*mf_nd[level], MultiFabFileFullPrefix(level, plotfilename, levelPrefix, mf_nodal_prefix));
1818  }
1819  }
1820 }
void WriteGenericPlotfileHeaderWithTerrain(std::ostream &HeaderFile, int nlevels, const amrex::Vector< amrex::BoxArray > &bArray, const amrex::Vector< std::string > &varnames, const amrex::Vector< amrex::Geometry > &my_geom, amrex::Real time, const amrex::Vector< int > &level_steps, const amrex::Vector< amrex::IntVect > &my_ref_ratio, const std::string &versionName, const std::string &levelPrefix, const std::string &mfPrefix) const
Definition: ERF_Plotfile.cpp:1823

◆ WriteMyEBSurface()

void ERF::WriteMyEBSurface ( )
6 {
7  using namespace amrex;
8 
9  amrex::Print() << "Writing the geometry to a vtp file.\n" << std::endl;
10 
11  // Only write at the finest level!
12  int lev = finest_level;
13 
14  BoxArray & ba = grids[lev];
15  DistributionMapping & dm = dmap[lev];
16 
17  const EBFArrayBoxFactory* ebfact = &EBFactory(lev);
18 
19  WriteEBSurface(ba,dm,Geom(lev),ebfact);
20 }
Definition: ERF_ConsoleIO.cpp:12
Here is the call graph for this function:

◆ writeNow()

bool ERF::writeNow ( const amrex::Real  cur_time,
const int  nstep,
const int  plot_int,
const amrex::Real  plot_per,
const amrex::Real  dt_0,
amrex::Real last_file_time 
)
2659 {
2660  bool write_now = false;
2661 
2662  if ( plot_int > 0) {
2663 
2664  write_now = (nstep % plot_int == 0);
2665 
2666  } else if (plot_per > 0.0) {
2667 
2668  amrex::Print() << "CUR NEXT PER " << cur_time << " " << next_file_time << " " << plot_per << std::endl;
2669 
2670  // Only write now if nstep newly matches the number of elapsed periods
2671  write_now = (cur_time > (next_file_time - Real(0.1)*dt_0));
2672  }
2673 
2674  return write_now;
2675 }

◆ WriteSubvolume()

void ERF::WriteSubvolume ( )
10 {
11  ParmParse pp("erf.subvol");
12 
13  Vector<Real> origin;
14  Vector< int> ncell;
15  Vector<Real> delta;
16 
17  // **************************************************************
18  // Read in the origin, number of cells in each dir, and resolution
19  // **************************************************************
20  pp.getarr("origin",origin,0,AMREX_SPACEDIM);
21  pp.getarr("nxnynz", ncell,0,AMREX_SPACEDIM);
22  pp.getarr("dxdydz", delta,0,AMREX_SPACEDIM);
23 
24  int lev_for_sub = 0;
25 
26  bool found = false;
27  for (int i = 0; i <= finest_level; i++) {
28  if (!found) {
29  if (almostEqual(delta[0],geom[i].CellSize(0)) &&
30  almostEqual(delta[1],geom[i].CellSize(1)) &&
31  almostEqual(delta[2],geom[i].CellSize(2)) ) {
32 
33  // amrex::Print() << "XDIR " << delta[0] << " " << geom[i].CellSize(0) << std::endl;
34  // amrex::Print() << "YDIR " << delta[1] << " " << geom[i].CellSize(1) << std::endl;
35  // amrex::Print() << "ZDIR " << delta[2] << " " << geom[i].CellSize(2) << std::endl;
36  amrex::Print() << "Resolution specified matches that of level " << i << std::endl;
37  found = true;
38  lev_for_sub = i;
39  }
40  }
41  }
42 
43  if (!found) {
44  amrex::Abort("Resolution specified for subvol does not match the resolution of any of the levels.");
45  }
46 
47  // **************************************************************
48  // Now that we know which level we're at, we can figure out which (i,j,k) the origin corresponds to
49  // Note we use 1.0001 as a fudge factor since the division of two reals --> integer will do a floor
50  // **************************************************************
51  int i0 = static_cast<int>((origin[0] - geom[lev_for_sub].ProbLo(0)) * 1.0001 / delta[0]);
52  int j0 = static_cast<int>((origin[1] - geom[lev_for_sub].ProbLo(1)) * 1.0001 / delta[1]);
53  int k0 = static_cast<int>((origin[2] - geom[lev_for_sub].ProbLo(2)) * 1.0001 / delta[2]);
54 
55  found = false;
56  if (almostEqual(geom[lev_for_sub].ProbLo(0)+i0*delta[0],origin[0]) &&
57  almostEqual(geom[lev_for_sub].ProbLo(1)+j0*delta[1],origin[1]) &&
58  almostEqual(geom[lev_for_sub].ProbLo(2)+k0*delta[2],origin[2]) )
59  {
60  amrex::Print() << "Specified origin is the lower left corner of cell " << IntVect(i0,j0,k0) << std::endl;
61  found = true;
62  }
63 
64  if (!found) {
65  amrex::Abort("Origin specified does not correspond to a node at this level.");
66  }
67 
68  Box domain(geom[lev_for_sub].Domain());
69 
70  Box bx(IntVect(i0,j0,k0),IntVect(i0+ncell[0]-1,j0+ncell[1]-1,k0+ncell[2]-1));
71  amrex::Print() << "Box requested is " << bx << std::endl;
72 
73  if (!domain.contains(bx))
74  {
75  amrex::Abort("Box requested is larger than the existing domain");
76  }
77 
78  Vector<int> cs(3);
79  int count = pp.countval("chunk_size");
80  if (count > 0) {
81  pp.queryarr("chunk_size",cs,0,AMREX_SPACEDIM);
82  } else {
83  cs[0] = max_grid_size[0][0];
84  cs[1] = max_grid_size[0][1];
85  cs[2] = max_grid_size[0][2];
86  }
87  IntVect chunk_size(cs[0],cs[1],cs[2]);
88 
89  BoxArray ba(bx);
90  ba.maxSize(chunk_size);
91 
92  amrex::Print() << "BoxArray is " << ba << std::endl;
93 
94  int ncomp_mf = AMREX_SPACEDIM;
95 
96  DistributionMapping dm(ba);
97 
98  MultiFab mf(ba, dm, ncomp_mf, 0);
99 
100  MultiFab mf_cc_vel(grids[lev_for_sub], dmap[lev_for_sub], ncomp_mf, 0);
101  average_face_to_cellcenter(mf_cc_vel,0,
102  Array<const MultiFab*,3>{&vars_new[lev_for_sub][Vars::xvel],
103  &vars_new[lev_for_sub][Vars::yvel],
104  &vars_new[lev_for_sub][Vars::zvel]});
105 
106  mf.ParallelCopy(mf_cc_vel,0,0,AMREX_SPACEDIM,0,0);
107 
108  std::string subvol_filename = Concatenate(subvol_file, istep[0], 5);
109 
110  Vector<std::string> varnames;
111  varnames.push_back("x_velocity");
112  varnames.push_back("y_velocity");
113  varnames.push_back("z_velocity");
114 
115  Real time = t_new[lev_for_sub];
116 
117  amrex::Print() <<"Writing subvolume into " << subvol_filename << std::endl;
118  WriteSingleLevelPlotfile(subvol_filename,mf,varnames,geom[lev_for_sub],time,istep[0]);
119 }
real(c_double), private cs
Definition: ERF_module_mp_morr_two_moment.F90:202
Here is the call graph for this function:

◆ WriteVTKPolyline()

void ERF::WriteVTKPolyline ( const std::string &  filename,
amrex::Vector< std::array< amrex::Real, 2 >> &  points_xy 
)
671 {
672  std::ofstream vtkfile(filename);
673  if (!vtkfile.is_open()) {
674  std::cerr << "Error: Cannot open file " << filename << std::endl;
675  return;
676  }
677 
678  int num_points = points_xy.size();
679  if (num_points == 0) {
680  vtkfile << "# vtk DataFile Version 3.0\n";
681  vtkfile << "Hurricane Track\n";
682  vtkfile << "ASCII\n";
683  vtkfile << "DATASET POLYDATA\n";
684  vtkfile << "POINTS " << num_points << " float\n";
685  vtkfile.close();
686  return;
687  }
688  if (num_points < 2) {
689  points_xy.push_back(points_xy[0]);
690  }
691  num_points = points_xy.size();
692 
693  vtkfile << "# vtk DataFile Version 3.0\n";
694  vtkfile << "Hurricane Track\n";
695  vtkfile << "ASCII\n";
696  vtkfile << "DATASET POLYDATA\n";
697 
698  // Write points (Z=0 assumed)
699  vtkfile << "POINTS " << num_points << " float\n";
700  for (const auto& pt : points_xy) {
701  vtkfile << pt[0] << " " << pt[1] << " 10000.0\n";
702  }
703 
704  // Write polyline connectivity
705  vtkfile << "LINES 1 " << num_points + 1 << "\n";
706  vtkfile << num_points << " ";
707  for (int i = 0; i < num_points; ++i) {
708  vtkfile << i << " ";
709  }
710  vtkfile << "\n";
711 
712  vtkfile.close();
713 }

Member Data Documentation

◆ advflux_reg

amrex::Vector<amrex::YAFluxRegister*> ERF::advflux_reg
private

Referenced by getAdvFluxReg().

◆ avg_xmom

amrex::Vector<amrex::MultiFab> ERF::avg_xmom
private

◆ avg_ymom

amrex::Vector<amrex::MultiFab> ERF::avg_ymom
private

◆ avg_zmom

amrex::Vector<amrex::MultiFab> ERF::avg_zmom
private

◆ ax

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax
private

◆ ax_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ax_src
private

◆ ay

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay
private

◆ ay_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::ay_src
private

◆ az

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az
private

◆ az_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::az_src
private

◆ ba1d

amrex::Vector<amrex::BoxArray> ERF::ba1d
private

◆ ba2d

amrex::Vector<amrex::BoxArray> ERF::ba2d
private

◆ base_state

amrex::Vector<amrex::MultiFab> ERF::base_state
private

◆ base_state_new

amrex::Vector<amrex::MultiFab> ERF::base_state_new
private

◆ bndry_output_planes_interval

int ERF::bndry_output_planes_interval = -1
staticprivate

◆ bndry_output_planes_per

Real ERF::bndry_output_planes_per = -1.0
staticprivate

◆ bndry_output_planes_start_time

Real ERF::bndry_output_planes_start_time = 0.0
staticprivate

◆ boxes_at_level

amrex::Vector<amrex::Vector<amrex::Box> > ERF::boxes_at_level
private

◆ cf_set_width

int ERF::cf_set_width {0}
private

◆ cf_width

int ERF::cf_width {0}
private

◆ cfl

Real ERF::cfl = 0.8
staticprivate

◆ change_max

Real ERF::change_max = 1.1
staticprivate

◆ check_file

std::string ERF::check_file {"chk"}
private

◆ column_file_name

std::string ERF::column_file_name = "column_data.nc"
staticprivate

◆ column_interval

int ERF::column_interval = -1
staticprivate

◆ column_loc_x

Real ERF::column_loc_x = 0.0
staticprivate

◆ column_loc_y

Real ERF::column_loc_y = 0.0
staticprivate

◆ column_per

Real ERF::column_per = -1.0
staticprivate

◆ cons_names

const amrex::Vector<std::string> ERF::cons_names
private
Initial value:
{"density", "rhotheta", "rhoKE", "rhoadv_0",
"rhoQ1", "rhoQ2", "rhoQ3",
"rhoQ4", "rhoQ5", "rhoQ6"}

◆ cosPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::cosPhi_m
private

◆ d_havg_density

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_density
private

◆ d_havg_pressure

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_pressure
private

◆ d_havg_qc

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qc
private

◆ d_havg_qv

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_qv
private

◆ d_havg_temperature

amrex::Gpu::DeviceVector<amrex::Real> ERF::d_havg_temperature
private

◆ d_rayleigh_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_rayleigh_ptrs
private

◆ d_rhoqt_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhoqt_src
private

◆ d_rhotheta_src

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_rhotheta_src
private

◆ d_sponge_ptrs

amrex::Vector<amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > > ERF::d_sponge_ptrs
private

◆ d_u_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_u_geos
private

◆ d_v_geos

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_v_geos
private

◆ d_w_subsid

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::d_w_subsid
private

◆ datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::datalog
private

◆ datalogname

amrex::Vector<std::string> ERF::datalogname
private

Referenced by DataLogName().

◆ datetime_format

const std::string ERF::datetime_format = "%Y-%m-%d %H:%M:%S"
private

◆ datprecision

const int ERF::datprecision = 6
private

◆ datwidth

const int ERF::datwidth = 14
private

◆ der_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::der_datalog
private

◆ der_datalogname

amrex::Vector<std::string> ERF::der_datalogname
private

Referenced by DerDataLogName().

◆ derived_names

const amrex::Vector<std::string> ERF::derived_names
private

◆ derived_names_2d

const amrex::Vector<std::string> ERF::derived_names_2d
private
Initial value:
{
"z_surf", "landmask", "mapfac", "lat_m", "lon_m",
"u_star", "w_star", "t_star", "q_star", "Olen", "pblh",
"t_surf", "q_surf", "z0"
}

◆ destag_profiles

bool ERF::destag_profiles = true
private

◆ detJ_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc
private

◆ detJ_cc_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_new
private

◆ detJ_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::detJ_cc_src
private

◆ domain_bc_type

amrex::Array<std::string,2*AMREX_SPACEDIM> ERF::domain_bc_type
private

◆ domain_bcs_type

amrex::Vector<amrex::BCRec> ERF::domain_bcs_type
private

◆ domain_bcs_type_d

amrex::Gpu::DeviceVector<amrex::BCRec> ERF::domain_bcs_type_d
private

◆ dt

amrex::Vector<amrex::Real> ERF::dt
private

◆ dt_max

Real ERF::dt_max = 1.0e9
staticprivate

◆ dt_max_initial

Real ERF::dt_max_initial = 2.0e100
staticprivate

◆ dt_mri_ratio

amrex::Vector<long> ERF::dt_mri_ratio
private

◆ dz_min

amrex::Vector<amrex::Real> ERF::dz_min
private

◆ eb

amrex::Vector<std::unique_ptr<eb_> > ERF::eb
private

Referenced by EBFactory(), and get_eb().

◆ eddyDiffs_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::eddyDiffs_lev
private

◆ fine_mask

amrex::MultiFab ERF::fine_mask
private

◆ finished_wave

bool ERF::finished_wave = false
private

◆ fixed_dt

amrex::Vector<amrex::Real> ERF::fixed_dt
private

◆ fixed_fast_dt

amrex::Vector<amrex::Real> ERF::fixed_fast_dt
private

◆ fixed_mri_dt_ratio

int ERF::fixed_mri_dt_ratio = 0
staticprivate

◆ forecast_state_1

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_1

◆ forecast_state_2

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_2

◆ forecast_state_interp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::forecast_state_interp

◆ FPr_c

amrex::Vector<ERFFillPatcher> ERF::FPr_c
private

◆ FPr_u

amrex::Vector<ERFFillPatcher> ERF::FPr_u
private

◆ FPr_v

amrex::Vector<ERFFillPatcher> ERF::FPr_v
private

◆ FPr_w

amrex::Vector<ERFFillPatcher> ERF::FPr_w
private

◆ gradp

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::gradp
private

◆ h_havg_density

amrex::Vector<amrex::Real> ERF::h_havg_density
private

◆ h_havg_pressure

amrex::Vector<amrex::Real> ERF::h_havg_pressure
private

◆ h_havg_qc

amrex::Vector<amrex::Real> ERF::h_havg_qc
private

◆ h_havg_qv

amrex::Vector<amrex::Real> ERF::h_havg_qv
private

◆ h_havg_temperature

amrex::Vector<amrex::Real> ERF::h_havg_temperature
private

◆ h_rayleigh_ptrs

amrex::Vector<amrex::Vector< amrex::Vector<amrex::Real> > > ERF::h_rayleigh_ptrs
private

◆ h_rhoqt_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhoqt_src
private

◆ h_rhotheta_src

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_rhotheta_src
private

◆ h_sponge_ptrs

amrex::Vector<amrex::Vector< amrex::Vector<amrex::Real> > > ERF::h_sponge_ptrs
private

◆ h_u_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_u_geos
private

◆ h_v_geos

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_v_geos
private

◆ h_w_subsid

amrex::Vector< amrex::Vector<amrex::Real> > ERF::h_w_subsid
private

◆ hurricane_eye_track_latlon

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_eye_track_latlon

◆ hurricane_eye_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_eye_track_xy

◆ hurricane_maxvel_vs_time

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_maxvel_vs_time

◆ hurricane_track_xy

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_track_xy

◆ hurricane_tracker_circle

amrex::Vector<std::array<amrex::Real, 2> > ERF::hurricane_tracker_circle

◆ Hwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave
private

◆ Hwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Hwave_onegrid
private

◆ init_shrink

Real ERF::init_shrink = 1.0
staticprivate

◆ input_bndry_planes

int ERF::input_bndry_planes = 0
staticprivate

◆ input_sounding_data

InputSoundingData ERF::input_sounding_data
private

◆ input_sponge_data

InputSpongeData ERF::input_sponge_data
private

◆ interpolation_type

StateInterpType ERF::interpolation_type
staticprivate

◆ istep

amrex::Vector<int> ERF::istep
private

◆ lagged_delta_rt

amrex::Vector<amrex::MultiFab> ERF::lagged_delta_rt
private

◆ last_check_file_step

int ERF::last_check_file_step = -1
staticprivate

◆ last_check_file_time

Real ERF::last_check_file_time = 0.0
staticprivate

◆ last_plot2d_file_step_1

int ERF::last_plot2d_file_step_1 = -1
staticprivate

◆ last_plot2d_file_step_2

int ERF::last_plot2d_file_step_2 = -1
staticprivate

◆ last_plot2d_file_time_1

Real ERF::last_plot2d_file_time_1 = 0.0
staticprivate

◆ last_plot2d_file_time_2

Real ERF::last_plot2d_file_time_2 = 0.0
staticprivate

◆ last_plot3d_file_step_1

int ERF::last_plot3d_file_step_1 = -1
staticprivate

◆ last_plot3d_file_step_2

int ERF::last_plot3d_file_step_2 = -1
staticprivate

◆ last_plot3d_file_time_1

Real ERF::last_plot3d_file_time_1 = 0.0
staticprivate

◆ last_plot3d_file_time_2

Real ERF::last_plot3d_file_time_2 = 0.0
staticprivate

◆ last_subvol_step

int ERF::last_subvol_step = -1
staticprivate

◆ last_subvol_time

Real ERF::last_subvol_time = 0.0
staticprivate

◆ lat_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::lat_m
private

◆ line_sampler

std::unique_ptr<LineSampler> ERF::line_sampler = nullptr
private

◆ line_sampling_interval

int ERF::line_sampling_interval = -1
private

◆ line_sampling_per

amrex::Real ERF::line_sampling_per = -1.0
private

◆ lmask_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::iMultiFab> > > ERF::lmask_lev
private

◆ lon_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::lon_m
private

◆ lsm

LandSurface ERF::lsm
private

◆ lsm_data

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_data
private

◆ lsm_data_name

amrex::Vector<std::string> ERF::lsm_data_name
private

◆ lsm_flux

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::lsm_flux
private

◆ lsm_flux_name

amrex::Vector<std::string> ERF::lsm_flux_name
private

◆ Lwave

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave
private

◆ Lwave_onegrid

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Lwave_onegrid
private

◆ m_bc_extdir_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_extdir_vals
private

◆ m_bc_neumann_vals

amrex::Array<amrex::Array<amrex::Real, AMREX_SPACEDIM*2>, AMREX_SPACEDIM+NBCVAR_max> ERF::m_bc_neumann_vals
private

◆ m_check_int

int ERF::m_check_int = -1
private

◆ m_check_per

amrex::Real ERF::m_check_per = -1.0
private

◆ m_expand_plotvars_to_unif_rr

bool ERF::m_expand_plotvars_to_unif_rr = false
private

◆ m_forest_drag

amrex::Vector<std::unique_ptr<ForestDrag> > ERF::m_forest_drag
private

◆ m_plot2d_int_1

int ERF::m_plot2d_int_1 = -1
private

◆ m_plot2d_int_2

int ERF::m_plot2d_int_2 = -1
private

◆ m_plot2d_per_1

amrex::Real ERF::m_plot2d_per_1 = -1.0
private

◆ m_plot2d_per_2

amrex::Real ERF::m_plot2d_per_2 = -1.0
private

◆ m_plot3d_int_1

int ERF::m_plot3d_int_1 = -1
private

◆ m_plot3d_int_2

int ERF::m_plot3d_int_2 = -1
private

◆ m_plot3d_per_1

amrex::Real ERF::m_plot3d_per_1 = -1.0
private

◆ m_plot3d_per_2

amrex::Real ERF::m_plot3d_per_2 = -1.0
private

◆ m_plot_face_vels

bool ERF::m_plot_face_vels = false
private

◆ m_r2d

std::unique_ptr<ReadBndryPlanes> ERF::m_r2d = nullptr
private

◆ m_subvol_int

int ERF::m_subvol_int = -1
private

◆ m_subvol_per

amrex::Real ERF::m_subvol_per = -1.0
private

◆ m_SurfaceLayer

std::unique_ptr<SurfaceLayer> ERF::m_SurfaceLayer = nullptr
private

◆ m_w2d

std::unique_ptr<WriteBndryPlanes> ERF::m_w2d = nullptr
private

◆ mapfac

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::mapfac
private

◆ max_step

int ERF::max_step = -1
private

◆ metgrid_basic_linear

bool ERF::metgrid_basic_linear {false}
private

◆ metgrid_debug_dry

bool ERF::metgrid_debug_dry {false}
private

◆ metgrid_debug_isothermal

bool ERF::metgrid_debug_isothermal {false}
private

◆ metgrid_debug_msf

bool ERF::metgrid_debug_msf {false}
private

◆ metgrid_debug_psfc

bool ERF::metgrid_debug_psfc {false}
private

◆ metgrid_debug_quiescent

bool ERF::metgrid_debug_quiescent {false}
private

◆ metgrid_force_sfc_k

int ERF::metgrid_force_sfc_k {6}
private

◆ metgrid_interp_theta

bool ERF::metgrid_interp_theta {false}
private

◆ metgrid_order

int ERF::metgrid_order {2}
private

◆ metgrid_proximity

amrex::Real ERF::metgrid_proximity {500.0}
private

◆ metgrid_retain_sfc

bool ERF::metgrid_retain_sfc {false}
private

◆ metgrid_use_below_sfc

bool ERF::metgrid_use_below_sfc {true}
private

◆ metgrid_use_sfc

bool ERF::metgrid_use_sfc {true}
private

◆ mf_C1H

std::unique_ptr<amrex::MultiFab> ERF::mf_C1H
private

◆ mf_C2H

std::unique_ptr<amrex::MultiFab> ERF::mf_C2H
private

◆ mf_MUB

std::unique_ptr<amrex::MultiFab> ERF::mf_MUB
private

◆ mf_PSFC

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::mf_PSFC
private

◆ mg_verbose

int ERF::mg_verbose = 0
staticprivate

◆ micro

std::unique_ptr<Microphysics> ERF::micro
private

◆ mri_integrator_mem

amrex::Vector<std::unique_ptr<MRISplitIntegrator<amrex::Vector<amrex::MultiFab> > > > ERF::mri_integrator_mem
private

◆ nc_bdy_file

std::string ERF::nc_bdy_file
staticprivate

◆ nc_init_file

Vector< Vector< std::string > > ERF::nc_init_file = {{""}}
staticprivate

◆ nc_low_file

std::string ERF::nc_low_file
staticprivate

◆ ng_dens_hse

int ERF::ng_dens_hse
staticprivate

◆ ng_pres_hse

int ERF::ng_pres_hse
staticprivate

◆ nsubsteps

amrex::Vector<int> ERF::nsubsteps
private

◆ num_boxes_at_level

amrex::Vector<int> ERF::num_boxes_at_level
private

◆ num_files_at_level

amrex::Vector<int> ERF::num_files_at_level
private

◆ output_1d_column

int ERF::output_1d_column = 0
staticprivate

◆ output_bndry_planes

int ERF::output_bndry_planes = 0
staticprivate

◆ pert_interval

int ERF::pert_interval = -1
staticprivate

◆ phys_bc_type

amrex::GpuArray<ERF_BC, AMREX_SPACEDIM*2> ERF::phys_bc_type
private

◆ physbcs_base

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_base> > ERF::physbcs_base
private

◆ physbcs_cons

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_cons> > ERF::physbcs_cons
private

◆ physbcs_u

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_u> > ERF::physbcs_u
private

◆ physbcs_v

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_v> > ERF::physbcs_v
private

◆ physbcs_w

amrex::Vector<std::unique_ptr<ERFPhysBCFunct_w> > ERF::physbcs_w
private

◆ plane_sampler

std::unique_ptr<PlaneSampler> ERF::plane_sampler = nullptr
private

◆ plane_sampling_interval

int ERF::plane_sampling_interval = -1
private

◆ plane_sampling_per

amrex::Real ERF::plane_sampling_per = -1.0
private

◆ plot2d_file_1

std::string ERF::plot2d_file_1 {"plt2d_1_"}
private

◆ plot2d_file_2

std::string ERF::plot2d_file_2 {"plt2d_2_"}
private

◆ plot2d_var_names_1

amrex::Vector<std::string> ERF::plot2d_var_names_1
private

◆ plot2d_var_names_2

amrex::Vector<std::string> ERF::plot2d_var_names_2
private

◆ plot3d_file_1

std::string ERF::plot3d_file_1 {"plt_1_"}
private

◆ plot3d_file_2

std::string ERF::plot3d_file_2 {"plt_2_"}
private

◆ plot3d_var_names_1

amrex::Vector<std::string> ERF::plot3d_var_names_1
private

◆ plot3d_var_names_2

amrex::Vector<std::string> ERF::plot3d_var_names_2
private

◆ plot_file_on_restart

bool ERF::plot_file_on_restart = true
staticprivate

◆ plot_lsm

bool ERF::plot_lsm = false
private

◆ plot_rad

bool ERF::plot_rad = false
private

◆ plotfile2d_type_1

PlotFileType ERF::plotfile2d_type_1 = PlotFileType::None
staticprivate

◆ plotfile2d_type_2

PlotFileType ERF::plotfile2d_type_2 = PlotFileType::None
staticprivate

◆ plotfile3d_type_1

PlotFileType ERF::plotfile3d_type_1 = PlotFileType::None
staticprivate

◆ plotfile3d_type_2

PlotFileType ERF::plotfile3d_type_2 = PlotFileType::None
staticprivate

◆ pp_inc

amrex::Vector<amrex::MultiFab> ERF::pp_inc
private

◆ pp_prefix

std::string ERF::pp_prefix {"erf"}

◆ previousCPUTimeUsed

Real ERF::previousCPUTimeUsed = 0.0
staticprivate

Referenced by getCPUTime().

◆ prob

std::unique_ptr<ProblemBase> ERF::prob = nullptr
private

◆ profile_int

int ERF::profile_int = -1
private

◆ qheating_rates

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::qheating_rates
private

◆ qmoist

amrex::Vector<amrex::Vector<amrex::MultiFab*> > ERF::qmoist
private

◆ Qr_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qr_prim
private

◆ Qv_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Qv_prim
private

◆ rad

amrex::Vector<std::unique_ptr<IRadiation> > ERF::rad
private

◆ rad_datalog_int

int ERF::rad_datalog_int = -1
private

◆ real_extrap_w

bool ERF::real_extrap_w {true}
private

◆ real_set_width

int ERF::real_set_width {0}
private

◆ real_width

int ERF::real_width {0}
private

◆ ref_tags

Vector< AMRErrorTag > ERF::ref_tags
staticprivate

◆ regrid_int

int ERF::regrid_int = -1
private

◆ regrid_level_0_on_restart

bool ERF::regrid_level_0_on_restart = false
private

◆ restart_chkfile

std::string ERF::restart_chkfile = ""
private

◆ rU_new

amrex::Vector<amrex::MultiFab> ERF::rU_new
private

◆ rU_old

amrex::Vector<amrex::MultiFab> ERF::rU_old
private

◆ rV_new

amrex::Vector<amrex::MultiFab> ERF::rV_new
private

◆ rV_old

amrex::Vector<amrex::MultiFab> ERF::rV_old
private

◆ rW_new

amrex::Vector<amrex::MultiFab> ERF::rW_new
private

◆ rW_old

amrex::Vector<amrex::MultiFab> ERF::rW_old
private

◆ sampleline

amrex::Vector<amrex::IntVect> ERF::sampleline
private

Referenced by NumSampleLines(), and SampleLine().

◆ samplelinelog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::samplelinelog
private

◆ samplelinelogname

amrex::Vector<std::string> ERF::samplelinelogname
private

Referenced by SampleLineLogName().

◆ samplepoint

amrex::Vector<amrex::IntVect> ERF::samplepoint
private

Referenced by NumSamplePoints(), and SamplePoint().

◆ sampleptlog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::sampleptlog
private

◆ sampleptlogname

amrex::Vector<std::string> ERF::sampleptlogname
private

Referenced by SamplePointLogName().

◆ SFS_diss_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_diss_lev
private

◆ SFS_hfx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx1_lev
private

◆ SFS_hfx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx2_lev
private

◆ SFS_hfx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_hfx3_lev
private

◆ SFS_q1fx1_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx1_lev
private

◆ SFS_q1fx2_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx2_lev
private

◆ SFS_q1fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q1fx3_lev
private

◆ SFS_q2fx3_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SFS_q2fx3_lev
private

◆ sinPhi_m

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sinPhi_m
private

◆ SmnSmn_lev

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::SmnSmn_lev
private

◆ solar_zenith

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::solar_zenith
private

◆ solverChoice

SolverChoice ERF::solverChoice
staticprivate

◆ sponge_type

std::string ERF::sponge_type
staticprivate

◆ sst_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::sst_lev
private

◆ start_time

Real ERF::start_time = 0.0
staticprivate

◆ startCPUTime

Real ERF::startCPUTime = 0.0
staticprivate

Referenced by getCPUTime().

◆ stop_time

Real ERF::stop_time = std::numeric_limits<amrex::Real>::max()
staticprivate

◆ stretched_dz_d

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::stretched_dz_d
private

◆ stretched_dz_h

amrex::Vector<amrex::Vector<amrex::Real> > ERF::stretched_dz_h
private

◆ sub_cfl

Real ERF::sub_cfl = 1.0
staticprivate

◆ subdomains

amrex::Vector<amrex::Vector<amrex::BoxArray> > ERF::subdomains
private

◆ subvol_file

std::string ERF::subvol_file {"subvol"}
private

◆ sum_interval

int ERF::sum_interval = -1
staticprivate

◆ sum_per

Real ERF::sum_per = -1.0
staticprivate

◆ sw_lw_fluxes

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::sw_lw_fluxes
private

◆ t_avg_cnt

amrex::Vector<amrex::Real> ERF::t_avg_cnt
private

◆ t_new

amrex::Vector<amrex::Real> ERF::t_new
private

◆ t_old

amrex::Vector<amrex::Real> ERF::t_old
private

◆ Tau

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::Tau
private

◆ terrain_blanking

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::terrain_blanking
private

◆ th_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::th_bc_data
private

◆ Theta_prim

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::Theta_prim
private

◆ thin_xforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_xforce
private

◆ thin_yforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_yforce
private

◆ thin_zforce

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::thin_zforce
private

◆ timeprecision

const int ERF::timeprecision = 13
private

◆ tot_e_datalog

amrex::Vector<std::unique_ptr<std::fstream> > ERF::tot_e_datalog
private

Referenced by setRecordEnergyDataInfo().

◆ tot_e_datalogname

amrex::Vector<std::string> ERF::tot_e_datalogname
private

◆ tsk_lev

amrex::Vector<amrex::Vector<std::unique_ptr<amrex::MultiFab> > > ERF::tsk_lev
private

◆ turbPert

TurbulentPerturbation ERF::turbPert
private

◆ use_datetime

bool ERF::use_datetime = false
private

◆ use_fft

bool ERF::use_fft = false
staticprivate

◆ vars_new

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_new
private

◆ vars_old

amrex::Vector<amrex::Vector<amrex::MultiFab> > ERF::vars_old
private

◆ vel_t_avg

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::vel_t_avg
private

◆ verbose

int ERF::verbose = 0
staticprivate

◆ walldist

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::walldist
private

◆ weather_forecast_data_1

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data_1

◆ weather_forecast_data_2

amrex::Vector<amrex::MultiFab> ERF::weather_forecast_data_2

◆ xflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::xflux_imask
private

◆ xvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::xvel_bc_data
private

◆ yflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::yflux_imask
private

◆ yvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::yvel_bc_data
private

◆ z_phys_cc

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc
private

◆ z_phys_cc_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_cc_src
private

◆ z_phys_nd

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd
private

◆ z_phys_nd_new

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_new
private

◆ z_phys_nd_src

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_phys_nd_src
private

◆ z_t_rk

amrex::Vector<std::unique_ptr<amrex::MultiFab> > ERF::z_t_rk
private

◆ zflux_imask

amrex::Vector<std::unique_ptr<amrex::iMultiFab> > ERF::zflux_imask
private

◆ zlevels_stag

amrex::Vector<amrex::Vector<amrex::Real> > ERF::zlevels_stag
private

◆ zmom_crse_rhs

amrex::Vector<amrex::MultiFab> ERF::zmom_crse_rhs
private

◆ zvel_bc_data

amrex::Vector<amrex::Gpu::DeviceVector<amrex::Real> > ERF::zvel_bc_data
private

The documentation for this class was generated from the following files: